
Computing Shortest Resolution Proofs?

Carlos Mencı́a1 and Joao Marques-Silva2

1 University of Oviedo, Gijón, Spain
menciacarlos@uniovi.es

2 Faculty of Science, University of Lisbon, Lisbon, Portugal
jpms@ciencias.ulisboa.pt

Abstract. Propositional resolution is a powerful proof system for unsatisfiable
propositional formulas in conjunctive normal form. Resolution proofs represent
useful explanations of infeasibility, with important applications. This motivates
the challenge of computing shortest resolution proofs, i.e. those with the small-
est number of inference steps. This paper proposes a SAT-based approach for this
problem. Concretely, the paper investigates new propositional encodings for com-
puting shortest resolution proofs and devises a number of optimizations, includ-
ing symmetry breaking, additional constraints on the structure of proofs, as well
as exploiting related concepts in infeasibility analysis, such as minimal correction
subsets. Experimental results show the suitability of the proposed approach.

1 Introduction

The importance of the propositional resolution proof system cannot be overstated, being
at the core of modern conflict-driven clause learning (CDCL) Boolean satisfiability
(SAT) solvers [20,19]. Propositional resolution can be traced to the seminal work of
Davis and Putnam [11], and its formalization as a search procedure [10]. Perhaps more
significantly, resolution finds fundamental applications in automated reasoning [31],
representing one of the most widely used proof procedures in theorem proving [32].

Given an unsatisfiable propositional formula, a natural question is to find a shortest
resolution proof, i.e. one with the fewest inference steps. Besides its theoretical inter-
est [14,6], short refutations constitute useful certificates that explain infeasibility, and
find important applications in system verification and validation (e.g. by the use of in-
terpolation). In such settings, smaller proofs equate with smaller interpolants.

Computing shortest resolution refutations has been investigated from a theoretical
perspective [1], including for restricted formulas [7,8]. From a practical perspective,
albeit, to our knowledge, no work has addressed the computation of shortest resolution
proofs per se, the related problem of finding unsatisfiability proofs with incomplete
methods has been investigated in the past [27,4,26]. In a different context, computing
optimal refutations for infeasible CSPs has been studied in [15], where the notion of a
refutation is related with the search tree traversed for proving infeasibility.
? This research is supported by the Spanish Government under project TIN2016-79190-R

and by the Principality of Asturias under grant IDI/2018/000176. This work is also
supported by FCT grants ABSOLV (PTDC/CCI-COM/28986/2017) and FaultLocker
(PTDC/CCI-COM/29300/2017).

2 C. Mencı́a and J. Marques-Silva

¬x2 ∨ ¬x3 ∨ ¬x4 ¬x2 ∨ x4

¬x2 ∨ ¬x3 ¬x2 ∨ x3

¬x2 x1 ∨ x2

x1 ¬x1 ∨ x2

x2

⊥

Fig. 1: Resolution proof (with 5 resolvents) for the formula in Example 1.

This paper investigates practical approaches for computing shortest resolution refu-
tations, by iteratively solving the decision problem of whether there exists a resolution
proof of size K, for increasing values of K. The straightforward solution of enumer-
ating all possible candidate proofs of a given size is clearly unrealistic, given the sheer
number of distinct proofs that need to be considered. This paper follows a different path,
and proposes a SAT-based approach that uses SAT solvers in the search for such proofs.
The paper builds on earlier work [27] and proposes a propositional encoding for solving
the problem. However, whereas earlier work targeted encodings aiming at local search
solvers, our proposed encodings target complete search algorithms. Furthermore, the
paper devises a number of enhancements to the model, identifying ways to break rele-
vant symmetries in the problem formulation and developing novel insights on how to
effectively prune the search space. Experimental results show that the proposed model
and its improvements enable computing shortest resolution proofs for formulas of non-
trivial sizes.

