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Abstract

Background: Although some studies show that there could be a genetic predis-

position to develop Multiple Sclerosis (MS), attempts to find genetic signatures

related to MS diagnosis and development are extremely rare. Method: In the

present study, we carried out a retrospective analysis of two different microarray

datasets, using machine learning techniques to understand the defective path-

ways involved in this disease. We have modeled two data sets publicly accessible.

One was used to establish the list of most discriminatory genes and defective

MS pathways; whereas, the second one was utilized for validation purposes.

Results: Our analysis provides a list of high discriminatory genes with pre-

dictive Cross-validation accuracy higher than 95%, both in learning and blind

validation. The most discriminatory genes seem to be related to the production
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of Hemoglobin. Conclusions: The biological processes involved were related

to T-cell Receptor Signaling and co-stimulation, Interferon-Gamma Signaling

and Antigen Processing and Presentation. This suggests a viral or bacterial

infection as the plausible mechanism involved in MS development. The path-

way analysis also confirmed coincidences with Epstein-Barr virus, and revealed

them with Influenza A, Toxoplasmosis, Tuberculosis and Staphylococcus Au-

reus infections. Th17 Cell differentiation, and CD28 co-stimulation seemed to

be crucial in the development of this disease. These results are confirmed via

the holdout sampler. Additional knowledge provided by this analysis will help

to identify new therapeutic targets.
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1. Background

Multiple Sclerosis (MS) is a neurological disease characterized by the ap-

pearance of focal lesions in the white matter, in which the most striking aspect

is demyelination with a relative preservation of the axons [1]. The said lesions

are distributed along the Central Nervous System (CNS). It is accepted that

MS is an autoimmune disorder, since acute injuries are detected in collabora-

tive T-cells (CD4+) and in anomalous expression of major histocompatibility

class II antigens in macrophages and atrocytes [2, 3].

MS affects around 2.5 million individuals worldwide and its development can

be progressive or relapsing-remitting [4].According to the literature, there are

several forms of multiple sclerosis: relapsing-remitting, secondary-progressive,

primary-progressive and progressive-relapsing, being the relapsing-remitting the

most recurrent type [5]. MS is also geographically dependent, being more com-

mon in regions further away from the equator, where about 1 in 2,000 people

are affected, while in countries closer to the equator MS affects approximately

1 in 20,000 subjects [6]. Additionally, for unknown reasons MS affects women

twice as often as men [7].

The two main causes of MS are genetic and environmental. Exposure to
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Epstein-Barr virus [8], low levels of vitamin D [9, 10], and smoking [11] have been

cited as plausible factors, which may increase the probabilities of developing MS.

Regarding the genetic hypothesis, it has been shown that certain ethnic groups

are more resistant than others to MS, and there is a higher prevalence in the case

of Scandinavians [12]. Besides, it has been shown that the empiric recurrence

between siblings increases by a factor of 10 to 50 and the concordance between

homozygous twins is higher than in dizygotic ones [13]. An association with

HLA-DRB1 has been established [14]. Furthermore, changes in the IL7R gene

could increase the risk of developing MS [15, 16].

Also, NR1H3 seems to be associated with primary progressive MS [17]. The

genetics of MS have been reviewed by [18]. Microarray gene expression profiling

analysis in MS was also performed by [19]. These authors suggest the antigen

presentation as the main cause for MS.

Although there could be a genetic predisposition of developing MS, attempts

to find genetic signatures related to MS diagnosis and development are limited.

