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Abstract

The health of automotive Li-ion batteries depends on different side reactions on
the electrodes that may degrade the cells, thereby reducing their usable capacity
and sometimes producing catastrophic failures with serious economic and safety
implications. In this paper, a method of detection and prognosis of battery de-
terioration is proposed in which an intelligent soft sensor is able to synthesize
human-understandable health indicators from sequences of voltages, currents and
temperatures streamed via on-vehicle sensors. This soft sensor is based on a
dynamic model optimizing three different criteria obtained by means of multi-
objective grammatical evolution. Different survival selection strategies suitable
for this problem are discussed and compared.
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1. Introduction

All automotive Li-ion batteries exhibit gradual degradation, given that their
usable capacity decreases with time. The state of health of an automotive Li-ion
battery at any point in time depends on the history of the different electrochemical
reactions that have taken place on its electrodes. Some of these reactions are
undesired and cause premature deterioration of the battery, but it is not easy to
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perceive when these harmful changes are taking place, nor can these abnormal
degradations be prevented immediately while the vehicle is being used (Weng
et al., 2016).

Normally, a cause-agnostic approach to the problem is adopted in which the
precise degradations are ignored and only the usable capacity of the battery is
measured during routine charges of the vehicle. However, there are also “silent”
deteriorations that do not influence the battery’s usable capacity and hence go
undetected when using the agnostic approach. For instance, if the impedance of
an aged battery is increased, then the maximum power of the vehicle is limited,
though its range is not. In other cases, electrodepositions or mechanical fractures
can degrade the electrodes and the battery may suddenly die. Apart from eco-
nomic concerns, abrupt failures have safety implications and must be prevented
(Weng et al., 2013; Anseán et al., 2016).

Diagnosing silent deterioration requires measuring different variables such as
the capacities of the positive and negative electrodes, or the loss of lithium in-
ventory (Torai et al., 2016). These are destructive measurements, but indirect
measurements are also possible, as these values are correlated with the locations
of the slope changes in the voltage vs. charge curve (known as Incremental Ca-
pacity Analysis (ICA); see (Dubarry et al., 2006)). However, this analysis must be
performed off-vehicle under laboratory conditions (Dubarry et al., 2012). More-
over, the accuracy of the vehicle’s sensors is not sufficient to detect many incipient
types of degradation. As removing the battery and testing it in the laboratory is
not a viable option, soft sensors of its state of health are used instead to synthesize
the irretrievable variables from sequences of voltages, currents and temperatures
streamed via on-vehicle sensors. Most soft sensors are model based and require
that a dynamic model of the battery is learned from data; see (Sánchez et al.,
2014) for an empirical study in which the accuracies of different first-principle,
semi-physical and intelligent models are compared when applied to this task.

Soft sensors can synthesize the unknown variables, but they do not constitute a
diagnostic or prognostic method per se. Sensors that depend on black-box models
of the battery are often combined with “virtual laboratory” experiments, in which
the off-vehicle laboratory experiments mentioned above are applied to a computer
simulation of the battery model. Alternatively, soft sensors based on grey-box
or first-principle models are able to produce estimations of the variables of in-
terest without additional procedures. Human-understandable models are sought
because virtual labs are both computationally expensive and potentially inaccu-
rate: well-fitted models may perform poorly when certain laboratory experiments
are simulated on them.

2



Models with a human-understandable structure also have a further advantage:
expert knowledge can be added to these models without difficulty. This “injected”
knowledge can comprise linguistic rules (Fazzolari et al., 2013), mathematical
expressions (Kozek and Sinanović, 2008; Greblicki, 1992), semi-physical analo-
gies (Blanco et al., 2014) or many others. Fuzzy Rule-Based Systems (FRBS)
arguably constitute the most popular mechanism for integrating data and expert
knowledge, although in this paper we propose that Genetic Programming-Based
Learning (GPBL) is more flexible (Tsakonas, 2014), as GPBL expressions include
FRBS as a particular case. FRBS are valid chains in a context-free grammar and
GPBL algorithms for FRBS exist (Sanchez et al., 2015). In contrast, there are
many human-understandable models with a grammar-based definition that cannot
be easily expressed in terms of IF-THEN rules; see, for instance, (Villar et al.,
2015).

