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Abstract

Gaining relevant insight from a dyadic dataset, which describes interactions between two entities,
is an open problem that has sparked the interest of researchers and industry data scientists alike.
However, the existing methods have poor explainability, a quality that is becoming essential in
certain applications. We describe an explainable and scalable method that, operating on dyadic
datasets, obtains an easily interpretable high-level summary of the relationship between entities.
To do this, we propose a quality measure, which can be configured to a level that suits the user,
that factors in the explainability of the model. We report experiments that confirm better results
for the proposed method over alternatives, in terms of both explainability and accuracy. We
also analyse the method’s capacity to extract relevant actionable information and to handle large
datasets.

Keywords: dyadic data, machine learning, interpretable machine learning, explainable artificial
intelligence, scalable machine learning

1. Introduction

Dyadic data [1] hold information regarding the interaction of two entities of any kind. They
are pervasive in a variety of popular problems such as recommender systems [2], social science
application analysis, market segmentation [3], computational linguistics, information retrieval,
and preference learning [4], but also in more specific areas, such as automatic exam grading
[5]. The large number of elements of each entity in such datasets yields an immense number
of possible pair-wise interactions that is much larger than the recorded data. The sparsity of
measurements can be overcome by using available data points to learn a utility function that
generalizes the recorded data and predicts the outcome of each possible interaction. The very
common problem associated with the learning of this utility function has usually been resolved
using matrix factorization [2]. However, this procedure usually results in thousands of parame-
ters and, despite the prediction accuracy for any given pair of elements, offers little insight into
the nature of the relationship between two entities. A major problem in dealing with dyadic
data therefore consists of identifying groups of entities with similar behaviour, so as to obtain
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a high-level model of the studied environment. For instance, when analysing data from a book
recommender system, a data scientist could look for groups of books that attract similar groups
of readers with common reading interests. Characterizing such groups in terms of relevant infor-
mation is a problem of great commercial interest since information on such small homogeneous
groups would enable the development of more effective strategies tailored to specific groups.
Such information, highly coveted by companies, is a difficult to obtain in practice, even when
there is abundant data to analyse. The algorithms used to process this data should be computa-
tionally efficient in their capacity to handle large amounts of data, yet should be accurate enough
to retrieve meaningful information and to yield results that are actionable and comprehensible
for decision makers.

On a different note, as the complexity of machine learning models grows, predictions are
becoming more accurate, yet these models are often hard to interpret and do not provide glob-
ally actionable information. It is therefore becoming increasingly important that the results of
machine learning algorithms can be understood by a human supervisor. In some cases this is
even required by law, as in the case of the right to explanation included in the new General
Data Protection Regulation (GDPR) of the European Union1. The goal of Explainable Artifi-
cial Intelligence (XAI) (apparently the most common moniker, although sometimes also called
Interpretable AI2 AI or Transparent AI) is to obtain models that ideally should [7]:

1. Allow supervisors to interpret results so that it can be confirmed that they verify that the
model goals are aligned with the desired goals (for instance, a credit rating system should
not have gender or racial biases).

2. Justify predictions so as to enable a supervisor to formulate hypotheses that can be later
verified, thereby excluding mere correlations due to randomness or dependence on some
external factor,

3. Explain outputs in such a way that their generalizability can be established.
4. be informative, that is, it should offer the supervisor new information regarding the studied

variables.

Interpretability can be achieved in one of two ways: (1) in the form of a transparent model
that allows the supervisor to follow the “logic” behind every prediction, as in the case of produc-
tion rules, or (2) as post-hoc interpretability, which consists of justifying a prediction through
similar cases or through visualizations or other methods that identify the input features that led
to a prediction. While post-hoc interpretability is the most common approach, it is limited to
explaining individual cases and does not provide the supervisor with new general information
about the modelled environment.

Finally, an additional problem is that, despite the immense amount of data available in some
cases holding a great amount of valuable information, processing this data can be challenging
because of its sheer volume. As a result, there is a need for scalable algorithms that can deal with
very large datasets.