In the present study, we identify a small-scale gene signature (22 genes) able to

predict MS occurrence with a Leave-One-Out-Cross Validation (LOOCV) ac-

curacy higher than 98% in a data-set with 113 samples (healthy controls and

MS). The discriminatory power of this gene signature has been blind-validated

with an independent cohort composed of 20 samples, obtaining a validation ac-

curacy of 90%. Remarkably, expanding the gene signature to the 63 first most

discriminatory genes, the validation accuracy increases to 95%. These results

show that the genetic signatures used to establish the defective pathways are

very robust. We, subsequently, unravel the biological pathways involved using

an expanded list containing the most discriminatory genes with LOOCV accu-

racy greater than 90%, with the potential goal of identifying new therapeutic

targets. Furthermore, we show a correlation tree to analyze the existing rela-

tionships among the most discriminatory genes to understand how they control

gene expression. The main biological processes involved are: T-cell Receptor

Signaling, Interferon-Gamma Signaling, T-cell co-stimulation, Antigen Process-

ing and Presentation, Antigen Processing and Presentation of Exogenous Anti-
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gen Via MHC Class II, suggesting viral/bacterial infections as possible causes

for MS. Epstein-Barr Virus Infection and Influenza A pathways appear in the

list of important defective pathways and could be related to its development.

Toxoplasmosis, Tuberculosis and Staphylococcus Aureus infections also appear

in the list of defective pathways. We believe that the most discriminatory genes

(in this case HBB) should be considered as novel targets for drug repositioning

to treat this disease.

This study introduces a novel methodology which introduces a revolution-

ary process that enables researchers to utilize the data to obtain pathways,

and, consequently, the precise drug-repositioning through machine learning ap-

proaches. Furthermore, this methodology is extremely simple to apply using

very few resources.

2. Method

2.1. Learning and Validation Data-sets

In this paper we have modeled two data sets (expression microarrays) that

are public accessible. The first one (European Bioinformatic Institute E-GEOD-

13732) was used to establish the list of most discriminatory genes and the de-

fective MS pathways. The gene expression was originally measured from naive

CD4+ T cells and it consists of 54675 probes and 113 samples: 73 MS patients

and 40 healthy controls. The samples correspond to patients who were initially

diagnosed as Clinical Isolated Syndrome (the earliest clinical manifestation of

MS) and they finally progress to clinically definite MS. There were two samples

per patient, one on the CIS detection and the other on the MS diagnosis. Char-

acteristics of patients such as age, gender and ethnicity can be consulted in the

original research of the data [20].

For the validation process we used a second independent microarray (Euro-

pean Bioinformatic Institute E-GEOD-43592). The expression was also mea-

sured from T cells and it was composed of 20 samples: 10 controls, 10 MS

patients and 54675 probes. In this case, the samples correspond to relapsing
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remitting subjects and they were taken after relapsing. More detailed infor-

mation as specific time of sampling, age, sex or ethnicity can be consulted in

the original research [21]. Both data-sets were measured with the Affymetrix

Human Genome U133 Plus 2.0 platform.

2.2. Analysis

Phenotype prediction problems are highly under-determined since the num-

ber of genetic probes that are monitored is much higher than the number of

samples (patients) used to analyze the genetic causes involved in the disease.

Hypothetically, if the classifier was linear, its null-space (containing the genes

that do not have any effect in the predictive accuracy) would have a dimension

equal to the number of genetic probes minus the number of independent sam-

ples. Then, it can be easily understood that many different genetic signatures

exist, all exhibiting a high predictive accuracy. These signatures form the un-

certainty space of the classifier that is used to solve the phenotype prediction

problems [22]. The use of feature selection methods to filter and to rank the

genetic probes according to their discriminatory power is crucial to correctly ad-

dress the analysis of the defective pathways in phenotype prediction problems.

Multiple Sclerosis is not a special case in that sense.

Figure 1 shows the flow diagram of the whole methodology used in this

paper. To establish the discriminatory power of the genes, we used a combi-

nation of Fold Change [23] and Fisher’s Ratio [24], by finding the genes that

are under and over expressed (high absolute fold change value) and at the same

time obtain a very high Fisher’s ratio.The Fisher’s ratio tends to give higher

importance to features with lower standard deviation (i.e. very stable values

throughout all the feature), even though the difference between means in each

class were low. In order to avoid this bias, we firstly applied Fold Change, re-

moving thereby all the features with lower standard deviation. Subsequently,

we calculate the Fisher’s ratio and add it the absolute value of the Fold Change.