Nonetheless, the use of GPBL for learning the hidden health variables of a
battery is not straightforward. This is because the learning algorithm must jointly
minimize the residuals of the approximation to the output voltage, the temper-
ature and the derivative of the output voltage, as previously mentioned. While
Multi-Objective Genetic Programming (MOGP) is a well-known technique, it
is generally thought of as an anti-bloat technique in single-objective problems
(Vladislavleva et al., 2009; Giri et al., 2013; Ni et al., 2013; Ji Ni and Rockett,
2015; Nag and Pal, 2016), where complexity measures are added to the optimiza-
tion problem as new goals. Recent advances in the survival selection mechanisms
of Multi-Objective Evolutionary Algorithms (MOEA) have not yet been ported to
MOGP. Examples of these as-yet unported mechanisms are the adoption of a set of
well-distributed reference points in the fitness landscape (Deb and Jain, 2014), the
use of new Pareto-preference relationships (Yuan et al., 2016) and decompositions
based on the boundary intersection approach (Li and Zhang, 2009).

For all these reasons, the methodological aim of this paper is to extend some
multi-criteria identification algorithms for dynamic models to GPBL with the ul-
timate goal of learning human-understandable health models of batteries. The
algorithms SPEA2 (Zitzler et al., 2001), NSGA2 (Deb et al., 2002), NSGA3 (Deb
and Jain, 2014), MOEA/D (Li and Zhang, 2009) and θ-DEA (Yuan et al., 2016)
will be ported to GPBL, giving rise to the extensions named MOGAP-SPEA2,
MOGAP-NSGA2, MOGAP-NSGA3, MOGAP-MOEA/D and MOGAP-θDEA,
respectively. The suitability of these extensions will be assessed via a real-world
battery diagnosis problem in which certain health-related variables of a LiFePO4
battery will be synthesized with the aid of these extensions. Apart from its prac-
tical interest, the problem is also relevant from a methodologic point of view be-
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cause of the presence of dominance resistant individuals with respect to the third
objective, i.e. the first derivative of the voltage with respect to the stored charge,
which require the adoption of specialized survival selection strategies.

The structure of the present paper is as follows. Section 2 provides a review of
the state-of-art in multi-objective genetic programming. The proposed extensions
are introduced in Section 3, while Section 4 details the battery diagnosis problem
motivating the present study. Section 5 contains the experimental design and dis-
cusses the results thus obtained and the conclusions of the paper are presented in
Section 6.

2. Multi-objective Genetic Programming-based Learning Models

Although tree-based data structures associated with Genetic Programming-
based Learning (GPBL) have been well-studied both in classification problems
and in symbolic regression problems (La Cava et al., 2016)), there are only a few
papers on the use of these structures in dynamic models (Villar et al., 2015). Most
of these studies focus on optimizing scalar fitness functions, while the majority of
the multi-objective implementations of Genetic Programming (GP) are intended
to combine anti-bloat techniques with a numerical fitness function (Poli et al.,
2008, 2010).

Human-understandable structures must be concise and should be based on a
limited catalogue of symbols. In this respect, Grammar-based Genetic Program-
ming or Grammatical Evolution (GE) is one of the broadest-ranging sub-areas of
GP. Its modularity has been widely used to represent restrictions on general do-
mains describing constraints and interactions within systems (O’Neill and Ryan,
2001; Dempsey et al., 2007; Brabazon et al., 2008). There are also studies in
which GE has been applied to learn linguistically understandable rules from data
(Garcia et al., 1999), although some authors claim that GPBL may be preferred to
rule-based learning systems in terms of the interpretability of the extracted knowl-
edge in many applications (Tsakonas, 2014). GE is often criticized because of the
disruptiveness of grammar-based crossover operators, while many authors have
studied the definition of operators that make small changes in the genotype, thus
avoiding large changes in the phenotype (McKay et al., 2010; Vanneschi et al.,
2014; Fenton et al., 2014; Lourenço et al., 2016).

The key issue with respect to Grammatical Evolution is the handling of pheno-
types to guide the search towards feasible genotypes (Lourenço et al., 2016). As
already stated, some aspects of the combination of GE and multi-objective learn-
ing have not been studied in depth, the most relevant studies on Multi-Objective
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Genetic Programming (MOGP) being related to the parsimony of the solutions
and the joint optimization of different quality measurements during the learning,
including information about the complexity of the problem, anti-bloat control and
elitist-based dominance relationships.

2.1. MOGP and GE for reducing complexity and bloating
Most of the prevalent Multi-Objective Genetic Programming implementations

have dealt with anti-bloat techniques in single-objective problems. Complexity
measures are added as additional criteria and the evolution is guided towards the
joint optimization of the quality of the solutions and their accuracy.

