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Abstract

On-line scheduling is often required in a number of real-life settings. This is the
case of distributing charging times for a large fleet of electric vehicles arriving
stochastically to a charging station working under power constraints. In this
paper, we consider a scheduling problem derived from a situation of this type:
one machine scheduling with variable capacity and tardiness minimization, de-
noted (1,Cap(t)|| > T;). The goal is to develop new priority rules to improve
the results from some classical ones as Earliest Due Date (EDD) or Apparent
Tardiness Cost (ATC). To this end, we developed a Genetic Programming (GP)
approach. The efficiency of this algorithm relies on some smart representation of
the expression trees. Besides, we restrict the search space to that of dimension-
ally compliant expressions, which allows GP to reach single and clear solutions.
We conducted an experimental study showing that GP is able to evolve new
rules that outperform ATC and EDD using the same problem attributes and
operations.

Keywords: Scheduling, One machine scheduling, Priority Rules, Genetic
Programming, Hyperheuristics, Electric Vehicle Charging Scheduling

1. Introduction

One machine scheduling problems are of great interest in the field of schedul-
ing for many reasons. Sometimes, they appear as natural relaxations of more
complex problems and so they are useful to obtain lower bounds [4]. In other
situations they appear as building blocks in the development of solutions to
more complex scheduling problems [2].

This paper deals with a problem of this class introduced in [12] in the context
of scheduling the charging times of a large fleet of Electric Vehicles (EVs) in
the charging station designed in [29]. In this problem, a number of jobs must
be scheduled on a single machine, with the objective of minimizing the total
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tardiness objective function. The unique characteristic of this problem being
that the machine has capacity to process more than one job at a time, but this
capacity varies over time. So, it may be denoted as (1,Cap(t)||>_T;) in the
standard o8|y notation proposed in [10].

Solving the Electric Vehicle Charging Scheduling Problem (EVCSP) tack-
led in [12] amounts to solving a number of instances of the (1, Cap(t)|| > T;)
problem. Due to the computational intractability of this problem and the tight
real-time requirements of the EVCSP, on-line scheduling represents the most
(if not the only) suitable approach. On-line scheduling is usually performed
by means of schedule generation schemes guided by priority rules. This is a
common approach that has been successfully applied to a number of scheduling
problems [1, 30]. In [12], the (1,Cap(t)||>_T:) problem is solved by means of
the Apparent Tardiness Cost (ATC) priority rule, commonly used in the con-
text of scheduling with tardiness objectives. The problem was then solved in
[21] by means of a genetic algorithm and later in [20] by a memetic algorithm
producing better solutions. However, none of these approaches is suitable for
on-line scheduling as it is required to solve the EVCSP.

The aim of this paper is the automated development of new, efficient, pri-
ority rules specifically adapted to address the (1,Cap(t)||>_T;) problem. A
natural way to cope with this task is the use of hyper-heuristics, as search needs
to be conducted in a space of heuristics rather than in a space of solutions to the
scheduling problem. Since priority rules are arithmetic expressions, they can be
naturally represented by trees; so, we opted to investigate a Genetic Program-
ming (GP) approach. We start from a conventional GP as it was proposed in
[18] and then we propose some enhancements of this algorithm that improve its
efficiency and the readability of the obtained expressions, namely, a method to
represent expression trees that allows for very efficient implementations of some
genetic operators, and the restriction of candidate solutions to well formed ex-
pressions from the dimensional point of view. Experimental results indicate
that GP is capable of evolving effective priority rules for the (1,Cap(¢)|| > T;)
problem, outperforming ATC and other classical priority rules. The results also
provide insights of practical interest that motivate further research.

The remainder of the paper is organized as follows. Section 2 reviews some
GP approaches to evolve priority rules for scheduling problems. In Section 3, we
give the formal definition of the (1, Cap(t)|| >_ T;) problem. Section 4 introduces
the solving method proposed for the (1, Cap(t)|| Y. T;) problem, which consists
of two main components: schedule builder and priority rules. In this section we
also present some previous results from classical priority rules and raised the
hypotheses of this research. Section 5 describes the GP approach proposed to
evolve new priority rules. In Section 6, we report the results of the experimental
study conducted to evaluate the proposed GP approach. Finally, in Section 7
we summarize the main conclusions and outline some ideas for future work.



2. Evolving priority rules for scheduling problems

The terms Dispatching Rule (DR) and Priority Rule (PR) are commonly
used in the scheduling literature to refer to “a simple heuristic that derives a
priority index of a job from its attributes” [3]. Due to their low computational
cost, PRs are well suited for on-line scheduling: the job with the highest pri-
ority among those available at a given time is scheduled next. In this section,
we review some existing GP approaches proposed to discover dispatching or
priority rules for scheduling problems, such as job shop (JSSP), one machine or
unrelated parallel machines scheduling problems, among others. In some cases,
the purpose is just to find a good priority rule which is then embodied into a
schedule builder. Other works notice that a single rule may not suffice and fo-
cus on finding sets of rules to be applied collaboratively to solve instances with
different characteristics.

Branke, Hildeblant and Schols-Reiter analyze in [3] three representation
models for priority rules for the dynamic JSSP: expression trees commonly used
in GP, Artificial Neural Networks (ANNs) and weighted linear combination of
job properties. Their results show that expression trees evolved by GP perform
slightly better than the other approaches.

Hart and Sim propose evolving sets of rules that are used collaboratively to
solve problems [11] . They use GP to evolve a set of PRs for the static JSSP.
They consider single and composite dispatching rules as terminal nodes, as for
example SPT or ATC, in addition to some parameters. The rules are used
in combination with several schedule builders, as for example the well-known
Giffler and Thompson algorithm [9]. These rules are sequenced into heuristics.
To produce a solution to the problem, each rule in the heuristic is applied in
turn to schedule a single operation. An ensemble-based approach is also taken
by Park et al. in [26], where the authors analyze some voting strategies to decide
among the results from an ensemble or rules.