This work tackles the formal problem of obtaining relevant information from a utility func-
tion that codes the relationships existing between entities in a dyadic dataset. The proposed
method splits the actors into easily interpretable groups with homogeneous behaviour. This

1https://ec.europa.eu/info/law/law-topic/data-protection en
2Although some authors [6] make a distinction between the terms interpretability and explainability, in this work we

use them interchangeably.
2



high-level summary of the data explains existing relationships and provides supervisors with
meaningful information that will improve decision making processes. Moreover, implementa-
tion in the Apache Spark scalable distributed computing framework [8] enables the processing
of large amounts of data to obtain relevant information within a reasonable timeframe.

The rest of the paper is structured as follows. Section 2 gives an account of existing methods
in this field, Section 3 contains definitions of key concepts used in the proposed system, Section
4 describes the algorithm, Section 5 describes how the experiments performed to assess the
suitability of the method were designed, Section 6 reports on and comments the results, and,
finally, Section 7 summarizes the conclusions drawn and indicates future lines of research.

2. Related work

Although XAI is a nascent field, the number of proposed methods is increasing rapidly as
shown in the latest survey papers [6, 9, 10]. The goal of obtaining an alternative to an opaque
predictor, called the Open the Black Box problem, can be tackled in four different ways according
to Guidotti et al. [9]:

1. Transparent box design consists of obtaining a classifier that uses a logic or methodology
that can be directly interpreted by the supervisor.

2. Model explanation obtains a surrogate interpretable predictor that mimics the behaviour of
the opaque model as closely as possible for any input.

3. Outcome explanation yields an explanation for a particular prediction of the classifier,
offering post-hoc explainability.

4. Model inspection manipulates black box inputs to assess the magnitude of the effect of
each variable in the prediction.

Our proposed method can be classified as either a model explanation of the utility function that
predicts the nature of the relationship between any possible pair of actors, or as a transparent box
design approach that obtains a grouping of the actors in a dyadic dataset. The resulting model
is a shallow decision tree easily interpreted by the supervisor. Decision trees, along with rule
systems and linear models, are considered to be easily interpreted, and using a single decision
tree model as a surrogate for the black box model requiring explanation is a popular approach that
started with the classic Trepan algorithm [11]. While several authors have iterated this approach
[12, 13, 14, 15], none of their algorithms can be used to explain dyadic data.

For dyadic data, the most widely used methods to identify large-scale trends are segmenta-
tion and clustering techniques. Often problem-specific, they span market segmentation, docu-
ment clustering and topic modelling, web user clustering and similar related fields. Our problem
has been tackled using clustering algorithms [16, 17], self-organizing maps [18, 19], dimension-
ality reduction algorithms [20], evolutionary algorithms [21] and co-clustering algorithms [22].
Regarding interpretability, the mentioned algorithms have varying features. While evolution-
ary algorithms and co-clustering methods are not entirely suitable if interpretability is a goal,
self-organizing maps and dimensionality reduction algorithms, although they do offer post-hoc
explanations to the supervisor, do not clearly reveal links between the input variables that de-
scribe each entity, which reduces their effectiveness in motivating predictions and explaining
outputs.

Lastly, a number of works have tackled explainability in the context of dyadic data. The im-
portance of providing explanations for recommendations in the context of recommender systems
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has been established, and the effectiveness of different forms of explanation has been studied
[23, 24]. An algorithm to obtain explainable clusters of users in the specific context of short
text streams has been proposed [25], as a specific version of the topic modelling problem that
cannot be used for generic dyadic data. Finally, the most similar work to our own is TEM [26]
which consists of an embedding model enhanced with a classification tree in order to obtain
explainable outputs. The algorithm uses an attention network to highlight the most relevant
embeddings, which are then explained using the classification tree. However, TEM is limited to
obtaining post-hoc explanations since the attentive embedding precludes the attainment of global
explanations.

In conclusion, although the analysis of dyadic data is a popular field with many different
approaches in the literature, the interpretable methods available are limited to post-hoc expla-
nations of outputs. When tasked with obtaining an explanation of the relationships encoded in
a utility function, the only possibility available to the practitioner is to use a generic clustering
algorithm and then open the black box with an interpretable predictor.

