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Abstract. In this paper, we analyze optimal control problems of semilinear parabolic equations,
where the controls are distributed and depend only on time. Box constraints for the controls are
imposed and the cost functional does not involve the control itself, just only the associated state. We
prove second order optimality conditions for local strong minimizers, that are used to derive error
estimates in the numerical approximation. First we estimate the difference between the discrete and
continuous optimal states. In the last part, under an additional assumption on the optimal adjoint
state, we prove error estimates for the controls and improve the estimates for the states.

1. Introduction. In this paper, we consider a domain Ω ⊂ Rd, d ≤ 3, with a
Lipschitz boundary Γ. Given T > 0 we denote Q = Ω × (0, T ) and Σ = Γ × (0, T ).
We will study the following control problem

(P) min
u∈Uad

J(u),

where

Uad = {u ∈ L∞(0, T )m : αj ≤ uj(t) ≤ βj for a.a. t ∈ (0, T ), 1 ≤ j ≤ m}

with −∞ < αj < βj < +∞ for 1 ≤ j ≤ m, m ≥ 1 is a fixed integer number, and

J(u) =

∫
Q

L(x, t, yu(x, t)) dx dt.

Above yu denotes the state associated to the control u related by the following state
equation 

∂yu
∂t

+Ayu + f(x, t, yu) =

m∑
j=1

uj(t)gj(x) in Q,

yu = 0 on Σ,
yu(0) = y0 in Ω.

(1.1)

On the data A, f , gj , y0 and L we make the following assumptions
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(A1) A denotes the elliptic operator

Ay = −
d∑

i,j=1

∂xj (ai,j(x)∂xiy),

where the coefficients ai,j ∈ L∞(Ω) satisfy the uniform ellipticity condition

∃λA > 0 : λA|ξ|2 ≤
d∑

i,j=1

ai,j(x)ξiξj for all ξ ∈ Rd and a.a. x ∈ Ω.

(A2) We assume that f : Q× R→ R is a Carathéodory function of class C2 with
respect to the last variable satisfying the following properties:

∃Cf ∈ R :
∂f

∂y
(x, t, y) ≥ Cf ∀y ∈ R, (1.2)

f(·, ·, 0) ∈ Lp̂(0, T ;Lq̂(Ω)) for some p̂, q̂ ≥ 2 with
1

p̂
+

d

2q̂
< 1, (1.3)

∀M > 0 ∃Cf,M > 0 :

∣∣∣∣∂jf∂yj (x, t, y)

∣∣∣∣ ≤ Cf,M ∀|y| ≤M and j = 1, 2, (1.4)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2f

∂y2
(x, t, y1)− ∂2f

∂y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,

(1.5)

for almost all (x, t) ∈ Q. Abusing notation, we will sometimes shorten

f(x, t, y) as f(y), ∂f
∂y (x, t, y) as ∂f

∂y (y) and ∂2f
∂y2 (x, t, y) as ∂2f

∂y2 (y) when this
does not lead to confusion.

(A3) We assume that {gj}mj=1 ⊂ L∞(Ω) and there exist pairwise disjoint sets with
positive Lebesgue measure {ωj}mj=1 such that gj vanishes outside ωj and
gj(x) 6= 0 for a.a. x ∈ ωj .

(A4) For the initial datum we assume y0 ∈ L∞(Ω).
(A5) L : Q × R → R is a Carathéodory function of class C2 with respect to the

last variable satisfying the following properties:

L(·, ·,0) ∈ L1(Q) and ∀M > 0 ∃ΨM ∈ Lp̂(0, T ;Lq̂(Ω)) and CL,M
such that∣∣∣∣∂L∂y (x, t, y)

∣∣∣∣ ≤ ΨM (x, t) and

∣∣∣∣∂2L

∂y2
(x, t, y)

∣∣∣∣ ≤ CL,M ∀|y| ≤M,
(1.6)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2L

∂y2
(x, t, y1)− ∂2L

∂y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,

(1.7)

for almost all (x, t) ∈ Q.

All these assumptions are required in the whole paper. Some additional assump-
tions will be specified later.

Though there are some recent papers concerning the second order optimality
conditions for problems of type (P), where the cost J does not involve the control
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itself, this is still a field of active current research. There is vast literature on second
order optimality conditions for control problems where the Tikhonov term appears
in the functional J . However, the method of proof for these cases does not work
for problems with objective functional depending only on the state. In addition, the
results for both type of problems are very different. The reader is referred to [8],
[11], [13], [14], [16], [15], [24] for sufficient second order conditions for bang-bang or
bang-singular-bang control problems. Another issue that has called the interest of
the researchers is the derivation of second order conditions for strong local minimizers
(Definition 3.1); see [1], [2], [13], [14]. In this paper, we present a second order
condition for strong local minimizers of (P) based on the usual extended critical cone.
This makes a difference with the only results in this direction proved in [11], [13], [14],
where a different cone was required. The reader can find in section 3 a more detailed
discussion on these issues.

