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Abstract

Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide.

While it has been suggested to cause nervous impairment, its neurophysiological basis

remains unknown. Therefore, the aim of this study is to unravel the effects of NASH, through

the interrelationship of liver, gut microbiota, and nervous system, on the brain and human

behavior. To this end, 40 Sprague-Dawley rats were divided into a control group that

received normal chow and a NASH group that received a high-fat, high-cholesterol diet. Our

results show that 14 weeks of the high-fat, high-cholesterol diet induced clinical conditions

such as NASH, including steatosis and increased levels of ammonia. Rats in the NASH

group also demonstrated evidence of gut dysbiosis and decreased levels of short-chain

fatty acids in the gut. This may explain the deficits in cognitive ability observed in the NASH

group, including their depressive-like behavior and short-term memory impairment charac-

terized in part by deficits in social recognition and prefrontal cortex-dependent spatial work-

ing memory. We also reported the impact of this NASH-like condition on metabolic and

functional processes. Brain tissue demonstrated lower levels of metabolic brain activity in

the prefrontal cortex, thalamus, hippocampus, amygdala, and mammillary bodies, accom-

panied by a decrease in dopamine levels in the prefrontal cortex and cerebellum and a

decrease in noradrenalin in the striatum. In this article, we emphasize the important role of

ammonia and gut-derived bacterial toxins in liver-gut-brain neurodegeneration and discuss

the metabolic and functional brain regional deficits and behavioral impairments in NASH.
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Introduction

Non-Alcoholic Fatty Liver disease (NAFLD) is one of the most prevalent diseases in the world.

It is defined by the presence of steatosis in a minimum of 5% of hepatocytes, in the absence of

significant alcohol consumption [1]. NAFLD includes a spectrum of conditions, ranging from

simple steatosis to steatohepatitis (NASH). NASH is characterized by overt inflammation and

occasional fibrosis that may progress to cirrhosis and hepatocellular carcinoma [2]. The factors

controlling the progression from NAFLD to NASH remain unclear, but lipotoxicity, oxidative

stress, and proinflammatory mediators have been suggested to play a critical role in the devel-

opment of this disease [3,4].

Various diets have been investigated as potential NASH models, although many of these

models do not replicate all the features of the human condition [5]. The high-fat, high-choles-

terol animal model reported in this study was previously described in a publication document-

ing a rat NASH model [6,7] which demonstrated the typical features of NAFLD pathology,

including hepato- and splenomegaly, early NASH histopathology, hypercholesterolemia,

increased serum liver enzymes, and increased pro-inflammatory cytokines [6,8–10].

Nevertheless, only a few studies have addressed the risk profile with regards to the impact

of these diets on brain and cognition. Recent studies have associated fat intake with a higher

risk of cognitive decline and dementia [11]. However, Deshpande et al. [12] showed that in

early middle-aged Sprague Dawley rats fed a high-fat diet for 8 weeks, the gut microbiota is

altered, without any evidence of spatial working memory deficits. There was no evidence of

neuroinflammation either, as measured by microglia in the cortex, hippocampus, and hypo-

thalamus. In contrast, several studies have shown hippocampal-dependent memory alterations

and neuroinflammation in middle-aged and aged animal models on both high-fat and high-

cholesterol diets [13,14]. Therefore, the diet duration, diet composition (in terms of fat, fruc-

tose, and carbohydrates), animal model age (young, middle-aged, or aged), and animal model

strain are all important factors to consider when interpreting these results.

Understanding the mechanisms by which a high-fat, high-cholesterol diet alters neural

environments such as to result in cognitive decline is important to the identification of poten-

tial therapeutic targets and the development of treatments. The composition of the gut micro-

biota has emerged as one of the main potential factors modulating brain function via the liver-

gut-brain axis. Predictive analyses of functional microbiota pathways in functional gastrointes-

tinal disorders [15–17] demonstrated dampened activity in pathways involved in the metabo-

lism of propanoate and butanoate, conjugate bases of the short-chain fatty acids (SCFAs)

propionate and butyrate [18]. These SCFAs have been shown not only to simulate vagus nerve

signaling [19,20] but also to alter levels of neurochemicals such as serotonin [21,22], pointing

to their role in gut-brain associated neurodegeneration. The net effect of such SCFAs on

NASH-brain associated pathogenesis therefore remains unclear.

Finally, studies in fructose-induced metabolic syndrome-like conditions have demonstrated

altered mitochondrial function, crucial in supporting brain function and plasticity [23]. In line

with these observations, Mastrocola et al. [24] demonstrated the altered activity of mitochon-

drial respiratory complexes in hippocampi of mice exposed to high-fructose intake. Thus,

changes in the metabolic capacity of neurons associated with the diet administered in this

study may be measured through mitochondrial enzymes that catalyze oxygen consumption in

cellular respiration, such as cytochrome c oxidase (CCO) [25].

The aim of the present study was to investigate the effects of a high-fat, high-cholesterol

(HFHC) diet in a rat NASH model (14 weeks) on the liver-gut-brain axis. We hypothesized

that the development of NASH would lead to gut dysbiosis and impaired brain communica-

tion by disrupting metabolic processes and neurotransmission. In addition, we evaluated the
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impact of this diet on behavioral deficits, including motor, emotional, and cognitive aspects.

As such, the study’s objective was reached, leading to a better knowledge on the role of the

liver-gut-brain axis in NASH.

Materials and methods

Procurement of experimental models

A total of 40 male Sprague-Dawley rats were used (220 g at the start of the experiment, 8 weeks

old) (Envigo, Blackthorn, United Kingdom) and divided into two groups: NC (control group),

which received normal chow, and the NASH group, which was administered a high-fat, high-

cholesterol diet (HFHC) for 14 weeks. The NC (Envigo, Blackthorn, United Kingdom; #2914)

diet consisted of 13 kcal% from fat and no cholesterol, whereas the HFHC diet (Research

Diets, New Brunswick, NJ, USA; #D09052204) contained 65 kcal% from fat, 2 kcal% from

cholesterol, and 0.5% cholate. Heebøll et al. [9] showed that the HFHC diet is capable of repli-

cating the histological features of NASH. The high concentration of cholesterol in the diet

induces the progression of hepatic steatosis to NASH [26]. The inclusion of a high concentra-

tion of cholate further drives the progression to NASH because cholate has been shown to

increase the hepatic accumulation of cholesterol [27]. Finally, male rats were used because they

are more susceptible to developing hepatic steatosis [28].

All the animals had ad libitum access to tap water and were maintained at constant room

temperature (22 ± 2 ˚C), with a relative humidity of 65 ± 5% and an artificial light-dark cycle

of 12 h (08:00–20:00/20:00–08:00 h). All behavioral testing was conducted between 08.00 and

13:00 h. The procedures and manipulation of the animals used in this study were carried out

according to the Directive (2010/63/EU), Royal Decree 53/2013 of the Ministry of the Presi-

dency related to the protection of animals used for experimentation and other scientific pur-

poses. The Oviedo Animal Experiment Inspectorate approved of the experimental protocol

(Permit number: PROAE 25/2018), which abided by the terms of the UK Animals (Scientific

Procedures) Act 1986 and were approved by the Kings College London ethics review panel

(Permit number: P35785fd7). All efforts were made to minimize suffering.

Experimental animals in both groups were submitted to portal pressure measurements,

liver histological evaluation, biochemical plasma determination, fecal microbiota evaluation,

and motor function evaluation, and were tested for anxiety-like and depressive-like behaviors,

anhedonia, and social short-term memory. To avoid interference between spatial memory pro-

cedures, each group (NC and NASH; n/group = 20) was divided into three subgroups. One

subgroup was submitted to the evaluation of the spatial reference memory test in the radial

arm water maze (RAWM) (n/group = 6). The second subgroup was tested for the same mem-

ory, but using a different test, the Barnes maze (n/group = 5). Finally, the third subgroup (n/

group = 9) was evaluated on the spatial working memory test, and their brains were used to

analyze brain metabolic and functional activity.

Portal pressure

Portal pressure was measured under anesthesia (2% isofluorane in oxygen) (Fatro Ibérica, Bar-

celona, Spain) by direct cannulation of the main portal vein (n: NC = 15, NASH = 11).

Sacrifice

Ninety minutes after the last session of the spatial working memory task, the animals were

decapitated. Blood was collected and centrifuged to collect plasma, which was frozen in N-

methylbutane (Sigma-Aldrich, St. Louis, MO, USA) and stored at −80 ˚C. Organs were
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removed and weighed (n/group = 15). Livers were fixed with a 10% formaldehyde solution

(Fisher Scientific, Hampton, VA, USA) and embedded in paraffin (Merck, Darmstadt, Ger-

many). One hemisphere of each brain was dissected into prefrontal cortex, striatum, hippo-

campus, and cerebellum in order to assess the presence of monoamines. The other hemisphere

was rapidly frozen in N-methylbutane (Sigma-Aldrich, St. Louis, MO, USA) and stored at −40

˚C for metabolic activity.

Liver histological examination

Liver histology microscopy was performed in 10 μm thick sections of paraffin-embedded liver

tissue previously deparaffinised and stained with Picrosirius red (Sirius red F3BA 0.1% w/vol

in saturated picric acid) (Sigma-Aldrich, St. Louis, MO, USA) for 90 min, washed in glacial

acetic acid (Probus, Madrid, Spain) and water (5:1000), dehydrated in ethanol (VWR, Radnor,

PA, USA), and mounted in Entellan (Merck, Darmstadt, Germany).