3. Definitions

Dyadic data X describe interactions between two entitiesU and I. Each data point x ∈ X is
a (u, i, v) tuple, where u ∈ U and i ∈ I are the elements of each entity involved in the interaction
and v is a value that informs of some characteristic of that interaction. For every u, i there is a data
point x describing their relationship (x can be observed or predicted). Consequently, X can be
represented with a function f : (U,I)→ {−1,+1}, commonly called a utility function. Note that
v can take any value, but here we simplify the problem by transforming v to -1 or 1. Obtaining
a prediction of this utility function is a very common problem that has usually been solved in
the literature using matrix factorization [2, 27]. In addition, we define a clustering Cl(U) over a
dataset U as a set of m disjoint groups that contain every element in U. The formulation is as
follows:

Cl(U) = {Clu1, . . . ,Clum} . (1)

The homogeneity of the utility function inside each group Cluk can be used to establish the fitness
of the clustering [28]. With this goal, we define the ratio p of positive elements in a group k for
a given i j that represents the j-th element in I as:

pk j = Pr(+1|Cluk, i j) =
|
{
u ∈ Cluk : f (u, i j) = +1

}
|

|Cluk |
(2)

A group Cluk is said to be consistent when there is good agreement in the values of f for the
elements contained in the group, that is, p approaches 0 or 1. To measure that consistency as
intended, we use the entropy of p.

H(p) = −p log2(p) − (1 − p) log2(1 − p). (3)

H(pk j) measures the consistency of a single group Cluk with respect to i j. To extend this measure
to the whole clustering Cl(U), every group and every element in I must be taken into account.
Formally, we define the weighted entropy (WE) of a clustering Cl(U) as:

WE(Cl(U)) =
∑
k, j

|Cluk |

|U||I|
H(pk j). (4)
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Bearing in mind the interpretability characteristics described in Section 1, here we focus on
the ability of algorithms to motivate their predictions in an interpretable way using the input
variables. We must therefore add a value to the fitness measure to evaluate the complexity of the
explanation required to define each group, which we will estimate with the number of variables
that describe the group. Consequently, we define the quality of a clustering as:

quality(Cl(U)) = −WE(Cl(U)) − λ
∑

Cluk∈Cl(U)

NV(Cluk). (5)

where NV represents the number of variables needed to describe Cluk and λ is a hyperparameter
that allows the supervisor to balance the entropy of the clustering with its interpretability. It can
be shown we can intuitively expect a balance between the complexity of the explanation and
the precision of the obtained clustering. Thus, to obtain very uniform groups one will gener-
ally need to form a large number of such groups which, in turn, will require a larger number of
variables; however, both requirements decrease the interpretability of the clustering. Managing
the trade-off between interpretability and accuracy is a desirable feature that avoids obtaining
misleadingly oversimplified explanations while keeping interpretability to acceptable levels [6].
Hyperparameter λ allows the supervisor to manage this trade-off. This idea of factoring in both
model accuracy and complexity is reminiscent of the well-known Akaike information criterion
[29] and the Bayesian information criterion [30], although with significant differences that gen-
eralize the model to allow dyadic data handling and explainability through trees.

It is worth noting that it is irrelevant that the quality measure is a negative number. The goal
of the algorithm is maximizing its value to approach 0. This general quality measure can be
applied in any clustering built with whatever method for a dyadic dataset.

4. Proposed algorithm

We describe a new explanatory algorithm for dyadic data that obtains groups that are as ho-
mogeneous as possible and that are simultaneously explained using as few of the input variables
as possible. To achieve this, a binary decision tree is built and a clustering Cl(U) is defined by
considering each leaf node as a separate group that is described by the variables that lead to that
node. Note that this contrasts the available alternative, which is to use separate models for the
clustering and the explanation tree, producing inferior results. It is also worth noting that the
obtained groups are described with a varying number of attributes and the result can therefore be
considered as a subspace clustering of the data.

