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Abstract

In this paper, we analyze optimal control problems governed by semilinear parabolic
equations. Box constraints for the controls are imposed and the cost functional involves
the state and possibly a sparsity-promoting term, but not a Tikhonov regularization
term. Unlike finite dimensional optimization or control problems involving Tikhonov
regularization, second order sufficient optimality conditions for the control problems
we deal with must be imposed in a cone larger than the one used to obtain necessary
conditions. Different extensions of this cone have been proposed in the literature for
different kinds of minima: strong or weak minimizers for optimal control problems.
After a discussion on these extensions, we propose a new extended cone smaller than
those considered until now. We prove that a second order condition based on this new
cone is sufficient for a strong local minimum.
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conditions, sparse controls
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1 Introduction

Let us consider a domain Ω ⊂ Rn, n ≤ 3, with a Lipschitz boundary Γ. Given T > 0
we denote Q = Ω × (0, T ) and Σ = Γ × (0, T ). In this paper, we investigate second order
sufficient optimality conditions for the control problem

(P) min
u∈Uad

J(u) := F (u) + µj(u),

where µ ≥ 0. Additionally, for µ > 0, we will further suppose that α < 0 < β,

Uad = {u ∈ L∞(Q) : α ≤ u(x, t) ≤ β for a.a. (x, t) ∈ Q}
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with −∞ < α < β < +∞,

F (u) =

∫
Q

L(x, t, yu(x, t)) dx dt+ νΩ

∫
Ω

LΩ(x, yu(x, T ))dx,

νΩ ∈ {0, 1}, and j : L1(Q) → R is given by j(u) = ∥u∥L1(Q).
Above yu denotes the state associated to the control u related by the following semilinear

parabolic state equation
∂yu
∂t

+Ayu + f(x, t, yu) = u in Q,

yu = 0 on Σ,
yu(0) = y0 in Ω.

(1.1)

Assumptions on the data A, f , y0, L and LΩ are specified in Section 2.
It is well known that if ū is a local minimum then first order necessary optimality

conditions can be written as

J ′(ū;u− ū) ≥ 0 ∀u ∈ Uad

while second order necessary optimality conditions read like

F ′′(ū)v2 ≥ 0 ∀u ∈ Cū

where Cū is the cone

Cū = {v ∈ L2(Q) satisfying the sign condition (1.2) and J ′(ū; v) = 0},

v(x, t)

{
≥ 0 if ū(x, t) = α,
≤ 0 if ū(x, t) = β.

(1.2)

The reader is referred to [11, Theorem 3.7] for the elliptic case or [12, Theorem 3.1. Case I]
for the parabolic case.

It is well known that in finite dimensional optimization the cone used to establish neces-
sary second order necessary optimality conditions is the same as the one used for sufficient
second order conditions. However this not the case in general for optimization problems
in infinite dimension; see the example by Dunn [24]. Despite this, if the Tikhonov term
γ
2 ∥u∥

2
L2(Q) with γ > 0 is present in the cost functional of the control problem, we can take

the same cone for both necessary and sufficient conditions; see e.g., [4], [19] or [20] for the
case µ = 0, or [11], [12] or [17] for µ > 0. Other works that consider second order sufficient
conditions for problems with no Tikhonov regularization are [16], [21], [22], and [23]. The
results in these works cannot be applied to our problem due to the facts that we deal with
a semilinear parabolic equation, our controls depend both on space and time and we do not
have any assumption on the structure of the adjoint state.

In this paper, the Tikhonov term is not present. Then, an approach to deal with second
order sufficient conditions, as suggested by Dunn [24] or Maurer and Zowe [27] among
others, consists of extending the cone of critical directions Cū. As far as we know, two
ways to enlarge the cone have been proposed in the literature. In the context of abstract
optimization problems, following Maurer and Zowe [27], one could replace the condition
J ′(ū; v) = 0 by J ′(ū; v) ≤ τ∥v∥L2(Q) for some small τ > 0. In optimal control problems
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we can take advantage of the structure of the problem to define a slightly smaller cone by
taking

Eτ
ū =

{
v ∈ L2(Q) satisfying (1.2) and J ′(ū; v) ≤ τ

(
∥zv∥L2(Q) + νΩ∥zv(·, T )∥L2(Ω)

)}
, (1.3)

where zv is the derivative of the control-to-state mapping in the direction v; see (2.5) below.
A second alternative to extend Cū is based on the observation that for functions v ∈ L2(Q)
satisfying the sign condition (1.2) we have

for µ = 0 : J ′(ū; v) = 0 ⇐⇒ v(x, t) = 0 if |φ̄(x, t)| > 0

for µ > 0 : J ′(ū; v) = 0 ⇐⇒ v(x, t)


≥ 0 if φ̄(x, t) = −µ and ū(x, t) = 0
≤ 0 if φ̄(x, t) = +µ and ū(x, t) = 0

= 0 if
∣∣∣|φ̄(x, t)| − µ

∣∣∣ > 0

where φ̄ is the adjoint state associated with ū, defined in (2.14) below; see [6], [17], [20],
[21], [22]. Then a natural extension can be done specifying a smaller set of points where the
functions v should vanish: given τ > 0 we define the extended cone

for µ = 0 : Dτ
ū ={v ∈ L2(Ω) satisfying (1.2) and v(x, t) = 0 if |φ̄(x, t)| > τ}

for µ > 0 : Dτ
ū =

{
v ∈ L2(Ω) satisfying (1.2) and

v(x, t)


≥ 0 if φ̄(x, t) = −µ and ū(x, t) = 0
≤ 0 if φ̄(x, t) = +µ and ū(x, t) = 0

= 0 if
∣∣∣|φ̄(x, t)| − µ

∣∣∣ > τ

}
.

The following question immediately arises: is one of these two extensions better than
the other? The answer seems to be difficult because they are not easy to compare. However
we solve this issue by choosing Dτ

ū ∩ Eτ
ū . The main goal of this paper is to prove that a

second order optimality condition based on this cone along with the first order optimality
conditions imply the strong local optimality of ū.

The plan of the paper is as follows. In Section 2 we establish the assumptions on the
functions defining (P), recall some regularity results on the state equation and the linearized
state equation and establish the differentiability properties of the control-to-state mapping.
We also state necessary optimality conditions. In Section 3 we prove our main result, namely
Theorem 3.1. In Section 4 we comment about extensions and limitations of our main result.