Complexity measures are important when a human-understandable form is
needed (Vladislavleva et al., 2009; Giri et al., 2013). Given that ephemeral random
floating-point constants are prone to produce large trees, hybrids between GA and
GP have been devised that operate with compact representations (Howard and
D’Angelo, 1995). Specific genetic programming mutation operators that reduce
the complexity in the population have also been studied by Ni (Ni et al., 2013; Ji
Ni and Rockett, 2015) for regression problems. Lastly, there are also applications
of MOGP to system identification tasks, where the accuracy and the complexity
of the model are treated as separate objectives (La Cava et al., 2016).

It should be noted that Grammar-Based Multi-Objective Genetic Program-
ming does not require a separate discussion, as it shares the same pros and cons
of MOGP, although there are fewer studies in this field (Pappa and Freitas, 2009;
Bader-El-Den et al., 2009; Mariani et al., 2016)

2.2. Evolution control: dominance and elitism
As stated previously, dominance resistant solutions are present in the prob-

lem being addressed in this paper. These solutions require specific operators and
survival selection strategies.

Custom operators for MOGP have been studied in different fields of applica-
tion. For example, Bhowan (Bhowan et al., 2013) studied MOGP using either
Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001) or Non-
dominated Sorting Genetic Algorithm II (NSGA2) (Deb et al., 2002) for classi-
fication problems with unbalanced data. This paper highlights the importance of
finding correct fitness evaluation strategies for MOGP and concludes that, for this
particular problem, SPEA2 is preferable to NSGA2. Many other studies have fo-
cused on MOGP for classification problems that make use of custom operators;
see for instance (Diosan and Andreica, 2015; Smid et al., 2015; Lazarus, 2015;
Hiroyasu et al., 2015). One of the most comprehensive efforts to assess a range
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of MOGPs for classification problems through the receiver operating character-
istic (ROC) was presented by Wang (Wang et al., 2014). The list of algorithms
includes a survival selection mechanism via Multi-Objective Evolutionary Algo-
rithms based on Decomposition (MOEA/D) (Qingfu Zhang and Hui Li, 2007). In
Wang’s study, it was observed that classical GP tree-based mutation operators are
very disruptive for the problem under study; thus, tailor-made crossover and muta-
tion operators are designed, with the NSGA2 survival selection mechanism being
finally considered the preferable option. A subsequent paper proposed the Con-
vex Hull-Based Multi-Objective Genetic Programming (CH-MOGP) algorithm
for improving NSGA2.

The diversity in the population for grammar-driven MOGP and symbolic re-
gression was studied by Tsakonas (Tsakonas, 2014). Rezaee (Rezaee et al., 2013)
minimized two different objectives in the optimization of Quantum-Dot Cellular
Automata electronic circuits. Finally, Olague performed an automatic synthesis
of operators for image analysis (Olague and Trujillo, 2012), employing a three-
objective approach. The environmental selection strategy in this study is Strength
Pareto Evolutionary Algorithm 2 (SPEA2).

Lastly, a set of approaches for automating the selection of the heuristics that
control the evolution has emerged in recent years. Hyper-heuristics are defined by
Burke as “heuristics to choose heuristics" (Burke et al., 2013). Hyper-heuristics
operate on a search space of heuristics as elements or components rather than
directly on the search space of solutions to the underlying problem. Nguyen im-
plemented a hyper-heuristic framework for a dynamic Multi-Objective Job Shop
Scheduling problem with a cooperative GP (Nguyen et al., 2014). Three low
level heuristics were compared: SPEA2, NSGA2, and Harmony distance-based
MOEA. The above paper proposed two new algorithms: multi-objective GP to-
gether with hyper-heuristic (MO-GPHH) methods and diversified multi-objective
cooperative evolution (DMOCC). The ability of GP to generate heuristics and
represent complex programs or rules was highlighted in these studies.

3. Proposed methodology

This study aims to apply multi-objective GE to learn model-based soft sensors
with a human-understandable form to measure the battery health of a vehicle with-
out the help of “virtual lab” experimentation. As mentioned in the Introduction,
three criteria need to be jointly optimized.

Different proposals related to MOGP could be adapted to this problem, al-
though none of them can be used unless some changes are effected. This is be-
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cause one of our criteria is related to the derivative of the prediction and this
derivative has large deviations for small changes in the model. Hence, dominance
resistant solutions are frequent. As of yet, this particular problem remains un-
solved for GP/GE.

Given that many-objective GAs are designed to cope with dominance resistant
solutions (Bechikh et al., 2017), we suggest that certain components of many
objective GAs can be reused in MOGP even though the problem at hand has just
three objectives. In particular, we propose to use a set of well-distributed reference
points, as done in recent GAs such as NSGA3 (Deb and Jain, 2014) and θ-DEA
(Yuan et al., 2016).