A second novelty of this paper is the proof of error estimates for the difference
between the discrete and continuous controls in the framework of parabolic control
problems with bang-bang controls. As far as we know, the only results in this direction
are obtained for linear state equations: in [17], a quadratic convergence order is
obtained for the error with respect to the time step size in the case of bang-bang
controls using a variational discretization; in [3], the authors study a time optimal
control problem and obtain results similar to ours (compare [3, Table 1.1] and Theorem
6.5). For results in the case of control of elliptic equations the reader can consult [18]
for linear equations with variational discretization and [15] for semilinear equations
with full discretization. In [15], a structural assumption on the optimal adjoint state
is needed to prove the error estimates; see (6.1). In absence of this condition, we still
prove error estimates for the difference between the continuous and discrete optimal
states; see also [9] for a similar result in the context of control of 2D evolutionary
Navier-Stokes equations.

The plan of this paper is as follows. In section 2, we present some auxiliary results
about the state equation and the differentiability of the cost functional. The first and
second order optimality conditions are studied in section 3. In section 4 we discretize
the control problem and in section 5 we prove convergence of the discretizations and
derive error estimates for the states. In section 6 we prove error estimates for the
controls and improve the estimates for the states under the additional assumption
(6.1). Finally, we present some numerical results in section 7.

2. Auxiliary results. In this section we establish some properties of the state
equation and the cost functional J . First, we state existence, uniqueness and some
regularity properties for the solution of (1.1).

Theorem 2.1. For every u ∈ Lp(0, T )m with p > 1 there exists a unique yu ∈
Y := L2(0, T ;H1

0 (Ω)) ∩ L∞(Q) solution of (1.1). Moreover, there exists a constant
Kp > 0 independent of u such that

‖yu‖L2(0,T ;H1
0 (Ω))+‖yu‖L∞(Q)

≤ Kp

(
‖u‖Lp(0,T )m + ‖y0‖L∞(Ω) + ‖f(·, ·,0)‖Lp̂(0,T ;Lq̂(Ω))

)
.

Further, there exists a constant M∞ such that

‖yu‖L∞(Q) ≤M∞ ∀u ∈ Uad.
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This is a well known result. See, for instance, [7, Theorem 5.1] for some details
concerning the non-linearity of the equation. We also have the following continuity
property.

Lemma 2.2. If uk ⇀ u weakly in Lp(0, T )m for some p > 1, then the strong
convergence ‖yuk − yu‖L∞(Q) → 0 holds.

Proof. Define zk = yuk − yu. This function satisfies the equation
∂zk
∂t

+Azk + f(yuk)− f(yu) =

m∑
j=1

(uk,j(t)− uj(t))gj(x) in Q,

zk = 0 on Σ,
zk(0) = 0 in Ω.

By the mean value theorem, we know that there exist measurable functions 0 <
θk(x, t) < 1 such that, if we name ŷk = yu + θk(yuk − yu), then we have

∂zk
∂t

+Azk +
∂f

∂y
(x, t, ŷk)zk =

m∑
j=1

(uk,j(t)− uj(t))gj(x) in Q,

zk = 0 on Σ,
zk(0) = 0 in Ω.

(2.1)

Since the sequence {uk}k converges weakly in Lp(0, T )m, then it is bounded in this
space. Applying [20, Theorem III-10.1], we infer the existence of γ and C > 0 inde-
pendent of k such that

‖zk‖Cγ, γ2 (Q̄)
≤ C.

Since Cγ,
γ
2 (Q̄) is compactly embedded in L∞(Q), we can extract a subsequence that

converges in L∞(Q) to some z. Taking the limit in the equation (2.1), we deduce that
z = 0. Since all convergent subsequences of {zk}k converge to 0, the sequence itself
converges to 0.

Lemma 2.3. Given u, v ∈ Lp(0, T ) with p > 1 and u 6= v, then yu 6= yv holds.

Proof. Taking z = yu − yv, subtracting the equations satisfied by yu and yv and
using the mean value theorem, we get for some ŷ intermediate between yu and yv

∂z

∂t
+Az +

∂f

∂y
(x, t, ŷ)z =

m∑
j=1

(uj(t)− vj(t))gj(x) in Q,

z = 0 on Σ,
z(0) = 0 in Ω.