The paper is organized as follows. The definitions and notation used in the paper are
summarized in Section 2. Section 3 details a propositional model for computing shortest
resolution proofs, and the enhancements to this model are described in Section 4. The
experimental results are analyzed in Section 5. Finally, the paper concludes in Section 6.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), defined as a
conjunction, or set, of clauses F = {c1, c2, ..., cM} over a set of variables V (F) =
{x1, x2, ..., xN}, where a clause is a disjunction of literals, and a literal is a variable x
or its negation ¬x. Throughout, for a clause c ∈ F , L+(c) (resp. L−(c)) denotes the
positive (resp. negative) literals in c.

A formula F is satisfiable iff there exists a model for it, i.e. an assignment of truth
values to the variables satisfying all the clauses. SAT is the NP-complete problem [9] of

Computing Shortest Resolution Proofs 3

¬x2 ∨ ¬x3 ∨ ¬x4 ¬x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ x4

¬x2

x1 ∨ x2 ¬x1 ∨ x2

x2

⊥

Fig. 2: A shortest resolution proof (with 4 resolvents) for the formula in Example 1.

deciding the satisfiability of a formula. If no model exists for F , proofs represent cer-
tificates of its unsatisfiability. Resolution [31] is a well-known proof system for refuting
unsatisfiable CNF formulas. It relies on the application of the resolution rule:

Γ1 ∨ x Γ2 ∨ ¬x
Γ1 ∨ Γ2

(1)

In Eq. (1), clauses Γ1 ∨ x and Γ2 ∨ ¬x, referred to as parents, are resolved on vari-
able x, inferring the clause Γ1∨Γ2, which is referred to as resolvent. A resolution proof
or refutation is a sequence of clauses ending with the empty clause, each of these being
either a clause in F or a resolvent from two previous clauses in the sequence. In the
general case, resolution proofs can be represented as a DAG. This paper is concerned
with shortest resolution proofs (SRPs), minimizing the number of resolvents. Comput-
ing SRPs is intractable, including the case of Horn formulas [1], although it can be
solved in polynomial time for 2-CNF formulas [7,8].

Example 1. Consider the formula Fex = {(x1 ∨ x2), (¬x1 ∨ x2), (¬x2 ∨ x3), (¬x2 ∨
x4), (¬x2 ∨ ¬x3 ∨ ¬x4)}, with 5 clauses and 4 variables. Figure 1 shows a resolution
refutation of Fex which uses 5 resolvents (highligthed in a square). Figure 2 shows a
shortest resolution proof of the unsatisfiability of Fex, with 4 resolvents.

Besides proofs, other notions have been used as a means to explaining unsatisfia-
bility, such as minimal unsatisfiable subformulas (MUSes) or their minimal hitting set
duals [30,18], known as minimal correction subsets (MCSes).

Definition 1. [MUS]M⊆ F is a minimal unsatisfiable subformula (MUS) of F if and
only ifM is unsatisfiable and ∀c ∈M,M\ {c} is satisfiable.

Definition 2. [MCS] C ⊆ F is a minimal correction subset (MCS) of F if and only if
F \ C is satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

An MUS is an unsatisfiable subset such that removing any clause renders it satis-
fiable. Hence, an MUS represents an explanation for the unsatisfiability of F . On the
other hand, MCSes are irreducible sets of clauses whose removal renders the formula
satisfiable. In Example 1, the formula Fex represents an MUS itself, and each of the
clauses in Fex represents an MCS. Despite the high complexity of computing MCSes,
efficient algorithms exist for this task (e.g. [17,5,22,21,28,29,13,23]). In the worst case,
there can be an exponential number of MUSes and MCSes [25,16].

4 C. Mencı́a and J. Marques-Silva

3 Deciding Fixed Size Resolution Proofs

For a fixed value K, deciding the existence of a resolution proof with K resolvents can
be encoded into a propositional formula [27]. This motivates a SAT-based approach for
computing SRPs by solving a sequence of decision problems with varying values of K.

This section describes a propositional model that produces a CNF formula that is
satisfiable if and only if the original formula has a resolution refutation involving K
resolvents. The original formula F = {c1, . . . , cM} is defined on variables V (F) =
{x1, . . . , xN}, and the number of resolvents considered is K, with the new clauses
indexed from M + 1 to M +K (i.e., these being cM+1 to cM+K).