Ingimundardottir and Runarsson consider in [13] composite PRs for the
JSSP given by linear combinations of 16 problem features, as for example total
remaining work for a job or total idle time for all machines. The weights in the
linear function are learned from a set of optimal solutions obtained by a MILP
solver. Preference and imitation learning are used for this purpose.

Nguyen, Zhang and Johnston use GP to learn PRs for the Order Acceptance
and Scheduling problem (OAS) directly from optimal scheduling decisions [25].
Instead of evolving just a single rule, a set of rules is evolved which is then used
in a Forward Construction Heuristic (FCH): at each step the rule that produces
the best local improvement is applied. One of the novelties of this model is
that the fitness of a rule depends on how well the rule performs at each decision
point (i.e., whether or not it takes an optimal decision) rather than on the final
objective values of the schedule.

Durasevic, Jakobovi and Kneevi consider on-line scheduling for multiple un-
related parallel machines [8]. They propose evolving new priority rules with GP,
incorporating some enhancements as dimension awareness to guarantee seman-
tically correct rules, and some GP variant as gene expression.



The Resource Constrained Project Scheduling Problem (RCPSP) was also
considered in some works. Chand et al. [5] and Dumic et al. [7] evolved PRs
by GP, which outperform many of the existing ones. The same problem with
dynamic resource disruptions was considered in [6].

The above represent just some of the approaches proposed recently to evolve
priority rules for some families of scheduling problems and show that priority
scheduling is an active line of research. In this paper, we build on some of
the ideas proposed in these research works to devise new efficient rules for the
(1, Cap(t)|| > T;) problem.

3. The (1,Cap(t)|| >_ T;) problem

As pointed out before, the problem of scheduling a set of jobs on a machine
with variable capacity, denoted (1, Cap(t)|| >_T;), comes from the Electric Ve-
hicle Charging Scheduling Problem (EVCSP) considered in [12]. Specifically,
solving one instance of the EVCSP requires solving a large number of instances
of the (1,Cap(t)||>_T;). We refer the interested reader to [12] for further de-
tails. For the purpose of this paper it suffices to say that the (1, Cap(t)|| > T3)
problem needs to be solved in very short time due to the real time requirements
of the EVCSP.

3.1. Problem Definition

The (1, Cap(t)|| >_ T;) problem is defined as follows. We are given a number
of n jobs {1,...,n}, all of them available at time ¢ = 0, which have to be
scheduled on a machine whose capacity varies over time, such that Cap(t) >
0,t > 0, is the capacity of the machine in the interval [t,¢ + 1). Job i has
duration p; and due date d;. The goal is to allocate starting times st;, 1 <7 <n
to the jobs on the machine such that the following constraints are satisfied:

i. At any time t > 0 the number of jobs that are processed in parallel on the
machine, X (t), cannot exceed the capacity of the machine, i.e.,

X(t) < Cap(t). (1)
ii. The processing of jobs on the machine cannot be preempted, i.e.,
C»L' = Sti + Pis (2)

where C; is the completion time of job .
The objective function is the total tardiness, defined as:
Z max(0,C; — d;) (3)
i=1,...,n

which should be minimized.
Figure 1 (taken from [20]) shows an example of two feasible schedules for a
problem with 7 jobs; the capacity of the machine varies between 2 and 5 over
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Figure 1: Two feasible schedules for an instance of the (1, Cap(t)|| >_ T;) problem with 7 jobs
and a machine with capacity varying between 2 and 5 over time.

time. Due dates are not represented for the sake of clarity. As we can observe,
in both schedules X (t) < Cap(t) for all t > 0.

In order to analyze the complexity of the (1, Cap(t)||>_ T;) problem, we may
look at a different but similar problem as (m(¢)|| Y. T;), where there are a num-
ber of m(¢) machines available over each time interval [t, ¢+ 1). One particular
case of this problem is when there are P machines that are continuously avail-
able, which is referred to as the (P|| > T;) problem. This problem was proven
to be NP-hard in the ordinary sense in [17]. At the same time, (P||>_T;) is a
particular case of (1, Cap(t)|| >_ T;) when Cap(t) = P for all ¢ >= 0. Therefore,
the (P||>_T;) problem can be trivially reduced to the (1,Cap(t)|| > T;) prob-
lem by a specific definition of Cap(t), and so it follows that (1, Cap(t)|| > T;) is
NP-hard as well.

4. Existing approaches and working hypotheses

Given the real time requirements of the EVCSP, on-line scheduling based on
schedule builders guided by priority rules may be an appropriate approach to
solve the (1,Cap(t)|| > T;) problem. In this section, we describe the schedule
builder used by our approach and give some of the classical priority rules that
may be used for this problem.

4.1. Schedule builder

Schedule builders (also known as schedule generation schemes) are a key
element in the development of efficient scheduling algorithms, as they provide
a way of computing a subset of the feasible schedules, allowing the definition of
a search space. We use a similar schedule builder as the one proposed in [20],
which produces left-shifted schedules, in which no job can be scheduled earlier
without delaying the starting time of some other job. As an example, in Figure
1, the schedule (a) is not left-shifted, while (b) is a left-shifted schedule.

The schedule builder is depicted in Algorithm 1: it maintains a set US
with the unscheduled jobs, as well as the consumed capacity X (¢) due to the
jobs scheduled so far. US is initialized with all the jobs. In each iteration,
the algorithm builds the subset US* containing the jobs in US that can be
scheduled at the earliest possible starting time, denoted (), and selects one
of these jobs to be scheduled.



Throughout the course of the algorithm, the job to be scheduled at each
iteration is selected non-determiniscally. Nonetheless, Algorithm 1 always
yields a feasible left-shifted schedule; for example, the sequence of choices
(1,3,4,5,6,7,2) would lead to building the schedule in Figure 1(b). In addition,
any left-shifted schedule may be obtained considering the appropriate choice in
each iteration. In other words, the scheduler searches in the whole space of left-
shifted schedules, which is dominant for the (1, Cap(t)||>_ T;) problem, i.e., it
contains at least one optimal schedule [20].