Before ending this introduction let us mention that the methods used in this paper cannot
be applied to the case of control problems governed by the Navier-Stokes system. This is
due to the fact that our approach requieres L∞(Q) bounds for the states; see Theorem 2.1.
For quasilinear parabolic equations, it seems possible to obtain similar bounds using the
results in [9]. Also it seems reasonable that estimates analogous to that of (2.8) or (2.13)
hold, but the extension is not immediate and is beyond the scope of this paper. We refer
the reader interested in optimal control problems governed by these types of equations to
[7], [8], [9], [10], [15], [18], [28] for the case where the Tikhonov term is present in the cost
functional.
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2 Assumptions and preliminary results

On the partial differential equation (1.1), we make the following assumptions.

(A1) A denotes the elliptic operator

Ay = −
n∑

i,j=1

∂xj
(ai,j(x)∂xi

y) +

n∑
j=1

bj(x, t)∂xj
y,

where bj ∈ L∞(Q), ai,j ∈ L∞(Ω), and the uniform ellipticity condition

∃λA > 0 : λA|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj for all ξ ∈ Rn and a.a. x ∈ Ω (2.1)

holds.

(A2) We assume that f : Q × R → R is a Carathéodory function of class C2 with respect
to the last variable satisfying the following properties:

∃Cf ∈ R :
∂f

∂y
(x, t, y) ≥ Cf ∀y ∈ R, (2.2)

f(·, ·, 0) ∈ Lp̂(0, T ;Lq̂(Ω)) for some p̂, q̂ ≥ 2 with
1

p̂
+

d

2q̂
< 1,

∀M > 0 ∃Cf,M > 0 :

∣∣∣∣∂jf∂yj (x, t, y)
∣∣∣∣ ≤ Cf,M ∀|y| ≤M and j = 1, 2,

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2f∂y2
(x, t, y1)−

∂2f

∂y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,

for almost all (x, t) ∈ Q.

Examples of functions f satisfying the above assumptions are the polynomials of odd degree
with positive leading coefficients or the exponential function f(x, t, y) = g(x, t)exp(y) with
g ∈ L∞(Q), g(x, t) ≥ 0 for almost all (x, t) ∈ Q.

(A3) For the initial datum we assume y0 ∈ L∞(Ω).

On the functions L and LΩ defining the differentiable part F of the cost functional J , we
assume:

(A4) L : Q×R → R is a Carathéodory function of class C2 with respect to the last variable
satisfying the following properties:

L(·, ·,0) ∈ L1(Q) and ∀M > 0 ∃ΨM ∈ Lp̂(0, T ;Lq̂(Ω)) and CQ,M

such that∣∣∣∣∂L∂y (x, t, y)
∣∣∣∣ ≤ ΨM (x, t) and

∣∣∣∣∂2L∂y2 (x, t, y)
∣∣∣∣ ≤ CQ,M ∀|y| ≤M,

(2.3)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2L∂y2 (x, t, y1)− ∂2L

∂y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,

for almost all (x, t) ∈ Q.
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(A5) LΩ : Ω×R → R is a Carathéodory function of class C2 with respect to the last variable
satisfying the following properties:

LΩ(·, 0) ∈ L1(Ω) and ∀M > 0 ∃CΩ,M such that∣∣∣∣∂jLΩ

∂yj
(x, y)

∣∣∣∣ ≤ CΩ,M ∀|y| ≤M and j = 1, 2
(2.4)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2LΩ

∂y2
(x, y1)−

∂2LΩ

∂y2
(x, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,

for almost all x ∈ Ω.

Let us comment that the classical tracking-type cost functional

F (u) =
1

2

∫
Q

(yu(x, t)− yd(x, t))
2 dx dt+

νΩ
2

∫
Ω

(yu(x, T )− yΩ(x))
2 dx

satisfies the above assumptions if yd ∈ Lp̂(0, T ;Lq̂(Ω)) and yΩ ∈ L∞(Ω).
Hereafter, these hypotheses will be assumed without further notice throughout the rest

of the work.

2.1 Analysis of the state equation

In this section we analyze the existence, uniqueness and some regularity properties for the
solution of (1.1) as well as its dependence with respect to the control u. We also prove some
technical results to be used in the proof of our main result, Theorem 3.1.

Theorem 2.1. For every u ∈ Lp̂(0, T ;Lq̂(Ω)) there exists a unique solution of (1.1), yu ∈
L2(0, T ;H1

0 (Ω))∩L∞(Q). Moreover, there exist positive constants Kp̂,q̂, Cp̂,q̂ and M∞ such
that for all u, ū ∈ Uad,

∥yu∥L2(0,T ;H1
0 (Ω)) + ∥yu∥L∞(Q) ≤
Kp̂,q̂(∥u∥Lp̂(0,T ;Lq̂(Ω)) + ∥f(·, ·, 0)∥Lp̂(0,T ;Lq̂(Ω)) + ∥y0∥L∞(Ω)),

∥yu − yū∥L∞(Q) ≤ Cp̂,q̂∥u− ū∥Lp̂(0,T ;Lq̂(Ω)),

∥yu∥L∞(Q) ≤M∞.

Finally, if uk ⇀ u weakly in Lp̂(0, T ;Lq̂(Ω)), then the strong convergence

∥yuk
− yu∥L∞(Q) + ∥yuk

− yu∥L2(0,T ;H1
0 (Ω)) + ∥yuk

(·, T )− yu(·, T )∥L∞(Ω) → 0

holds.

Proof. To deal with the nonlinearity in the state equation we can proceed as in [5, Theorem
5.1]. Combining this approach with the well-known results for linear equations, see e.g. [26,
Chapter III], existence, uniqueness, regularity and the first and third estimates follow easily.