The main process consists of finding the tree that maximizes the quality of the resulting clus-
tering defined using Eq. 5. Certain simplifications are needed in order to efficiently explore the
solution space. First, as mentioned above, the decision tree is binary because only dichotomous
splits are contemplated (a common simplification when building decision trees). Also, to facil-
itate the calculation of the quality of a clustering, given that the number of elements in I can
prevent accurate calculation in a reasonable time, a significant random sample of I is considered
instead of the entire I set. This is done by performing a previous clustering on I using a standard
algorithm such as K-Means and using centroids ci j as representative points; in the event that the
input space structure does not allow for K-Means to be computed, any sampling procedure that
obtains a reduced number of representatives of I could be used. Once the representatives are
computed, the ratio p is estimated using a variation of Eq. 2 where i j includes only the selected
representatives rather than each possible item. Analogously, addends in Eq. 4 are computed for
each representative and divided by the number of items belonging to the represented cluster.
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In addition, since exploring every possible decision tree built as described is unfeasible, a
search strategy is mandatory. First, to prevent the tree from splitting at any possible value of
each input variable, the number of split points must be reduced. A maximum number of split
points is therefore established for each variable. In the case of numerical variables these points
are determined using discretization. We modelled the search procedure after the C4.5 algorithm
[31], adapting the entropy calculation to a multi-label context. Our implementation differs from
existing multi-label versions of C4.5 [32] in that the weighted entropy measure that we use factors
in the size of the groups directly.

A single tree of LMAX levels is built by performing a greedy search in which, for each node,
the candidate with the best weighted entropy is selected. This process is recursively repeated
for the new groups obtained after the split, until a given LMAX level is reached, as previously
selected by the user. To expand the reach of this solution space exploration and so increase the
possibilities of achieving a good solution,at each step the proposed algorithm explores not only
the candidate with the best weighted entropy but the N best candidates. This spawns N possible
trees that, when exploring the next level, will each generate 2 ∗ N different possibilities. This
process makes the number of explored trees grow exponentially with LMAX . For this reason, the
selected values for the N and LMAX hyperparameters should be low. Once all possible trees are
generated, the tree that defines the clustering with the highest quality is selected. The resulting
clustering defined by this tree will consist of a maximum of 2LMAX groups.

This entire process is described in Algorithm 1.

Data: U, LMAX ,N
Result: Decision tree that determines the clustering.
function buildTree(U, level, splitPs, LMAX ,N)→ best

if level > LMAX then
return ∅

end
candidates← sorted list with capacity N;
for (variable, value) ∈ splitPs do

1 le f t ← {u ∈ U : u[variable] < value};
right ← {u ∈ U : u[variable] > value};
if WE(le f t)∗left.size+WE(right)*right.size < candidates.max then

2 candidates.add((variable, value));
end

end
best ← ∅;
for (variable, value) ∈ candidates do

3 le f t ← {u ∈ U : u[variable] < value};
4 right ← {u ∈ U : u[variable] > value};
5 le f tTree← buildTree(le f t, level + 1, splitPs, LMAX ,N);
6 rightTree← buildTree(right, level + 1, splitPs, LMAX ,N);
7 newTree← (variable, value, le f tTree, rightTree);
8 if WE(newTree) > WE(best) then
9 best = newTree;

end
end
return best;

end
splitPs← list of split points for every variable;
return buildTree(U, 0, splitPs, LMAX ,N);

Algorithm 1: Explanatory tree construction algorithm.
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Lastly, in some cases the clustering defined by the retrieved tree may have less quality than
the clustering defined by a subset of that tree. To address this, pruning is implemented; nodes are
examined from level LMAX − 1 to the root and any splits that do not have a positive impact on the
overall quality are removed, as described in Algorithm 2.

Data: tree, λ
Result: Pruned tree.
function prune(tree,λ)→ tree

1 if isLeaf(tree) then
2 return tree;

end
3 le f t ←prune(tree.le f tBranch, λ);
4 right ←prune(tree.rightBranch, λ);
5 splitEntropy← le f t.entropy∗|le f t|+right.entropy∗|right|

|tree| ;
6 ∆E = splitEntropy − tree.entropy;
7 ∆NV = le f t.numVars + right.numVars − tree.numVars;

if −∆E − λ∆NV <= 0 then
8 tree.le f tBranch← ∅;
9 tree.rightBranch← ∅;

return tree;
end

Algorithm 2: Pruning algorithm.