The schedule builder may be guided by any priority rule or heuristic, as
we show in the next section. Besides, it could be embedded as a decoder in a
genetic algorithm, for example, as done in [20] with a similar scheduler.

4.2. Priority rules for the (1,Cap(t)||>_T5)

A schedule builder, as the one shown in Algorithm 1, may be used in com-
bination with some priority rule to make the non-deterministic choice in each
iteration: the job having the highest priority in US* is chosen to be scheduled.
This paradigm is called priority scheduling, which is particularly appropriate for
on-line scheduling, where decisions must be made quickly. In the literature there
are a number of rules that could be adapted to the (1,Cap(¢)|| > T;) problem.
Among them, we may consider Farliest Due Date (EDD) or Shortest Processing
Time (SPT) rules; the first one picks the operation with the smallest due date,
while SPT selects the one with the least duration; in other words, they calculate
priorities for an eligible job j as m; = 1/d; and m; = 1/p; respectively. These
two rules are often used for objective functions that are non decreasing with the
completion time of the jobs, as for example the makespan, the lateness or even
the tardiness. As they are quite simple rules, they often produce rather mod-
erate results. In contrast, more sophisticated rules are usually able to produce
(much) better results as they take into account more knowledge on the problem.
This is the case of the Apparent Tardiness Cost (ATC) rule, which was used
with success to solve some scheduling problems with tardiness objectives (e.g.
[28, 15]); with this rule, the priority of each job j € US* is given by

Algorithm 1 Schedule Builder

Data: A (1,Cap(t)|| > T;) problem instance P.

Result: A feasible schedule S for P.

US +{1,2,...,n}

X (t) < 0;Vt > 0;

while US # 0 do
v(@) = min{t'|Fu € US; X(t) < Cap(t),t’ <t <t' +pu};
US* ={u € US|X(t) < Cap(t),y(a) <t < y(a) + pul;
Non-deterministically pick job u € US*;
Assign sty = v(a);
Update X (t) < X (t) + 1;Vt with sty <t < sty + pu;
US + US — {u};

end

return The schedule S = (st1, sta, ..., stn);




Table 1: Summary of results from [20]. Average total tardiness obtained by different priority
rules EDD, SPT, ATC with four values of parameter g (0.25, 0.5, 0.75, 1.0) and a Genetic
Algorithm (GA).

ATC GA
n EDD SPT 0.25 0.5 075 1.0 Best Avg Time(s)

15 8.28 14.03 735 717 727 7.50 6.53 6.53 13.13
30 26.56  55.84 19.36 18.93 18.81 19.09 17.73 17.76 21.49
45 46.52 137.74 36.25 36.20 35.83 36.75 33.31 33.45 30.22
60 131.31 262.54 90.59 89.86 89.03 89.23 86.84 87.19 38.48

Avg  53.17 117.93 38.39 38.04 37.74 38.14 36.10 36.23 25.83

= ieﬂcp —maz(0,d; - () — pj)

Pj gp
In Equation (4), v(«) denotes the earliest starting time for a job in US, p is
the average processing time of the jobs in US and g is a look-ahead parameter to
be introduced by the user. As we can see, the ATC rule combines the information
exploited by SPT and EDD as the priority of a job j is in inverse ratio with its
duration p; and it is decreasing with the slack time to its due date d; —y(a) —p;.

(4)

4.8. Some previous results and working hypotheses

Table 1 reproduces some results reported in [20] obtained by the rules EDD,
SPT and ATC combined with a schedule builder similar to the one described
in Algorithm 1, and by a genetic algorithm proposed therein (GA), over a set
of 120 instances distributed in four sets having a different number of jobs (15,
30, 45, 60) with 30 instances each. As we can see, ATC produces much better
results than both EDD and SPT, the results of the latter being actually poor, as
can be expected due to the fact that this rule does not consider any information
related to the tardiness objective. Besides, the performance of ATC depends on
the value of the parameter g; the best value of g depending in turn on the size
of the instances n. Furthermore, the ATC rule yields worse results than GA,
which of course takes much longer time than the priority rules. These facts lead
us to formulate the following hypotheses:

1. The ATC rule may be outperformed by new rules having a different struc-
ture or more detailed information of the problem domain, or just consid-
ering other parameters.

2. Given a benchmark containing instances with a similar structure, there
may exist priority rules that are well adapted to this particular benchmark.

5. Evolving new priority rules with Genetic Programming

From the hypotheses above, our purpose is to devise new dispatching rules for
the (1, Cap(t)|| > T;) problem. To this end, we propose using hyper-heuristics,



Figure 2: Expression tree representing the ATC rule.

as they provide a natural way of searching over a (sub)space of the heuristics
that solve a given problem. As we are interested in devising some arithmetic
expression, as that of the ATC rule given in Equation (4), Genetic Programming
(GP) [18] represents a good choice as it provides a way of evolving tree struc-
tures. We start considering a conventional GP approach as the one proposed in
[18] and then introduce some variations and improvements detailed below.

5.1. Functional and terminal symbols

The first step in the design of a GP approach is selecting the sets of terminal
and function nodes to build the candidate trees. Terminal symbols represent the
elementary properties that are considered relevant to establish jobs’ priorities as,
for example, processing times, due dates, etc., as well as some constants. Func-
tion symbols are the elementary arithmetic operations and some other unary
and binary functions.

Table 2: Functional and terminal symbols used to build expression trees.

Functionals
Binary - + / * maz min
Unitary - pows sqrt exp In

Terminals
Data p; di v(a) p
Constants  0.00.1... 0.9 1.0

Our starting decisions are the following. Looking at conventional rules as
ATC, EDD or SPT, we have chosen the functional and terminal sets of symbols
showed in Table 2. This way, the evolved rules will exploit the same attributes
and operations as the conventional hand-made rules; therefore we could make
a fair comparison between new and conventional rules, and analyze the extent
to which these attributes are relevant for designing priority rules. Figure 2
shows the tree representing the ATC rule. EDD and SPT have much simpler
representations.



