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Abstract 

Background: An essential requisite for controlling and monitoring mercury in the environment is to identify its spe‑
cies in different types of soils and sediments, as this will help not only to establish its mobility in the environment and 
ecosystem and the degree of its toxicity, but also to establish the source of contamination. The objective of this work 
was to identify the origin of mercury in beach sands and soil taken from a coastal region with previously high min‑
ing and industrial activity by characterizing the mercury species using the technique known as thermal desorption 
(HgTPD).

Results: Apart from quartz, the main mineral species identified in the raw sands and soil were calcite, fluorite and 
barite. The concentration of mercury ranges from 5 to 23 µg g−1, and although it is distributed in different proportions 
in the function of the size, thermal desorption profiles demonstrated that the mercury species present in the sam‑
ples do not vary with the mercury concentration and the particle size. By means of HgTPD, mercury oxide (HgO) was 
identified in the beach sands, whereas mercury sulfide (HgS) was found in the soil sample taken from the vicinity of 
the beach. Complementary methodologies foster the HgTPD conclusions and verify that mercury is present mostly in 
insoluble stable (HgS) or low‑mobility (HgO) forms in the samples studied. Analyses by ICP‑MS after sequential extrac‑
tion and HPLC separation of mercury species show that inorganic mercury is the predominant form in the samples.

Conclusions: The technique HgTPD is a very useful tool to ascertain the origin of mercury in contaminated beach 
sands and shoreline soils. In the particular area studied in this work, the species identified indicate that previous 
mining activity was the source of the mercury and rule out the possibility that contamination is derived from coal 
combustion activities ongoing in the region.
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Background
Mercury is a heavy metal of great concern due to its high 
level of toxicity and the serious effects it has on health 
and the environment. Although all mercury species are 
toxic, certain species-specific toxic mechanisms have 
been demonstrated to have an effect on human organ-
isms [26]. For instance, methylmercury, which is the spe-
cies of mercury that can be incorporated into humans 

through food, may cause very serious harm to the cen-
tral and peripheral nervous system [49]. The enormous 
alarm caused by mercury toxicity as a consequence of 
the presence of its compounds in the environment led to 
the Minamata Convention on Mercury, which came into 
force in August 2017 [48]. The Minamata Convention is 
the first global environmental agreement negotiated in 
the 21st millennium. The objective of the Convention 
is to protect human health and the environment from 
anthropogenic emissions and the release of mercury and 
mercury compounds, and it has set out a range of meas-
ures to meet this objective.
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Due to emissions of mercury to the atmosphere and 
their subsequent deposition onto the land and into the 
water as a result of the proximity of industrial activ-
ity zones or the transport process, some areas may 
contain high concentrations of mercury [32, 35]. In 
addition, point-source pollution associated with the 
inappropriate disposal of mining waste, metal smelt-
ers and other industrial activities have increased the 
environmental threat from mercury [9, 18, 31, 46]. 
Asturias, NW Spain, has had a long history of indus-
trial activity, especially in the form of coal mining, but 
mercury mining and metallurgy were also important 
activities up until the end of the 1970s. This, coupled 
with other industrial processes, such as coal combus-
tion, the production of steel and cement, exposed the 
region’s soils, beaches and coastal environments to the 
risk of contamination (see e.g., [6, 42]), especially by 
mercury [21, 27, 34]. Local and regional studies based 
on geological records, such as peat bogs or estuarine 
sediments, have also revealed a dramatic increase in 
mercury accumulation over the last 200 years [15, 23, 
25]. On a global scale, coal combustion and the pro-
duction and processing of metals are the main anthro-
pogenic sources of mercury emissions in Europe and 
the USA [11, 47]. The contamination of beaches by 
mercury comes mainly from anthropogenic sources 
such as industrial waste, stormwater runoff and sew-
age outfalls [10, 13, 29]. Chlor-alkali plants are also 
important sources of mercury, and the area surround-
ing these plants has been found to have high mercury 
concentrations [4]. Proximity to such industrial activi-
ties is in itself suggestive of the source of mercury con-
tamination, but when several different activities occur 
in the same area or when the polluting species are 
transported by air or water from elsewhere, the origin 
of the mercury species is often difficult to pinpoint. 
Ascertainment of the source of mercury contamina-
tion will help to determine the risk of exposure, and 
being able to determine the chemical form (specia-
tion) of the mercury present in the land is essential for 
understanding and modeling metal-contaminated sys-
tems since the way in which the mercury compounds 
are distributed determines their environmental mobil-
ity and bioavailability [14].