This algorithm consists of calculations that can be performed in parallel since they are in-
dependent of each other, so, to take advantage of this feature, the algorithm was implemented
in the Apache Spark distributed computing framework. By leveraging distributed computing,
the scalability of the algorithm is greatly increased, which, in turn, enables the analysis of large
datasets in manageable times. The Apache Spark implementation of the clustering algorithm
and all data transformation procedures are available for download from https://github.com/

eirasf/Dyadic-Explanation-Tree.

5. Experimental setup

To assess the validity of the algorithm we performed two sets of experiments. We applied the
method first to two real-world large datasets, measured the quality of the obtained explanation
and compared the results with those for an alternative approach consisting of using two separate
models: a generic clustering algorithm and an interpretable predictor that opens the black box
(see Section 2). To the best of our knowledge there is no other method in the literature that can be
used to explain dyadic data. Therefore, since the goal of this experiment is to establish whether
our method offers better results than using separate clustering and explanation algorithms, we
chose K-Means as the most common clustering algorithm and then selected a CART tree as the
explanatory model so that the obtained tree is built similarly to our method, which contributes to
a fairer comparison of the alternative approaches. Moreover, the use of entropy as the impurity
measure for the CART tree assures that the quality obtained with this approach is as high as
possible. Another experiment was performed to measure the effect on execution time of adding
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Table 1: Dataset description.

Original datasets
Dataset Attributes Samples
Outbrain DAY1 667 1,445,196
MovieLens 20M 2,154 20,000,263

Transformed datasets
Dataset Explanatory Defining Samples
Outbrain DAY1 667 100 1,445,196
UsersEx 1005 100 138,493
UsersExWithPrediction 1005 100 138,493
MoviesEx 1149 100 10,369

further computational nodes to the distributed calculation; this was done to test the scalability of
the presented algorithm in the implementation in Apache Spark.

The first dataset we selected was one published by the advertising company Outbrain, made
public as the subject of a competition hosted in the popular machine learning site Kaggle.com.
Outbrain suggests new news content that may be of interest to readers. The dataset3 records
the page views of a number of users in a variety of news-related websites over the span of
14 days and, since the documents refer to current issues, the recorded views vary in terms of
topic at different times; consequently, it was advisable to split the dataset into smaller parts
that covered a shorter time span. For the purposes of this research, we used some 1,450,000
records consisting of 667 variables that were collected on the first day. Our second choice was
the popular MovieLens 20M dataset [33], commonly used to test recommendation systems. This
dataset reflects interactions, in the form of some 20 million ratings, between 138,000 users and
27,000 movies. After the required transformations (described in the next subsection), the dataset
contained some 20 million examples with 2,154 variables. The dimensions of the datasets are
summarized in Table 1.

5.1. Dataset transformation

In order to apply the algorithms, the datasets needed to be formatted appropriately so that
each sample represented an interaction between an element u in an entityU and all the represen-
tatives ci j of the opposing entity I. Therefore, each sample contained the variables that charac-
terize u, which we refer to as explanatory variables, and a vector of values (r(u, ci0), . . . , r(u, ci j))
where r(u, ci j) ∈ {−1, 1} qualifies the relationship between u and representative ci j, which we call
defining variables.

The Outbrain dataset consists of elements that represent a page view by each user and that
contain information about the user, the viewed document and the result of the interaction be-
tween the user and the offered sponsored links referring to other documents. While documents
are characterized by numerous variables, including the publisher, category, topics covered and
entities mentioned, users are solely described by their position (latitude and longitude) and the

3Available for download from https://www.kaggle.com/c/outbrain-click-prediction
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Figure 1: Transformation performed to obtain the Outbrain DAY1 dataset.

type of device used. To overcome the lack of information regarding users, we used the trans-
formed dataset obtained by Luaces et al. [28] in which the attributes of the viewed document are
added to the characterization of the user. Also, although the aim of the original Outbrain compe-
tition was to predict the most effective sponsored links in a given situation, the problem tackled
here is different, namely, to obtain an explanation of the relationships between the user-document
pairs and the sponsored links.