5.2. Grammars and expression trees

The expression trees that can be generated from the chosen alphabet must be
restricted by means of some grammar. Therefore, the grammar is a key element
as it defines the search space of the GP. We consider two grammars herein,
termed Graml and Gram2 respectively. Graml is the simplest one and may
generate any well formed arithmetic expression without any other restriction.
So, we will have to deal with some issues as division by 0 or the generation
of some subexpressions as, for example, 0.7 + p; or /p; + d;, which are not
dimensionally correct (or dimensionally compliant) and so they may not be
very natural and may give rise to complex and not too rational priority rules.

As pointed out in [16], evolving dimensionally correct formulae may con-
tribute “to enhance the search efficiency by utilising the knowledge contained in
the dimension information and to enhance the interpretability of the produced
formulae”. Dimensionally correct expressions are, for example, essential if we
try to discover models through observations of physical phenomena where data
are given together with the units of measurement. Only this kind of formulae
may have clear physical semantics. In our problem, we have adimensional data;
namely, constants, and data whose dimension is time (¢); namely, processing
times, due dates and earliest starting time.

For the above reasons, we propose to use another grammar, Gram2, that
only generates dimensionally correct expressions, which are a subset of the pro-
ductions that may be generated by Graml. In these expressions, operations
as +, -, max and min can only be applied to operands with the same dimen-
sion, being the dimension of their result the same as that of the operands. The
operations max and min may also have 0.0 as one argument and any other
expression as the other argument, the dimension of the result being that of
the non-zero argument. The operations * and / can be applied to any pair of
operands with independence of their dimensions, being the dimension of the
result the product or quotient, respectively for * and /, of the operands’ dimen-
sions. Analogously, operations pows and sqrt can be applied to any operand.
Besides, we consider that operations as exp or In can only be applied to adi-
mensional expressions. Some examples of dimensionally compliant expressions
are the classic SPT, EDD, and ATC rules, all having dimension ¢~! at the root
of the expression tree.

It is clear that restricting to dimensionally compliant expressions will require
more sophisticated initialization, mating and mutation operators to guarantee
feasible expressions. Figure 3 shows two expression trees: the first one (a) is di-
mensionally compliant, while the second one (b) is not dimensionally compliant
as it expresses a summation of two terms with dimension ¢ and 2 respectively.

Regardless of the grammar used, it is usual to restrict the size of the gen-
erated trees. This can be done by limiting the number of nodes, the depth of
the tree or both. Otherwise, the GP could generate very large expressions of
low practical use. These and other restrictions have to be considered in the
derivation algorithm. We discuss this issue in further sections.
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Figure 3: Two examples of expression trees: (a) represents a dimensionally correct expression,
while (b) represents an expression that is not dimensionally correct.
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Figure 4: Illustration of single point crossover. Two parents with depth 4 are mated to
generate two candidate offsprings. The subtrees rooted at the nodes remarked with a square
box in the parents are swapped. The first offspring is discarded due to exceeding the maximum
depth of 4 levels, while the second one is feasible.

5.3. Evaluation of chromosomes

The evaluation of chromosomes is the most time consuming component of
the algorithm. It requires solving a battery of instances of the (1, Cap(t)|| > T;)
problem, the training set, with Algorithm 1 combined with the priority rule
represented by the chromosome. As pointed out before, due to the fact that
trees represent arbitrary expressions, it may be the case that some indetermi-
nation, as for example a division by 0, occurs during the evaluation process. To
deal with this, we propose the following strategy: if in a given iteration a rule
produces an indetermination for some job, another rule that cannot produce an
indetermination, for example EDD, is chosen to decide in this iteration. This
way, an expression producing many indeterminations is penalized as many deci-
sions will be taken by EDD rule. The fitness values are simply calculated as the
inverse of the summation of total tardiness values obtained for all the instances

10



in the training set, breaking ties in favor of rules with less size. This seems to
be the most natural fitness value given the objectives of tardiness minimization
and small size rules.

5.4. Evolutionary strategy

We consider three different evolutionary schemes, termed Evoll, Fvol2 and
Evol3 respectively. The first one is that proposed in [18]; namely, a gener-
ational schema with tournament selection and unconditional replacement. In
FEvol2 schema, chromosomes are organized into pairs in the selection phase and
tournament replacement is done between every two parents and their two off-
springs. This schema was successfully used to solve some scheduling problems
by means of genetic and memetic algorithms [31, 22]. As we will see, when these
strategies are used to solve our problem, they show quite different convergence
patterns. In particular, Fvoll shows a low convergence rate after a relatively
small number of generations, while Fvol2 tends to produce low diversity on
the population. For these reasons, we propose an alternative strategy, Evol3,
whose rationale is to establish a selective pressure in between those in Fvoll
and Fvol2. So, Fvol3 is defined as Fvol2 but the chromosomes selected in
the replacement phase are the best child and the best of the remaining three
chromosomes having different fitness than the best child.

In all cases, elitism is considered; the best chromosome in a generation is
passed unchanged to the next one.

5.5. Genetic operators

Genetic operators must guarantee feasibility of the produced expression
trees, therefore they strongly depend on the grammar used. With Graml,
we could use crossover and mutation operators as proposed in [18]: one point
crossover and single mutation. The first one selects one node in each of the two
parents and swaps the subtrees rooted at these points. Single mutation just
chooses one node in the tree and changes this node for a random subtree. In
both cases, if the offspring is not feasible (i.e., it exceeds the maximum depth
or size established), it is discarded and another one is tried. This process is
repeated for a maximum number of trials. Figure 4 shows an example where
two trees are mated to generate two new candidate trees. The second one is
valid while the first one is discarded due to exceeding the maximum depth of 4
levels.