Resolution proofs are encoded as a sequence of resolvents, preventing a node from
being a parent of an earlier resolvent. The propositional model uses the following vari-
ables, where j ranges from 1 to N , r ranges from M + 1 to M +K, and s can range
from 1 to M +K, with s < r:

pjr = 1 iff there exists a positive literal on variable xj in resolvent r.
njr = 1 iff there exists a negative literal on variable xj in resolvent r.
vjr = 1 iff variable xj is resolved away to obtain resolvent r.
lars = 1 iff the left parent of resolvent r is cs, with s < r.
rars = 1 iff the right parent of resolvent r is cs, with s < r.
wpjr = 1 iff a positive literal on xj is available at resolvent r.
wnjr = 1 iff a negative literal on xj is available at resolvent r.

Notice that the clauses in F are not explicitly represented in the encoding, but only
the list of resolvents in the proof, with information of their parents and the variables
used at each resolution step. Variables wpjr and wnjr are used as an intermediate step
in the application of the resolution rule, indicating that the literals exist in some parent
of r. These are referred to as working literals.

The propositional model enforces the following constraints:

1. A resolvent cannot contain a variable and its complement, which is accomplished
by the following AtMost1 constraints:

(¬pjr ∨ ¬njr) (2)

2. Computation of working literals of resolvents from the literals in the parents: If a
parent of a resolvent has a positive (negative) literal, the corresponding working
literal in the resolvent is activated.

(lars ∨ rars) ∧ pjs→wpjr

(lars ∨ rars) ∧ njs→wnjr
(3)

3. If the working literals exist, they must also exist in the declared parents.

wpjr→
∨

s(lars ∨ rars) ∧ pjs
wnjr→

∨
s(lars ∨ rars) ∧ njs

(4)

Computing Shortest Resolution Proofs 5

4. Definition of literals in resolvents: A resolvent will include all its working literals
except those on the variable resolved away.

pjr↔wpjr ∧ ¬vjr
njr↔wnjr ∧ ¬vjr

(5)

5. Definition of resolution variable given working literals:

vjr↔wpjr ∧ wnjr (6)

6. Resolvents have exactly one left and one right parent, chosen among earlier clauses.

r−1∑
s=1

lars = 1

r−1∑
s=1

rars = 1

(7)

7. Exactly one variable is resolved away for creating each resolvent.

N∑
j=1

vjr = 1 (8)

8. The final resolvent, with index M +K, must be the empty clause.

¬pjM+K ∧ ¬njM+K (9)

For the sake of clarity, in equations (3) and (4) there is a slight abuse of notation.
Note that pjs and njs are not defined for s ≤ M . In these cases, constraints are added
on demand, without the pjs and njs terms. For instance, in (3) the clause cs ∈ F ,
yields the constraints (lars ∨ rars)→wpjr for j ∈ L+(cs) and (lars ∨ rars)→wnjr
for j ∈ L−(cs). The sets L+(cs) and L−(cs) are also exploited in (4). Besides, trans-
forming (4) into CNF requires addingO(NK2) new variables and clauses encoding the
equivalences yprsj↔(lars∨rars)∧pjs and ynrsj↔(lars∨rars)∧njs, with s > M .

Cardinality constraints of the form
∑n

i=1 xi = 1 are encoded as the conjunction
of one at least one constraint, represented by the single clause

∨n
i=1 xi, and one at

most one constraint, which is encoded using sequential counters [33]. For a constraint∑n
i=1 xi ≤ k, sequential counters produce O(nk) variables and clauses. Clearly, other

encodings could be considered as well (e.g. [3,24]).
The encoded formula has O(NK2 + MK) variables. Regarding the number of

clauses, constraints (3) and (4) result in O(NK2 + K||F||) clauses, with ||F|| the
number of literals in F . Constraints (2),(5), (6) and (8) result in O(NK) clauses (7)
amounts to O(K(M + K)) clauses and (9) yields O(N) clauses. The encoding has
O(NK2+K||F||+K(M+K)) clauses andO(NK(M+K)+K||F||+K(M+K))
literals, the increase due to some large clauses from (4).