The user-document pairs were thus grouped according to their behaviour in order to obtain
a high-level summary. Records corresponding to two consecutive page views by the same user
were located and the preference of the user for one document over others was recorded so as
to obtain preference tuples. These tuples conformed the dyadic dataset from which the utility
function learned using matrix factorization [28]. The interactions of each tuple with a set of doc-
ument representatives were selected to form the defining vector. These document representatives
were the centroids of a k = 100 K-Means of the documents. This process is represented in Fig.
1.

The MovieLens 20M dataset consists of a large number of ratings that directly describe rela-
tionships between users and movies. Movies are characterized by the year of release, a vector of
20 possible non-exclusive genres and a vector of 1,128 tags, totalling 1,149 variables per movie.
Users, in contrast, are only identified with an ID. To solve this problem of a lack of user infor-
mation, we represented users with a vector containing their ratings of the most popular movies,
considering popular movies to be those rated at least 5,000 times. This yielded a total of 1,005
popular movies. Users u were therefore described by a vector spanning 1,005 components of the
form {−1, 0, 1} where −1 represents a negative rating for a movie, 0 represents no rating and 1
represents a positive rating m. We modelled the utility function f (u,m) that predicts ratings to be
of the form

f (u,m,W,V) = σ(< Wu,Vm >) =
1

1 + e−<Wu,Vm> (6)

where W,V are parameter matrices to be learned that project users and movies in a common space
with fewer dimensions than the input space; in this case we selected a space with a dimension
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Figure 2: Example demonstrating the two options regarding the codification of a user.

equal to 200. By establishing a cost function:

J(W,V) =
∑

(u,m)∈X

− logσ(r(u,m)<̇Wu,Vm >) (7)

where r(u,m) ∈ {−1, 1} is the rating given to movie m by user u, the parameter matrices can be
learnt using Stochastic Gradient Descent, a very common approach to this problem analogous to
that used elsewhere [28].

This approach can be used with any dyadic dataset for which there is little or no information
describing one of the entities. Nevertheless, in some cases, for datasets where the data available
is sparse, the number of zeros in the user coding vector can become too large, increasing the
similarity between users and complicating the decision tree task. To circumvent this problem, the
user coding can be used to learn the utility function and can then be substituted by the predicted
ratings for the most popular movies for that user. For a given popular movie pmi, the user u
coding vector will be 1 in component i if f (u, pmi) > 0.5 and −1 otherwise. Both options are
compared in Fig. 2 and their effectiveness for this particular dataset was tested as reported in
Section 6.

Once users were coded and the utility function was learned, the projected movies Vm were
clustered using K-Means with k = 100, yielding 100 movie representatives. A dataset, named
UsersEx, was constructed by appending, to the coding for each user (explanatory), their rating of
each movie representative (defining). Once the users were coded using the prediction, the dataset
obtained using the same procedure was called UsersExWithPrediction. Analogously, 100 user
representatives were obtained by clustering the projected users Wu using K-Means with k = 100.
A third dataset, named MoviesEx, was constructed by appending, to the coding of each movie,
the utility of each projected user representative. Both these datasets allowed us to obtain two
complementary explanations of the data, as will be further explained in Section 6. The complete
pipeline is depicted in Fig. 3.

The datasets resulting from the transformations are described in Table 1. Note that the num-
ber of movies was reduced to 10,369, since many of them did not have any ratings in the dataset.
Also, although the number of explanatory variables depends on the number of attributes charac-
terizing each entity, the number of defining variables was always 100 since in all cases we used
the relationship of each element with 100 representatives of the opposing entity to characterize
behaviour.
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Figure 3: Transformations performed to convert the MovieLens 20M dataset in the MoviesEx and UsersEx datasets.
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Figure 4: Pruned vs. original tree quality for the Outbrain DAY1 dataset (left). Number of nodes in the resulting pruned
tree (right).

6. Results

In our first set of experiments we undertook the construction of an explanatory tree for the
datasets and compared its quality to that of the explanation obtained by using a clustering algo-
rithm and a separate model explainer. In order to perform these experiments, the values of the
hyperparameters λ, N and LMAX needed to be set. We used N = 5 and LMAX = 5, which origi-
nated a 5-level binary tree that, consequently, described 32 clusters characterized by 5 variables
each – considered to be a reasonable upper threshold for the complexity of the explanatory tree.