When Gram?2 is used, there are restrictions due to dimensionality. Specif-
ically, in crossover the mating points must represent subexpressions with the
same dimension, and in mutation the new subexpression must have the same
dimension as the old one.

5.6. Tree representation

Tree representation in memory is an important issue as it conditions the
efficiency of the genetic operators. We propose to use an array-based represen-
tation of trees commonly used in the implementation of binary heaps. In this

11
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Figure 5: Array representation of an expression tree. The position 4 in the array has null
value due to the left node of the root having only one child.

approach, trees are represented as single arrays of nodes organized such that for
a node in position 7, its parent is in position (i — 1)/2, and their children are
in positions 2i + 1 (left) and 2i 4+ 2 (right) respectively. Besides, the maximum
size, S, and the maximum depth, D, are related as S = 2P — 1. The root node
is in ¢ = 0 and the nodes in positions ¢ > §/2 are leaf nodes, i.e., terminals.
The remaining positions, i.e., positions 1 < i < §/2 may contain terminal or
function nodes; if one of these nodes represents an unary function its left child
is empty and if it represents a terminal node both children are empty. Figure
5 shows a example of expression tree and its array-based representation. One
advantage of this representation is that it naturally allows for the control of
maximum size and depth of the evolved trees.

5.7. Initial population

The use of the array-based representation facilitates the construction of fea-
sible random trees, in particular when they must represent dimensionally com-
pliant expressions. To create initial chromosomes representing dimansionally
correct expressions, we propose the derivation procedure given in Algorithm 2.
This algorithm starts from the maximum depth of the tree D and a probability
P. If P = 1, the tree will be full, otherwise the tree will have branches of
different lengths and will be more or less unbalanced depending on the random
selection of null nodes. Therefore, taking different values of P we can obtain
different distributions of random trees in the initial population. For example,
taking P = 1 for one half of the population and P < 1 for the other half, we
will have the so-called half-n-half method proposed by Koza [18].

The algorithm iterates over the array positions, from the last one S — 1,
where S = 2P — 1 is the array size, backwards. In each iteration it fixes the
value at position ¢, denoted B(z). The operation [.] produces the dimension of
the expression inside. Let us analyze each case separately:

1. If i > §/2, ie., B(7) is a leaf, and i%2 = 0, i.e., i is the position of the
right child of the node in position j with ¢ = 25 + 2, then the B(i) value

12



is chosen a terminal with probability P and null with probability 1 — P
(U{...} denotes random uniform selection from a set of items and, with
a slight abuse of notation, we denote P{a,b} the probabilistic selection of
a or b with probabilities P and 1 — P respectively). Here it is worth to
remark that this is the action taken always in the first iteration, i.e., for
i=8—1.

2. Ifi > 8/2 and i%2 # 0, i.e., i is the position of the left child of the node
in position j with ¢ = 25 + 1, then the B(i) value depends on the value
of the right child, i.e., the node in position ¢ + 1 (remember that if a non
terminal node has only one child, this is the left child, so if the right child
is not null the left child must not be null either). So, if B(i 4+ 1) is null,
as before, the B(i) value may be either a terminal or null. However, if
B(i + 1) is not null, then the B(4) value must not be null.

3. If B(2i + 1) is null, then i < §/2 and B(2i + 2) must be null (see the
last sentence in previous paragraph). So, following a similar reasoning as
before, B(7) is a terminal or null depending on 4 being left or right child
of another node.

4. If i < §/2 and B(2i + 1) is not null, then the B(#) value must be a
function. The arity of this function being 1 if B(2i + 2) is null and 2
if it is not null. In the last case, if both subexpressions have the same
dimension, the operator is chosen uniformly in {+, —, %, /, max, min}, if
they have different dimension the operator is chosen from {x, /} and if one
of the subexpressions is “0.0” the operator is chosen from {max, min}. If
the right child is null, then the operator is unary and so it is chosen from
{—, pows, sqrt, exp,In} if the expression in B(2i + 1) is adimensional and
from {—, pows, sqrt} otherwise.

The iteration over the array may terminate with a null chromosome, i.e.,
B(0) = NULL, with probability (1 — P), which is very low for reasonable
values of the parameter P. In that case, a new iterative process must be started
to generate another random expression tree. Finally the algorithm returns the
built expression tree.

The algorithm may be used to generate a tree with maximum depth D — 1,
just filling the positions from S — 1 to S — 2P~ with null values and then
starting the iterative process from i = S — 2P~1 — 1. Analogously, a tree of
any depth in 1..(D — k),1 < k < D may be constructed starting the process in
=832 -1

Algorithm 2 builds expression trees that are dimensionally correct. However,
it may be easily transformed into general tree builder just making the two
conditions related with the dimension of the expressions to be always true.

6. Experimental Study

We have conducted an experimental study aimed at analyzing the behaviour
of the proposed GP and, in particular, at assessing the quality of the obtained
rules. To this end, we implemented a prototype in Java, and ran a series of
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Algorithm 2 Gram2 derivation algorithm

Result: A feasible expression tree B.
Data: Maximum depth D for the tree and a probability P.
S+« 2P -1,
i+ S—1;
repeat
while 7 > 0 do
if ¢ >S8/2V B(2i+1) = NULL then
if i%2 = 0 then
‘ 8(7‘) A 'P{Z/{{p“ d;, 7(05)7 D, C}7 NULL}
else
if B(i +1) = NULL then
| B(i) & P{{p, di, v(a), B, ¢}, NULL}
else
‘ B(Z) — u{p'u di7 ’Y(a)7 P, C}
end
end
else
if B(2i+2) # NULL then
if [B(2i+ 1)] = [B(2i + 2)] then
| B(i) «+ U{+, —, maz, min, *, /}
else
if B(2i+1)=0.0 V B(2:+2) = 0.0 then
| B@i) < U{maz, min}
else
| B(i) < Ufx /}
end
end
else
if B(2i + 1) is adimensional then
| B(i) + U{—, pows, sqrt, exp, In}

else
| B(i) «+ U{—, pows, sqrt}
end
end
end
i4—1—1
end

until B(0) # NULL;
return The chromosome B

experiments on a Linux cluster (Intel Xeon 2.26 GHz. 128 GB RAM). Due
to the stochastic nature of GP, for each input data 30 independent runs were
conducted with different initial random seeds and the best and average solutions
were recorded.