To deduce the second estimate and the convergence properties, we introduce wk = yuk
−

yu. Subtracting the equations satisfied by yuk
and yu and using the mean value theorem we

get the existence of measurable functions ŷk = yu+ θk(yuk
− yu), 0 < θk(x, t) < 1, such that

∂wk

∂t
+Awk +

∂f

∂y
(x, t, ŷk)wk = uk − u in Q,

wk = 0 on Σ,
wk(0) = 0 in Ω.
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From [26, Theorem III-10.1], we deduce the existence of Cp̂,q̂ > 0 and γ ∈ (0, 1) such that
∥wk∥Cγ,γ/2(Q̄) ≤ Cp̂,q̂∥uk − u∥Lp̂(0,T ;Lq̂(Ω)). This proves the second estimate. Finally, since

Cγ,γ/2(Q̄) is compactly embedded in C(Q̄) it is immediate to see that ∥wk∥C(Q̄) → 0. In
particular, ∥wk(·, T )∥L∞(Ω) → 0 holds. Using this fact and multiplying the above equation
by wk and making integration by parts we infer convergence wk → 0 in L2(0, T ;H1(Ω)).

Hereafter, we denote Y = L2(0, T ;H1
0 (Ω)) ∩ L∞(Q) and G : Lp̂(0, T ;Lq̂(Ω)) −→ Y as

the mapping associating to each control the corresponding state G(u) = yu.

Theorem 2.2. The mapping G is of class C2. Moreover, for every u, v, v1, v2 ∈ Lp̂(0, T ;Lq̂(Ω)),
we have that zv = G′(u)v is the solution of

∂z

∂t
+Az +

∂f

∂y
(x, t, yu)z = v in Q,

z = 0 on Σ,
z(0) = 0 in Ω,

(2.5)

and zv1,v2
= G′′(u)(v1, v2) solves the equation

∂z

∂t
+Az +

∂f

∂y
(x, t, yu)z = −∂

2f

∂y2
(x, t, yu)zv1zv2 in Q,

z = 0 on Σ,
z(0) = 0 in Ω,

where zvi = G′(u)vi, i = 1, 2. Moreover zv and zv1,v2 are continuous functions in Q̄.

For the proof the reader is referred, for instance, to [19, Theorem 5.1].
From the classical theory for linear parabolic partial differential equations, we know that

for every v ∈ L2(Q) there exists a unique solution zv of (2.5) in the space C([0, T ], L2(Ω))∩
L2(0, T ;H1

0 (Ω)). Therefore the linear mapping G′(u) can be extended to a continuous linear
mapping G′(u) : L2(Q) → C([0, T ], L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)).
The following estimates for zv will be used in the next sections.

Lemma 2.3. Let u ∈ Uad and v ∈ L2(Q) be arbitrary, and let zv = G′(u)v be the solution
of (2.5). Then, there exist constants CQ,2 and CQ,1 independent of u and v such that

∥zv∥L2(Q) + ∥zv(·, T )∥L2(Ω) ≤ CQ,2∥v∥L2(Q), (2.6)

∥zv∥L1(Q) + ∥zv(·, T )∥L1(Ω) ≤ CQ,1∥v∥L1(Q). (2.7)

If, further, v ∈ Lp̂(0, T ;Lq̂(Ω)), then there exists a constant CQ,∞ independent of u and v
such that

∥zv∥C(Q̄) ≤ CQ,∞∥v∥Lp̂(0,T ;Lq̂(Ω)). (2.8)

Proof. First let us note that from Theorem 2.1 and our assumption on f (A2) we have that∣∣∣∣∂jf∂yj (x, t, yu(x, t))
∣∣∣∣ ≤ Cf,M∞ ∀u ∈ Uad and a.e. (x, t) ∈ Q, j = 1, 2. (2.9)

Then (2.6) and (2.8) are classical; see for instance [26, Chapter III].
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The estimate (2.7) for ∥zv∥L1(Q) follows from [13]; see also [3, 5].

To prove the estimate for ∥zv(·, T )∥L1(Ω) we proceed as follows. Consider the function
ψT = sign(zv(·, T )) ∈ L∞(Ω) and let ψ ∈ L∞(Q) ∩ L2(0, T ;H1

0 (Ω)) be the unique solution
of the problem 

−∂ψ
∂t

+A∗ψ +
∂f

∂y
(x, t, yu)ψ = 0 in Q,

ψ = 0 on Σ,
ψ(T ) = ψT in Ω,

where A∗ is the adjoint of A given by

A∗ψ = −
n∑

i,j=1

∂xj
(aj,i(x)∂xi

ψ)−
n∑

j=1

∂xj
(bj(x, t)y). (2.10)

Multiplying the equation satisfied by zv by ψ and integrating over Q, we obtain∫
Q

ψ

(
∂tzv +Azv +

∂f

∂y
(x, t, yu)zv

)
dxdt =

∫
Q

vψdxdt. (2.11)

Integrating by parts in the first integral, we have∫
Q

ψ
(
∂tzv +Azv +

∂f

∂y
(x, t, yu)zv

)
dxdt =

∫
Ω

(ψ(x, T )zv(x, T )− ψ(x, 0)zv(x, 0)) dx

+

∫
Q

zv

(
−∂tψ +A∗ψ +

∂f

∂y
(x, t, yu)ψ

)
dxdt

=

∫
Ω

ψT (x)zv(x, T )dx =

∫
Ω

sign(zv(x, T ))zv(x, T )dx = ∥zv(·, T )∥L1(Ω).

Now using (2.11), we have that

∥zv(·, T )∥L1(Ω) ≤ ∥ψ∥L∞(Q)∥v∥L1(Q).

Finally, it is enough to realize that for some constant C we have

∥ψ∥L∞(Q) ≤ C∥ψT ∥L∞(Ω) = C

and the proof is complete.

The following technical result will be used in the proof of Theorem 3.1.

Lemma 2.4. Consider u, ū ∈ Uad with associated states yu and ȳ, respectively. Set zu−ū =
G′(ū)(u − ū) and consider the constants Cf,M∞ satisfying (2.9) and CQ,∞ introduced in
Lemma 2.3. Then the following estimates hold:
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If ∥yu−ȳ∥L∞(Q) <
2

Cf,M∞CQ,∞|Ω|1/q̂T 1/p̂
then (2.12)

∥zu−ū∥C(Q̄) < 2∥yu − ȳ∥L∞(Q).

If ∥yu−ȳ∥L∞(Q) <
1

Cf,M∞CQ,∞
then (2.13)

∥zu−ū∥L2(Q) + νΩ∥zu−ū(·, T )∥L2(Ω)

≥ 1

2

(
∥yu − ȳ∥L2(Q) + νΩ∥yu(·, T )− ȳ(·, T )∥L2(Ω)

)
.