This combined ratio is used to establish the ”prior discriminatory power” of

each individual gene in the discrimination of MS patients from healthy controls.
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This methodology serves to perform the initial gene filtering needed to reduce

the high degree of indeterminacy and to avoid the use of genes that only expand

high frequency details in the phenotype prediction, which are irrelevant in the

disease development.

Once the prior discriminatory genes are determined and ranked in decreas-

ing order by their prior discriminatory power, the next step is to determine

the shortest list of prognostic genes (small-scale signature) with the highest

predictive accuracy. This predictive accuracy is what we call the ”posterior dis-

criminatory power”, and it is determined via Leave-One-Out-Cross-Validation

(LOOCV), to estimate how accurately the predictive model (classifier) would

perform in practice for new incoming samples whose MS status is unknown.

LOOCV is a well-established cross-validation method by which a single sample

from the original data-set serves as sample test of the data, and the remaining

samples act as training. The average LOOCV predictive accuracy is calculated

by iterating over all the samples in the data-set. This predictive accuracy is

theoretical and should be assessed using blind validation (if possible). The pre-

dicted class is obtained using in a distance-based classifier using the list of most

discriminatory genes. In our case, we decided to preserve the genes with a prior

discriminatory power higher than 1.52. In this classifier the class with the min-

imum distance in the reduced genetic signature to the sample test is assigned

to be the estimated class of the new incoming sample.

This algorithm aids to find the small-scale signature with the highest pre-

dictive accuracy when it is combined with a feature elimination procedure that

consists of generating increasingly shorter lists of high discriminatory genetic

probes ranked by their prior discriminatory power. That is, we evaluate the

accuracy of the entire set of genes ranked by their prior discriminatory power

and, then, we remove the last gene, which has the least discriminatory power to

finally evaluate the accuracy of this genetic signature. We keep removing genes

and evaluating the accuracy until we eliminate all the genes of the ranked list.

This operation is commonly called Backwards Feature Elimination and it allows

us to obtain different subsets of genes with their associated posterior discrimina-
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tory power. Lastly, we select the smallest subset of genes (small-scale signature)

with the highest posterior discriminatory power or accuracy. This methodology

has been successfully employed in different genetic studies [25, 26, 27].

The predictive power of the set of most discriminatory genes is validated with

an independent cohort. We predict the class of the samples in this independent

cohort via LOOCV using the distance-based classifier that was designed in the

learning stage. To conclude and aiming to understand the defective genetic and

biological pathways that are involved and identifying possible new druggable tar-

gets, we carried out a pathway analysis of the most prior discriminatory genes

using GeneAnalytics© [28]. Furthermore, we depicted a correlation network be-

tween the 30 most discriminatory genes. This correlation network measures the

mutual dependence between gene expressions and allows to analyze interrela-

tionships among genes impacting both expression and function. For the set-up

of the network, we employed the approach presented in [29], using the Pear-

son correlation (PC) coefficient [30] to measure the dependency between genes.

Once the Pearson’s coefficient is calculated, Kruskal’s algorithm [31] is used to

find the minimum-spanning-tree between the selected genes and to build the

correlation network using as head the gene with the most discriminatory power.

The first gene is the header (the most discriminatory one), and the branches

contain the genes which are helpers.

3. Results and Discussion

Table 1 shows the small-scale gene signature with 98.2% accuracy in the

first data-set. Working with the validation test, this list of genes provided 90%

accuracy. Moreover, expanding the list to the first 63 most discriminatory genes

we achieved 95% LOOCV accuracy in blind validation (please see supplementary

material). This fact shows that the defective genes found in the first data-set

are involved in the genesis of this disease.