6.1. The benchmark set

The experiments were carried out over a benchmark set of 1000 instances,
generated by means of the procedure introduced in [20]. Each instance is char-
acterized by the number of jobs (n) and the maximum capacity of the machine
(MC). Given fixed n and MC, a random instance is generated using uniform
distributions as follows (all sampled values are integers):
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Figure 6: Tardiness distribution for the 1000 instances of the benchmark set obtained by
ATC(0.5) and EDD rules

1. Each job i € J = {1,...,n} is assigned a random processing time p; €
{1,...,100}.

2. Once all jobs have a processing time, they are assigned a random due date
di S [piy max(pi + 27 Zjej pj/2)]'

3. The capacity of the machine (Cap(t)) is generated as a unimodal func-
tion, with each constant interval taking a random duration in the range
[1,> p;/MC]. Both the initial and the final capacity of the machine is a
random integer in {1, 2}.

In order to avoid under-constrained instances, we generated instances with
n = 60 and M C = 10 until obtaining 2000 instances whose total tardiness are
larger than 0 when solved with the ATC(0.5) rule. Then, the 1000 instances with
the largest tardiness were selected. Figure 6 shows the total tardiness values of
these instances sorted from the largest (5824) to the lowest (256) values over
the z-axis. To appreciate the difference between the rules ATC(0.5) and EDD,
the total tardiness values obtained by EDD rule are also showed. As we can
observe, EDD rule is worse than ATC(0.5) in most cases.

To select the training set we proceeded as follows: the 1000 instances were
sorted from 0 to 999 from the highest to the lowest tardiness produced by the
rule ATC(0.5) (see Figure 6); then, they were distributed in 20 subsets of 50
instances each, so that subset i, with 0 < ¢ < 20 contains the instances such
that %20 = ¢, with 0 < j < 999, being j the index of the instance in the above
ordering. This way, each candidate set contains instances distributed over the
the whole range of tardiness. In the experimental study we considered the set
i = 10 as the training set and remaining 950 instances for testing.

6.2. Parameter setting

As pointed by Poli et al. in [27] “genetic programming is in practice robust,
and it is likely that many different parameter values will work”. Therefore, a
thorough parametric analysis is not as relevant as it is for other evolutionary
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Table 3: Values fixed for some of the GP parameters.

Cross. and Mutation ratio 1.0 and 0.02 resp.
Population size 200
Number of generations 500
Elitism 1
Initial Population — Half full (P = 1),
half not full (P = 0.95)

algorithms. In any case, there is general agreement that the population size
and the tree size seem to be the most important parameters. Taking this into
account, we started from a set of values for parameters as population size,
number of generations and probabilities for crossover and mutation, which can
be considered standard in the literature. Then, we analyzed how some variations
in these parameters affect the behaviour of the GP algorithm. From these
results, we fixed some of the parameter values as it is indicated in Table 3.
These values are similar to those reported in other studies, for example [14],
with the exception of the number of generations that in some cases is fixed to
a small value, 30 or 50. We also observed that in the first 50 generations GP
makes most of its work; however it is in the subsequent generations were GP
is able to improve the rules so that they outperform the classical ones and at
the same time the size of the rules is reduced. Under these conditions, the time
taken in one execution of GP is about 600 minutes.

Besides, we analyze the three evolutionary schemes described in Section 5.4.
Figure 7 shows the evolution pattern from one run of GP when learning from
all 50 instances of the training set. As we can observe, the three strategies
show quick convergence in average over the first 10 generations. However, after
this generation the average value and the differences between average and best
values are quite different.

Ewvoll converges to large tardiness values showing low quality of chromo-
somes. Fwvol2 shows a clear premature convergence pattern as the average and
best solutions have actually the same tardiness values after 50 generations. Fi-
nally, Evol3 presents the best convergence pattern: the average tardiness is
much lower than it is for Fvoll and at the same time there are substantial
differences between the average and best values; therefore it is the one with the
best balance between quality and diversity and so it is able to improve the best
solution after 450 generations.

Regarding the tree size and depth, we took ATC rule as initial reference,
whose expression tree (see Figure 2) has depth 8 and size 17. In the previous
experiments we considered maximum depth of 7 levels, and so maximum size of
32 nodes, but the analysis of the best value for the maximum depth is left to a
thorough experimental study in following sections.

As pointed out in [14], the number of training instances is also an important
parameter. In this work, we did not make a detailed analysis of this value;
instead we have taken a number of 50 instances, which seems to be a reasonable
number considering the values taken in other works. Besides, we have performed
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Figure 7: GP evolution in one run with three evolutionary strategies Evoll, Evol2 and Evol3.
The figures on the left show the average and best solution evolution over generations 0 to 50,
while the figures on the right show the evolution from generation 50 to 500.
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some complementary experiments in which GP evolved rules learning from only
one example, and then analyzed the rules obtained and compared them to the
rules evolved from 50 instances.

Table 4: Values considered for the remaining GP parameters (see Table 3).