Furthermore, some other minor design decisions are described in this sec-
tion. Soft sensors depend on models with many numerical constants and a com-
pact, human-readable expression is sought. Thus, a codification similar to that of
Genetic Algorithm-Programming (GAP) (Howard and D’Angelo, 1995) is used.
GAP individuals have two parts: a tree-based expression and a chain of param-
eters. Ephemeral random constants are not used, but rather identifiers that point
to a position in a chain of numbers. This chain is evolved alongside the expres-
sion tree. Mutations and crossovers take part in the chain and the tree part with
different probabilities.

The pseudo-code of our grammar-based Multi-Objective Genetic Algorithm
Programming (MOGAP) is shown in Algorithm 1. The list of input parameters is:

1. The problem, Pr, which is evaluated to a vector of numerical criteria.

2. A Multi-Objective Evolutionary Algorithm, MOEA, and its associated list
of parameters, MOEAθ = {θ1, θ2, . . . , θp}.

3. The maximum number of generations, g.

4. The breeding operators. Crossover and mutation operators have different
probabilities for the tree part and the chain of parameters. These are phlx;
pllx for the crossover, and phlm; pllm for the mutation.

5. A local search operator, LS, that can take up to ils iterations.

The details of this algorithm are as follows:

• Initialization: Tree parts are generated using the ramped half-and-half method.
Floating-point values in the chain part of the chromosome are initialized
at random with a uniform distribution with bounds lb and ub. The chain
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Algorithm 1: MOGAP
Input: Pr; MOEA; MOEAθ; g; phlx; pllx; phlm; pllm; LS; ils

1 pop← Initialize_Population()
2 Evaluate_Population()
3 for i← 0 to g do
4 MOEA.Pre_Breeding_Procedure()
5 MOEA.Parent_Selection()
6 GaP.Crossover( hlxp, llxp)
7 GaP.Mutation( hlmp, hlmp)
8 Evaluate_Generated_Individuals()
9 for j ← 0 to ils do

10 Low_Level_Local_Search()

11 MOEA.Survival_Selection()

part not only codifies the values of the numerical constants in the tree part
but also other additional values that shall be evolved. For instance, in the
particular case of θ-DEA, the list of parameters MOEAθ contains a tuple
{H1, H2} from which three sets are to be generated: reference points, nadir
points and ideal points. H1 and H2 represent the divisions of boundary and
inner layers, respectively. The generated linear hyperplanes are needed for
locating well-distributed reference points in the feasible space; (see (Yuan
et al., 2016) for details).

• Pre-breeding: This procedure ensures that the algorithm recomputes some
values before crossover and mutation. Continuing with the preceding ex-
ample (θ-DEA), the pre-breeding step requires updating the ideal points
and applying the cluster operator.

• Recombination: Two individuals are selected from the mating pool via
a parent selection strategy based on tournament selection with a randomly
selected subpopulation (of size seven in this paper). Separate crossover op-
erators are applied to the chain and tree parts. Chain parts are recombined
by means of Simulated Binary Crossover (SBX) with a large distribution
index and probability pllx by means of an integer-based two-point crossover
operator. Arbitrary-length integer vector coding is used for GE implemen-
tations. Furthermore, MOGAP also includes a Low-Level Local Search that
optimizes the numerical constants in the chain of parameters for a given tree
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part. This local search is an essential part of this approach because it makes
the crossover less disruptive, helping to keep offspring as near to parents as
possible.

• Mutation: The mutation operator is also independently applied to the chain
and tree parts with probabilities phlm and pllm, respectively. A polynomial
mutation with a large distribution index (Cordón et al., 2003) is applied to
the chains. The tree-part mutation consists in selecting a node at random
and replacing it by a valid alternative in the grammar-based context.

• Fitness: The multi-objective fitness function for MOGAP is a vector whose
components are the different criteria: residuals of the approximation for the
observable variables (voltage and temperature), and differences between the
derivatives of predicted and measured voltages. Note that battery models
are stateful, but initial conditions are unknown; thus these conditions are
evolved alongside the tree-based expression of the model. The assessment
of the fitness function depends on these conditions (initial charge, initial
temperature, etc.)

• Survival Selection: The fitness landscape for the first two objectives (resid-
uals of the approximations of voltage and temperature) is different to that of
the third (mean of the squared differences between the derivatives of the true
voltage and the model prediction). Both residuals of the model (in voltage
and temperature) are smooth, but the derivative of the voltage is not; small
changes in the parameters can elicit large deviations of the derivative of the
voltage. In practical terms, this means that the offspring of two individuals
with a good fitness in the three criteria often include an individual also with
a good fitness in the two first objectives, but a bad fitness in the third, which
neither dominates the parents nor is dominated by them. In other words,
there are many dominance resistant solutions. As a consequence of this, if
a pure dominance ranking were used to guide the selection (as is done, for
instance, in NSGA-II), the population may evolve to a set of non-dominated
individuals and hence the selection would be purely guided by the crowding
distance, thereby hindering the evolutionary process.