From the assumption (A3), we deduce that the right hand side of the above equation
is not zero, hence z 6= 0.

Given p > 1, let us denote G : Lp(0, T ) −→ Y the mapping associating to each
control the corresponding state G(u) = yu.

Theorem 2.4. The control-to-state operator G is of class C2 and for every
u, v, w ∈ Lp(0, T )m, p > 1, we have that zv = G′(u)v is the solution of

∂zv
∂t

+Azv +
∂f

∂y
(x, t, yu)zv =

m∑
j=1

vj(t)gj(x) in Q,

zv = 0 on Σ,
zv(0) = 0 in Ω,

(2.2)
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and zv,w = G′′(u)(v, w) solves the equation
∂zv,w
∂t

+Azv,w +
∂f

∂y
(x, t, yu)zv,w +

∂2f

∂y2
(x, t, yu)zvzw = 0 in Q,

zv,w = 0 on Σ,
zv,w(0) = 0 in Ω.

(2.3)

We will use the following regularity result for linear equations:

Lemma 2.5. Consider a0 ∈ L∞(Q) and v ∈ L1(0, T )m. Let z ∈ L∞(0, T ;L2(Ω))∩
L2(0, T ;H1

0 (Ω)) be the solution of
∂z

∂t
+Az + a0(x, t)z =

m∑
j=1

vj(t)gj(x) in Q,

z = 0 on Σ,
z(0) = 0 in Ω.

Then, the following inequality holds

‖z‖L∞(0,T ;L2(Ω)) ≤ 2 exp (‖a0‖L∞(Q)T ) max
1≤j≤m

‖gj‖L2(Ω)‖v‖L1(0,T )m . (2.4)

Proof. By taking the change of variables y(x, t) = exp (−‖a0‖L∞(Q)t)z(x, t) the
above equation is transformed in the following one

∂y

∂t
+Ay + [a0(x, t) + ‖a0‖L∞(Q)]y = exp (−‖a0‖L∞(Q)t)

m∑
j=1

vj(t)gj(x) in Q,

y = 0 on Σ,
y(0) = 0 in Ω.

Multiplying the equation by y and integrating in Ω× (0, t) for t ≤ T we have∫ t

0

∫
Ω

∂y

∂t
y dx ds+

∫ t

0

∫
Ω

(Ay + [a0(x, s) + ‖a0‖L∞(Q)]y)y dx ds

≤
m∑
j=1

∫ t

0

∫
ωj

vj(s)gj(x)y(x, s) dx ds.

Using the ellipticity condition (A1) and the fact that ∂y
∂t y = 1

2
∂y2

∂t we get

‖y(·, t)‖2L2(Ω) ≤ 2 max
1≤j≤m

‖gj‖L2(ωj)‖v‖L1(0,T )m‖y‖L∞(0,T ;L2(Ω)) for a.a. t ∈ [0, T ].

We readily deduce that

‖y‖L∞(0,T ;L2(Ω)) ≤ 2 max
1≤j≤m

‖gj‖L2(ωj)‖v‖L1(0,T )m .

Inserting z = exp (‖a0‖L∞(Q)t)y(x, t) in this inequality, (2.4) follows.

Lemma 2.6. The solution operator G is Lipschitz from Uad to L∞(0, T ;L2(Ω)),
i.e., there exists a constant L1 > 0 such that

‖yu1
− yu2

‖L∞(0,T ;L2(Ω)) ≤ L1‖u1 − u2‖L1(0,T )m ∀u1, u2 ∈ Uad.
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Proof. Denote z = y1 − y2. Using again the mean value theorem, there exists an
intermediate ŷ such that

∂z

∂t
+Az +

∂f

∂y
(x, t, ŷ)z =

m∑
j=1

(u1,j(t)− u2,j(t))gj(x) in Q,

z = 0 on Σ,
z(0) = 0 in Ω.

Using Theorem 2.1, (1.4) and (2.4), we obtain the desired result.