Proof. Define η = yu − (ȳ + zu−ū). The function η satisfies the equation
∂η

∂t
+Aη + f(x, t, yu)− f(x, t, ȳ)− ∂f

∂y
(x, t, ȳ)zu−ū = 0 in Q,

η = 0 on Σ,
η(0) = 0 in Ω.

Using a second order Taylor expansion, we have that there exists a measurable function
0 < θ(x, t) < 1 such that, if we name ŷ = ȳ + θ(yu − ȳ), we have that

∂η

∂t
+Aη +

∂f

∂y
(x, t, ȳ)η = −1

2

∂2f

∂y2
(x, t, ŷ)(yu − ȳ)2 in Q,

η = 0 on Σ,
η(0) = 0 in Ω.

Let us prove the first estimate. With the help of Assumption (A2), we deduce from (2.8)
and (2.9) that

∥η∥C(Q̄) ≤
1

2
Cf,M∞CQ,∞|Ω|1/q̂T 1/p̂∥yu − ȳ∥2L∞(Q).

Using this and (2.12), we infer

∥zu−ū∥C(Q̄) ≤∥η∥C(Q̄) + ∥yu − ȳ∥L∞(Q)

≤1

2
Cf,M∞CQ,∞|Ω|1/q̂T 1/p̂∥yu − ȳ∥2L∞(Q) + ∥yu − ȳ∥L∞(Q)

≤2∥yu − ȳ∥L∞(Q).

For the second inequality, notice that using the uniform boundness of the admissible
states, assumption (A2) and (2.6), we have that

∥η∥L2(Q) + νΩ∥η(·, T )∥L2(Ω) ≤
1

2
CQ,2Cf,M∞∥yu − ȳ∥L∞(Q)∥yu − ȳ∥L2(Q).

Finally, using (2.13), we have that

∥yu−ȳ∥L2(Q) + νΩ∥yu(·, T )− ȳ(·, T )∥L2(Ω)

≤∥η∥L2(Q) + νΩ∥η(·, T )∥L2(Ω) + ∥zu−ū∥L2(Q) + νΩ∥zu−ū(·, T )∥L2(Ω)

≤1

2
CQ,2Cf,M∞∥yu − ȳ∥L∞(Q)∥yu − ȳ∥L2(Q) + ∥zu−ū∥L2(Q) + νΩ∥zu−ū(·, T )∥L2(Ω)

≤1

2
∥yu − ȳ∥L2(Q) + ∥zu−ū∥L2(Q) + νΩ∥zu−ū(·, T )∥L2(Ω),
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and the second inequality follows.

2.2 First and second order optimality conditions for (P)

We recall the definition of the cost functional J(u) = F (u) + µj(u). Before establishing
the optimality conditions satisfied by a local solution we address the differentiability of the
functional F .

The next theorem follows from the chain rule, Theorem 2.2 and assumptions (A2) and
(A3).

Theorem 2.5. The functional F : Lp̂(0, T ;Lq̂(Ω)) −→ R is of class C2 and for every
u, v, v1, v2 ∈ Lp̂(0, T ;Lq̂(Ω))

F ′(u)v =

∫
Q

φuv dx,

F ′′(u)(v1, v2) =

∫
Q

(
∂2L

∂y2
(x, t, yu)− φu

∂2f

∂y2
(x, t, yu)

)
zv1zv2 dx dt

+ νΩ

∫
Ω

∂2LΩ

∂y2
(x, yu(x, T ))zv1(x, T )zv2(x, T ) dx.

where zvi = G′(u)vi, i = 1, 2 and φu ∈ Y is the adjoint state associated to u, i.e., it is the
solution of 

−∂φ
∂t

+A∗φ+
∂f

∂y
(x, t, yu)φ =

∂L

∂y
(x, t, yu) in Q,

φ = 0 on Σ,

φ(·, T ) = νΩ
∂LΩ

∂y
(x, yu(·, T )) in Ω,

(2.14)

and A∗ denotes the adjoint operator of A introduced in (2.10).

Assumptions (A1), (A4) and (A5) together with Theorem 2.1 imply, see [26, Chapter
III], that for every u ∈ Uad, φu ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(Q) and there exists a constant
K∞ > 0 independent of u such that

∥φu∥L2(0,T ;H1
0 (Ω)) + ∥φu∥L∞(Q) ≤ K∞ ∀u ∈ Uad. (2.15)

Remark 2.6. From the expressions for F ′(u) and F ′′(u) established in the previous theorems
it is immediate that they can be extended through the same formulas to continuous linear
and bilinear forms, respectively, in L2(Q). Moreover, assumptions (A2) and (A3), Theorem
2.1 and inequality (2.15) imply the existence of some M2 > 0 such that

|F ′′(u)(v1, v2)| ≤M2

(
∥zv1∥L2(Q)∥zv2∥L2(Q) + νΩ∥zv1(·, T )∥L2(Ω)∥zv2(·, T )∥L2(Ω)

)
(2.16)

for all u ∈ Uad and v1, v2 ∈ L2(Q), where zvi = G′(u)vi, i = 1, 2.

Finally, we notice that the directional derivative of j at u in the direction v can be
computed as

j′(u; v) =

∫
u>0

v +

∫
u=0

|v| −
∫
u<0

v. (2.17)
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In what follows, we will write J ′(u; v) = F ′(u)v + µj′(u; v). We will also denote ∂j(u) as
the subdifferential of j at u in the sense of convex analysis.

Existence of a global solution of (P) follows in a standard way using Theorem 2.1; see
e.g. [14]. Since (P) is not a convex problem, we consider local solutions as well. Let us state
precisely the different concepts of local solution.

Definition 2.7. We say that ū ∈ Uad is an Lr(Q)-weak local minimum of (P), with r ∈
[1,+∞], if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ∥ū− u∥Lr(Q) ≤ ε.

An element ū ∈ Uad is said to be a strong local minimum of (P) if there exists some ε > 0
such that

J(ū) ≤ J(u) ∀u ∈ Uad with ∥yū − yu∥L∞(Q) ≤ ε.

We say that ū ∈ Uad is a strict (weak or strong) local minimum if the above inequalities are
strict for u ̸= ū.