Biochemical plasma determination

Plasma biochemistry was performed using a Cobas Integra II system (Roche Diagnostics,

Rotkreuz, Switzerland). A total of 29 animals were analyzed (n: NC = 14 and NASH = 15).

Plasma was biochemically assessed for the presence of albumin, ammonia, aspartate amino-

transferase (AST), alanine aminotransferase (ALT), total protein, glucose, creatinine, urine,

bilirubin, total cholesterol, high density lipoprotein (HDL) cholesterol, low density lipoprotein

(LDL) cholesterol, and triglycerides.

Fecal microbiota exploration

Fecal samples collection and processing. Fresh fecal pellets were obtained from each ani-

mal (n: NC = 10, NASH = 9) and frozen at -80˚C. For the analyses, the samples were melted at

RT, weighed, diluted in PBS (1:5 w/v), and homogenized (3 min, full speed) in a Stomacher

(VWR, Radnor, PA, USA; Lab Blender #400). Next, 1 mL of the homogenate was centrifuged

(10.000 rpm, 15 min), and the fecal supernatant was stored at -20˚C in order to use the

QIAamp DNA stool kit (Qiagen GmbH, Hilden, Germany), as described elsewhere [29]. The

DNA obtained was then stored at -20˚C until further analysis.

Analysis of fecal microbial groups by 16S rRNA gene profiling. Extracted DNA was

used as a template for the amplification of partial 16S rRNA gene sequences by PCR using the

primers and conditions described by Milani and co-workers [30]. The amplicons obtained

were then sequenced using the MiSeq (Illumina, San Diego, CA, USA) platform at GenProbio

s.r.l. (Parma, Italy). The individual reads obtained were filtered, trimmed, and processed [31].

Next, 16S rRNA Operational Taxonomic Units were defined at� 97% sequence homology

using the uclust tool developed by Edgar et al. [32]. All reads were classified into the lowest

possible taxonomic rank using QIIME and a reference dataset from the SILVA database [33].

Analysis of fecal microbial groups by quantitative PCR. To gain further insight into the

assessment of the fecal microbiota of the NC and NASH animals, the absolute levels of selected

microbial groups, including the Bacteroides-group, Lactobacillus-group Clostridium XIVa-

group, Clostridium IV-group, Enterobacteriaceae, and the genera Bifidobacterium and Akker-
mansia, as well as the levels of total bacteria, were determined by quantitative PCR using previ-

ously described primers and conditions [34,35].

Determination of SCFAs in feces. SCFAs levels were determined in the fecal superna-

tants by means of gas chromatography, as described by Moris et al. [36]. Briefly, cell free-

supernatants (250 μl) from fecal homogenates, prepared as indicated above, were mixed

with 100 μl methanol (Merck, Darmstadt, Germany), 50 μl internal standard solution
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(2-ethylbutyric 1.05 mg/ml) (Sigma-Aldrich, St. Louis, MO, USA), and 50 μl of 20% v/v formic

acid (Sigma-Aldrich, St. Louis, MO, USA). The mix was then centrifuged, and the supernatant

was used to quantify SCFAs in a system composed of a 6890NGC injection module connected

to a flame injection detector (FID) and a mass spectrometry detector (MS, 5973N) (Agilent

Technologies, Madrid, Spain).

Behavioral evaluation

Test for assessment of locomotor activity: Rotarod-accelerod test. The test aimed at

evaluating motor performance consists of a motor-driven rotating rod that enables the assess-

ment of motor coordination and resistance to fatigue [37]. The accelerating rotarod 7750 by

Ugo Basile (Ugo Basile Biological Research Apparatus, Gemonio, Italy) was used to this end

to assess the rats’ motor performance (n/group = 15). The procedure was separated into two

steps. In the first part, animals were placed in the apparatus, and the speed was maintained

constant at 2 rpm for 60 s. In the second part, rats were evaluated for 5 min in the accelerod

test session, in which the rotation rate constantly increased until reaching 20 rpm. Latency to

fall off the rod (s) and the actual rotation speed (rpm) were recorded.

Tests for assessment of anxiety- and depressive-like behavior. Anxiety-like behavior

was evaluated in the open field exploratory test, whereas depressive-like behavior was explored

through the evaluation of two different aspects, anhedonic state (sucrose preference test) and

despair (forced swimming test).

The open field exploratory test provides a unique opportunity to systematically assess the

exploration of a novel environment and general locomotor activity while providing an initial

screening tool for anxiety-related behavior in rodents. It has been suggested that two factors

influence anxiety-like behavior in the open field. The first factor is social isolation resulting

from the physical separation from cage mates during the test. The second factor is stress

induced by the brightly lit, unprotected, and novel test environment.

The evaluation of anxiety-like behavior was performed in an open field consisting of a

square arena (86×86 cm) with a white floor divided into two zones (periphery and center)

enclosed by continuous, 12.5-cm-high walls made of black Plexiglass. The arena was lit by two

light lamps that provided an illumination density of approximately 1200 lux at the center of

the open field. On this test, the zone adjacent to the wall represents a protected field, named

the ‘arena periphery’, whereas the other represents an exposed field, named the ‘arena center’.

The test was initiated by placing a single rat in the middle of the arena and letting it move

freely for 5 min. Animal behavior was recorded with a computerized video-tracking system

(EthoVision Pro, Noldus Information Technologies, Wageningen, The Netherlands). Dura-

tions spent in the central and peripheral areas were measured.

In contrast, depressive-like behavior was assessed through the evaluation of anhedonic state

and despair. In the sucrose preference test, aimed at assessing anhedonia, animals were trans-

ferred into single housing units with access to food ad libitum. Each rat was provided with two

water bottles on either edge of the cage during the 24-h training phase in order to allow them

to get used to drinking from two water bottles. Following training, one bottle was randomly

switched to another bottle containing a 0.8% sucrose solution, as described previously [38].

After another 24 h, the 0.8% sucrose solution bottle was replaced with water, and drinking was

measured for 24 h before one of the two bottles was removed from the cage. The use of a 48-h

testing period allowed us to preclude any effects of neophobia, artefactual bias toward one

side, and perseveration. Furthermore, it provides information on long-term access to a

rewarding stimulus. The consumption of water and sucrose solution was estimated simulta-

neously in all groups (n/group = 15).
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The procedure for the forced swimming test, used to evaluate despair, was previously

described by Porsolt et al. [39]. Rats were placed in an individual glass cylinder (40 cm in

height x 17 cm in diameter) containing water (30 cm water depth, 25˚C). Two swimming ses-

sions were conducted (an initial 10-min pre-test followed 24 h later by a 6-min test). The

total duration of climbing, swimming, and immobility was manually scored continuously

over the course of the last 4 minutes of the test. Climbing behavior consisted of upward-

directed movements of the forepaws along the side of the swim chamber. Swimming behav-

ior consisted of movement (usually horizontal) throughout the swim chamber. Rats were

considered immobile when not engaging in any additional activity other than that which

was required to keep the rat’s head above the water. Behavior was recorded for a second

independent analysis by a blinded experimenter, using a computerized video-tracking sys-

tem (EthoVision Pro, Noldus Information Technologies, Wageningen, The Netherlands)

(n/group = 15).

Tests for assessment of cognitive function. The animals were tested on the social recog-

nition test to assess their social recognition memory and reaction to novelty. Hippocampal

function was determined by measuring spatial reference memory in the radial arm water maze

(RAWM) and in the Barnes maze, whereas prefrontal cortex function was evaluated while per-

forming the spatial working memory task in the RAWM.

The animals (NC = 13, NASH = 10) were tested on the social recognition test to assess

their social recognition memory and reaction to novelty, as described previously [40]. Spra-

gue Dawley male rats were used as intruders. Before the first trial, an empty chamber was

placed in the test cage, which the rat was allowed to spontaneously explore (non-social). Dur-

ing an “initial encounter”, an intruder was placed inside a transparent acrylic chamber with

several orifices in its walls. The sessions consisted of five trials lasting 5 min each, separated

by 10 min intervals. In the subsequent four trials, the subject rat was exposed to the same

intruder. In the last trial (5th), a new intruder (2nd intruder) was placed in the same acrylic

chamber, which had been properly cleaned to remove the odor of the previous intruder, and

the time the rat spent sniffing was re-quantified. The time spent sniffing in the social interac-

tions was recorded and measured by a video camera (Sony, Madrid, Spain; #V88E) con-

nected to a computer equipped with a computerized video-tracking system (EthoVision

Pro, Noldus Information Technologies, Wageningen, The Netherlands). The observer was

blinded to phenotype and treatment.

The duration of time the host rat spent exploring, by sniffing the intruder through the ori-

fices, was used as a measure of social recognition. Social recognition was reflected in a reduc-

tion in the time spent sniffing between the 1st and 4th trials. Reaction to novelty was reflected

in an increase in the time spent sniffing in the 5th trial compared to the 4th trial [40].

Hippocampal function was measured through the spatial reference memory task in two dif-

ferent mazes, the radial arm water maze (RAWM) and the Barnes maze, whereas prefrontal

cortex function was measured through the spatial working memory task in the RAWM. The

RAWM consists of four black fiberglass arms (80 cm x 12 cm each arm) in the shape of a cross.