Next, we state the differentiability properties of the objective functional. As
usual, to every u, we relate the adjoint state ϕu that satisfies

−∂ϕu
∂t

+A∗ϕu +
∂f

∂y
(x, t, yu)ϕu =

∂L

∂y
(x, t, yu) in Q,

ϕu = 0 on Σ,
ϕu(T ) = 0 in Ω,

(2.5)

where A∗ denotes the adjoint operator of A. Assumption (1.6) together with Theorem
2.1 imply that ϕu ∈ L2(0, T ;H1

0 (Ω)) ∩ C(Q̄) for every u ∈ Uad

‖ϕu‖L2(0,T ;H1
0 (Ω)) + ‖ϕu‖C(Q̄) ≤ K∞ ∀u ∈ Uad; (2.6)

see [20, §III-7 and §III-10]. We also introduce the continuous functions

ψu,j(t) =

∫
ωj

ϕu(x, t)gj(x)dx, 1 ≤ j ≤ m. (2.7)

The next theorem follows from the chain rule, Theorem 2.4 and assumptions (A2)
and (A5).

Theorem 2.7. Given p > 1, the functional J : Lp(0, T )m −→ R is of class C2

and for every u, v, w ∈ Lp(0, T )m

J ′(u)v =

m∑
j=1

∫ T

0

ψu,j(t)vj(t) dt, (2.8)

J ′′(u)(v, w) =

∫
Q

(
∂2L

∂y2
(x, t, yu)− ϕu

∂2f

∂y2
(x, t, yu)

)
zvzw dx dt. (2.9)

Remark 2.8. The functionals J ′(u) and J ′′(u) can be extended to continuous linear
and bilinear forms, respectively, in L1(0, T )m. Notice also that assumptions (A2) and
(1.6), Theorem 2.1, Lemma 2.5 and (2.6) imply the existence of some M2 > 0 such
that

J ′′(u)(v, w) ≤M2‖zv‖L2(Q)‖zw‖L2(Q) ∀u ∈ Uad, ∀v, w ∈ L1(0, T )m. (2.10)
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3. First and second order optimality conditions. Existence of a global
solution of (P) follows in a standard way. Since (P) is not a convex problem, we have
to consider local solutions as well. Let us state precisely the different concepts of local
solution.

Definition 3.1. We say that ū is a Lp-weak local minimum of (P), p ∈ [1,+∞],
if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lp(0,T )m ≤ ε.

We say that ū is a strong local minimum if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖yū − yu‖L∞(Q) ≤ ε.

We say that ū is a strict (weak or strong) local minimum if the above inequalities are
strict for u 6= ū.

Lemma 3.2. The following properties hold:

1. ū is a L1-weak local minimum if and only if it is a Lp-weak local minimum
for every p ∈ [1,+∞).

2. If ū is a Lp-weak local minimum for some p < +∞, then it is a L∞-weak
local minimum.

3. If ū is a strong local minimum, then it is a Lp-weak local minimum ∀p ∈
[1,∞].

Proof. Statement 1 follows from the boundness of Uad in L∞(0, T )m. Statement
2, follows from the inclusion L∞(0, T )m ⊂ Lp(0, T )m; cf. [10, Page 14].

To prove statement 3, notice that the set {u ∈ Uad : ‖u − ū‖L1(0,T )m ≤ δ} is a
subset of {u ∈ Uad : ‖ȳ − yu‖L∞(Q) ≤ ρ} if δ is sufficiently small.

First order optimality conditions read like:

Theorem 3.3. Suppose ū is a local solution of (P) in any of the senses given in
Definition 3.1. Then, there exist ȳ and ϕ̄ in L2(0, T ;H1

0 (Ω)) ∩ L∞(Q) such that
∂ȳ

∂t
+Aȳ + f(x, t, ȳ) =

m∑
j=1

ūj(t)gj(x) in Q,

ȳ = 0 on Σ,
ȳ(0) = y0 in Ω,

(3.1a)


−∂ϕ̄
∂t

+A∗ϕ̄+
∂f

∂y
(x, t, ȳ)ϕ̄ =

∂L

∂y
(x, t, ȳ) in Q,

ϕ̄ = 0 on Σ,
ϕ̄(T ) = 0 in Ω,

(3.1b)

∫ T

0

ψ̄j(t)(u(t)− ūj(t))dt ≥ 0 ∀αj ≤ u(t) ≤ βj a.e. in (0, T ), 1 ≤ j ≤ m, (3.1c)

where

ψ̄j(t) =

∫
ωj

gj(x)ϕ̄(x, t)dx.
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As usual, we can deduce from (3.1c) that

ūj(t) =

{
αj if ψ̄j(t) > 0
βj if ψ̄j(t)<0

and ψ̄j(t)

 ≥ 0 if ūj(t) = αj
≤ 0 if ūj(t) = βj
= 0 if αj < ūj(t) < βj .