7



Gene ID µ1 σ1 µ2 σ2 Ratio Acc

HBB 9.6178 1.7120 5.2536 1.0473 5.2054 93.8053

HBA1 9.7540 1.6073 5.3387 1.1988 4.8755 93.8053

HBB 10.1282 1.6107 6.3339 0.9792 4.3526 93.8053

HBB 9.4707 1.5321 6.3914 0.6838 3.1223 93.8053

214349 at 9.3558 0.8450 7.5038 1.0090 2.6888 93.8053

GAS7 7.9834 0.5455 6.8498 0.5561 2.3466 93.8053

AC079305.10 6.4999 0.5921 5.3935 0.6390 2.1945 94.6903

HBA1 8.8871 1.5835 6.1203 0.6607 2.1918 94.6903

CST3 8.6560 0.9675 6.8275 0.9471 2.1450 94.6903

BNIP1 8.1360 0.4495 7.1404 0.5862 2.1308 95.5752

JARID2 6.6288 0.4393 5.8171 0.5200 2.1112 95.5752

ITPRIP 7.9194 0.5279 6.7963 0.6319 2.0834 95.5752

SEC14L1 8.0327 0.7853 6.5745 0.8525 2.0178 96.4602

CAPRIN1 6.9504 0.3162 6.4497 0.2406 2.0047 95.5752

TP53INP2 7.5928 0.9166 6.0999 0.7304 1.9939 93.8053

NFKBIE 7.6954 0.4867 6.7592 0.4973 1.9916 93.8053

C14orf132 6.7044 0.5369 7.9096 0.7216 1.9786 95.5752

IRF8 9.5788 0.9937 8.0582 1.1007 1.9765 96.4602

241849 at 6.5765 0.5649 5.6072 0.5981 1.9090 96.4602

SYNGR1 7.5493 0.6663 6.2107 0.9396 1.8854 96.4602

MIR6883 8.2809 0.6185 7.0572 0.6545 1.8797 96.4602

TMEM45B 5.2715 0.7311 6.7097 0.7130 1.8608 98.2301

Table 1: List of the most discriminatory genes found by the algorithm. µ1 and σ1 refer, respec-

tively, to the mean expression and standard deviation in the healthy control group whereas

µ2 and σ2 indicate the same for the MS group. Ratio stands for the prior discriminatory

power for each gene, which is a combination of Fisher’s Ratio and Fold Change. These 22

genes correspond to the small-scale gene signature with the best LOOCV learning accuracy

(98.2%). This list provided 90% of accuracy in the validation data-set. Expanding the list

to the first 63 genes we achieved 95% accuracy in blind validation (please see supplementary

material).
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3.1. Ontological and pathway analysis

Tables 2, 3, 4, 5, and 6 shows the Genetic Pathways, the GO Biological

processes, the GO Molecular Functions, the Phenotype and the Compounds

obtained from the analysis of the most discriminatory genes via GeneAnalitics©

tool. The score is calculated based on the binomial distribution to test the null

hypothesis that input genes are not over-represented within any SuperPath,

GO term or compound. The presented score for each match is a transformation

(-log2) of the resulting p-value, where higher scores indicate better matches [28].

Interestingly, the main compound found was 1D09C3, which is an anti-MHC

(major histocompatibility complex) class II monoclonal antibody. 1D09C3 binds

to MHC class II molecules on the cell surface and selectively kills proliferating

tumor cells. The second most important compound found was the Sebacic Acid.

Figure 2 shows the correlation tree of the first 31 most discriminatory genes.

The numbers of the edges represent the Pearson coefficient between nodes. It

can be observed two main branches related to the HBB gene, headed by GAS7

and HBA1/HBA2. The HBB gene provides instructions for making a protein

called beta-globin. Beta-globin is a subunit of a the hemoglobin, that normally

consists of four protein subunits: two subunits of beta-globin and two subunits

of another protein called alpha-globin, which is produced from the HBA gene.