As far as we know, the notion of strong local solutions in the framework of control theory
was introduced in [1] for the first time; see also [2].

Lemma 2.8. The following properties hold:

1. ū is an L1(Q)-weak local minimum of (P) if and only if it is an Lr(Q)-weak local
minimum of (P) for every r ∈ (1,+∞).

2. If ū is an Lr(Q)-weak local minimum of (P) for some r < +∞, then it is an L∞(Q)-
weak local minimum of (P).

3. If ū is a strong local minimum of (P), then it is a Lr(Q)-weak local minimum of (P)
for all r ∈ [1,∞].

Proof. Statement 1 is a consequence of the equivalence of all the Lr(Q) topologies (1 ≤
r < +∞) in Uad. Since ∥u∥Lr(Q) ≤ T 1/r|Ω|1/r∥u∥L∞(Q), statement 2 follows. To prove
statement 3 we use the second estimate in Theorem 2.1:

∥yu − ȳ∥L∞(Q) ≤ Cp̂,q̂∥u− ū∥Lp̂(0,T ;Lq̂(Ω)) ≤ Cr∥u− ū∥Lr(Q)

for all r ≥ max{p̂, q̂}. Then statement 3 follows from statement 1 and the above inequality.

Next we state first order optimality conditions.

Theorem 2.9. Suppose ū is a local solution of (P) in any of the senses given in Definition
2.7. Then

J ′(ū;u− ū) ≥ 0 ∀u ∈ Uad (2.18)

holds. Moreover, there exist ȳ and φ̄ in Y and λ̄ ∈ ∂j(ū) such that
∂ȳ

∂t
+Aȳ + f(x, t, ȳ) = ū in Q,

ȳ = 0 on Σ,
ȳ(·, 0) = y0 in Ω,

(2.19a)
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−∂φ̄
∂t

+A∗φ̄+
∂f

∂y
(x, t, ȳ)φ̄ =

∂L

∂y
(x, t, ȳ) in Q,

φ̄ = 0 on Σ,

φ̄(·, T ) = νΩ
∂LΩ

∂y
(x, ȳ(x, T )) in Ω,

(2.19b)

∫
Q

(φ̄+ µλ̄)(u− ū)dx dt ≥ 0 ∀u ∈ Uad. (2.19c)

Proof. To prove (2.18) it is enough to use the local optimality of ū and the convexity of Uad

as follows:

0 ≤ lim
ρ↘0

J(ū+ ρ(u− ū))

ρ
= J ′(ū;u− ū) ∀u ∈ Uad.

From the expression of F ′ established in Theorem 2.5 and the convexity of j we infer

0 ≤ lim
ρ↘0

J(ū+ ρ(u− ū))

ρ

≤ lim
ρ↘0

F (ū+ ρ(u− ū))

ρ
+ µj(u)− µj(ū)

=

∫
Q

φ̄(u− ū)dx dt+ µj(u)− µj(ū) ∀u ∈ Uad.

Hence, ū solves the problem

min
u∈L∞(Q)

I(u) :=

∫
Q

φ̄udx dt+ µj(u) + IUad
(u),

where IUad
is the indicator function of the convex set Uad. Therefore, using the subdifferential

calculus, see e.g. [25, Chapter I, Proposition 5.6], we obtain 0 ∈ ∂I(ū) = φ̄ + µ∂j(ū) +
∂IUad

(ū), which implies (2.19c) for some λ̄ ∈ ∂j(ū).

From (2.19c) we deduce the following corollary; see [12].

Corollary 2.10. Under the assumptions of Theorem 2.9,

if φ̄(x, t) > +µ then ū(x, t) = α,

if φ̄(x, t) < −µ then ū(x, t) = β.

If µ > 0, then

if |φ̄(x, t)| < µ then ū(x, t) = 0,

λ̄(x, t) = Proj[−1,+1]

(
− 1

µ
φ̄(x, t)

)
and λ̄ ∈ Y .

Let us write the second order necessary conditions. Given a control ū ∈ Uad satisfying
(2.18), we say that a function v ∈ L2(Q) satisfies the sign condition if

v(x, t)

{
≥ 0 if ū(x, t) = α,
≤ 0 if ū(x, t) = β.

(2.20)
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Following [11, 12], we introduce the cone

Cū = {v ∈ L2(Q) satisfying (2.20) and J ′(ū; v) = 0}.

We have the following proposition; see [11, Lemma 3.5].

Proposition 2.11. If ū ∈ Uad satisfies (2.18), then

J ′(ū; v) ≥ 0 for all v ∈ L2(Q) satisfying the sign condition (2.20). (2.21)

As a consequence, it follows that Cū is a closed convex cone.

If µ = 0, we deduce from Corollary 2.10 that φ̄(x, t)v(x, t) = |φ̄(x, t)v(x, t)| for every
v ∈ L2(Q) satisfying the sign condition (2.20). Consequently the following identity holds.

Cū = {v ∈ L2(Q) satisfying (2.20) and v(x, t) = 0 if |φ̄(x, t)| > 0}. (2.22)

For µ > 0, from Corollary 2.10 we also infer that

Cū =

{
v ∈ L2(Q) satisfying (2.20) and

v(x, t)


≥ 0 if φ̄(x, t) = −µ and ū(x, t) = 0
≤ 0 if φ̄(x, t) = +µ and ū(x, t) = 0

= 0 if
∣∣∣|φ̄(x, t)| − µ

∣∣∣ > 0

}
;

(2.23)

see [17] for a proof.
The second order necessary conditions are established in [11, Theorem 3.7]. Although

that result is stated for elliptic problems and a Tikhonov regularization term, the proof can
be translated to our setting with the straightforward changes.

Theorem 2.12. Suppose ū is a local solution of (P) in any of the senses given in Definition
2.7. Then, F ′′(ū)v2 ≥ 0 for all v ∈ Cū holds.

3 Second order sufficient conditions

In this section, we establish the sufficient second order optimality conditions. In what follows,
ū will denote a control of Uad satisfying (2.18). We denote by ȳ and φ̄ the associated state
and adjoint state.

As mentioned in the introduction, we have to extend the cone Cū to formulate the second
order sufficient conditions for optimality.