The objective of this study is to identify the mer-
cury species present in samples of beach sands and 
soil taken from a coastal area of Asturias by the tech-
nique based on programmed temperature desorption 
(HgTPD) [3, 5, 36, 37]. Because the samples come from 
a region (Asturias), where different industrial activities 
have taken place, the study aims to relate the species of 
mercury to their source of origin.

Experimental part
Site description and samples
During a sampling campaign of 13 sandy beaches with 
dunes in the Cantabrian area (unpublished data), it was 
found that sand samples from the Vega beach (Asturias, 
NW Spain) showed anomalously high mercury concen-
trations when compared to other areas sampled. The 
high mining and industrial activity in this region (Fig. 1a) 
suggests several possible sources for the presence of this 
heavy metal. Accordingly, three different composite sam-
ples were taken for a comprehensive addressing of mer-
cury sourcing (Fig. 1b), namely A1 (supratidal sand), A2 
(white dune) and S1 (coastal soil on the shoreline). Each 
sample was composed of five increases taken from each 
vertex of a 1  m edge square and its central point, from 
the top 30  cm of the material, using an Edelman Auger 
(Fig.  1b). In  situ sieving of the samples through a 2-cm 
mesh screen was carried out to remove the large material 
and then the remaining samples were kept in plastic bags 
until their pre-treatment in the laboratory. Afterward, 
the samples were dried in an oven at 30 °C to prevent the 
volatilization of the mercury. The fractions smaller than 
2 mm were separated by dry sieving, and the representa-
tive subsamples were generated using a riffler.

Devices for mercury determination and speciation
The concentration of total mercury in the raw samples 
and in the sieved sub-size fractions (see below) was 
determined by means of a mercury analyzer (AMA 254). 
The mercury species were identified by temperature-pro-
grammed desorption (HgTPD) using a setup developed 
by the authors [38]. This device consists of a temperature-
programmed furnace coupled to a PYRO 915 furnace 
from LUMEX and a continuous mercury analyzer (RA-
915) [39]. The peculiarity of this device is that the mer-
cury species are desorbed in the first furnace using  N2 as 
an inert gas, while at the same time  O2 is introduced into 
the PYRO furnace to ensure the total decomposition of 
volatile matter. Desorption profiles are obtained by heat-
ing the sample at a rate of 50 °C min−1 under a  N2 flow 
of 500 mL min−1. The PYRO 915 unit is kept at approxi-
mately 800 °C under an  O2 flow of 500 mL min−1. In this 
unit, all the mercury species that have been vaporized 
from the sample in an inert atmosphere are transformed 
into elemental gaseous mercury  (Hg0). As  Hg0 reaches 
the detector in the continuous analyzer, the software reg-
isters temperature or time versus mercury and records 
the desorption profiles that correspond to the evapora-
tion of the mercury species present in the sample. Each 
desorption peak is assigned to a species of mercury in 
accordance with the reference database of pure mercury 
compounds prepared in concentration and with matrices 
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similar to the selected samples. Mercury reference mate-
rials used in this study included HgS, HgO,  Hg0,  HgCl2 
and mercury associated with humic acid (Hg-HA).

In addition to the total mercury content analyzed in the 
AMA equipment, the determination of the identified spe-
cies was carried out in the HgTPD device. The equipment 
was calibrated for total mercury content by analyzing 

reference samples containing different amounts of HgS 
in a pure commercial sand matrix. The detection limit 
of the system was 3 ng for a maximum sample weight of 
100  mg (0.03  mg  kg−1), assuming that the release of all 
the Hg occurs in a single peak. Each mercury standard 
and sample were analyzed 2 to 4 times. The precision of 
the analysis was evaluated from the standard deviation 

Fig. 1 a Location of the study area and the main potential mercury sources in the surroundings. b Aerial view of Vega beach and sampling points 
where composite samples were taken (sketch at the right side)
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(SD) and relative standard deviations (%RSD). An RSD 
value < 10% was achieved.