Interestingly enough, this same problem also occurs with many-criteria al-
gorithms and therefore we propose to copy the survival selection strategies
for MOGAP from those of many-objective algorithms. These strategies
include indicator-based approaches, decomposition techniques with differ-
ent aggregation functions (Weighted Sum and Tchebycheff), and boundary
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intersection approaches, as implemented in SPEA2 (Zitzler et al., 2001),
NSGA2 (Deb et al., 2002), NSGA-3 (Deb and Jain, 2014), MOEA/D (Li
and Zhang, 2009) and θDEA (Yuan et al., 2016), among others. Each
of these survival strategies has been generalized to MOGAP. The iden-
tifiers MOGAP-SPEA2, MOGAP-NSGA2, MOGAP-NSGA3, MOGAP-
MOEA/D and MOGAP-θDEA will be used in the remaining part of the
paper to refer to these alternatives. In particular, the following parameters
were chosen:

– A fixed-size elite archive in MOGAP-SPEA2 equal to 7.

– Tchebycheff’s aggregation function with a neighborhood size of 10
and predefined weights in MOGAP-MOEA/D.

– Divisions of boundary and inner layers for MOGAP-NSGA-3 and
MOGAP-θDEA, with H1 = 4 and H2 = 3 respectively.

– A predefined penalty parameter (θ) equal to 2 for MOGAP-θDEA.

The next section contains an empirical study of the respective performances of
MOGAP-SPEA2, MOGAP-NSGA2, MOGAP-NSGA3, MOGAP-MOEA/D and
MOGAP-θDEA when these methods are applied to learn a soft sensor of the
health of a rechargeable Li-ion battery.

4. Practical application: Detection and prognosis of battery deterioration

State-of-the-art techniques for assessing the health of a battery are based on
the measurement of certain electrochemical properties of the battery’s electrodes
which manifest as slope changes in the Open Circuit Potential (OCP) curves of
the negative (graphite) and positive (phosphate) electrodes. OCP curves cannot
be perceived separately, but rather via their difference, which is the Open Circuit
Voltage (OCV) of the battery (see Figure 1). This is the voltage of the battery when
it is being charged (or discharged) at an infinitesimal rate. In practice, a reasonable
approximation of the OCV curve can be obtained if a slow charge/discharge cycle
is applied for 25 hours (the so-called “C25” charge/discharge current).

The slope changes in the OCP curve of the negative electrode appear in the
discharge OCV curve when there are phase changes between the different com-
pounds of lithium and carbon co-existing in this electrode. These phase changes
can be very precisely traced to different health problems (lithium loss, electrode-
position, mechanical cracks, etc.). In short, the position of the peaks of the deriva-
tive of the discharge curve vs. the voltage (Incremental Capacity Analysis or ICA
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Figure 1: Top part: Current, voltage and battery temperature during a slow charge/discharge cy-
cle; Bottom part: OCV curve, LFP and graphite OCPs. The OCV is the difference between the
potentials of the negative and positive electrodes.
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Figure 2: Incremental Capacity (IC) analysis, ∆Q
∆V , of the Voltage discharge segment, and charac-

teristic points of the NE GIC and ICA curves.
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curve) constitutes an effective diagnostic tool (see Figure 2, top part). An impor-
tant open problem is how to retrieve the position of these peaks while the battery
is being used in an electric vehicle (thus enabling the driver to become aware of
any health problems) without the need to take the battery apart and test it in the
laboratory for a day or more. To the best of our knowledge, there are no methods
that can retrieve the position of the ICA curve peaks using online data.

The proposal made in this paper is to use Grammatical Evolution to learn a
model-based soft sensor of the battery health that can be used on-vehicle. The
intended output of this sensor is a list of locations where the slope of the OCP
curve of the negative electrode changes (see Figure 2, bottom) which are also the
locations of the peaks of the ICA curve. The underlying model in the sensor hence
describes the OCP curves of the battery. As a set of input-output data pairs cannot
be obtained, this model will be learned indirectly. By “indirectly”, we mean that a
linguistically-understandable input-output model is obtained first. The structure of
this model is chosen so that it is a valid chain in a grammar defining the algebraic
expression of OCP curves. Once the model is learned and validated with input-
output data, the output of the soft sensor is obtained by parsing the tree part of the
GE model, as explained in the following paragraphs.