Looking at J ′(ū; v) for every τ > 0 we consider the extended cone

Gτ
ū =

{
v ∈ L2(Q) satisfying (2.20) and J ′(ū; v) ≤ τ

(
∥zv∥L1(Q) + νΩ∥zv(·, T )∥L1(Ω)

)}
.

The extended cone Eτ
ū introduced in (1.3) has been used in the literature to formulate the

second order sufficient optimality conditions; see [17]. The cone Gτ
ū introduced above is a

smaller extension of Cū than Eτ
ū . Indeed, given E

τ
ū , for every

τ ′ ≤ τ√
|Ω|max{1, T}



Critical Cones in PDE Constrained Optimization 13

the embedding Gτ ′

ū ⊂ Eτ
ū holds.

On the other hand, using the characterizations of the cone Cū given by (2.22) and (2.23)
the following extensions appear in a natural way as well.

If µ = 0, Dτ
ū ={v ∈ L2(Q) satisfying (2.20) and v(x, t) = 0 if |φ̄(x, t)| > τ}.

If µ > 0, Dτ
ū =

{
v ∈ L2(Q) satisfying (2.20) and

v(x, t)


≥ 0 if φ̄(x, t) = −µ and ū(x, t) = 0
≤ 0 if φ̄(x, t) = +µ and ū(x, t) = 0

= 0 if
∣∣∣|φ̄(x, t)| − µ

∣∣∣ > τ

}
.

For the use of the cones Eτ
ū and Dτ

ū to formulate the second order sufficient optimality
conditions and for a discussion of their application to the stability analysis of the control
problem, the reader is referred to [17]. In that paper it is proved that a sufficient second
order condition based on the cone Dτ

ū leads to an L2(Q)-weak local minimum, while the
same condition based on the cone Eτ

ū implies that ū is a strong local minimum. Hereafter
we will prove that the condition based on the cone

Cτ
ū = Dτ

ū ∩Gτ
ū

yields a strong local minimum ū. Our main result is as follows:

Theorem 3.1. Let ū ∈ Uad satisfy the first order optimality condition (2.18). Suppose in
addition that there exist δ > 0 and τ > 0 such that

F ′′(ū)v2 ≥ δ
(
∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω)

)
∀v ∈ Cτ

ū , (3.1)

where zv = G′(ū)v. Then, there exist ε > 0 and κ > 0 such that

J(ū) +
κ

2

(
∥yu − ȳ∥2L2(Q) + νΩ∥yu(·, T )− ȳ(·, T )∥2L2(Ω)

)
≤ J(u) (3.2)

for all u ∈ Uad such that ∥yu − ȳ∥L∞(Q) < ε.

Note that if τ < τ ′, then Cτ
ū ⊆ Cτ ′

ū , and hence without loss of generality we can suppose
that, for µ > 0, τ < µ. Throughout the proof of Theorem 3.1 we will use the following
lemma. A proof of an analogous result can be found in [16, 20], so we omit it.

Lemma 3.2. For all ρ > 0 there exists ερ > 0 such that for every u ∈ Uad satisfying
∥yu − ȳ∥L∞(Q) < ερ, there holds

| [F ′′(ū+ θ(u− ū))− F ′′(ū)] v2| ≤ ρ
(
∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω)

)
(3.3)

for all v ∈ L2(Q) and all θ ∈ [0, 1], where zv = G′(ū)v.

Proof of Theorem 3.1. Consider u ∈ Uad such that ∥yu − ȳ∥L∞(Q) < ε, where ε will be
fixed later independently of u; see (3.17) below.

A second order Taylor expansion yields the existence of θ ∈ (0, 1) such that

F (u) =F (ū) + F ′(ū)(u− ū) +
1

2
F ′′(uθ)(u− ū)2, (3.4)
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where uθ = ū+ θ(u− ū). Using this and the convexity of j(·), we have

J(u) =F (u) + µj(u)

=F (ū) + F ′(ū)(u− ū) +
1

2
F ′′(uθ)(u− ū)2 + µ(j(u)− j(ū)) + µj(ū)

≥J(ū) + F ′(ū)(u− ū) + µj′(ū;u− ū) +
1

2
F ′′(uθ)(u− ū)2

=J(ū) + J ′(ū;u− ū) +
1

2
F ′′(ū)(u− ū) +

1

2
(F ′′(uθ)− F ′′(ū))(u− ū)2. (3.5)

In a first step, we will prove the existence of ε0 such that

J(ū) +
δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
≤ J(u) (3.6)

for all u ∈ Uad such that ∥yu − ȳ∥L∞(Q) < ε0. We will split the proof of this first step into
three cases.

Case 1: u − ū ∈ Cτ
ū . Applying Lemma 3.2 with ρ = δ/2 we deduce the existence of

ε1 > 0 such that (3.3) holds for every u ∈ Uad such that ∥yu − ȳ∥L∞(Q) < ε1. Inserting this
inequality in (3.5) and using the variational inequality (2.18) and the second order condition
(3.1), we obtain

J(u) ≥J(ū) + δ

2

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
− δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
≥J(ū) + δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
.

Case 2: u− ū ̸∈ Gτ
ū. In this case, we consider

ε2 = min

{
ε1,

2

Cf,M∞CQ,∞T 1/p̂|Ω|1/q̂
,

τ

δ +M2

}
,

where ε1 is taken as in the previous case, and Cf,M∞ , CQ,∞ and M2 are introduced in (2.9),
Lemma 2.3 and (2.16), respectively. Then, from Lemma 2.4, if ∥yu − ȳ∥L∞(Q) < ε2, we can
estimate ∥zu−ū∥C(Q̄) < 2ε2. Therefore we have

∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω) ≤ 2ε2

(
∥zu−ū∥L1(Q) + νΩ∥zu−ū(·, T )∥L1(Ω)

)
. (3.7)

Let us estimate the terms of (3.5). Since u − ū satisfies the sign condition (2.20) and
u− ū ̸∈ Gτ

ū, then with (3.7) we get

J ′(ū;u− ū) >τ
(
∥zu−ū∥L1(Q) + νΩ∥zu−ū(·, T )∥L1(Ω)

)
≥ τ

2ε2

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
. (3.8)
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For the remaining terms, according to the choice we made for ε1 in Case 1 and using (2.16),
we infer

|F ′′(ū)(u− ū)2|+|[F ′′(uθ)− F ′′(ū)](u− ū)2|

≤
(
M2 +

δ

2

)(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
. (3.9)

From (3.5), (3.8) and (3.9) we deduce for ∥yu − ȳ∥L∞(Q) < ε2

J(u) ≥J(ū) +
(
τ

2ε2
− M2

2
− δ

4

)(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
≥J(ū) + δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
.