To balance the HgTPD study, two supplementary 
techniques were applied. First, a sequential extraction 
[45] was conducted. In brief, extracts with solutions 
of increasing strengths were attained from subsam-
ples of the samples under study; i.e., the following frac-
tions were obtained: exchangeable (extracted in  MgCl2), 
carbonate-bound (extracted in a buffer of  CH3COONa/
CH3COOH), Fe–Mn oxide-bound (extracted in 
 NH2OH-HCl); organic matter-bound (extracted in sev-
eral steps using  H2O2,  HNO3 and  NH4NO3); and the 
residual fraction (extracted in aqua regia); in all fractions, 
the supernatants were separated after centrifugation for 
15 min at 8000 rpm, filtered and analyzed in an Agilent 
Technologies 7700 ICP-MS (inductively coupled plasma 
mass spectrometry). In addition, a second approach by 
chemical speciation was also performed after extraction 
of representative subsamples using a solution of 7.6% 
HCl and 10% 2-mercaptoethanol in an ultrasonic bath. 
The extract was then centrifuged and diluted. The deter-
mination  was carried out in a 1260 Infinity HPLC cou-
pled to a 7700 ICPMS, using a ZORBAX Eclipse XDB 
C18 (2.1  mm i.d. × 50  mm, 5  µm) column and 0.06  M 
ammonium acetate, 5% methanol and 0.1% 2-mercaptoe-
thanol (pH = 6.8) as mobile phase.

Complementary analyses
Granulometric separation was performed in three frac-
tions (800–224  µm, 224–125  µm, < 125  µm), to ascer-
tain the distribution and speciation of mercury as a 
function of its size and composition. Fraction > 800  µm 
was rejected as no mercury was detected in this frac-
tion. Before being examined, the material was cleaned to 
eliminate any possible remains of vegetal matter or fauna 
from the samples.

The mineral species of the samples were identified by 
X-ray diffraction (XRD), in a Bruker D8 Discover appa-
ratus with Cu Kα radiation (λ = 1.54059 Å). The scan was 
performed between 10º and 90º (2θ) using a step size of 
0.02º  s−1 and a step time of 2 s.

Results
The concentration of mercury in the raw sands and soil, 
and in the different size fractions together with the min-
erals identified by XRD, is shown in Table  1; note that 
mercury values found in the raw samples are well above 
the background/screening levels valid in the region [7]. 
As might be expected, the main mineral species identi-
fied was quartz in all the samples (Additional file 1: Fig-
ure S1). Calcite was also present in the sands and in the 
soil in different proportions. However, there was also an 
abundance of other minerals such as fluorite in all of the 
samples and of barite in two of them.

As can be appreciated from the data, the mercury con-
tent of the raw samples selected for this study ranges 
from 5 to 23 μg g−1. Moreover, the mercury concentra-
tion is distributed in different proportions in the sepa-
rated fractions (Table 1), the highest concentration being 
found in the fraction of the smallest particle size. As men-
tioned above, the objective of this work was restricted 
to identifying the mercury species and relating them to 
their origin in a particular area. Extensive samplings and 
analyses of the area are being carried out with the aim of 
creating a catalog of the type and level of contamination 
of this coastal area. Although the analyses performed for 
this study do not provide yet a conclusive picture about 
the pollution of the total area, as a preliminary study it 
may serve to identify the mercury species and to relate 
them to the source of contamination.

Figure  2 shows the thermal desorption profiles of the 
beach sands and soil together with the mercury stand-
ards used as reference materials. As shown in Fig. 2a–c, 

Table 1 Mercury concentrations and mineral compositions of the raw samples and fractions

Sample Fraction (µm) % wt Hg (µg g−1) Mineral

Fraction Raw sample

A1 800–224 31 0.16 10.9 Quartz  (SiO2) fluorite  (CaF2), calcite  (CaCO3)

224–125 67 14.0

< 125 2 16.6

A2 800–224 23 0.44 5.01 Quartz, fluorite, calcite, barite  (BaSO4)

224–125 76 3.37

< 125 1 20.5

S1 800–224 30 8.96 23.1 Quartz, fluorite, calcite, barite

224–125 68 28.2

< 125 2 31.6
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the maximum temperature peak of desorption is the 
same for each group of samples studied. Hence, the mer-
cury species present in the samples do not vary with the 
mercury concentration and the particle size (Table  1). 
The thermograms of the mercury species from the beach 
sands (A1 and A2) analyzed show a maximum peak at 
240 ± 10 °C. This peak corresponds to the HgO pure mer-
cury compound (Fig. 2d). However, in the case of the soil 
sample (S1), the temperature of maximum desorption 
is at 180 ± 11 °C. This peak is assigned to HgS, the most 
abundant and stable mineral species of mercury in nature 
[43].