The pool, filled with water up to 30 cm at a temperature of 22 ± 2 ˚C, contained a cylindrical

escape platform for the animals measuring 10 cm in diameter and 28 cm in height, of which 2

cm was submerged in water. The RAWM was in the center of a 16 m2 lit room (50 lx in the

center of the maze), surrounded by panels on which several extra-maze visual clues with differ-

ent colors and shapes were placed above four quadrants of the maze. One day prior to the spa-

tial task, the experimental groups received a habituation session consisting of three trials with

the platform, using different starting positions each time in a small square water tank (47 × 75

× 38 cm).
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The spatial reference memory task in the RAWM was evaluated for five days (n/group = 6),

with the escape platform maintained in a fixed position every day (arm D). Each daily session

was composed of six trials. During the training period, the rat was placed in the center of the

maze facing an arm determined by a pseudo-randomized sequence, and the rat was allowed to

swim around the maze for 1 min to find the escape platform. If the rat failed to find the escape

platform within 1 min, it was gently guided to the platform and remained there for 15 s. At the

end of the session, a probe test was applied in which the escape platform was removed, and the

rat was introduced into the maze for 2 min in order to check whether the animal remembered

the position of the escape platform. Immediately after the probe test, the animals were sub-

jected to an additional trial with the escape platform placed in its usual position to preclude

any possible interference with the probe test. The time the rat spent to find where the escape

platform used to be located (latency), distance travelled, speed, and percentage of correct

choices were recorded and analyzed by EthoVision Pro (Noldus Information Technologies,

Wageningen, The Netherlands).

To perform the spatial reference memory task in the Barnes Maze (122 cm diameter and 70

cm height), an escape box was placed under one of the holes on the maze and remained in the

same spot during the course of the 5-day training session (n/group = 5). Visual cues of differ-

ent colors and shapes were placed above four quadrants of the maze (1200 lx in the center of

the maze). In the acclimation period, each rat was placed at the edge of the escape box. The rat

was gently placed into the escape box if it had not entered it on its own within 1 min. During

the training period, the rat was placed in the center of the maze and covered by an opaque plas-

tic box. On each training trial, 11 of the 12 holes were blocked. The remaining hole provided

access to the escape box, which was positioned on the underside of the maze. The ramp leading

to the escape box was of the same color and texture as the doors blocking the holes, such that it

was visually indistinguishable from the 11 other holes from the center of the maze. After 15 s,

the box was removed, and the rat was allowed to walk around the maze for 3 min to find and

enter the escape box. If the rat failed to enter the escape box within 3 min, it was gently guided

to the box. At the end of the session, a probe test was applied in which the escape box was

removed, and the rat was introduced into the maze for 2 min in order to check whether the

animal remembered the position of the escape box. Immediately after the probe test, the ani-

mals were subjected to an additional trial, with the escape box placed in its usual position to

preclude any possible interference with the probe test. Four trials were performed every day

for five days. The time spent to find the target hole where the escape box used to be located

(latency), distance travelled, and speed were recorded and analyzed by EthoVision Pro (Nol-

dus Information Technologies, Wageningen, The Netherlands). The maze was wiped thor-

oughly with a 10% alcohol solution to remove any potential olfactory cues.

In contrast, prefrontal cortical function was evaluated through the spatial working memory

test in the RAWM, for which training involved a paired sample task on five days of training.

Each daily session consisted of two identical trials (sample and retention). In both trials, the

escape platform was maintained in a fixed position every day, alternating across days in a pseu-

dorandom order. Within the same session, the platform, which was not visible to the animals

because it was hidden under water, was situated in one of the four arms. With the animals

starting at the center of the maze facing an arm, each rat was allowed to explore the maze

freely. If the rat did not find the escape platform within 60 s, it was gently picked up by the

experimenter and placed on the platform. The rat remained in the escape platform for 15 s

before it was returned to its home cage for 5 s (intertrial interval). Training ended when the

group achieved the learning criteria, established as a statistically significantly lower retention

latency compared to both the sample latency within one session and to the retention latency

from the first session [41]. Latencies (s) to reach the platform were recorded.
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Assessment of brain metabolic activity: Cytochrome c oxidase

The cytochrome c oxidase (CCO) histochemistry (n/group = 9) protocol provides a measure

of metabolic brain activity based on the method developed by Gonzalez-Lima and Cada [42],

which consists of a modified version of the protocol described by Wong-Riley [43]. Ninety

minutes after the last session of the spatial working memory task, the animals were decapitated.

The whole brain hemisphere was then processed in 30 μm-thick coronal sections using a cryo-

stat microtome (Leica, Wetzlar, Germany; #CM1900) and subsequently mounted on slides. In

order to control staining variability across different baths, sets of brain tissue homogenate stan-

dards of known CCO activity from rat brains were cut at different thicknesses (10, 30, 50 and

70 μm) and included with each batch of slides [44]. Sections and standards were fixed with a

0.5% (v/v) glutaraldehyde (Merck, Darmstadt, Germany), 10% (w/v) sucrose (Sigma-Aldrich,

St. Louis, MO, USA) in phosphate buffer (0.1 M, pH 7.6) solution. Next, the slides were rinsed

three times in 10% (w/v) sucrose (Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffer (0.1

M, pH 7.6) and immersed in a Tris (Sigma-Aldrich, St. Louis, MO, USA) buffer solution (0.05

M, pH 7.6) containing 0.5% (v/v) dimethylsulfoxide (Fisher Scientific, Hampton, VA, USA),

10% (w/v) sucrose (Sigma-Aldrich, St. Louis, MO, USA), and 275 mg/L cobalt chloride (Sigma-

Aldrich, St. Louis, MO, USA). Once the slides had been rinsed in a phosphate buffer (0.1 M,

pH 7.6), they were incubated in the dark at 37˚C in a PBS solution (0.1 M, pH 7.6) containing

0.0075% (w/v) cytochrome c (Sigma-Aldrich, St. Louis, MO, USA), 0.002% (w/v) catalase (Alfa

Aesar, Haverhill, NH, USA), 5% (w/v) sucrose (Sigma-Aldrich, St. Louis, MO, USA), 0.25%

(v/v) dimethylsulfoxide (Fisher Scientific, Hampton, VA, USA), and 0.05% (w/v) diaminoben-

zidine tetrahydrochloride (Sigma-Aldrich, St. Louis, MO, USA) for 1 h. The reaction was

stopped by fixing the tissue in 4% (v/v) buffered formalin (Sigma-Aldrich, St. Louis, MO, USA)

with 10% (w/v) sucrose (Sigma-Aldrich, St. Louis, MO, USA). Finally, the slides were dehy-

drated, cleared with xylene, and coverslipped with Entellan (Merck, Darmstadt, Germany).

The CCO histochemical staining intensity was quantified by densitometric analysis using

the computer-assisted image analysis workstation MCID (Interfocus Imaging, Linton, United

Kingdom), consisting of a high precision illuminator, a digital camera, and a computer with

specific image analysis software. The mean optical density (OD) of each region was measured

by taking twelve readings which were then averaged to obtain one mean per region for each

animal. These OD values were then converted to CCO activity units (μmol of cytochrome c

oxidized/min/g tissue wet weight), determined by the enzymatic activity of the standards mea-

sured spectrophotometrically.

In all the animals, we measured the neuronal metabolic activity in selected brain regions

that were anatomically defined according to Paxinos and Watson’s atlas [45]. The regions of

interest and their distance from bregma were: the prefrontal cortex (+3.24 mm) (prelimbic

(PrL), infralimbic (IL) and cingulate (Cg) cortex), the dorsal striatum (STD) (+1.56 mm),

the ventral striatum (+1.56 mm) (accumbens core (AcbC) and shell (AcbSh)), the thalamus

(-1.20 mm) (anterodorsal (ADT), anteroventral (AVT) and mediodorsal (MDT)), the amyg-

dala (-2.28 mm) (central (CeA), basolateral (BLA) and lateral (LaA)), the dorsal hippocampus

(-3.00 mm) (dentate gyrus (DG), CA1 and CA3 areas), the hypothalamic nuclei (-3.24 mm)

(ventromedial (VMH) and dorsomedial nucleus (DMH)) and the mammillary bodies (-4.44

mm) (medial nucleus (mMM), the lateral part of the medial nucleus (lMM), the lateral mam-

millary nucleus (LM), and the supramammillary nucleus (SuM)).

Monoamine determination

Monoaminergic activity was evaluated by assessing serotonin (5-HT), dopamine (DA), and

noradrenaline (NA) levels in the prefrontal cortex, striatum, hippocampus, and cerebellum.
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Their respective metabolite levels, including 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihy-

droxyphenylacetic acid (DOPAC), and 3-methoxy-4-hydro-xyphenylglycol (MHPG) were

also analyzed. Moreover, 5HIAA/5HT, DOPAC/DA, and MHPG/NA ratios were calculated

(n/group = 7).