Case 3: u − ū ̸∈ Dτ
ū and u − ū ∈ Gτ

ū. Now we cannot use the second order condition
(3.1), nor is the first derivative big enough to assure optimality. Hence, our method of proof
is different from the previous two cases. First we define τ∗ = τ/max{1, CQ,1} ≤ τ , where
CQ,1 is introduced in (2.7). If u − ū ̸∈ Gτ∗

ū holds, then we can argue as in the proof of the
Case 2 to deduce that (3.6) holds for ∥yu − ȳ∥L∞(Q) < ε3 with

ε3 = min

{
ε2,

τ∗

δ +M2

}
.

Assume now that u− ū ∈ Gτ∗

ū . Obviously Dτ∗

ū ⊂ Dτ
ū holds, hence u− ū ̸∈ Dτ∗

ū .
We define the set W as follows:

if µ = 0, W =
{
(x, t) ∈ Q : |φ̄(x, t)| > τ and u(x, t)− ū(x, t) ̸= 0

}
,

if µ > 0, W =
{
(x, t) ∈ Q : φ̄(x, t) = −µ and ū(x, t) = 0 and u(x, t) < 0,

or φ̄(x, t) = +µ and ū(x, t) = 0 and u(x, t) > 0,

or
∣∣∣|φ̄(x, t)| − µ

∣∣∣ > τ and u(x, t) ̸= ū(x, t)
}
,

and denote V = Q \W . Associated with V we define the functions

v(x, t) =

{
0 if (x, t) ∈W,

u(x, t)− ū(x, t) if (x, t) ∈ V

and w = (u − ū) − v. We first notice three properties of w. In [17, Proposition 3.6] it is
proved that

J ′(ū;w) ≥ τ∥w∥L1(W ) = τ∥w∥L1(Q). (3.10)

Using this and the fact that the supports of w and v are disjoint, and noticing that v satisfies
the sign condition (2.20), which allows us to use (2.21), we obtain

J ′(ū;u− ū) = J ′(ū; v) + J ′(ū;w) ≥ J ′(ū; v) + τ∥w∥L1(Q) ≥ τ∥w∥L1(Q). (3.11)

Finally, using (2.7), we have

∥zw∥L1(Q) + ∥zw(·, T )∥L1(Ω) ≤ CQ,1∥w∥L1(Q) ≤ max{1, CQ,1}∥w∥L1(Q). (3.12)
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Regarding v, it is clear that v ∈ Dτ
ū. From (3.11) and (3.12) we get

J ′(ū;u− ū) ≥ J ′(ū; v) +
τ

max{1, CQ,1}

(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
= J ′(ū; v) + τ∗

(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
.

Since u− ū ∈ Gτ∗

ū , we obtain

J ′(ū;u− ū) ≤τ∗
(
∥zu−ū∥L1(Q) + ∥zu−ū(·, T )∥L1(Ω)

)
≤τ∗

(
∥zv∥L1(Q) + νΩ∥zv(·, T )∥L1(Ω)

)
+ τ∗

(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
Altogether, we conclude

J ′(ū; v) ≤ τ∗
(
∥zv∥L1(Q) + νΩ∥zv(·, T )∥L1(Ω)

)
.

Therefore v ∈ Gτ∗

ū ⊂ Gτ
ū and hence v ∈ Cτ

ū holds.
Now we combine the techniques of Cases 1 and 2. On one hand, we have that v belongs

to Cτ
ū , so that we can use the second order condition (3.1). On the other hand, the function

w satisfies that its L1(Q)-norm bounds from below the directional derivative J ′(ū;u − ū).
Let us see in detail how to do this. We start at the inequality (3.5). Applying Lemma 3.2
we deduce the existence of ε4 > 0 such that

|[F ′′(uθ)− F ′′(ū)](u− ū)2| ≤ δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
(3.13)

for all u ∈ Uad such that ∥yu − ȳ∥L∞(Q) < ε4. Now, we take

ε0 = min

{
ε3, ε4,

τ∗

M2 +
8M2

2

δ + 21δ
4

}
.

From now on, we will assume that ∥yu − ȳ∥L∞(Q) < ε0. Using that u − ū = v + w and
applying the inequalities (2.16), (3.1), (3.10) and (3.13) we deduce from (3.5)

J(u) ≥ J(ū) + τ∥w∥L1(Q) +
1

2
F ′′(ū)v2 +

1

2
F ′′(ū)w2

+ F ′′(ū)(v, w)− 1

2
|[F ′′(uθ)− F ′′(ū)](u− ū)2|

≥ J(ū) + τ∥w∥L1(Q) +
δ

2

(
∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω)

)
− M2

2

(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
−M2

(
∥zv∥L2(Q)∥zw∥L2(Q) + νΩ∥zv(·, T )∥L2(Ω)∥zw(·, T )∥L2(Ω)

)
− δ

8

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
. (3.14)
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Using the inequality ab ≤ 1
2a

2 + 1
2b

2 for appropriate real numbers a, b, we infer

∥zv∥L2(Q)∥zw∥L2(Q) + νΩ∥zv(·, T )∥L2(Ω)∥zw(·, T )∥L2(Ω)

≤ δ

16M2

(
∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω)

)
+

4M2

δ

(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
.

Inserting this estimate in (3.14) and using (3.12) and the definition of τ∗, we obtain

J(u) ≥J(ū) + τ∗
(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
+

7δ

16

(
∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω)

)
−
(
M2

2
+ 4

M2
2

δ

)(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
− δ

8
(∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
. (3.15)

Using that u− ū = v + w, we get

∥zv∥2L2(Q) + νΩ∥zv(·, T )∥2L2(Ω) = ∥zu−ū − zw∥2L2(Q) + νΩ∥zu−ū(·, T )− zw(·, T )∥2L2(Ω)

=
(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
+

(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
− 2

(
∥zu−ū∥L2(Q)∥zw∥L2(Q) + νΩ∥zu−ū(·, T )∥L2(Ω)∥zw(·, T )∥L2(Ω)

)
≥6

7

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
− 6

(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
.