The encoding is related to the model proposed in [27], with several differences.
In [27] the encoding targeted computing resolution proofs with local search. It used
refinements to reduce its size and increase the solution density. These included not

6 C. Mencı́a and J. Marques-Silva

enforcing that literals in a resolvent must exist in some parent (known as the weakening
rule) or allowing for more than two parents for a node. The resulting encoding had
O(K2 +KN +KM) variables and O(NK2 +K||F||) literals, smaller than the one
herein. However, when looking for SRPs with a complete solver it is necessary to prove
unsatisfiabilty for some values of K, and constraining formulas as much as possible,
promoting propagation, is beneficial. So, we opted for not using the weakening rule, at
the expense of a larger encoding. Anyway, the results in [27] showed that applying the
weakening rule was not beneficial in practice. The proposed encoding represents proofs
more explicitly than in [27], e.g. by distinguishing left and right parents, which is useful
for enforcing additional constraints, as shown in the next section.

4 Enhancements to the Model

This section devises a number of enhancements to the model above. These constrain the
structure of resolution proofs, remove symmetries and exploit the information given by
a collection of MCSes to prune the search space.

4.1 Constraints on the structure of the proofs

We first enforce symmetry breaking constraints, establishing that the left parent of any
resolvent must have a lower index than its right parent. Any resolution DAG can be
rewritten without additional nodes to fulfill this property. Besides, for each clause cs ∈
F , we compute beforehand the set of clauses R(cs) ⊆ F that can be resolved with cs
producing a valid resolvent, which restricts the selection of parents as follows:

lars→
M∨

t∈R(cs);t>s

rart ∨
r−1∨

t=M+1;t>s

rart (10)

The following constraints avoid computing resolvents that are subsumed by any
original clause in F , which would not be useful in the proof. Here s ∈ [1,M].∨

j∈L+(cs)

¬pjr ∨
∨

j∈L−(cs)

¬njr (11)

In an SRP, all resolvents but the last one are used as a parent of later resolvents [27]
(otherwise, such resolvent would be useless). Imposing these constraints has the draw-
back that for some values of K overestimating the length of the SRPs, the encoded for-
mula may be unsatisfiable, thus requiring the search method to iteratively refine lower
bounds from 1 on. Here, r ∈ [M + 1,M +K − 1].

M+K∨
u=r+1

(laur ∨ raur) (12)

Equations (10) and (12) entail that resolvent K − 1 must be the right parent of K.
This is enforced by setting ra(M+K)(M+K−1) = 1. Besides, both parents of K must

Computing Shortest Resolution Proofs 7

be unit clauses. The following constraints prevent the left parent of K from being a
non-unit input clause. U(F) denotes the unit clauses in F .∧

s∈F\U(F)

¬la(M+K)s (13)

In addition we add constraints enforcing the resolvent K−1 (the right parent of K)
to be a unit clause.

N∑
j=1

pj(M+K−1) + nj(M+K−1) = 1 (14)

The constraints above do not increase the asymptotic number of variables and clauses
of the encoding. However, the O(K(M +K)) clauses from (10) can be large, adding
in total O(K(M +K)2) literals to the encoding in the worst case.

4.2 Levels in the resolution DAG

Nodes in the resolution DAG can be associated a level. Original clauses have level 0,
whereas the level of a resolvent is given by the maximum of the levels of its parents
plus 1. We focus on the property of having level 1, indicating that both its parents are
original clauses. The following result establishes bounds on the number of resolvents
of each kind:

Proposition 1. In an SRP with K resolvents, at least bK/2c resolvents do not have
level 1.

Proof. In an SRP, all resolvents but the last one are used in the proof. Hence, K − 1
items need to be allocated at least once as a parent of other resolvent. Nodes at level 1
have both parents as input clauses. Suppose there are bK/2c resolvents not at level 1. In
the worst case K is odd, so bK/2c = (K − 1)/2. Each of these nodes has two parents,
so there are K − 1 positions for the K − 1 items. This represents the limit case; if there
were fewer nodes at level greater than 1, not all K− 1 items could be used in the proof.