These results were obtained via high-performance liquid chromatography (HPLC), using

an Agilent 1200 LC system (Agilent Technologies, Madrid, Spain) equipped with a vacuum

degasser, quaternary pump, cooled autosampler, thermostatted column compartment, and

fluorescence and variable wavelength detectors. The chromatographic separation was per-

formed on a Poroshell 120 EC-C18 column (100 × 4.6 mm, 2.7 μm) protected by a cartridge

guard column (Agilent Technologies, Madrid, Spain). The mobile phase consisted of 0.05% tri-

fluoroacetic acid (solvent A) and acetonitrile (solvent B). The flow was maintained at a con-

stant rate of 0.5 ml/min. The gradient elution program was as follows: from 0 to 8 min, 6%

solvent B (v/v); from 8 to 15 min, 10% solvent B (v/v); from 15 to 22 min, 20% solvent B (v/v);

and from 22 to 25 min, 2% solvent B (v/v). The column was maintained at 25 ˚C during the

analysis, and samples were maintained at 4 ˚C in an autosampler unit. The effluent was moni-

tored with the fluorescence detector at excitation wavelengths of 283 nm for DOPAC and

5-HIAA, 212 nm for NA, MHPG, and DA, and 229 nm for 5-HT. For all analyses, the emission

wavelength was 320 nm. The total sample analysis time was 22 min. The mobile phase was pre-

pared daily and filtered through a 0.22-μm Durapore filter (Millipore, Madrid, Spain). Prior to

the sample preparation, the frozen tissues were weighed on AG204 analytical scales (Mettler

Toledo, Columbus, OH, USA). The tissues were homogenized and deproteinized in a 60 μl

homogenization solution (1% formic acid in acetonitrile) in a Bullet Blender homogenizer

(Next Advance, New York, NY, USA; #BBY24 M Bullet Blender Storm). The aforementioned

treatment denatured the protein molecules, making the protein levels virtually impossible to

detect. The homogenates were immediately vortexed for 5 min (Scientific Industries, Bohemia,

NY, USA; Vortex-Genie 2) and subsequently centrifuged for 15 min at 15,000 × g and 4 ˚C

(Beckman Coulter, Madrid, Spain; Microfuge #22R Centrifuge). The supernatants were dried

for 30 min with compressed air to concentrate the samples and subsequently reconstituted

with 30 μl of 0.05% trifluoroacetic acid. Given that it is impossible to filter such small volumes,

the samples were centrifuged for 15 min at 15,000 × g and 4 ˚C. Ultimately, 20 μl of each

supernatant was injected into the HPLC system for analysis. Data processing was performed

with the Agilent ChemStation software program (Agilent Technologies, Madrid, Spain);

this program was used to quantify all compounds by comparing the areas under the peaks

with the areas of the reference standards. All standards were purchased from Sigma-Aldrich

(St. Louis, MO, USA) and dissolved in a stock 0.1 N hydrochloric acid solution. The calibra-

tion samples were prepared by adding appropriate amounts of standard working solutions to

chromatographic grade water obtained from a Millipore water purification system (Millipore,

Madrid, Spain).

Statistical analysis

Physiological and neurobiological data were analyzed in the SigmaStat 3.2 program (Systat,

San Jose, CA, USA) and expressed as means ± SEM. A two-way repeated-measures ANOVA

was used to compare weight gain across weeks, and a Student’s t-test was used to compare

the relative organ weight, biochemical determination, and portal pressure measurements.

Locomotor activity, anxiety-like behavior, anhedonia, despair, percentage of social interac-

tion, CO quantification, and monoamine determination were analyzed using a Student´s t-
test for independent variables. Two-way repeated-measures ANOVAs were used to analyze

the interactions on the short-term social memory test, permanence in the correct quadrant
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while performing the Barnes maze, percentage of time spent in the correct arm when per-

forming RAWM, latencies in the spatial memory tasks, as well as sample and retention analy-

ses of working memory and duration of short-term social memory data. Post-hoc multiple

comparison analyses were performed, when possible, using the Bonferroni method. A

Mann–Whitney’s U test for independent samples and a Friedman repeated-measures analy-

sis of variance on ranks were applied when tests to assess normality or equal variance across

group failed.

Data derived from microbiota were analyzed using the IBM SPSS Statistics Version 24.0

(IBM, Armonk, NY, USA) software. A Mann–Whitney’s U test was used to analyze the 16S

data. Data derived from qPCR and SCFAs were normally distributed and were analyzed using

a Student’s t-test. Principal component analyses (PCA) were performed by using the function

“cluster::pam” in the R program package (v3.5.2).

The results were considered statistically significant if p<0.05.

Results

Portal pressure

The NASH group had significantly elevated portal pressure compared to NC (NC: 7.018 ± 0.638;

NASH: 9.915 ± 0.153 mmHg; U = 34.000, n1 = 4, n2 = 6, p = 0.010).

Organ relative weight

No statistically significant differences in the body weight between groups were found through-

out the 14 weeks of the administration of the diet (F1,479 = 2.064, p = 0.162). As expected, sig-

nificant differences between weeks were revealed (F1,15 = 862.136, p<0.001), showing normal

weight gain according to age in both experimental groups (Fig 1). Nevertheless, differences

were also revealed in the relative weight of some of the measured organs (organ weight/body

weight). The NASH group had an increased relative weight of the liver (t28 = 11.041, p<0.001),

spleen (U = 126.000, n1 = 15, n2 = 15, p = 0.002), and kidney (t28 = 3.479, p = 0.002). In con-

trast, compared to the NC group, the NASH group also had a decreased relative weight of the

brain (t28 = 2.755, p = 0.010). No difference in the relative weight of the adrenal glands (t28 =

2.017, p = 0.053) was observed (Table 1).

Liver histological examination

The NASH group presented with steatosis in their livers, reflected in an increased accumula-

tion of lipids compared to the NC group (Fig 2).

Biochemical plasma determination

Plasma biochemistry concentrations were assessed in both groups (Table 2). Compared to

the NC group, the NASH group showed a significant increase in AST (t21 = 2.316, p = 0.031),

ALT (U = 72.000, n1 = 11, n2 = 12, p<0.001), total protein (t13 = 4.624, p<0.001), glucose (t9 =

3.874, p = 0.004), total cholesterol (U = 16.000, n1 = 5, n2 = 7, p = 0.005), and LDL cholesterol

(t11 = 5.686, p<0.001), as well as ammonia (t14 = 2.188, p = 0.046). Furthermore, the NASH

group also had higher levels of creatinine (t13 = 16.757, p<0.001) and HDL cholesterol

(t9 = 2.417, p = 0.039). Changes in albumin (U = 93.000, n1 = 10, n2 = 12, p = 0.156), urine

(t13 = 0.0415, p = 0.968), bilirubin (U = 151.500, n1 = 11, n2 = 14, p = 0.661), and triglycerides

(U = 93.000, n1 = 9, n2 = 11, p = 0.939) were not statistically significant.
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Microbiota exploration

Analysis of fecal microbial groups by 16S rRNA gene profiling. MiSeq sequencing of

the V3-V4 region of the 16S rRNA gene from fecal samples yielded an average of ~65,000 fil-

tered partial sequences per sample, of a length of ~178 bp. The analyses of the 16S rRNA gene

profiling of fecal samples showed large differences in the intestinal microbiota composition

between the two groups, as evidenced by the clear separation seen in the principal components

analysis (PCA) (Fig 3A). The evaluation of the Chao 1 richness estimator revealed significantly

(p = 0.004) lower bacterial richness in the NASH group (Fig 3B). Taxonomic shifts were also

assessed. At the phylum level, the murine fecal microbiota was dominated by Firmicutes (Fig

4A) in both groups. However, a significantly (p = 0.000) lower proportion of this phylum was

observed in the NASH group, in which a significantly increased relative proportion of Proteo-

bacteria (p = 0.000) and Bacteroidetes (p = 0.003) was observed. Analysis of the data at the

Fig 1. Body weight of Sprague-Dawley rats fed with a high-fat and high-cholesterol diet (NASH) and a standard diet (NC) throughout the 14

weeks of the study. A schematic representation of the experimental plan is also shown. No difference between groups was found (p�0.05).

https://doi.org/10.1371/journal.pone.0223019.g001

Table 1. Body weight (g) and organs’ relative weight (g/g).

NC NASH

Body 414.480±9.310 435.013±8.696

Brain 0.00453±0.000101 � 0.00407±0.000131

Liver 0.0320±0.000950 � 0.0462±0.000865

Adrenal gland 0.0000636±0.00000212 0.0000707±0.00000278

Kidney 0.00262±0.0000552 � 0.00288±0.0000497

Spleen 0.00179±0.0000328 � 0.00333±0.000150

Values represent mean ± SEM

�p<0.05

https://doi.org/10.1371/journal.pone.0223019.t001
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family level confirmed these differences (Fig 4B). The NASH and NC groups also had differ-

ences in the relative abundance of families belonging to the Firmicutes phylum. The NC group

harbored significantly (p = 0.000) higher proportions of Ruminococcaceae and Lactobacilla-
ceae, whereas the NASH group had higher proportions (p = 0.000) of Peptostreptococcaceae
and Clostridiaceae 1. In addition, in the NASH group, a significant (p = 0.000) increase in

Enterobacteriaceae, Desulfovibrionaceae (both families belonging to the Proteobacteria phy-

lum), and Bacteroidaceae was observed. Consistent with these results, differences were

observed in the relative abundance of different microbial genera between the two groups

Fig 2. Liver examination. (A) Macroscopic view of NC and NASH livers. (B) Microscopic (10x) view of NC and NASH livers after being stained with

picrosirius red. The NASH group presented with steatosis.

https://doi.org/10.1371/journal.pone.0223019.g002
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(S1 Table). The NC group was dominated by and showed significantly (p = 0.000) higher pro-

portions of Lactobacillus compared to the NASH group, in which higher (p = 0.000) propor-

tions of Bacteroides, Blautia, Romboustia, Bilophila, or Escheria-Shigella were found.

Analysis of fecal microbial groups by quantitative PCR. Absolute levels of selected

microbial groups were determined by qPCR (Table 3), which made it possible to confirm the

observations from the 16S profiling. The NASH group showed significantly (p = 0.000) lower

counts of total bacteria, Lactobacillus-group, Clostridium cluster IV, and Bifidobacterium, and

significantly (p = 0.000) higher counts of Enterobacteriaceae bacteria. However, the increase

observed in Bacteroidaceae levels by 16S analysis was not confirmed by qPCR. This inconsis-

tency may be due to the specificity of the primers used for the Bacteroides since qPCR used for

the group determination does not amplify all the family members.