The analyses carried out by ICP-MS after sequential 
extraction and HPLC separation of mercury species 
show that inorganic mercury is the predominant form 
in the samples (Table 2). In fact, only in the soil sample 
very minor traces of organic mercury were found. In 
addition, Tessier’s extracts of the samples revealed neg-
ligible amounts of mercury in all the fractions being the 
predominant fraction the residual one.
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Fig. 2 Thermal profiles of A and B sand samples, C soil sample and D mercury pure compounds (HgS, HgO,  Hg0,  HgCl2 and Hg‑HA)

Table 2 (Left) Percentages of the five fractions obtained in the Tessier sequential extraction results; EX (exchangeable), 
CB (carbonate bound), OX (Fe/Mn oxides bound), OM (organic matter bound), and  immobile fraction (residue), (Right) 
percentages of inorganic vs. organic mercury in the samples studied

Sample % Hg (sequential extraction) % Chemical speciation

EX CB OX OM Residue Hg inorganic Hg organic

A1 n.d n.d n.d n.d 100 100 n.d

A2 n.d n.d n.d n.d 100 100 n.d

S1 1.6 0.3 9.1 9.3 79.7 99.1 0.9
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Discussion
The HgTPD method has already demonstrated its capa-
bility for the identification of mercury species in differ-
ent types of solids [3, 5, 36, 37]. However, its potential 
to explore the sources of contamination on a beach sur-
rounded by mines and industries is a new issue. The 
identification of mercury species in similar samples was 
already been carried out by using other methods of anal-
ysis [2, 8, 50], and in all cases the results were of great 
relevance from the environmental and social point of 
view. However, the HgTPD method entails some advan-
tages when compared with X-ray absorption spectros-
copy (EXAFS) and classic extraction methods, such as its 
low detection limit and high selectivity. The application 
of the HgTPD technique has been shown to be an effec-
tive means of identifying mercury species in two environ-
mental compartments that are difficult to assess using 
more conventional techniques based on Hg chemical 
extraction. In fact, soils in former mining areas, and espe-
cially sandy sediments in coastal areas, usually present 
abundant refractory complex minerals such as silicates 
together with sulfides and oxides, leading to difficulties 
in the quantification or speciation of metals linked to 
them and requiring very strong acidic extractions. This 
problem was overcome in this study by the application of 
HgTPD.

The results obtained by HgTPD technique and con-
firmed by ICP-MS after sequential extraction and HPLC 
separation verify that mercury is present mostly in insol-
uble stable (HgS) or low-mobility (HgO) forms in the 
samples studied, while other possible mercury species 
such as  HgCl2,  Hg0 and mercury associated with humic 
acids (Hg-HA) are virtually absent.

On the basis of the mercury species identified in the 
samples and the industrial activities carried out in the 
zone studied, the possible sources of mercury contamina-
tion to be considered are the following:

HgS, one of the mercury species identified in this study 
(Fig.  2), is found associated with different types of par-
ticles, such as airborne particulate matter [1, 12] and fly 
ash particles [40]. Given that in Asturias there are four 
coal-fired power plants currently operating at less than 
100 km from the Vega beach (Fig. 1a) and that coal power 
plants are the main source of anthropogenic mercury 
emissions, the particles emitted from coal combustion 
should be considered as one potential source of mercury 
in this particular area. However, in the samples analyzed 
in this study it cannot be confirmed whether the mercury 
came from coal or the particles produced by the process 
itself. If the contamination had come from air deposits, 
then the soil and the beach sand should have been simi-
larly affected given their close proximity to each other but 
no HgS was detected in the beach sands (Fig. 2). Neither 

were any other mercury species, such as  HgCl2,  HgSO4 or 
HgO which are often present in coal fly ashes, detected 
[28, 40]. It is also significant that the levels of mercury 
found in other beaches closer to the coal power plants 
than Vega beach were much lower (0.13 ± 0.01 µg g−1 as 
an average value).