From these observations, we further restrict the search space. For each resolvent r,
a variable is defined as l1r = 1 iff resolvent r is at level 1. Then, we set that the first
node has level 1, i.e. l1M+1 = 1, and that the last bK/2c nodes are not at level 1, i.e.
l1r = 0 for r ∈ [h + 1,M +K], where h = M + dK/2e. The following constraints
reduce the number of possible parents depending on levels and break symmetries:

1. A resolvent is at level 1 if and only if its right parent is not an earlier resolvent.

l1r↔
r−1∧

s=M+1

¬rars (15)

2. All the resolvents at level 1 are computed at the beginning.

l1r→
∧r−1

u=M+2 l1u

¬l1r→
∧h

u=r+1 ¬l1u
(16)

8 C. Mencı́a and J. Marques-Silva

3. If two consecutive resolvents are at level 1, the left parent of the first one has an
index not greater than the left parent of the second one. Here r ∈ [M + 2, h].

(l1r ∧ lars)→
s∨

t=1

la(r−1)t (17)

Enforcing constraints (16) and (17) does not prevent from finding a shortest refu-
tation, since any resolution DAG can be transformed to fulfill these conditions by re-
ordering some nodes in the proof. Regarding space, the constraints above do not affect
the asymptotic number of variables, clauses or literals in the encoding. Constraints (17)
result in O(K(M +K)2) literals, matching those analyzed previously from (10).

4.3 Exploiting Minimal Correction Subsets

The last enhancement proposed in the paper is aimed at further reducing the search
space by exploiting minimal correction subsets (MCSes) in the encoding. It is based on
the following result:

Proposition 2. Let C (F be an MCS. All resolution proofs of F use some clause in C.

Proof. By Definition 2, F \C is satisfiable. Hence, if all the clauses in C were dropped,
there would not exist a proof of unsatisfiability.

So, in a pre-processing step a collection of MCSes is enumerated, and for each MCS
C we enforce that at least one of its clauses is used at least once in the proof:

M+K∨
r=M+1

(
∨
cs∈C

lars ∨ rars) (18)

We exploit the fact that for a proof with K resolvents, at most 2K clauses can be
used. We define, for each clause cs, a variable useds = 1 if cs is used at least once in
the proof, and add the following constraints:

1. All the resolvents, but the last one must be used for computing later resolvents in
the proof.

M+K−1∧
r=M+1

(usedr) (19)

2. At least one clause in each MCS must be used in the computation of some resolvent.
For each MCS C we add a clause as the following:∨

cs∈C
useds (20)

3. If a clause is a parent of a resolvent, it is marked as used.

(lars ∨ rars)→useds (21)

Computing Shortest Resolution Proofs 9

4. At most 2K different clauses can be used.
M+K−1∑

s=1

useds ≤ 2K (22)

Constraints (18) produce one clause of size O(K(M + K)) for each MCS. So, if
C MCSes are considered, the encoding grows in O(C) clauses and O(CK(M +K))
literals. The last constraints do not affect the asymptotic size of the model. The final
encoding has O(NK2 + MK) variables, O(NK2 + K||F|| + K(M + K) + C)
clauses and O(NK(M +K) +K||F||+ CK(M +K) +K(M +K)2) literals.

5 Experimental Results

This section evaluates the proposed encodings for computing SRPs. For this purpose,
we implemented a prototype in Python 2.7, interfacing the SAT solver minisat (v 2.2)
[12]. The tool computes SRPs by iteratively refining lower bounds on the number of
resolvents. Starting with K = 1, while the encoded formula is found unsatisfiable K is
increased in one unit. The process terminates upon a satisfiable call, in which case an
SRP is extracted from the computed model. Notice that this procedure iteratively proves
that no resolution refutation of size K exists for increasing values of K, until the last
iteration where resolution proof is found. This way, the computed resolution proof is
guaranteed to be an SRP.