Determination of SCFAs in feces. The levels of the main SCFAs derived from bacterial

metabolism differed between the NC and NASH groups (Table 3). The latter group showed

Table 2. Biochemical values in plasma.

NC NASH

Albumin g/L 34.177±0.508 35.856±0.770

NH3 U 394.625±41.220 � 557.000±61.703

AST U/L 110.136±21.707 � 169.792±14.592

ALT U/L 45.145±5.069 � 124.517±16.466

Total protein mg/dL 50.840±1.123 � 60.260±1.821

Glucose U 119.000±6.380 � 144.667±2.963

Creatinine μM/L 86.617±3.855 � 30.533±1.044

Urine μM/L 6.061±0.277 6.080±0.331

Bilirubin U 0.714±0.172 0.509±0.0858

Cholesterol U 92.400±11.885 � 160.714±10.497

HDL mg/dL 80.750±19.964 � 43.429±4.029

LDL mg/dL 23.000±2.828 � 82.000±7.888

Triglycerides mg/dL 0.305±0.0435 0.323±0.0739

Values represent mean ± SEM

�p<0.05

https://doi.org/10.1371/journal.pone.0223019.t002

Fig 3. Microbial composition. (A) PCA obtained through cluster analysis of the NC (control group) and NASH group samples. (B) Alpha diversity

estimated by the Chao1 diversity index for feces samples from the NC and NASH groups (�p<0.05).

https://doi.org/10.1371/journal.pone.0223019.g003
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significantly lower concentrations of acetate (p = 0.000), propionate (p = 0.015), and butyrate

(p = 0.001), as well as total SCFAs (p = 0.000). These results indicate a decrease in microbiota

activity and metabolism.

Behavioral evaluation

Test for assessment of locomotor activity: Rotarod-accelerod test. Results show that

were no statistically significant differences between groups in the rpm reached by the rotarod

(U = 269.000, n1 = 15, n2 = 15, p = 0.127) (Fig 5A) or in the time spent on the rod (t28 = 1.611,

Fig 4. Microbiota population. Relative abundance (%) of bacteria in fecal samples from NC and NASH groups at (A) phylum and (B) family level.

https://doi.org/10.1371/journal.pone.0223019.g004
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p = 0.118) (Fig 5B), thereby indicating that the NASH group’s locomotor activity was not

affected.

Tests for assessment of anxiety- and depressive-like behavior. In the evaluation of

anxiety-like behavior in the open field, results revealed no statistically significant differences

between groups in the time spent either in the center of the open field (U = 75.000, n1 = 15,

n2 = 15, p = 0.124) or in the periphery (U = 194.000, n1 = 15, n2 = 15, p = 0.114). Therefore, no

anxiogenic effects were found in the NASH group (Fig 6A).

The depressive-like behavior was evaluated through two different tests. Anhedonia

was studied in the sucrose preference test, in which no differences were found in water

(U = 256.000, n1 = 15, n2 = 15, p = 0.339) or sucrose consumption (t28 = 0.181, p = 0.857)

between the groups (Fig 6B), meaning that the NASH group was not in an anhedonic state.

Table 3. Concentration of intestinal microbial groups and levels of SCFAs.

Microbial group (Log CFU/g) NC NASH p-value

Akkermansia 5.72±0.84 5.97±0.61 0.473

Bacteroides group 9.44±0.68 8.72±0.43 � 0.014

Bifidobacterium 8.48±0.13 6.35±0.51 � 0.000

Clostridium Cluster IV 7.88±0.27 6.99±0.50 � 0.000

Clostridium Cluster XIVa 8.22±0.30 8.5±0.37 0.088

Enterobacteriaceae 5.59±0.48 8.29±0.78 � 0.000

Lactobacillus group 9.21±0.20 5.45±0.22 � 0.000

Total Bacteria 10.72±0.30 9.78±0.41 � 0.000

SCFA (mM) NC NASH p-value

Acetate 44.37±13.08 18.1±3.74 � 0.000

Propionate 8.29±2.06 5.68±2.15 � 0.015

Butyrate 13.36±7.18 2.34±0.67 � 0.001

Total main SCFAs 66.03±20.54 28.38±10.26 � 0.000

Values represent mean ± standard deviation

�p<0.05

https://doi.org/10.1371/journal.pone.0223019.t003

Fig 5. Locomotor activity. Bar charts (mean±SEM) represent (A) maximum rotation speed and (B) time spent on the apparatus. There were no

statistically significant differences between groups and the NASH group did not show impaired locomotor activity.

https://doi.org/10.1371/journal.pone.0223019.g005

Neurobehavioral dysfunction and its associated deficits in non-alcoholic steatohepatitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0223019 September 20, 2019 15 / 33

https://doi.org/10.1371/journal.pone.0223019.t003
https://doi.org/10.1371/journal.pone.0223019.g005
https://doi.org/10.1371/journal.pone.0223019


Fig 6. Assessment of anxiety- and depressive-like behavior. (A) Anxiety-like behavior was evaluated in the open field

exploratory test. Bar charts (mean±SEM) represent time spent by the experimental groups in the central and peripheral

areas. There were no statistically significant differences between groups and the NASH group did not show anxiety-like

behavior. (B) Depressive-like behavior was evaluated by assessing anhedonia and despair. Anhedonia was measured

with the sucrose preference test. Bar charts (mean±SEM) represent the 24 h consumption of water and sucrose. The

NASH group did not show signs of anhedonia. Despair was assessed by the forced swimming test. Bar charts (mean

±SEM) represent the percentage of time spent climbing, swimming, and in immobility in the NC and NASH groups. The

NASH group spent significantly less time swimming and more time immobile than the NC group (�p<0.05), which is

associated with depressive-like behavior.

https://doi.org/10.1371/journal.pone.0223019.g006
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In contrast, despair was evaluated by the forced swimming test (Porsolt) in which the NASH

group spent less time swimming (U = 312.000, n1 = 15, n2 = 15, p<0.001) and more time

immobile (U = 132.000, n1 = 15, n2 = 15, p<0.001) than the NC group, but did not differ in

terms of climbing time (U = 210.000, n1 = 15, n2 = 15, p = 0.360) (Fig 6C). Thus, during this

task, the NASH group showed signs of despair, a component of depression.

Tests for assessment of cognitive function. In the short-term social memory test, no dif-

ferences were found between the experimental groups (t22 = 0.320, p = 0.752) during the non-

social trial. However, in the social interaction experiment, differences were found between the

experimental groups (F1,124 = 10.074, p = 0.004). In the first trial, the NC group showed exten-

sive exploration of the intruder, whereas the duration of the interaction in the NASH group

was significantly lower (p<0.001). This response decreased across trials with subsequent expo-

sures in both the NC and NASH (F4,124 = 42.785, p<0.01) groups. When an unfamiliar rat (5th

trial) was introduced, the NC group again increased the time spent exploring, which was sig-

nificantly higher than the time the NASH group rats spent interacting (p = 0.003). Moreover,

interactions between group and trial were found (F4,124 = 4.211, p = 0.004). Specifically, the

NC group showed differences between trials 1 and 5 and the rest of the trials (p<0.001),

whereas the NASH group only showed differences between trials 1 and 5 (p<0.001) (Fig 7A).

On analyzing the total social exploration, the NASH group spent statistically significantly less

time exploring the intruder than the NC group (t22 = 2.285, p = 0.032) (Fig 7B). Thus, the

NASH group can be considered to have demonstrated impaired short-term social memory.

During the performance of the spatial reference memory test in the RAWM, the latency to

reach the platform did not differ between groups (F1,59 = 2.907, p = 0.119), nor did the interac-

tions (F4,59 = 0.221, p = 0.925). However, differences between days were found (F4,59 = 13.853,

p<0.001); the NC group showed a decrease in latencies on days 4 and 5 (p�0.05), whereas the

NASH group showed significantly decreased latencies every day compared to day 1 (p<0.05)

(Fig 8A). The distance traveled differed across days (F4,59 = 11.861, p<0.001), and the post-hoc

Fig 7. Cognitive assessment: Short-term social memory. (A) The scatterplot (mean±SEM) shows the duration of social interaction between groups on

the non-social trial, in each of four successive trials and in the fifth trial. The NASH group spent significantly less time interacting with the social

stimulus than the NC group in trials 1 and 5 (�p<0.05). There was a statistically significant reduction in the duration of the interaction between trials 3,

2, and 1 in the NC group (#p<0.05) and between trials 1 and 5 in the NASH group ($p<0.05). (B) Bar charts (mean±SEM) represent the percentage of

time spent exploring the social stimulus. The NASH group showed significantly less interaction time than the NC group (�p<0.05). In summary, the

NASH group showed impaired social behavior.

https://doi.org/10.1371/journal.pone.0223019.g007
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analysis revealed significant differences between the first two days compared to the other days

(p<0.05). There were no significant differences between groups on this measure (F1,59 = 2.503,

p = 0.145), and no day×group interaction was found (F4,59 = 0.139, p = 0.967). The speed

changed according to the days (F4,59 = 6.061, p<0.001), and the post-hoc analysis revealed sig-

nificant differences between the first day and days 4 and 5 (p<0.020), as well as between day 2

and days 4 and 5 (p<0.05). There were no significant differences between groups on this mea-

sure (F1,59 = 0.880, p = 0.370) and no day×group interaction was found (F4,59 = 0.167, p = 0.954).