A second hypothesis could be the influence of former 
Hg mining and metallurgy activities that were carried out 
in the region up until the 1970s and the subsequent aban-
donment of huge amounts of Hg waste. This is highly 
likely in the case of the sites known as La Soterraña [30], 
El Terronal [16] and their surroundings (Fig.  1a), as a 
consequence of which the river sediments in the hydro-
graphic basin where these sites are located were also 
affected [19]. The effects are especially noticeable in the 
river mouth of the Nalón River, the main river in the 
region (see e.g., [17]. However, the distance between the 
Hg mining cores and the studied area, which is located 
in a different basin, would seem to rule out any possi-
ble relationship. In addition, previous studies on mer-
cury speciation in the mining and metallurgy waste of 
the above-mentioned Hg sites of central Asturias [41] 
present different profiles to those of the mercury spe-
cies obtained here, i.e., several mercury species such 
as metacinnabar,  HgCl2, Hg-FeS2 or even Hg(0) were 
present in Rumayor’s study but not in this study of the 
Vega beach. Therefore, the second hypothesis seems very 
unlikely in the case of the present study.

As mentioned in the Results section, X-ray diffrac-
tion data of both the soil and the sand samples indicate 
the abundant presence of fluorite (Table  1, Additional 
file  1: Figure S1). This is clearly related to the proxim-
ity of several fluorite mines in the vicinity of the studied 
area, i.e., the so-called Caravia-Berbes mining district 
(Fig.  1b) where the paragenesis of the mineralization 
involves fluorite  (CaF2) and abundant barite  (BaSO4) [22, 
44], in coincidence with the minerals found in this study 
(Table 1, Additional file 1: Figure S1). Furthermore, cin-
nabar (HgS) is present in the form of fine inclusions in 
the fluorite and copper minerals that are also plentiful in 
the area [22]. It is possible therefore that the extraction 
and treatment of fluorite in this zone could lead to con-
tamination by mercury.

Furthermore, the differences in the speciation observed 
between the soil sample (HgS) and those of the beach 
(HgO) (Fig. 2) could be due to two different sources. On 
the one hand, the soils have been affected by the uncon-
trolled abandonment of nearby mining areas and there-
fore reflect the original mercury mineralogy, whereas on 
the other hand, the main source of mercury in the beach 
could have been the dumping (for decades) of mineral 
processing waste into the Vega river which flows into the 
sea next to the Vega beach [20]. The processing of fluorite 
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which is mainly performed by means of flotation (see 
[51] and references therein) may cause a separation of 
HgS and HgO species in different fractions. In addition, 
although mercury is usually found as HgS, other minerals 
such as montroydite (HgO) may also be present in mine 
wastes [24], as is the case of the studied area. These facts 
would explain the differences found between the soil and 
sand samples. Stable and insoluble forms of mercury, 
such as HgS, show a different mobility pattern in soils to 
that of other more reactive species of mercury, and this 
determines the potential impact on groundwater and 
hence on the health of human beings [33].

Conclusions
Use of the HgTPD technique has made it possible to 
identify the presence of HgO in the beach sands and HgS 
in shoreline soil, while discarding the presence of other 
possible mercury species such as  HgCl2,  Hg0 or mercury 
associated with humic acids. The results have been cor-
roborated by sequential extraction and HPLC-ICP-MS.

The mercury concentration is higher in the samples 
of the smallest particle size, but the thermal profiles are 
similar for the different fractions, suggesting that there is 
no change in the speciation of mercury.

Based on the mercury species identified and the indus-
trial activities carried out in the area, the results suggest 
that the main source of pollution is the previous local 
fluorite mining activity. Other sources such as coal com-
bustion or other practices involved in the exploitation of 
coal, and also mercury, in the region are unlikely.

In addition to contribute to understanding the behav-
ior and the presence of mercury in the environment, this 
study is a relevant contribution to the validation of the 
desorption technique at programmed temperature.
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