The experiments have been carried out over a set of unsatisfiable Horn formulas
(whose clauses contain at most one positive literal) derived from the domain of axiom
pinpointing in lightweight description logics [2]. We considered the ones with a number
of clauses in the range [20, 594], making 278 instances in all. The number of variables
ranges from 17 to 493. A number of these formulas have short proofs, so they repre-
sent an adequate benchmark for assessing the effectiveness of the encodings. Recall
that computing SRPs for Horn formulas is intractable [1] (in contrast to 2-CNF formu-
las [7,8]). We distinguish different versions of the encoding:B refers to the base encod-
ing from Section 3, S includes the additional constraints from Section 4.1, L adds the
constraints related to levels from Section 4.2 and versions with prefixX exploit MCSes
as well, as described in Section 4.3. X1, X10 and X100 establish a limit on the number
of MCSes enumerated to 100, 1000 and 10000 respectively. MCSes are computed with
the tool mcsls [17]. All the experiments were run on a Linux cluster, with a time limit of
600 seconds. The computation of MCSes is included in the time limit. To this respect,
the average (maximum) time taken for enumerating MCSes was 0.01 (0.14), 0.08 (0.58)
and 0.83 (5.74) seconds for X1, X10 and X100 respectively. Besides, complete enumer-
ation of MCSes was possible for a number cases: Out of the 278 instances, 130, 156
and 188 have less than 100, 1000 and 10000 MCSes respectively.

Figure 3 shows the running times taken by each of the aforementioned versions of
the encoding in solving the considered instances. For a given version of the encoding,
a point (x, y) in the plot indicates that x instances were solved taking up to y seconds.
As we can observe, the basic encoding B yields the worst results overall, solving 49 in-
stances. The optimizations included in S and L allow for computing SRPs for more in-
stances (87 and 93 respectively). Although L is able to solve a only few more instances

10 C. Mencı́a and J. Marques-Silva

0 50 100 150 200 250 300
instances

100

200

300

400

500

600

C
PU

tim
e

(s
)

X100

X10

X1

L
S
B

Fig. 3: Running times (s).

0 50 100 150 200 250 300
instances

5

10

15

20

25

30

35

40

L
B

B
S
L
X1

X10

X100

(a) Lower bounds

0 50 100 150 200 250 300
instances

5

10

15

20

25

30

35

40

U
B

X100

X10

X1

L
S
B

(b) Upper bounds

Fig. 4: Summary of results.

than S, there is an observable gain in terms of running times. Noticeably, exploiting
MCSes brings the most significant improvements, these being directly related to the
number of MCSes enumerated beforehand. X1, X10 and X100 can cope with far more
challenging instances than before, solving 212, 231 and 246 instances respectively.

Figure 4 provides a more detailed view on the performance of the encodings. Fig-
ure 4a reports the best lower bounds on the size of the SRPs (LBs) computed by the time
limit, and Figure 4b shows the actual size of the SRPs (UBs) computed. For a given ver-
sion of the encoding, a point (x, y) in Figure 4a means that an LB lower than or equal
to y was obtained for x instances using such encoding within the time limit. Analo-

Computing Shortest Resolution Proofs 11

gously, in Figure 4b, a point (x, y) means that the given encoding enabled computing
SRPs with up to y resolvents for x instances. For the solved instances, LBs match the
size of the SRPs. As we can observe, B is only able to cope with formulas with very
short proofs, computing SRPs with 5 to 8 resolvents and proving LBs of at most 9 for
some instances. On the other hand, S and L are capable of proving larger LBs (up to
values 10 and 11 respectively), being L able to find SRPs with 11 resolvents for a few
instances. Exploiting MCSes results in very significant gains, proving LBs of size 35
and computing SRPs with up to 29 resolvents.

The proposed improvements also allow for coping with larger formulas, solving sev-
eral of the largest ones in the set (with more than 350 variables and near 600 clauses).
These results indicate that the proposed enhancements are effective at pruning the
search space and guiding the construction of resolution proofs, enabling the compu-
tation of SRPs for non-trivial formulas.