Combining this with (3.15), we obtain

J(u) ≥J(ū) + τ∗
(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
+
δ

4

(
∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

)
−
(
M2

2
+ 4

M2
2

δ
+

21δ

8

)(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
. (3.16)

Next we define the constants

CQ,3 = 2C3
Q,∞(β − α)2(T + νΩ)|Ω| and ε5 = min{ε2, 8

ε30
CQ,3

},

where CQ,∞ is given in Lemma 2.3, and assume ∥yu − ȳ∥L∞(Q) < ε5. From (3.11), the fact
that u− ū ∈ Gτ

ū, Lemma 2.4, and using that ε5 ≤ ε2, we deduce that

τ∥w∥L1(Q) ≤J ′(ū;u− ū) ≤ τ
(
∥zu−ū∥L1(Q) + νΩ∥zu−ū(·, T )∥L1(Q)

)
≤2τ(|Q|+ νΩ|Ω|)ε5 = 2τ(T + νΩ)|Ω|ε5.
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Since ∥w∥L∞(Q) ≤ β − α, using the above inequality and ε
1/3
5 ≤ 2ε0/C

1/3
Q,3, we deduce

∥w∥L3(Q) =

(∫
Q

|w(x, t|3dxdt
)1/3

≤
(∫

Q

(β − α)2|w(x, t)|dxdt
)1/3

=(β − α)2/3
(
∥w∥L1(Q)

)1/3 ≤ (β − α)2/3
(
2(T + νΩ)|Ω|)

)1/3
ε
1/3
5 ≤ 2

CQ,∞
ε0.

And using Lemma 2.3, we obtain the estimate:

∥zw∥L∞(Q) ≤ CQ,∞∥w∥L3(Q) ≤ 2ε0.

Using this, we have

τ∗
(
∥zw∥L1(Q) + νΩ∥zw(·, T )∥L1(Ω)

)
−
(
M2

2
+ 4

M2
2

δ
+

21δ

8

)(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
≥
{
τ∗

2ε0
−
(
M2

2
+ 4

M2
2

δ
+

21δ

8

)}(
∥zw∥2L2(Q) + νΩ∥zw(·, T )∥2L2(Ω)

)
≥ 0,

where the last inequality follows from the definition of ε0. This combined with (3.16) yields
(3.6).

To conclude the proof, using the second part of Lemma 2.4, with

ε = min

{
ε0, ε5,

1

Cf,M∞CQ,2

}
, (3.17)

and taking into account that νΩ ∈ {0, 1}, we infer

∥zu−ū∥2L2(Q) + νΩ∥zu−ū(·, T )∥2L2(Ω)

≥1

8

(
∥yu − ȳ∥2L2(Q) + νΩ∥yu(·, T )− ȳ(·, T )∥2L2(Ω)

)
.

Using this and (3.6) we obtain

J(u) ≥ J(ū) +
δ

32

(
∥yu − ȳ∥2L2(Q) + νΩ∥yu(·, T )− ȳ(·, T )∥2L2(Ω)

)
,

and (3.2) follows for κ = δ/16.
Notice that in Case 3 we did not use explicitly that u − ū ̸∈ Dτ∗

ū . Observe that in case
u− ū ∈ Dτ∗

ū , then we would have that w = 0 and v = u− ū, and Case 1 could be applied.

4 Further extensions and limitations

The method developed in the previous sections can be extended with the obvious modifica-
tions to the case of a control problem governed by an elliptic equation as well as to Neumann
control problems for both elliptic and parabolic equations. However, let us mention two sit-
uations where it is difficult that the second order sufficient condition (3.1) holds.
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First, consider the situation where L ≡ 0 and νΩ = 1. In this case we have

F ′′(ū)v2 = −
∫
Q

φ̄
∂2f

∂y2
(x, t, ȳ)z2v dx dt+

∫
Ω

∂2LΩ

∂y2
(x, ȳ(x, T ))zv(x, T )

2 dx.

Looking at this expression it is easy to notice that the fulfillment of (3.1) would depend
on a lucky combination of the signs of the adjoint state and the second derivative of the
nonlinearity f . Consequently, Theorem 3.1 does not seem to be applicable to this problem.

A similar situation may occur if a nonlinearity is introduced on the boundary without a
boundary observation. Consider, for instance, the problem governed by the elliptic equation

min
u∈Uad

F (u) :=
1

2

∫
Ω

(yu − yd)
2dx,

where yd ∈ L2(Ω) is given;

Uad = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.e. x ∈ Ω},

with −∞ < α < β <∞; and{
−∆yu = u in Ω,

∂nyu + g(x, yu(x)) = 0 on Γ.

With the straightforward adaptations to this problem of the notation used along the paper,
the second derivative of F reads as

F ′′(ū)v2 =

∫
Ω

z2vdx−
∫
Γ

φ̄
∂2g

∂y2
(x, ȳ)z2vdσ(x).

In order to apply our theorem, the second order condition should be

F ′′(ū)v2 ≥ δ
(
∥zv∥2L2(Ω) + ∥zv∥2L2(Γ)

)
for all v ∈ Cτ

ū .

Once again, this condition is unlikely to be fulfilled.
The situation would be different if we had a boundary observation yΓ ∈ L∞(Γ), so that

the functional F is given by

F (u) =
1

2

∫
Γ

(yu(x)− yΓ(x))
2 dσ(x).

Then we would get

F ′′(ū)v2 =

∫
Γ

(
1− φ̄

∂2g

∂y2
(x, ȳ)

)
z2vdσ(x)

and the second order sufficient condition

F ′′(ū)v2 ≥ δ∥zv∥2L2(Γ) for all v ∈ Cτ
ū

would have a chance to be fulfilled. For instance, if ∥ȳ − yΓ∥L2(Γ) is small enough, then
∥φ̄∥L∞(Γ) is small as well, and, consequently we can deduce the existence of some δ > 0 such

that 1− φ̄∂2g
∂y2 (x, ȳ) ≥ δ, which implies the above second order condition.

From the previous two cases we conclude that a nonlinearity in the whole domain requires
a distributed observation and a boundary nonlinearity needs a boundary observation for
fulfillment of the second order sufficient condition.
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