(3.2)

Now, we establish the second order optimality conditions. In the sequel, ū will
denote a control of Uad satisfying (3.1a)–(3.1c) along with the associated state ȳ and
adjoint state ϕ̄. We define the cones of critical directions, for any τ ≥ 0,

Cτū = {v ∈ L2(0, T )m : vj(t)

 ≥ 0 if ūj(t) = αj
≤ 0 if ūj(t) = βj
= 0 if |ψ̄j(t)| > τ

}

For τ > 0, Cτū can be considered as an extension of the classical cone of critical
directions Cū = C0

ū. It is well known that J ′′(ū)v2 ≥ 0 ∀v ∈ Cū is a necessary second
order condition for local optimality of ū; see, for instance, [5, §3.2] or [12]. In order
to have a minimal gap between the necessary and sufficient second order conditions,
we would like to formulate a sufficient condition as J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0} or
J ′′(ū)v2 ≥ δ‖v‖2L2(0,T )m ∀v ∈ Cū. Indeed, these two conditions are equivalent and

sufficient if the Tikhonov term is included in the cost functional; see [4], [12] or [14].
However, when the Tikhonov term is absent, as in our case, these two conditions
are not longer equivalent and they are not sufficient, in general, for local optimality.
Furthermore, observe that Cū = {0} if ū is a bang-bang control, hence the above
inequalities do not provide any information. Due to these arguments, some researchers
have suggested to consider extended cones as Cτū with τ > 0; see [19] and [21]. Then
the reader can be tempted to write the sufficient second order condition in the way:
J ′′(ū)v2 ≥ δ‖v‖2L2(0,T )m ∀v ∈ Cτū . Unfortunately, this condition does not hold, see

[8]. In [8] and [14], a different condition was assumed:

∃δ > 0 and ∃τ > 0 : J ′′(ū)v2 ≥ δ‖zv‖2L2(Q) ∀v ∈ Cτū , (3.3)

where zv = G′(ū)v is the solution of (2.2) for yu = ȳ. Then, it was proved that if
(ū, ȳ, ϕ̄) satisfy (3.1a)–(3.1c) and (3.3), then there exist ε > 0 and κ > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖u− ū‖L2(0,T )m < ε. (3.4)

This inequality proves that ū is a strict L2-weak local minimum of (P). To deduce
error estimates for finite element approximations for the state variable, see Section 4
below, we would like to use (3.4) with u = ūσ, the solution of the discrete problem.
Nevertheless, the technique would work only if we have that ūσ converges strongly
in L2(0, T )m to ū, which is something we cannot deduce due to the absence of the
Tikhonov regularization term.

A possible solution, also suggested in [14, Corollary 4], is to use a different cone.
Define

Eτū =

{
v ∈ L2(0, T )m : vj(t)

{
≥ 0 if ūj(t) = αj
≤ 0 if ūj(t) = βj

and J ′(ū)v ≤ τ‖zv‖L2(Q)

}
.

It is established in [14, Corollary 4] that if (ū, ȳ, ϕ̄) satisfy (3.1a)–(3.1c) and

∃τ > 0 and ∃δ > 0 : J ′′(ū)v2 ≥ δ‖zv‖2L2(Q) ∀v ∈ E
τ
ū , (3.5)
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then there exist ε > 0 and κ > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) < ε. (3.6)

Hence, ū is a strict strong local minimum of (P). The reader should observe that
the cones Cτū and Eτū represent two different ways of extending Cū, none of them is
included into the other. We finish this section proving that condition (3.3) is also
sufficient to deduce (3.6).

Theorem 3.4. If (ū, ȳ, ϕ̄) satisfy (3.1a)–(3.1c) and (3.3) then, there exist ε > 0
and κ > 0 such that (3.6) holds.

Before proving this theorem, let us establish the following auxiliary lemma.

Lemma 3.5. The following statements hold.

1.- ∀γ > 0 there exists ε > 0 such that if u ∈ Uad and ‖yu − ȳ‖L∞(Q) < ε, then

‖yū+θ(u−ū) − ȳ‖ < γ ∀θ ∈ [0, 1]. (3.7)

2.- ∀ρ > 0 there exists ερ > 0 such that if u ∈ Uad and ‖yu − ȳ‖L∞(Q) < ερ, then

| [J ′′(ū+ θ(u− ū))− J ′′(ū)] v2| ≤ ρ‖zv‖2L2(Q) ∀v ∈ L
2(0, T )m ∀θ ∈ [0, 1]. (3.8)

Proof. According to [14, Lemma 6], for every ρ > 0 there exists ερ > 0 such that
if u ∈ Uad and ‖yu − ȳ‖L∞(Q) < ερ, then

|(J ′′(u)− J ′′(ū))v2| ≤ ρ‖zv‖2L2(Q) ∀v ∈ L
2(0, T )m.