With regards to the reference memory percentages in the correct arm, these varied as the

days went by (F4,59 = 19.039, p<0.001). There were no differences between groups on this mea-

sure (F1,59 = 2.788, p = 0.126), and the day×group interaction was not significant (F4,59 = 0.376,

p = 0.824) (Fig 8B). Therefore, both experimental groups showed preserved spatial reference

memory.

Spatial reference memory was also evaluated using a different paradigm, the Barnes maze,

in both experimental groups. To this end, a hippocampal-dependent task was used in which

the animals were required to locate an escape box that consistently remained in the same posi-

tion. Our results revealed no differences in the latencies (F1,49 = 0.0548, p = 0.821) between

the NC and NASH groups. However, differences in training days were found in the NC group

between days 1 and 5 (F4,49 = 6.622, p<0.001), indicating that they were performing better as

the training progressed (Fig 8C). To support the absence of locomotor problems, we analyzed

distance and speed in both experimental groups while performing the spatial reference mem-

ory task. The distance traveled did not differ between the experimental groups (F1,59 = 0.08,

p = 0.789), whereas differences in this measure were found across days (F4,59 = 6.102,

p = 0.002), showing that the NC group travelled shorter distances from day 1 (p<0.005),

whereas the NASH group started to improve from day 2 (p = 0.046). The day×group interac-

tion was not significant (F4,59 = 2.257, p = 0.099). The speed differed as the days went by (F4,59

= 6.607, p = 0.001), and the post-hoc analysis showed significant differences in the NASH

group between the first day and days 2, 3, and 4 (p<0.03). There were no significant differ-

ences between groups on this measure (F1,59 = 0.844, p = 0.400). The day×group interaction

was not significant (F4,59 = 2.194, p = 0.107).

Further, a probe test was performed to determine whether the animals learned the exact

position of the escape box. If the animals were able to remember the position, they would

remain longer in the quadrant hosting the escape box (quadrant D); otherwise, they would

spend more time in the rest of the quadrants (RQ). Both groups stayed longer in arm D,

where the escape box was previously located, than in the rest of the arms (RQ) (NC: D1 (F1,9 =

30.820, p<0.001), D2 (F1,9 = 7.163, p = 0.028), D3 (F1,9 = 52.586), p<0.001), D4 (F1,9 = 17.464,

p = 0.003), D5 (F1,9 = 35.113, p<0.001); NASH: D1 (F1,9 = 1.679, p = 0.231), D2 (H1 = 6.818,

p = 0.008), D3 (H1 = 6.818, p = 0.008), D4 (F1,9 = 6.879, p = 0.031), D5 (F1,9 = 155.416,

p<0.001; Fig 8D).

Prefrontal cortical function was evaluated via the spatial working memory test in the RAWM.

The two-way repeated-measures ANOVA revealed no differences in the sample latencies

between groups (F1,89 = 0.397, p = 0.538) across days (F4,89 = 2.351, p = 0.063). The NASH group

showed a statistically significant higher retention latency than the NC group (F1,89 = 4.596,

p = 0.048) (Fig 8E), meaning that the NASH group had impaired spatial working memory.

Assessment of brain metabolic activity: Cytochrome c oxidase

The NASH group showed significantly lower values of CCO activity, indicating lower meta-

bolic activity than the NC group, in IL (t15 = 2.568, p = 0.021), Cg (t15 = 2.814, p = 0.013),

MDT (t16 = 5.352, p<0.001), CA1 (t16 = 2.927, p = 0.010), and LM (t14 = 4.077, p = 0.001).
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Fig 8. Cognitive assessment: Spatial reference and working memory. (A-B) Spatial reference memory test to assess hippocampal function in the

RAWM: (A) The scatterplot (mean±SEM) shows escape latencies on training days. There was a statistically significant decrease in the duration of the

interaction between days 4, 5, and 1 in the NC group and between day 1 and the other days in the NASH group (#p<0.05). (B) The scatterplot (mean

±SEM) shows the percentage of time spent in the correct arm across the training days. The NASH group did not show impaired spatial reference memory,

which is a hippocampal-dependent ability. (C-D) Spatial reference memory test to assess hippocampal function in the Barnes Maze: (C) The scatterplot

(mean±SEM) shows escape latencies on training days. There was a statistically significant decrease in the duration of the interaction between days 5 and 1

in the NC group (#p<0.05). (D) Bar charts (mean±SEM) represent the amount of time spent in the rest of the quadrants (RQ: A, B, and C) compared to

quadrant D, where the platform was located, in both the NC and NASH groups across training days. Both groups spent more time in arm D than in the rest

of the arms over the course of the five days of training (�p<0.05). (E) Spatial working memory test to assess prefrontal function. Bar charts (mean±SEM)
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However, no statistically significant differences were found in the CCO values between

groups in PrL (t15 = 1.160, p = 0.264), STD (t16 = 1.093, p = 0.291), ADT (t16 = 0.157,

p = 0.877), AVT (t16 = 1.473, p = 0.160), BLA (U = 81.000, n1 = 8, n2 = 9 p = 0.413), CeA (t9 =

3.110, p = 0.013), LaA (U = 86.000, n1 = 8, n2 = 9, p = 0.194), DG (U = 75.000, n1 = 9, n2 = 9

p = 0.377), CA3 (t16 = 1.256, p = 0.227), VMH (t16 = 0.535, p = 0.600), DMH (t16 = 0.0836,

p = 0.934), mMM (t14 = 1.523, p = 0.150), lMM (t14 = 2.001, p = 0.065), or SuM (t14 = 0.841,

p = 0.414) (Table 4).

Monoamine determination

Neurotransmitters in both groups were analyzed in the prefrontal cortex, striatum hippocam-

pus, and cerebellum. The NASH group presented lower levels of DA in the prefrontal cortex

(U = 72.000, n1 = 7, n2 = 7, p = 0.011), an increased DOPAC/DA ratio in the cerebellum (t12 =

2.235, p = 0.045), and decreased NA (U = 69.000, n1 = 7, n2 = 7, p = 0.038) in the striatum com-

pared to the NC group. There were no statistically significant differences in 5HT, 5HIAA,

5HIAA/5HT, DOPAC, MHPG, or MHPG/NA in the prefrontal cortex, striatum, hippocam-

pus, or cerebellum (Table 5).

Discussion

The purpose of this study was to investigate the consequences of HFHC consumption in an

animal model that reflects some of the pathophysiological processes characteristic of human

represent sample and retention average latencies. Whereas sample latencies were not statistically different, NASH animals showed a significantly higher

retention latency than the NC group (�p<0.05). This group showed impaired spatial working memory, which is a prefrontal cortex-dependent function.

https://doi.org/10.1371/journal.pone.0223019.g008

Table 4. Metabolic brain activity.

Brain region NC NASH

PrL 28.380±1.030 26.735±0.975

IL 29.028±0.902 � 25.865±0.840

Cg 28.872±0.945 � 25.357±0.825

STD 26.193±0.546 26.931±0.397

ADT 36.116±0.606 36.343±1.314

AVT 31.348±0.774 29.661±0.845

MDT 26.949±0.818 � 21.739±0.528

CeA 27.425±0.868 25.483±0.518

BLA 29.171±0.723 28.103±1.014

LaA 24.412±0.511 22.224±1.106

DG 33.018±0.526 34.928±1.620

CA1 23.540±0.644 � 21.071±0.544

CA3 23.023±0.827 21.858±0.419

VMH 33.195 ± 1.269 32.342 ± 0.967

DMH 23.522 ± 1.121 23.405 ± 0.848

mMM 25.410±1.218 22.969±1.049

lMM 24.550±0.786 21.975±0.953

LM 23.963±0.861 � 19.724±0.629

SuM 23.982±1.144 22.916±0.683

CCO activity units represented as mean ± SEM

�p<0.05

https://doi.org/10.1371/journal.pone.0223019.t004
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NASH pathology. We measured a set of clinical criteria characterizing the NASH condition.

We investigated the role of gut microbiota composition and SCFAs in NASH-induced behav-

ioral deficits. Finally, we also extended our analysis to evaluate the effects of this diet on brain

metabolic dysfunction and its impact on neurotransmission and behavioral performance.

Our results showed that the NASH group had increased portal pressure, which was previ-

ously found to result from steatosis, intrahepatic resistance, and increased splanchnic blood

flow [46]. Animals in both experimental groups had increased weights according to their age,

but there were no differences in body weight between the two groups, indicating that these ani-

mals did not develop obesity [47]. However, the NASH group had significantly heavier livers

than the NC group and presented with steatosis similar to that of human NASH [48]. Animals

in the NASH group also had relatively heavier kidneys, which could be related to the increased

prevalence of chronic kidney disease among affected individuals [49], as well as to splenomeg-

aly, which probably resulted from portal hypertension [6].

The NASH group met the biochemical criteria characteristic of the disease because they

had elevated levels of AST, ALT, and glucose [50], alongside reduced levels of liver function-

associated creatinine [51]. Total cholesterol and LDL cholesterol levels were increased, whereas

HDL cholesterol levels were reduced, suggestion that the administration of this diet not only

causes higher cholesterol levels, but also shifts the balance towards the more harmful choles-

terol types.

The NASH group was also associated with higher levels of ammonia. Ammonia is a well-

known neurotoxin produced from urea by the action of bacterial ureases in the intestinal tract.