4.1. Battery model
The outputs of the battery model depend on the state of charge, which in turn

depends on the entire history of the battery. Hence, the modelling algorithm has
to evolve both the model expression and the initial state of charge (Sanchez et al.,
2014). This is troublesome, because the voltage of certain Li-ion batteries (and,
in particular, automotive LFP batteries constituting the subject of this study) is
almost flat for a wide range of states of charge. Thus, there is very little informa-
tion for estimating the charge from the voltage and temperature, except when the
battery is almost completely charged or discharged (Sanchez et al., 2015).

The method of least squares is not sufficient for fitting a model that can be
used for locating the peaks in the ICA curve; a term that depends on the derivative
of the voltage curve must be added. The reason is that a model can converge to
the data in the least squares sense while, at the same time, the derivatives of the
data and model may be very different. For instance, if the output of the model is
discrete, then the squared error of the approximation can be made arbitrarily low
if the discretizing grid is refined, but the derivative of the model is zero almost
everywhere (see Figure 3).

The inputs to the proposed model are the current, iB, applied to the battery,
and the ambient temperature, TA. The outputs are the battery voltage, vB, and the
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Figure 3: Least squares convergence does not mean that the derivatives of the models are similar.
Left: Training data (black) and the derivative (red) of the actual system. Right: Least squares
fitting of a linear combination of the step functions (black), the derivative of the model (red) and
the training data (green, dashed). The model error can be made as small as required if the number
of steps is increased, but its derivative is zero almost everywhere. There are many other cases in
which a model converges in least squares, but the derivative of the model does not converge to the
derivative of the signal being learned.

battery temperature, TB. The latent variables are the charge, Q, and the amount
of lithium in the positive and negative electrodes, respectively Q1 and Q2. Open-
Circuit Voltage (OCV) and Open-Circuit Potential (OCP) curves for the positive
(PE) and negative electrodes (NE) will be derived from the structure of the model.
Both the OCV and OCP are functions of Q. In turn, the output, vB, depends on
the electrode OCPs. For near-zero currents, the following approximation holds:

OCV = PE(Q1)−NE(Q2). (1)

If the current is between low and moderate, then

vB = PE(Q1)−NE(Q2) +R ∗ iB, (2)

where the term R ∗ iB models the transport of lithium from the PE (where it is in
the form of lithium-iron-phosphate) to the NE Graphite Intercalation Compound
(GIC) during charge (iB > 0). The opposite transport phenomena occur during
discharge (iB < 0). It is well known that the aging process mainly alters the
negative electrode, NE; thus the PE can be regarded as time-invariant (Anseán
et al., 2016). That is to say, the PE can be determined in the laboratory and left
unchanged, but a learning model for the NE is needed to assess the State of Health
(SoH) of the battery.
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We also propose approximating the concentration of lithium in the electrodes
via a linear model with coefficients rp, sp, rn, and sn that take into account the
capacity of each electrode and the initial amount of lithium in the phosphate and
the graphite:

Q1 = rp ∗Q+ sp (3)
Q2 = rn ∗Q+ sn (4)

Lastly, the output TB is modelled in line with the heat balance equation intro-
duced in (Sanchez et al., 2015),

ṪB = (α(QTB , iB) + βTB) · iB2 + γ · (TB − TA) (5)

which depends on an additional function, α(QTB , iB), and two parameters, β and
γ, that respectively describe the thermal inertia of the battery, the amount of heat
that is generated when the battery is charged or discharged, and the thermal resis-
tance between battery and ambient.

4.2. Implementation
Overall, the most challenging part of this health model is that of evolving an

expression for the OCP of the negative electrode. On the one hand, there are no
input-output pairs and therefore this problem cannot be solved via symbolic re-
gression techniques. We propose to learn a model of the two outputs that depends
on the sought OCP, the different parameters (R, β, γ) and the initial values of the
latent variables (Q, Q1, Q2). The function α is represented by a 2D lookup table,
whose components are also evolved by MOGAP.