Therefore, (3.8) is an immediate consequence of (3.7) and this inequality. Let us prove
(3.7). Take u ∈ Uad such that ‖yu−ȳ‖ < ε with ε > 0 to be defined later. Let us prove
that (3.7) holds for an arbitrary θ ∈ (0, 1). Consider z = yū+θ(u−ū) − [ȳ + θ(yu − ȳ)].
The function z satisfies

∂z

∂t
+Az + f(yū+θ(u−ū))− [f(ȳ) + θ(f(yu)− f(ȳ))] = 0 in Q,

z = 0 on Σ,
z(0) = 0 in Ω,

Applying the mean value theorem, we have that there exist measurable functions
0 < θ1(x, t) < 1 and 0 < θ2(x, t) < 1 such that, if we name

y1 = ȳ + θ1(yū+θ(u−ū) − ȳ) and y2 = ȳ + θ2(yu − ȳ),

we have

∂z

∂t
+Az +

∂f

∂y
(y1)(yū+θ(u−ū) − ȳ)− θ∂f

∂y
(y2)(yu − ȳ) = 0 in Q.

Note that

yū+θ(u−ū) − ȳ = z + θ(yu − ȳ). (3.9)
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So, applying again the mean value theorem, there exists another measurable function
0 < θ3(x, t) < 1 such that, if we name y3 = y2 + θ3(y1 − y2), then

∂f

∂y
(y1)(yū+θ(u−ū) − ȳ)− θ∂f

∂y
(y2)(yu − ȳ)

=
∂f

∂y
(y1)z + θ

∂f

∂y
(y1)(yu − ȳ)− θ∂f

∂y
(y2)(yu − ȳ)

=
∂f

∂y
(y1)z + θ

∂2f

∂y2
(y3)(y1 − y2)(yu − ȳ).

So the function z satisfies

∂z

∂t
+Az +

∂f

∂y
(y1)z = −θ∂

2f

∂y2
(y3)(y1 − y2)(yu − ȳ) in Q.

From Theorem 2.1 it is clear that y1, y2 and y3 are uniformly bounded in L∞(Q) by
M∞. Using assumption (A2) and the fact that ‖yu − ȳ‖L∞(Q) < ε, we deduce with
[20, §III.7] the existence of a constant C1 > 0 independent of u such that

‖z‖L∞(Q) ≤ C1ε. (3.10)

With (3.9), (3.10), 0 < θ < 1 and the condition ‖yu − ȳ‖L∞(Q) < ε, we deduce that

‖yū+θ(u−ū) − ȳ‖L∞(Q) < (C1 + 1)ε.

So (3.7) holds if we define

ε =
γ

1 + C1
. (3.11)

Proof of Theorem 3.4. Consider u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε, where
ε will be fixed later independently of u; see (3.21) below. A second order Taylor
expansion yields the existence of θ ∈ (0, 1) such that

J(u) =J(ū) + J ′(ū)(u− ū) +
1

2
J ′′(ū+ θ(u− ū))(u− ū)2 (3.12)

Define for 1 ≤ j ≤ m

vj(t) =

{
uj(t)− ūj(t) if |ψ̄j(t)| ≤ τ

0 otherwise,

and w = u− ū− v. It is clear that v ∈ Cτū . Taking into account (3.2) we also have

J ′(ū)(u− ū) =

m∑
j=1

∫ T

0

ψ̄j(t)(uj(t)− ūj(t))dt

≥
m∑
j=1

∫ T

0

ψ̄j(t)wj(t)dt ≥ τ
m∑
j=1

∫ T

0

|wj(t)|dt = τ‖w‖L1(0,T )m (3.13)
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Using (3.12), u− ū = v+w, (3.13), v ∈ Cτū , the second order sufficient condition (3.3),
the estimate (2.10) for the bilinear form J ′′(ū), and Young’s inequality, we obtain

J(u) ≥J(ū) + τ‖w‖L1(0,T )m +
1

2
J ′′(ū)v2 +

1

2
J ′′(ū)w2 + J ′′(ū)(v, w)

+
1

2
[J ′′(ū+ θ(u− ū))− J ′′(ū)] (u− ū)2

≥J(ū) + τ‖w‖L1(0,T )m +
δ

2
‖zv‖2L2(Q) −

M2

2
‖zw‖2L2(Q)