Gut-derived ammonia is taken up by the liver and consumed in the urea cycle. It has been

recently reported that steatosis in rats and humans is associated with reversible changes in

urea cycle enzymes and impairment of urea synthesis [7]. In cirrhosis, studies have shown

that, in addition to its direct neurotoxic injury, ammonia is also able to impair the intracerebral

Table 5. Brain contents of monoamine neurotransmitters and their metabolites.

Monoamine (nmol/g tissue) Prefrontal cortex Striatum Hippocampus Cerebellum

5 HT NC 0.02732±0.00975 0.02521±0.00570 0.00984±0.00390 0.01316±0.00279

NASH 0.01056±0.00196 0.02775±0.00676 0.01397±0.00174 0.02296±0.00371

5HIAA NC 0.05947±0.02480 0.03689±0.00283 0.02830±0.00309 0.01230±0.00135

NASH 0.02137±0.00502 0.03083±0.00220 0.02223±0.00128 0.01865±0.00478

DA NC 0.01695±0.00588 0.03946±0.01363 0.01333±0.00503 0.01400±0.00268

NASH �0.00306±0.00054 0.07776±0.01455 0.00500±0.00109 0.01204±0.00120

DOPAC NC 0.37606±0.14598 0.04371±0.0123 0.03830±0.00869 0.08690±0.01475

NASH 0.03816±0.00168 0.03659±0.00641 0.03200±0.00267 0.17354±0.04088

NA NC 0.00847±0.00166 0.01174±0.00321 0.01149±0.00242 0.01027±0.00148

NASH 0.01024±0.00151 �0.00399±0.00053 0.01099±0.00170 0.00960±0.00179

MHPG NC 0.06983±0.03539 0.05934±0.02346 0.05180±0.00953 0.12201±0.03389

NASH 0.02919±0.00606 0.02999±0.00521 0.04146±0.00975 0.10650±0.02800

5HIAA/5HT NC 4.64425±3.36298 2.03764±0.56651 6.17124±1.72689 1.18908±0.23711

NASH 2.1076±0.48026 1.63749±0.38179 1.74190±0.25556 0.82319±0.11745

DOPAC/DA NC 19.27120±4.35385 2.86692±1.48622 4.46313±0.81159 7.37821±1.62266

NASH 14.22486±1.81051 0.72799±0.25240 10.02642±3.22583 �13.96451±2.45926

MHPG/NA NC 6.74773±2.10508 6.90871±1.78199 6.17729±1.95395 11.19352±1.78506

NASH 3.39489±1.00960 7.64958±1.21543 4.33613±1.11574 12.15172±3.12631

Values represent mean ± SEM

�p<0.05

https://doi.org/10.1371/journal.pone.0223019.t005
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synthesis of serotonin and dopamine and produce abnormal neurotransmitters such as octopa-

mine [52]. Additionally, hyperammonemia has been associated with neuroinflammation,

which contributes to cognitive impairment [53,54]. These findings suggest that hyperammone-

mia could also be a contributing factor to the behavioral deficits in NASH.

Extensive literature has described the brain’s sensitivity to diet-induced obesity [55,56] and

a growing number of studies have linked gut microbiota to central nervous system health and

behavior [57–59]. However, this study’s results provide the very first evidence that high-fat

high-cholesterol diet-induced changes to the gut microbiome are sufficient to disrupt brain

metabolism and function in the absence of obesity. The NASH group showed intestinal micro-

biota dysbiosis in which levels of total bacteria, as well as β- and α-diversity, were reduced.

Moreover, our results showed that the NASH model is associated with reduced levels of Firmi-

cutes, especially members of the Lactobacillaceae family, and increased levels of Bacteroidetes

and Proteobacteria. These results differ from those of studies on high-fat diet models that

found a reduction in Bacteroidetes and an increase in Firmicutes [60,61]. However, both

results support the hypothesis that the balance between these two phyla might reflect the bal-

ance between unhealthy and healthy microbiota [62]. Dysbiotic gut microbiota have been

pointed out as a major source of ammonia and a cause of neuroinflammation in cirrhosis

[63,64]. Similarly, gut dysbiosis has been linked to an alteration of inflammatory pathways

[65], which has been observed in NASH [8] and could result from the rise in metabolic endo-

toxemia [66]. It has been also reported that members of the Lactobacillaceae family, reduced in

our animal model, have anti-inflammatory properties [67,68], possibly emphasizing their role

in the pathophysiology of NASH. Furthermore, this specific family can directly increase the

single- and multi-unit firing rates of the mesenteric nerve bundle and decrease anxiety/depres-

sion in mice [69,70], linking microbiota dysbiosis to changes in mood and behavior [71].

As expected from the differences observed in the composition of the intestinal microbiota,

the levels of the main intestinal microbial metabolites, the SCFAs, also differed between the

groups, with lower levels of the main SCFAs (acetate, propionate, and butyrate) in the NASH

animals. The production of these metabolites was found to be linked to microorganisms from

the Proteobacteria, Firmicutes, and Bacteroidetes phyla. In and of themselves, since anti-

inflammatory properties have been attributed to acetate [72], propionate [72,73] and butyrate

[74,75], microbial-derived SCFAs are also involved in inflammatory modulation [76]. In addi-

tion, SCFAs have also increasingly been implicated in emotional processing and behaviors

[77].

In this regard, the NASH group showed depressive-like behavior, as measured in the forced

swimming test. The NASH group spent significantly less time swimming and more time

immobile than the NC group, demonstrating a sense of hopelessness as reflected in the lack of

struggle to escape the cylinder [78,79]. However, the NASH group did not display anxious

behaviors. Some studies have shown that high-cholesterol [80] and high-fat diets [81] lead to

anxious-like behavior, whereas other studies have found an anxiolytic effect [82,83]. Thus,

future studies should focus on how the type and length of the diet administered, along with the

age of the animals, could influence these behaviors.

Moreover, it has been suggested that NASH-associated cognitive impairment is mediated

by insulin resistance, as demonstrated in animal models [79,84]. Insulin resistance is associ-

ated with impaired glucose utilization and lipid metabolism, resulting in increased oxidative

stress and inflammation [85]. In addition, insulin resistance has also been linked to gut dysbio-

sis and altered SCFA secretion [86].

Although this study did not measure insulin resistance, it has been previously reported

that this model showed no differences in insulin and the HOMA index, whereas there was an

increase in total IGF-I (insulin growth factor-I) [6]. Some studies have shown that IGF-I is
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increased in affective disorders [87,88], highlighting its role as a mood regulator [89,90], for

example through its potent anxiolytic actions [91]. Therefore, the absence of anxiety-like

behavior, along with the increased IGF-I, may point to an endogenous protective mechanism

[92] in our NASH model.

Depression is not only associated with a reduction in quality of life, but is also often accom-

panied by other symptoms, such as cognitive impairment, functional impairment, and social

dysfunction [84]. Because depression is related to social dysfunction, short-term social mem-

ory was studied. Our results reveal that NASH animals were not interested in exploring new

intruders (social component), reflecting an impairment in social behavior.

With regards to the other cognitive functions, we found that the NASH group had, accord-

ing to the results of two independent tests, preserved spatial reference memory and a hippo-

campal-dependent long-term type of memory. Conflicting results have been observed as a

consequence of different diets. As such, Ross et al. [93] found that fructose-induced fatty liver

disease is associated with a deficit in this specific type of memory, confirmed by Darling et al.

[94] in animals that voluntarily consumed high-energy diets with elevated amounts of fat and

sugar. Furthermore, Hargrave et al. [95] found changes in the use of hippocampal-dependent

strategies depending on the obesogenic properties of the high-fat high-sugar Western diet pro-

vided. In addition, this deficit was also associated with high-fat and obesogenic diets in studies

by Boitard et al. [96], Wang et al. [97], and Spencer et al. [98].

Although we did not observe a deficit in long-term memory in the NASH model, we did

observe changes in short-term memory, as assessed by evaluating spatial working memory,

which is mainly dependent on the prefrontal cortex. Our results showed that the NASH

group had difficulty remembering a particular spatial location for a short period of time.

This impairment was not caused by problems in locomotor activity related to the pathology

because, as previously described in high fat [99] and high cholesterol diets [100], they showed

no differences in motor coordination or resistance to fatigue compared to the NC group. Pre-

vious studies showed that prolonged administration of a high saturated fat diet was found to

impair the performance of young and old rats on the RAWM [14], as well in tests of working

memory [101]. However, Deshpande et al. [12] did not observe any working memory deficits

when old animals were treated with the same diet for shorter periods (8 weeks), whereas Gran-

holm et al. [13] did find working memory deficits when this diet was accompanied with ele-

vated cholesterol levels.

In order to clarify the mechanisms triggering this cognitive deficit, we measured brain met-

abolic activation and monoamine determination resulting from the execution of the spatial

working memory task. It has been reported that ceramides and other toxic lipids generated by

the liver in the context of NASH pathology could mediate the adverse effects on the brain due

to their capacity to cross the blood-brain barrier and, once inside the brain, cause neuroin-

flammation, oxidative stress, metabolic impairment, and neurotransmitter deficits [102].

Moreover, several studies have shown that SCFAs are also used as a mitochondrial energy

source in both humans and rodents [103–105]. Indeed, relevant levels of acetate and propio-

nate have been reported to directly influence the brain [106,107].