Evolution strategy  Evol3
Grammar  General (Graml),
dimensionally compliant (Gram2)
Maximum tree depth (D) 3,4,5,6,7,8
Maximum tree size (S) 27 —1
Learning instances 50
Testing instances 950

6.3. GP results

Considering the above parameters, we performed a series of experiments
aimed at assessing the performance of GP in obtaining good priority rules for
the (1,Cap(t)||>.T;) problem; in particular, it is our purpose to clarify the
ability of the evolved rules to generalize across a large set of unseen instances.
Besides, we tried to establish the differences between the rules obtained from
the two grammars (Graml general and Gram2 dimensionally compliant) and
the most convenient maximum depth allowed to the evolved trees. For each
set of rules, we report tardiness values (best and average) on the training and
test sets. Besides, dominance values; i.e, the percentage of times a given rule
produces the best results among a given set of rules across a set of problem
instances, are given. The size of the rules (average in the case of the evolved
rules) is also showed. Additionally, we show results obtained by the Memetic
Algorithm (MA) proposed in [20], some complementary results obtained from
learning with only one rule and some preliminary results from ensembles of
rules.

6.3.1. Evaluation of the grammars and maximum tree depth

The results obtained from the rules evolved by GP with both grammars
and different values for the maximum depth are summarized in Table 5. We
can observe that the dimensionally compliant rules are not better than the
general rules, in terms of tardiness values. In fact, the general rules seem to be
slightly better, which is in agreement with some preliminary results reported in
[14], where the authors did not find statistical differences between canonical and
“analitically correct” expressions. We performed Wilcoxon paired tests to assess
the statistical differences between the results from the best rule and the average
of the 30 rules on the test set. The results showed that the average values are
better for random rules (p-value 2.79 x 10~%), but the results from the best rule
are better for dimensionally compliant rules (p-value 3.0 x 107%), which is in
agreement with the larger standard deviation showed by these rules. At the
same time, the size of the evolved rules is lower for dimensionally compliant
ones, which is a clear advantage. Figure 8 shows the expression trees of the best
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Table 5: Summary of results obtained by GP with Graml and Gram2 and maximum depth
of the evolved trees varying from 3 to 8. Best, average and standard deviation (o) results
from 30 runs are reported. Avg. Size is the average size of the best rules obtained in 30
independent runs. The Best value in testing is that obtained by the best rule in training. The
columns Dom. refer to the percentage of times a result (Best/Avg.) is better than that from
all the 11 best classical rules considered; namely ATC with 10 values of the parameter g and
EDD (see Table 6).

Max. Training Testing Avg.

Gram. Depth Best Avg. o Dom. Best Avg. o Dom. Size
3 1027.50 1034.42 14.10 2/2 1021.11 1028.29 15.78 16/14 6

Graml 4 987.56 1003.08 7.50 44/18 996.43 1007.47 7.43 43/25 13
(gen. 5 986.08 996.71 4.59 48/26 996.10 1001.56 3.14 42/31 20
rules) 6 084.28 995.78 4.71 48/28 993.67 1001.24 4.07 43/31 28
7 985.16 996.43 5.97 48/28 994.85 1001.62 4.09 42/31 34

8 984.96 995.04 5.78 44/29 994.64 1001.16 3.68 42/32 46
3 1034.04 1049.89 15.85 2/1 1022.61 1043.09 20.48 15/9 6

Gram?2 4 997.18 1012.29 23.73 30/15 1000.13 1015.42 23.96 33/22 10
(dim. 5 989.18 1000.68 11.06 42/24 995.37 1005.39 10.65 43/29 19
comp.) 6 986.32 996.80 6.07 52/28 992.14 1001.64 5.00 49/32 21
7 986.82 998.39 8.37 48/25 994.66 1003.02 6.26 45/30 24

8 986.92 1000.80 11.91 44/25 995.09 1006.44 10.69 42/29 29

rules obtained by both grammars considering a maximum depth of 5 levels. As
we can observe, the dimensionally compliant rule is smaller and more rational as
it does not contain any odd expressions, as for example 0.7 — p;, which appears
in the rule of Figure 8(a). For the above reasons, we consider that dimensionally
compliant rules are the best option and that for these instances (with 60 jobs
each) 5 or 6 are the most appropriate values for the maximum depth of the
evolved trees.

6.3.2. Comparison to classical rules and MA

Regarding the comparison to the classical rules (see Table 6), with the ex-
ception of those rules obtained giving the trees very low maximum depth (3 or
4), the average tardiness values of the 30 rules evolved with either grammar and
tree depth are better than the values obtained from the classical rules Random,
SPT, EDD and ATC with 10 different g-values. The Random rule gives each
job a random priority distributed uniformly in [0, 1]; hence we report the best
and the average values from 30 executions. Besides, as we can see in Table 5,
if we look at dominance results (the percentage of instances for which a rule is
better than EDD and all the 10 variants of ATC rules), we can observe that
the best evolved rule is the best one on about half of the instances and on one
among each four considering the average of the 30 rules.

At the same time, the results obtained by MA [20] are much better than
those obtained by the evolved rules, showing that there is still room to improve.
Here it is important to be aware of the differences in the execution time.
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(a) Expression tree generated by Graml. It is not dimensionally compliant as
it includes the subexpression 0.7 — p;.

(b) Expression tree generated by Gram?2. It is dimensionally compliant and
the dimension at the root node is ¢.

Figure 8: Expression trees of the best rules generated by GP with grammars Graml and
Gram?2 and maximum depth of 5 levels.

Table 6: Summary of results obtained by the rules ATC (with different values of the parameter
g), SPT, EDD, Random and MA. For the last two ones, results from 30 independent runs are
reported.

Training Testing
ATC  g-value
0.1 1060.20 1065.24
0.2 1033.50 1042.17
0.3 1008.60 1024.02
0.4 1005.34 1014.75
Classical 0.5 1000.52 1011.33
rules 0.6 1002.80 1011.46
0.7 1007.74 1013.11
0.8 1010.70 1018.51
0.9 1021.98 1024.35
1.0 1030.82 1032.28
EDD 1256.84 1291.66
SPT 5473.18 5319.81
Random Best Avg. Best Avg.
7980.18 8056.27  7779.10 7790.56
Training Testing
Memetic Best Avg. Best Avg.
Algorithm [20] 950.18  950.63 959.06 959.51
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0.3.3. Generalization capability of the evolved rules

It is reasonable to expect that a rule evolved from a set of training instances
will perform better on these instances than over another set of (unseen) test
instances. However, it is also obvious that there is no reason for some classical
rule, as ATC for example, to be better in some set than in other one. Therefore,
to evaluate the generalization capability of some evolved rule we could consider
the ratios between the average results of some classical rule taken as reference
and the evolved rule on both the training and the test sets. If both ratios
are similar, we could conclude that the rule generalizes well, however if the
ratio in testing are much lower than the ratio in training instances, then the
generalization capability would not be satisfactory.