−M2‖zv‖L2(Q)‖zw‖L2(Q) +
1

2
[J ′′(ū+ θ(u− ū))− J ′′(ū)] (u− ū)2

≥J(ū) + τ‖w‖L1(0,T )m +
δ

4
‖zv‖2L2(Q) −M2

(
1

2
+
M2

δ

)
‖zw‖2L2(Q)

+
1

2
[J ′′(ū+ θ(u− ū))− J ′′(ū)] (u− ū)2 (3.14)

Using this inequality, Lemma 3.5 with ρ = δ/8 and v = u − ū, and assuming that
ε ≤ ερ given at the start of the proof, we have

J(u) ≥J(ū) + τ‖w‖L1(0,T )m +
δ

4
‖zv‖2L2(Q) −M2

(
1

2
+
M2

δ

)
‖zw‖2L2(Q)

− δ

16
‖zu−ū‖2L2(Q) (3.15)

We notice now that

‖zu−ū‖2L2(Q) =‖zv+w‖2L2(Q) ≤ ‖zv‖
2
L2(Q) + ‖zw‖2L2(Q) + 2‖zv‖L2(Q)‖zw‖L2(Q)

≤2‖zv‖2L2(Q) + 2‖zw‖2L2(Q),

and hence ‖zv‖2L2(Q) ≥
1
2‖zu−ū‖

2
L2(Q) − ‖zw‖

2
L2(Q). Inserting this in (3.15) we get

J(u) ≥J(ū) +
δ

16
‖zu−ū‖2L2(Ω) + τ‖w‖L1(0,T )m −M2

(
1

2
+
M2

δ
+
δ

4

)
‖zw‖2L2(Q).

(3.16)

Let us estimate τ‖w‖L1(0,T )m . Using again (3.13) and the expression for the derivative
of J obtained directly by the chain rule, we have

τ‖w‖L1(0,T )m ≤J ′(ū)(u− ū) =

∫
Q

∂L

∂y
(x, t, ȳ)zu−ūdxdt

≤‖∂L
∂y

(x, t, ȳ)‖L2(Q)‖zu−ū‖L2(Q). (3.17)

Define now η = yu − (ȳ + zu−ū). The function η satisfies the equation
∂η

∂t
+Aη + f(yu)− f(ȳ)− ∂f

∂y
(ȳ)zu−ū = 0 in Q,

η = 0 on Σ,
η(0) = 0 in Ω.

Using a second order Taylor expansion and the definition of η, we have that there
exists 0 < θ̂(x, t) < 1 such that, if we name ŷ = ȳ + θ̂(yu − ȳ), we have that

∂η

∂t
+Aη +

∂f

∂y
(ȳ)η = −1

2

∂2f

∂y2
(ŷ)(yu − ȳ)2 in Q.
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Again from Assumption (A2), and the condition ‖yu − ȳ‖L∞(Q) < ε, we deduce the
existence of a constant C1 > 0 independent of ε and u such that

‖η‖L2(Q) ≤ C1ε‖yu − ȳ‖L2(Q) ≤
√
T |Ω|C1ε

2. (3.18)

Using, this, the definition of η, and ‖yu − ȳ‖L∞(Q) < ε, we infer

‖zu−ū‖L2(Q) ≤ ‖η‖L2(Q) + ‖yu − ȳ‖L2(Q) ≤ (C1ε+ 1)
√
T |Ω|ε.

Now, from (3.17) we deduce the existence of a constant C2 independent of u such that

τ‖w‖L1(0,T )m ≤C2ε. (3.19)

Next we use (2.4) and (3.19) to obtain

‖zw‖2L2(Q) ≤ T‖zw‖
2
L∞(0,T ;L2(Ω)) ≤

C3

τ
ε‖w‖L1(0,T )m

and, hence,

τ‖w‖L1(0,T )m ≥
τ2

C3ε
‖zw‖2L2(Q). (3.20)

Using this and (3.16), we have that

J(u) ≥ J(ū) +
δ

16
‖zu−ū‖2L2(Ω) +

[
τ2

C3ε
−M2

(
1

2
+
M2

δ
+
δ

4

)]
‖zw‖2L2(Q)

So the condition

ε ≤min

{
ερ,

τ2

C3M2

(
1
2 + M2

δ + δ
4

)} (3.21)

yields

J(u) ≥J(ū) +
δ

16
‖zu−ū‖2L2(Ω). (3.22)

Finally, using again the definition of the function η and (3.18), we have that

‖yu − ȳ‖L2(Q) ≤‖η‖L2(Q) + ‖zu−ū‖L2(Q) ≤ C1ε‖yu − ȳ‖L2(Q) + ‖zu−ū‖L2(Q).