Both genes are under-expressed in patients with Multiple Sclerosis. GAS7, plays

a putative role in neuronal development and it is also under-expressed in MS

subjects. This gene has also been associated to MS [32]. IRF8 (interferon regu-

latory factor 8) is a protein-coding gene: interferon consensus sequence-binding

protein (ICSBP) is a transcription factor of the interferon (IFN) regulatory fac-

tor (IRF) family. IRF family proteins also control expression of IFN-alpha and

IFN-beta-regulated genes that are induced by viral infection. Finally, JARID2

has also been associated to MS, since Jarid2-deficient NKT cells perturb Th17

differentiation, leading to reduced Th17-driven autoimmune pathology [33].
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Score SuperPath Total Genes Matched Genes

34.36 Rheumatoid Arthritis 90 12

24.27 Staphylococcus Aureus Infection 56 8

21.59 Interferon Gamma Signaling 202 12

19.91 Influenza A 315 14

19.54 G-protein Signaling N-RAS Regulation Pathway 60 7

18.78 Immune Response NFAT in Immune Response 162 10

18.37 Hematopoietic Cell Lineage 97 8

17.95 CTLA4 Signaling 71 7

17.91 Translocation of ZAP-70 to Immunological Synapse 46 6

16.86 Innate Immune System 2132 39

16.48 TCR Signaling (Qiagen) 239 11

16.18 CD28 Co-stimulation 86 7

15.97 Epstein-Barr Virus Infection 203 10

15.27 ICos-ICosL Pathway in T-Helper Cell 131 8

14.62 IL-2 Pathway 327 12

14.54 MHC Class II Antigen Presentation 103 7

14.29 Cytokine Signaling in Immune System 761 19

14.25 Cell Adhesion Molecules (CAMs) 145 8

13.78 Phagosome 152 8

13.54 Malaria 49 5

13.54 Interleukin-10 Signaling 49 5

13.15 Th17 Cell Differentiation 162 8

12.82
Class I MHC Mediated Antigen

Processing & Presentation
823 19

12.46 NF-kappaB Signaling 327 11

12.14
Immunoregulatory Interactions b/w Lymphoid &

Non-Lymphoid Cell
135 7

12.10 O2/CO2 Exchange in Erythrocytes 13 3

11.89 Toxoplasmosis 139 7

11.76 African Trypanosomiasis 35 4

11.24 Allograft Rejection 249 9

11.00 HTLV-I Infection 255 9

10.53
Tacrolimus/Cyclosporine Pathway,

Pharmacodynamics
44 4

10.26 TCR Signaling (REACTOME) 122 6

10.07 Amb2 Integrin Signaling 48 4

9.86 IL12-mediated Signaling Events 86 5

9.76 Tuberculosis 179 7

9.23 NF-kappa B Signaling Pathway 95 5

Table 2: Pathway results obtained from the analysis of the most discriminatory genes via

GeneAnalitics©.
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Score Name Total Genes Matched Genes

25.61 Interferon-gamma-mediated Signaling Pathway 71 9

22.22
Antigen Processing & Presentation of Peptide or

Polysaccharide Antigen Via MHC Class II
14 5

17.69 T Cell Costimulation 73 7

14.99
Antigen Processing & Presentation of

Exogenous Peptide Antigen Via MHC Class II
98 7

14.42 Antigen Processing & Presentation 43 5

Table 3: GO biological process analysis obtained from the analysis of the most discriminatory

genes via GeneAnalitics©.

Score Name Total Genes Matched Genes

18.36 Haptoglobin Binding 3 3

18.20 MHC Class II Receptor Activity 11 4

17.12 Peptide Antigen Binding 29 5

11.79 Oxygen Carrier Activity 14 3

11.23 MHC Class II Protein Complex Binding 16 3

10.64 Protein Binding 9398 105

9.75 Chemokine Activity 51 4

9.55 Peroxidase Activity 24 3

Table 4: GO molecular function analysis obtained from the analysis of the most discriminatory

genes via GeneAnalitics©.