Going to our results, we may take ATC(0.5) as a reference rule, as it
performed the best in the benchmark set considered. If we analyze the rule
evolved by Graml and maximum depth 6, the ratios on training and testing
are 1000.52/1011.33 = 0.9893 and 996.80/1001.64 = 0.9952 respectively; which
are quite similar. Analogous results are obtained for the remaining evolved
rules; for this reason we can say that the rules evolved by GP exhibit a high
generalization capability.

6.3.4. Training with only one instance

The interest of these experiments is to clarify that the best rule for one
instance may not be the best one for others. Obviously, if only one instance is
used in the training phase, one can expect that the evolved rules will achieve
very good performance on this instance, hopefully close to the performance of
some off-line approaches as genetic algorithms. At the same time, one may
expect that this rule will not perform so well on unseen instances.

In these experiments, we considered each of the 50 training instances, made
30 independent runs of GP and registered the 30 rules for each of the 50 instances
(1500 rules in all). Then, each one of these rules was used to solve the 1000
instances of the benchmark set. The results are summarized in Table 7. “Best”
are the tardiness values from the best rule for each of the 50 instances, specif-
ically the first row “One instance” is the average value from each rule on the
corresponding instance (average of 50 values), the row “Test set” is the average
value of applying the 50 best rules to the 950 instances of the test set (average
of 50 x 950 = 47500 values). Analogously, columns “Avg.” and “Worst” show
values averaged for all 1500 rules and the 50 worst rules respectively.

Table 7: Summary of results from GP learning from only one instance.

Graml Gram2
Best Avg.  Worst Best Avg.  Worst

One instance 956.20 975.31 1010.32 956.00 974.49 1009.16
Test set 994.84 1125.08 1684.07 995.34 1118.22 1873.38

From these results we may draw the following observations. The value 956.20
in Gram1, “Best” and “One instance” compared to 986.32 (the value from the
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rule evolved from the training set with Graml and maximum depth 6) makes it
clear that learning from only one instance makes it possible to obtain rules which
solve this instance much better than rules evolved from a set of 50 instances.
Furthermore, this value, 956.20, is very close to 950.63, the result obtained by
MA in average from the 50 instances of the training set, showing that the rules
evolved from only one instance are able to solve that instance very effectively.
At the same time, the value 994.84 for “Best” and “Test set” versus 992.14 (the
value of the same rule as before on the test set) means that rules evolved from 50
instances generalize better than rules evolved from only one instance. Similar
observations may be made considering the columns “Avg.” and “Worst”, as
well as the results from Gram2.

6.3.5. Considering ensembles of rules

From the above observations, it seems clear that it is not easy to evolve a
rule that may generalize well over a large set of unseen instances so that it can
compete with off-line algorithms such as MA. Therefore, we propose considering
ensembles of rules that will be exploited in the following way: an instance is
solved by the schedule builder guided by each one of the rules of the ensemble;
and the best of the obtained solutions is considered as the solution produced
by the ensemble. This method would be feasible for ensembles of limited size
due to the execution time being still suitable for the real time requirements
of the EVCSP. To analyze the viability of this method we show the solutions
reached by ensembles of various sizes. Firstly, 10 instances of the ATC rule with
parameter g varying in 0.1...1.0 and then ensembles formed by the 3, 5, 10 and
15 best of the 30 rules obtained by GP with Gram2 and maximum depth of 6
levels for the expression trees. The results are summarized in Table 8.

Table 8: Summary of results from ensembles of rules with different sizes. Best rules of Size
x refers to the s best of the 30 rules obtained in the experiments reported in Table 5 for
maximum depth 6 and Gram?2.

Ensemble Size  Training  Testing
ATC(0.1,...,1.0) 10 984.18 989.57
Best rules 3 979.40 986.87

5 975.02 982.28
10 972.92 978.63
15 972.34 977.09

Looking at the results from ATC, we can see that the values obtained in
both training and test sets are rather similar to the values obtained by a single
rule learned by GP with any grammar and maximum depth of 6 levels for the
evolved trees. This result means that a single rule learned by GP performs
similar to 10 classical rules working at the same time.

Moreover, putting some learned rules to work together reduces significantly
the average tardiness and, as we can observe, the best trade-off between size and
improvement for the considered sizes is 10. So, although they are preliminary,
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these results strongly suggest that learning ensembles of rules is an interesting
line for future research.

7. Conclusions

This paper studies the one machine scheduling problem with variable ca-
pacity, denoted (1,Cap(t)||>_T:), and shows that Genetic Programming is a
suitable approach to generate new priority rules, improving the best-performing
classical ones for total tardiness minimization such as EDD or ATC. In order
to make a fair comparison, we considered the same problem attributes and op-
erations as in these rules. At the same time, we have seen that there is still
room for improvement, as off-line algorithms, like memetic algorithms, are able
to obtain even better solutions, of course running for much longer time than
a schedule builder guided by priority rules. Therefore, we conjecture that by
using more attributes of the problem, in particular some related to the capacity
of the machine, better rules may be still evolved. Besides, it seems clear that
no single rule can be the best one in every problem instance. Furthermore,
the preliminary results obtained from ensembles of rules suggest that learning
sets of rules covering problem instances with different characteristics may be a
promising line of research. Another line of future research will be the use of
some variants of GP as, for example, Cartesian Genetic Programming (CGP)
[24, 23, 19]. CGP may be useful due to its inherent capability to limit the size
of the evolved priority rules.
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