The three objectives of the problem are the:

1. The mean squared error (MSE) between the measured voltage output and
the model vB (Eq. 2.)

2. The MSE between the temperature output (Eq. 5) and the model output TB.

3. The MSE between the derivative of the output vB and the measured battery
voltage, in the discharge segments.

The voltage profile of the negative electrode is also assumed to be a valid chain
in the context-free grammar included in Listing 1. The terminal symbols k0 to k24
are pointers to positive numbers in the chain of parameters. The voltage changes
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Listing 1: Grammar file for MOGAP in this study

START : : = POS − POS ∗ l o g i t (QSCALED) − SUMSTEPS
SUMSTEPS : : = POS |

POS ∗ q |
POS ∗ SUMSTEPS |
SUMSTEPS + SUMSTEPS |
s igmoid (QSCALED)

QSCALED : : = POS ∗ q − POS
POS : : = k0 | k2 | . . . | k24

that arise when the battery is almost empty or full are modelled by means of the
following logit function:

logit(p) = log(
p

1− p
) (6)

while the slope changes associated with characteristic points on the OCP curves
are modelled via sigmoids:

sigmoid(x) =
1

1 + exp(−x)
(7)

Thus, the location of the peaks in the ICA curve is expected to be associated with
the arguments of the “sigmoid” function in the chain, without the need to obtain
the ICA curve numerically, which is a computationally expensive procedure. For
instance, given the model

k0 - k1 * logit(k2*q-k3)
- (k4*sigmoid(k5*q-k6)+k7*sigmoid(k8*q-k9)+k10*q+k11)

the output of the soft sensor is the pair (k6/k5, k9/k8); i.e. the values of q where
the arguments of the sigmoid function is zero. Note that this grammar enforces
the monotonicity of the OCP curves because all valid models are additions of
monotonic functions or products of a positive constant and a monotonic function.

5. Experimental design, validation of results and discussion

The benchmark used for validating the proposed algorithms was set out in
(Echevarria et al., 2017) and comprises data from two LiFePO4 cells manufactured
by European Batteries (see Figure 4). The average operating voltage of these
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Figure 4: ICP 750 climate chamber with the LiFePO4 pouch-type cells from European Batteries
used in this study.

batteries is 3.2 V. The discharge and charge cut-off voltages are 2.5 V and 3.65 V,
respectively. The dimensions are: height, 275 mm; length, 166.5 mm; and width,
13.3 mm. The cells weigh 1010 g and 1008 g, respectively. Full charge/discharge
cycles, at a constant current rate, were applied to the batteries. The current, iB,
voltage, vB, ambient temperature, TA, and battery temperature, TB, were sampled
every 2 seconds.

5.1. Experimental design
The experimental design for MOGAP reported in this paper comprises the

assessment of the following five algorithms: MOGAP-SPEA2, MOGAP-NSGA2,
MOGAP-NSGA3, MOGAP-MOEA/D and MOGAP-θDEA. Each algorithm was
run twenty times. Two batteries were used for testing purposes. Half of the times,
the training dataset comprised data from Bat #1 and the test dataset comprised the
data from Bat #2, while the roles of training and test were reversed the other half
of the times.

The same population sizes and mutation and crossover probabilities were used
for all algorithms. The values of the learning parameters are shown in Table 1.
The local search algorithm for the present experimentation is a variant of Nelder
Mead on a sequence of subspaces proposed by Tom Rowan, called the “Subplex”
algorithm (Rowan, 1990).

Each Pareto Front (PF) was built by combining all the non-dominated models
that were found by each algorithm in these twenty runs. The decision to gener-
ate a combined Pareto Front (or “Super Pareto Front”) is not the only possible
alternative. However, other approaches such as the attainment surfaces or the
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Parameter Value
Generations 50 000
Population size ≈ 60
Local search iterations ipls 25
High level crossover probability Phlx 0.9
Low level crossover probability Pllx 0.8
High level mutation probability Phlm 0.01
Low level mutation probability Pllx 0.01

Table 1: Parameters for the experimentation

identification of a set with representative points are also implicit in the numer-
ical study if a binary indicator measure is selected. Moreover, statistical stud-
ies with unary quality indicators, such as Inverted Generational Distance, re-
quire the true Pareto of the problem. The resulting Super Pareto Front was as-
sessed via Zitzler’s binary additive ε-indicator (Iε+) (Zitzler et al., 2002): Given
two PF A and B, Iε+(A,B) = inf {ε ∈ R | ∀b ∈ B ∃a ∈ A : a �ε+ b}, where
ε expresses the minimum factor that can be added to each objective value in
b ∈ B, and the resulting objective remains weakly dominated by a ∈ A. If
Iε+(A,B) = 0 and Iε+(B,A) = 0, then A and B represent the same PF (A = B).
If Iε+(A,B) ≤ 0 and Iε+(B,A) > 0 then A Iε+-dominates over B (A / B). Oth-
erwise, Iε+(B,A) ≤ 0 and Iε+(A,B) > 0 and hence B Iε+-dominates over A
(A / B). If both epsilons are greater than zero, then A and B are not comparable
(A ‖ B).