6.1. Effect of the λ hyperparameter
Using N = 5 and LMAX = 5 in Eq. 5 we obtained NV = 160. As described in Section 3, the λ

hyperparameter regulates the pruning process, balancing the weighted entropy, which measures
the effectiveness of the clustering and is in the [0, 1] range, with NV(Cl(U)), which was in the
[0, 160] range. We selected λ = 0.001 for our comparisons so that the obtained trees would
be highly pruned and so could be easily represented. Nonetheless, this process is inexpensive
enough to be performed rapidly with hundreds of different λ values. Fig. 4 shows a plot of λ
vs. the quality of the explanation for dataset Outbrain DAY1. It can be seen that as λ grows, the
quality of the full tree decreases linearly, since the importance of the second component in Eq.
5 becomes larger. When λ is large enough, the pruning process can get rid of nodes that do not
decrease the weighted entropy sufficiently to offset the quality penalty associated with having
more nodes. Consequently, the number of groups in the clustering decreased, while the quality
improved with respect to that of the full tree. Similar results were obtained for datasets MoviesEx,
UsersEx and UsersExWithPrediction (see the supplementary material). The λ hyperparameter
allows the supervisor to control the aggressiveness of the pruning process and, therefore, the
complexity and accuracy of the explanatory model.

6.2. Suitability of the method
The results listed in Table 2 show that the models obtained with our method were both more

accurate and more explainable than those obtained using the alternative method. Only for dataset
UsersExWithPrediction did the k = 32 Clustering+Explanation build a model with smaller en-
tropy (0.027) than our method (0.047), although it needed more groups and so resulted in con-
siderably inferior quality (-0.187) than our method (-0.091).Note that our method yielded more
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Table 2: Results comparison for the experimental datasets. Best results are highlighted in bold face. λ = 0.001 was used
for the quality measurements.

Dataset ExplainTree Clustering+Explanation
WE Quality WE Quality

Outbrain DAY1 0.244 -0.331 0.359 -0.519
MoviesEx 0.260 -0.353 0.316 -0.476
UsersEx 0.290 -0.333 0.301 -0.461
UsersExWithPrediction 0.047 -0.091 0.027 -0.187

homogeneous groups in most cases than the alternative method, and this advantage was further
enhanced when the explainability of the model was taken into account. This highlights the supe-
riority of our approach that couples tree construction with a clustering process over the approach
that uses independent algorithms for each step.

6.3. Analysis of the explanations

The information that a supervisor can extract regarding the characteristics defining the be-
haviour of an Outbrain user reading a given document is limited by the fact that the variables
that characterize the user-document pair (topic, tags, etc.) are anonymized and only referred to
by identifiers. Without the variable names no conclusions can be extracted from the explanatory.
In contrast, however, the MovieLens dataset contains known variables that help identify trends
in the data. Fig. 5 shows the explanatory tree for dataset MoviesEx and indicates which charac-
teristics of a movie best define how different user types will react to them. It is apparent that a
movie in a top list (variables “movielens top pick” and “imdb top 250”) was the most defining
factor, after which certain movie qualities (variables “affectionate”, “earnest” or “predictable”)
determine different user group responses. This information would give a supervisor insight into,
for instance, what sort of movies should be added/removed from a catalogue. Another relevant
piece of information in Fig.5 is the fact that the initial weighted entropy of the dataset (0.86) de-
creases greatly (to 0.3) with this clustering, indicating both that the response of users to different
movies was very diverse and that the input variables allowed the uncertainty of the user response
to a given movie to be decreased; this reflects the high value of the information extracted. The
explanatory model for the UsersEx dataset represented in Fig. 5 offers additional insights to
the same data. The first piece of information that stands out is that the weighted entropy of the
full dataset is not very large (0.38), which indicates that users are somewhat homogeneous in
their behaviour towards movies. Moreover, clustering does not manage to significantly decrease
the weighted entropy of the data and, in consequence, the pruning process was very aggressive,
yielding only 6 nodes. This was because, as stated in Section 5.1, the users are characterized by
their rating (−1, 0, 1) of the 1,005 most popular movies. However, for a given user, most movies
are not rated, so users are defined by very sparse vectors. The large number of coincidences
between users (most movies are unrated for a large set of users) made the task of the decision
tree a difficult one. Nonetheless, this information could still be used, for instance, to rapidly
determine the user type of a new user in a cold-start situation by simply asking them to rate a few
movies selected from this decision tree. Furthermore, more information could be extracted from
this approach by using the learned utility function to eliminate undetermined values in the char-
acterization of users, as described in Section 5.1. Using the predicted values, the clustering tree
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(a) MoviesEx (b) UsersEx