NAFLD pathophysiology has been found to involve mitochondrial dysfunction linked to

oxidative stress and altered oxidative phosphorylation [108]. Therefore, neural metabolism

was measured by labelling CCO, a mitochondrial enzyme involved in ATP production. This

method was previously used to clarify the cerebral oxidative energetic metabolic changes

underlying learning impairments in liver disease [109,110]. The NASH group had lower levels

of CCO activation in the prefrontal cortex, hippocampus, thalamus, amygdala, and mammil-

lary bodies, which form part of a network underlying spatial working memory. The prefrontal

cortex has traditionally been pointed out as the region modulating spatial working memory
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[111,112], although it has also been shown that it needs to be synchronized with the hippocam-

pus to this end [113,114]. The thalamus has been proposed as a key node in this communica-

tion line between the prefrontal cortex and hippocampus [115,116], as well as with the

amygdala [111,116] and the mammillary bodies [117]. Thus, the decreased CCO activation in

these areas, reflecting a mitochondrial alteration, may explain the animals’ impaired perfor-

mance on the task. Brain mitochondrial dysfunction is one of the main forces driving neurode-

generation [118], and to our knowledge, had not been previously described in NASH.

Furthermore, neuronal communication requires a high amount of energy, which is reduced

in the NASH group, and is critically related to cellular metabolism and energy supply, both

dependent on glucose availability [119]. Our results suggest an imbalance in glucose metabo-

lism, which has been found to affect neuronal circuits and be especially relevant to prefrontal

functioning since the prefrontal cortex has a high density of excitatory synapses [120] whose

activity is strictly dependent on glucose availability [121]. These prefrontal cortical excitatory

synapses have been associated with DA because this monoamine can modulate the response of

glutamatergic pyramidal neurons in this region [122]. Accordingly, we not only found reduced

levels of DA in the prefrontal cortex but also an increased DOPAC/DA ratio in the cerebellum

in the NASH group, representing enhanced DA catabolism.

Dopaminergic dysfunction and reduced mitochondrial oxidative activity could have been

altered as a consequence of insulin resistance, potentially through altered expression of mono-

amine oxidase and electron transport chain proteins [123]. The dopaminergic neurons’ acid-

sensitive ionic channels, which have been found to be sensitive to ammonia [124], may poten-

tially explain the DA dysregulation observed in our NASH model. Exposure to this substance

has been associated with a reduction in DA levels in a dose-dependent manner, along with

an increased DOPAC/DA ratio, probably because monoaminergic enzymatic regulation is

affected [125]. Consequently, these alterations could be derived from the hyperammonemia

[126] observed in our NASH group, which itself may be a consequence of the observed gut dys-

biosis [63]. Moreover, intestinal bacteria and SCFAs are known to influence DA and NA levels

[127,128]. Therefore, the gut dysbiosis and decreased production of SCFAs found in NASH

animals, acting through the gut-brain axis, could also be responsible for the DA depletion.

The mesolimbic DA system, and, specifically, its signaling in the prefrontal cortex, plays an

important role in depression [129,130]. This may explain the differences found in the NASH

group. DA modulation in the prefrontal cortex is also related to social behavior [122,131] and

is essential for modulating cognitive functions such as working memory [132]. Moreover,

dopaminergic projections from the prefrontal cortex extend out to the amygdala [133], the

hippocampus [134], and the cerebellum [135]. Indeed, dopaminergic modulation in the cere-

bellum is also involved in modulating cognitive functions such as social recognition [136], as

reflected in the NASH group rats’ lack of interest in the social context, and working memory

[137], which is also disturbed in this pathology. Li et al. [138] showed that mRNA expression

of tyrosine hydroxylase, as the rate-limiting step in dopamine synthesis, is decreased in ani-

mals fed a high-fat diet. However, it has never been reported whether high-fat high-cholesterol

induced-NASH could cause dopaminergic neuron injury. In addition, dopaminergic neurocir-

cuitry may be altered as a consequence of an increased inflammatory response [139], which

could be a potential mechanism underlying the DA deficits in our NASH model. Our study

demonstrated for the first time that this type of diet led to a decrease in DA in the prefrontal

cortex alongside a decrease in its turnover in the cerebellum. These changes were associated

with an increase in immobility in the forced swimming test and alterations in the cognitive

functions driven specifically by these brain regions. Finally, the thalamus and mammillary

bodies have been reported to play a role in DA regulation [140,141], and decreased NA levels

have been found in the striatum of the NASH group. The striatum is known to not only be
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involved in this dopaminergic pathway, but also to be modulated by noradrenergic signaling

[142], and a reduction in NA in the striatum has been associated with depressive-like behavior

[143]. Moreover, as was the case with DA, NA levels have been also shown to be reduced in a

dose-dependent manner as a consequence of exposure to ammonia [125].

Many clinical observations highlight the importance of considering the interactions

between the dopaminergic, serotoninergic, and noradrenergic systems. In this regard, our

results showed no changes in serotonergic systems. This may either be due to these neurons’

acid-sensitive ion channels not being specifically sensitive to ammonia, or to a balance between

the metabolic disruption of ammonia-modulated monoaminergic anabolism [125] and the

increased transport of tryptophan across the brain-blood barrier as a result of ammonia expo-

sure [144,145].

In conclusion, these results indicate that a high-fat, high-cholesterol-induced NASH-like

condition produces gut dysbiosis and decreases gut microbial SCFA production, while

enhancing hyperammonemia. These findings may suggest that gut-derived microbiota metab-

olites, along with ammonia, may be generating a neurotoxic injury that could be reflected not

only in behavioral changes, but also in metabolic and functional brain regional deficits. How-

ever, more studies are warranted to fully understand the mechanisms underlying the func-

tional changes resulting from high-fat and high cholesterol induced cognitive impairment. In

addition, further studies will also be necessary to determine the role of inflammation in the

cognitive decline following gut microbe dysbiosis.
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65. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflam-

mation, obesity, and metabolic disease. Genome Med. 2016; 8(1):42. https://doi.org/10.1186/s13073-

016-0303-2 PMID: 27098727

66. Ma J, Zhou Q, Li H. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and

therapy. Nutrients. 2017; 9(10).

67. Plaza-Dı́az J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A. Evidence of the anti-inflammatory effects of

probiotics and synbiotics in intestinal chronic diseases. Nutrients. 2017; 9(6).

68. Nagpal R, Kumar M, Yadav AK, Hemalatha R, Yadav H, Marotta F, et al. Gut microbiota in health and

disease: an overview focused on metabolic inflammation. Benef Microbes. 2016; 7(2):181–94. https://

doi.org/10.3920/bm2015.0062 PMID: 26645350

69. Bravo JA, Forsythe P, Chew M V., Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactoba-

cillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the

vagus nerve. Proc Natl Acad Sci U S A. 2011; 108(38):16050–5. https://doi.org/10.1073/pnas.

1102999108 PMID: 21876150

70. Perez-Burgos A, Wang B, Mao Y-K, Mistry B, Neufeld K-AM, Bienenstock J, et al. Psychoactive bacte-

ria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol

Liver Physiol. 2013; 304(2):G211–20.

71. Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogas-

troenterol Motil. 2013; 25(9):713–9. https://doi.org/10.1111/nmo.12198 PMID: 23910373

72. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids

acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol.

2007; 13(20):2826–32. https://doi.org/10.3748/wjg.v13.i20.2826 PMID: 17569118

73. Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A, et al. Regulation of adipokine

production in human adipose tissue by propionic acid. Eur J Clin Invest. 2010; 40(5):401–7. https://doi.

org/10.1111/j.1365-2362.2010.02278.x PMID: 20353437

74. Fukae J, Amasaki Y, Yamashita Y, Bohgaki T, Yasuda S, Jodo S, et al. Butyrate suppresses tumor

necrosis factor α production by regulating specific messenger RNA degradation mediated through a

cis-acting AU-rich element. Arthritis Rheum. 2005; 52(9):2697–707. https://doi.org/10.1002/art.21258

PMID: 16142751
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culating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a

potential model of geriatric depression. Neuroscience. 2011; 185:50–60. https://doi.org/10.1016/j.

neuroscience.2011.04.032 PMID: 21524689

91. Hoshaw BA, Hill TI, Crowley JJ, Malberg JE, Khawaja X, Rosenzweig-Lipson S, et al. Antidepressant-

like behavioral effects of IGF-I produced by enhanced serotonin transmission. Eur J Pharmacol. 2008;

594(1–3):109–16. https://doi.org/10.1016/j.ejphar.2008.07.023 PMID: 18675266

92. Santi A, Bot M, Aleman A, Penninx BWJH, Aleman IT. Circulating insulin-like growth factor I modulates

mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry. 2018; 8

(1):142. https://doi.org/10.1038/s41398-018-0196-5 PMID: 30068974

93. Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB. Non-alcoholic fatty liver disease

impairs hippocampal-dependent memory in male rats. Physiol Behav. 2012; 106(2):133–41. https://

doi.org/10.1016/j.physbeh.2012.01.008 PMID: 22280920

94. Darling JN, Ross AP, Bartness TJ, Parent MB. Predicting the effects of a high-energy diet on fatty liver

and hippocampal-dependent memory in male rats. Obesity. 2013; 21(5):910–7. https://doi.org/10.

1002/oby.20167 PMID: 23784893

95. Hargrave SL, Davidson TL, Zheng W, Kinzig KP. Western diets induce blood-brain barrier leakage

and alter spatial strategies in rats. Behav Neurosci. 2016; 130(1):123–35. https://doi.org/10.1037/

bne0000110 PMID: 26595878

96. Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, et al. Impairment of hippocampal-
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