5.2. Numerical results and discussion
In Figure 5 the sigmoids in the model expression are plotted together with the

discharge curve. Note that not all the peaks were successfully retrieved, only the
most relevant ones (in this case, peaks 2, 3, 4 and 5 of the ICA curve in Figure 2).
Both the accuracy and the number of peaks that are detected decrease when the
current is higher: up to four (out of five peaks) can be retrieved for low currents,
but only two (peaks 4 and 5) are found for moderate currents. If the current is high,
the changes in the slope are smoothed out by the kinetic effects of the battery and
the placement of the sigmoids will not be reliable.

In order to validate the methodological decisions taken in the design of the al-
gorithm, a 3D view of the Pareto Fronts thus obtained is shown at the top of Figure
6. This front is decomposed in three drawings at the bottom of the same figure.
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Figure 5: The location of the peaks in the ICA curve is associated with the positions of the sigmoids
in the model expression.

Note that selection strategies with either MOGAP-SPEA2 or MOGAP-NSGA2
produce solutions with high dispersion, while MOGAP-NSGA3, MOGAP-MOEA/D
and MOGAP-θDEA are concentrated.

Numerically, Table 2 shows the Additive Epsilon Indicator for each pair of
studied algorithms. The lower triangular matrix shows the relationships based on
the indicators Iε+(A,B) and Iε+(B,A). Note that the SPEA2 and NSGA2 strate-
gies do not dominate one another. Notice also that MOGAP-NSGA3 outperforms
the rest of the assessed setups for the proposed MOGAP. In addition to these data,
the binary extension of the Inverted Generational Distance Indicator, IH(A,B),
provides complementary information on the diversity in PFs and is displayed at
the bottom of the same table.

Finally, note that the proposed soft sensor has no comparable counterparts
in the specialized battery literature. Furthermore, OCP curves cannot be observed
and it is difficult to state how accurate the battery model in this sensor is. Nonethe-
less, we propose that the “voltage error” criterion for small currents (the OCV
curve) serves as an informal measurement of the attainable accuracy. In order to
obtain a numerical reference of the quality of the proposed method, a recurrent
neural network and a Genetic Fuzzy System (GFS) were used to learn a dynamic
model of the battery. The neural network is a Long Short-Term Memory (LSTM)
network with 50 hidden nodes and an output linear layer. The inputs to the net-
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Figure 6: Pareto Fronts obtained from the different survival strategies assessed in MOGAP. Top:
3D view. Bottom: Projections over pairs of criteria.
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work were the current, iB, and the charge of the battery, Q. The neural estimation
of the OCV curve was obtained by simulating a C25 cycle with the learned bat-
tery model. The GFS is a soft sensor described in the paper (Sánchez et al., 2017).
Table 3 provides a summary of the results.

6. Concluding remarks and future work

A model-based soft sensor of battery health has been developed that outputs
the location of the characteristic points of the negative electrode of an automotive
battery when the battery is being charged or discharged at a low current. Gram-
matical Evolution has been used to enforce the monotonicity of the models and
also to produce a human-readable structure that allows the position of the charac-
teristic points to be obtained symbolically, parsing the model expression.

The main difficulty arose from the need to minimize the prediction error in
both the voltage and its derivative. Given that small changes in the model lead
to a large spread of these derivatives, dominance resistant individuals appear that
demand a custom multi-objective GP implementation. The proposed MOGAP
algorithm incorporates recent advances developed for many-objective GAs, such
as a set of well-distributed reference points in the fitness landscape and decom-
positions based on boundary intersections. Different alternatives were compared
and it was concluded that the MOGAP-NSGA3 survival strategy is a reasonable
choice for solving this problem.

The method presented in this paper is competitive with other data-driven intel-
ligent algorithms, though there is still room for improvement. In future work, both
the positive and the negative electrodes shall be included in the model. Lastly, let
us recall that not all the characteristic points, but only the most relevant ones can
be retrieved (recall Figure 5). This means that the sensor performs a partial battery
diagnostic and there are certain health events that will not be detected. However,
this problem is inherent to the kinetic behaviour of batteries and it is unlikely that
an algorithmic solution can be found, as phase changes in the electrodes cannot
be perceived in the output voltage for high currents.
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Tested Battery MOGAP LSTM GFS
bat #1 0.00458 0.00781 0.00946
bat #2 0.00470 0.00786 0.00951

Table 3: Compared error values (average of the absolute error in volts) of the proposed method
MOGAP method, an LSTM neural network and a Genetic Fuzzy System.
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