(c) UsersExWithPrediction

Figure 5: Explanatory trees for the MovieLens datasets after pruning with λ = 0.001. Each node shows, respectively, the
proportion of elements that it represents w.r.t. the full dataset (shown in blue), the weighted entropy at that node (shown
in green) and the variable used in the next split (black). Split values are shown next to each split line. The root node also
indicates (in blue) the weighted entropy of the whole dataset.

corresponding to dataset UsersExWithPrediction, represented in Fig. 5, was much more effective
and decreased the weighted entropy to 0.05. Such a decision tree could be useful in a cold-start
scenario, similar to that described above but in which one could expect an unambiguous rating
of each presented item, as could be the case when items can be rated on the spot.

6.4. Scalability of the method

We performed an experiment with the aim of measuring the scalability of the method and of
the Apache Spark distributed implementation. The same computation was performed for varying
numbers of computing nodes. The experiments were run in a computer cluster formed by 8
machines with 12 computing cores each. The technical specifications for each node are provided
in Table 3. The Spark version used was 2.4.0, on Hadoop 3.0.0-cdh6.1.0. The operating system
of the machines was CentOS Linux release 7.4.1708.

The times invested to compute a three-level clustering tree for dataset Outbrain DAY1, listed
in Table 4, indicate that the Spark implementation takes advantage of the fact that most calcula-
tions are mutually independent and can, therefore, be performed in parallel. Consequently, the
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Table 3: Computer cluster overview.

8 nodes with the following characteristics:
Processor: 2 × Intel Xeon E5-2620 v3 at 2.40Ghz
Cores: 6 per processor (12 per node)
Threads: 2 per core (24 total per node)
Storage: 12 × 2TB NL SATA 6Gbps 3.5” G2HS
RAM: 64 GB
Network: 1x10Gbps + 2x1Gbps

Table 4: Execution time for computing a three-level tree for varying numbers of computing nodes.

Time (H:M:S)
# cores 12 2x12 4x12
Outbrain DAY1 3:19:46 2:35:33 1:33:45

execution time decreased at a similar rate to the increase in the number of computing nodes,
which would be the ideal. The implementation allows the processing of large amounts of data in
a reasonable time, provided the user supplies enough computing resources for the calculation.

7. Conclusions

We describe a method to obtain a global explanation of the information encoded in a dyadic
dataset. The computed model consists of a single decision tree that partitions one of the entities
into groups with homogeneous behaviour; this decision tree is computed using an adaptation
of a measure documented in the literature. The presented method is formulated in such a way
that it can be applied to any dyadic dataset in any field that processes dyadic data. For instance,
for data representing interactions in a market it could be used to perform large-scale market
segmentation that provides supervisors with valuable insights for informed decision making. It
could also be used to identify global trends in the data corresponding to recommender systems,
topic modelling, social network analysis and other similar data problems.

Also described is an an implementation of the presented algorithm in the popular Apache
Spark distributed computing framework, which allows the processing of large volumes of data.
Our experiments point to both the validity and the scalability of the approach, while also demon-
strating various approaches to analysing diverse dyadic data. A brief analysis of how the retrieved
information can be used is also presented.

In the future we plan to adapt this algorithm so that it becomes incremental and so allows the
use of a previously trained model to accelerate the calculation of an updated version when new
data becomes available. We also plan to revise the search strategy used to build the tree so that
the algorithm can be interrupted at any time and still yield meaningful results.
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