Score Name Total Genes Matched Genes

17.88 Hemolytic Anemia 26 5

16.16 Increased Aerobic Running Capacity 5 3

16.16 Hyperoxia 5 3

12.42 Autoimmune Response 31 4

12.22 Increased IgM Level 94 6

12.10 Abnormal Hemoglobin 13 3

10.78 Anisocytosis 42 4

10.69 Abnormal Mean Corpuscular Volume 4 2

10.52 Abnormal Aerobic Respiration 19 3

Table 5: Phenotype analysis obtained from the analysis of the most discriminatory genes via

GeneAnalitics©.
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Score Name Total Genes Matched Genes

18.36 1D09C3 3 3

12.67 Sebacic Acid 2 2

Table 6: Compounds analysis obtained from the analysis of the most discriminatory genes via

GeneAnalitics©.

3.2. Pathway analysis via the holdout sampler

In this section we perform the pathway analysis of the defective pathways in

MS via the holdout sampler [34] consists in performing different random holdout

simulations and finding the minimum-size signature of high discriminatory genes

for each holdout. The holdout sampler determines for each holdout the small-

scale genetic signature in the training dataset (75% of the total data) and its

predictive accuracy is established using the validation dataset (25% of the total

dataset). Both datasets are randomly generated in each holdout. The pathways

analysis taking into account all the small-scale genetic signatures with high

predictive validation accuracy in all the holdouts, performing the frequency

analysis, and considering the most frequently sampled genes to establish the

defective pathways.

Table 7 shows the list of 30 most frequently-sampled genes (genes that ap-

pears in more than 17% of random simulations). It can be observed that most of

these genes appear in the list of genes that initially provided a 90% of accuracy

in blind validation (see table 1): CAPRIN1 appears in position 14, CST3 in

position 9, GAS7 in position 6, IRF8 in position 18. We have also performed a

pathways analysis using the genes with frequency more than 10% (372 genes)

obtaining very similar results using the list of genes that provided a 90% of

accuracy, being the most important Immunoregulatory interactions between a

Lymphoid and a non-Lymphoid cell, Interleukin-10 signaling, Interferon Signal-

ing, ATF4 activates genes and TRAF6 mediated NF-kB activation. All of them

appear in table 2.
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Frequency Name

0.17 CAPRIN1

0.17 CST3

0.17 GAS7

0.17 IRF8

0.17 BNIP1

0.17 CCL3 /// CCL3L1 /// CCL3L3

0.17 MXD1

0.17 HBB

0.17 SYNGR1

0.17 PLAUR

0.17 HBB

0.17 HBA1 /// HBA2

0.17 214349 at

0.17 HBA1 /// HBA2

0.17 HBB

0.17 BFAR

0.17 ZNF703

0.17 TP53INP2

0.17 STARD4

0.17 CUL4A

0.17 NAPSB

0.17 SLC43A2

0.17 ERCC6L2

0.17 TMEM45B

0.17 AC079305.10

0.17 BRD7

0.17 MIR6883 /// PER1

0.17 ITPRIP

0.17 HLA-DRA

Table 7: List of 30 most frequently-sampled genes using the holdout sampler.
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4. Conclusions

In this paper, we have performed the analysis of the defective genetic path-

ways in Multiple Sclerosis using machine learning technologies and two inde-

pendent microarray data-sets. The first one is used to learn the most important

discriminatory genes, while, the second one, is restricted to perform blind vali-

dation of the genetic signatures that were previously found. In both cases, we

have obtained a LOOCV predictive accuracy higher than 95%. The most impor-

tant defective genes found are related to hemoglobin production and neurogen-

esis. The pathway analysis suggested antigen presentation as the main possible

cause for MS and Epstein-Barr virus and Influenza A as possible agents. Other

infections such as Toxoplasmosis, Tuberculosis, and Staphylococcus Aureus, ap-

peared in the list of defective pathways. Future studies should compare these

results with the ones found in Fibromyalgia and Post-radiotherapy Chronic Fa-

tigue [35, 36] since they have similarities. We understand that the knowledge

obtained from this analysis would serve to find new and effective therapeutic

targets for this important disease which affects 2.5 million people worldwide.
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Figures

Figure 1: Flow chart of the methodology
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Figure 2: Correlation tree of the 31 most discriminatory genes.
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