6 Conclusions

This paper addresses the problem of computing shortest resolution proofs (SRPs) of
unsatisfiable CNF formulas and develops a SAT-based approach for this task. SRPs
are computed by solving a sequence of decision problems encoding the computation of
resolution refutations of fixed sizeK, with increasing values ofK. Building on an initial
reference propositional model, the paper devises several enhancements to the encoding,
which constrain the structure of the proofs and exploit minimal correction subsets to
further reduce the search space. The enhancements are shown to be very effective in
practice, enabling the computation of SRPs for more challenging formulas.

References

1. Alekhnovich, M., Buss, S.R., Moran, S., Pitassi, T.: Minimum propositional proof length is
NP-hard to linearly approximate. J. Symb. Log. 66(1), 171–191 (2001)

2. Arif, M.F., Mencı́a, C., Marques-Silva, J.: Efficient MUS enumeration of Horn formulae with
applications to axiom pinpointing. In: SAT. pp. 324–342 (2015)

3. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

4. Audemard, G., Simon, L.: GUNSAT: A greedy local search algorithm for unsatisfiability. In:
IJCAI. pp. 2256–2261 (2007)

5. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: A simple way
of managing optional clauses. In: AAAI. pp. 835–841 (2014)

6. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. J. ACM
48(2), 149–169 (2001)

7. Buresh-Oppenheim, J., Mitchell, D.G.: Minimum witnesses for unsatisfiable 2CNFs. In:
SAT. pp. 42–47 (2006)

8. Buresh-Oppenheim, J., Mitchell, D.G.: Minimum 2CNF resolution refutations in polynomial
time. In: SAT. pp. 300–313 (2007)

9. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151–158 (1971)
10. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-

mun. ACM 5(7), 394–397 (1962)

12 C. Mencı́a and J. Marques-Silva

11. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–
215 (1960)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. pp. 502–518 (2003)
13. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: IJCAI. pp. 1309–1315

(2018)
14. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
15. Hulubei, T., O’Sullivan, B.: Optimal refutations for constraint satisfaction problems. In: IJ-

CAI. pp. 163–168 (2005)
16. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of

constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
17. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal cor-

rection subsets. In: IJCAI. pp. 615–622 (2013)
18. Marques-Silva, J., Janota, M., Mencı́a, C.: Minimal sets on propositional formulae. Problems

and reductions. Artif. Intell. 252, 22–50 (2017)
19. Marques-Silva, J., Malik, S.: Propositional SAT solving. In: Handbook of Model Checking,

pp. 247–275. Springer (2018)
20. Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:

ICCAD. pp. 220–227 (1996)
21. Mencı́a, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear oracle

queries. In: SAT. pp. 342–360 (2016)
22. Mencı́a, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI. pp.

1973–1979 (2015)
23. Narodytska, N., Bjørner, N., Marinescu, M., Sagiv, M.: Core-guided minimal correction set

and core enumeration. In: IJCAI. pp. 1353–1361 (2018)
24. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF encoding

of cardinality constraints and its application to MaxSAT solvers. In: ICTAI. pp. 9–17 (2013)
25. O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative explanations for over-

constrained problems. In: AAAI. pp. 323–328 (2007)
26. Pereira, D., Lynce, I., Prestwich, S.D.: On improving local search for unsatisfiability. In:

LSCS. pp. 41–53 (2009)
27. Prestwich, S.D., Lynce, I.: Local search for unsatisfiability. In: SAT. pp. 283–296 (2006)
28. Previti, A., Mencı́a, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumeration via

caching. In: SAT. pp. 184–194 (2017)
29. Previti, A., Mencı́a, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for enumerating

minimal correction subsets. In: AAAI. pp. 6633–6640 (2018)
30. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95

(1987)
31. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),

23–41 (1965)
32. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier and MIT

Press (2001)
33. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: CP. pp.

827–831 (2005)

	Computing Shortest Resolution Proofs