So imposing also ε < 1
2C1

we have that ‖zu−ū‖L2(Q) ≥ 1
2‖yu − ȳ‖L2(Q). Using this

and (3.22) we obtain

J(u) ≥ J(ū) +
δ

64
‖yu − ȳ‖2L2(Ω),

and the result follows for κ = δ/64.

Remark 3.6. In the above proof, we have established that

J ′(ū)(u− ū) ≥ τ‖w‖L1(0,T )m ,

J ′′(ū+ θ(u− ū))(u− ū)2 ≥ δ

8
‖zu−ū‖2L2(Q) − C‖zw‖

2
L2(Q) ∀θ ∈ [0, 1],
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assuming that u ∈ Uad and ‖yu− ȳ‖L∞(Q) < ε for any 0 < ε ≤ ε0 with ε0 conveniently
chosen. From these two inequalities, we get for any number ρ > 0

ρJ ′(ū)(u−ū)+J ′′(ū+θ(u−ū))(u−ū)2 ≥ ρτ‖w‖L1(0,T )m+
δ

8
‖zu−ū‖2L2(Q)−C‖zw‖

2
L2(Q).

Now, using (3.20) and replacing the requirement (3.21) by ε ≤ ρτ2/(C3C) we get that

ρτ‖w‖L1(0,T )m − C‖zw‖2L2(Q) ≥ 0.

Hence, we obtain that

ρJ ′(ū)(u− ū) + J ′′(ū+ θ(u− ū))(u− ū)2 ≥ δ

8
‖zu−ū‖2L2(Q).

Finally, taking again ε smaller if necessary, we get as in the above proof ‖zu−ū‖L2(Q) ≥
1
2‖yu−ȳ‖L2(Q), and thus there exist λ > 0 and ερ > 0 such that for ‖yu−ȳ‖L∞(Q) ≤ ερ

ρJ ′(ū)(u− ū) + J ′′(ū+ θ(u− ū))(u− ū)2 ≥ λ

2
‖yu − ȳ‖2L2(Q). (3.23)

4. Numerical approximation of the control problem (P). The goal of this
section is to get a discrete version of the control problem (P). To this end, we need
to make some additional hypotheses to (A1)–(A5), that we will assume in the rest of
the paper.

(H1) Ω is a polygonal (if d = 2) or polyhedral (if d = 3) convex domain.
(H2) The initial state y0 belongs to H2(Ω) ∩ H1

0 (Ω), the coefficients aij of A are
Lipschitz functions in Ω̄, and f(·, ·, 0) ∈ L∞(Q).

(H3) For every M > 0 there exists a constant CL,M such that∣∣∣∂L
∂y

(x, t, y)
∣∣∣ ≤ CL,M for a.a. (x, t) ∈ Q, ∀|y| ≤M.

These assumptions imply extra regularity for the states yu and adjoint states ϕu.

Theorem 4.1. For every u ∈ Uad we have that yu, ϕu ∈ W 1,p(0, T ;L2(Ω)) ∩
Lp(0, T ;H2(Ω)) for all p <∞. Furthermore, there exists a constant M0 independent
of u and p such that

‖∂tyu‖Lp(0,T ;L2(Ω)) + ‖yu‖Lp(0,T ;H2(Ω))

≤M0
p2

p− 1

(
‖u‖L∞(0,T )m + ‖f(·, ·, 0)‖L∞(0,T ;L2(Ω)) + ‖y0‖H2(Ω)

)
, (4.1)

‖∂tϕu‖Lp(0,T ;L2(Ω)) + ‖ϕu‖Lp(0,T ;H2(Ω)) ≤M0
p2

p− 1
CL,M∞ , (4.2)

where M∞ was introduced in Theorem 2.1 and CL,M∞ is defined in assumption (H3).

The reader is referred to [22] for the proof.

We consider, cf. [6, definition (4.4.13)], a quasi-uniform family of triangulations
{Kh}h>0 of Ω̄ and a quasi-uniform family of partitions of size τ of [0, T ], 0 = t0 <



14 E. CASAS, M. MATEOS AND A. RÖSCH

t1 < · · · < tNτ = T . We will denote Nh and NI,h the number of nodes and interior
nodes of Kh, Ik = (tk−1, tk), τk = tk − tk−1, τ = max{τk} and σ = (h, τ). In the
sequel we will use the notation |σ| = τ + h

Now we consider the finite dimensional spaces

Yh = {zh ∈ C(Ω̄) : zh|K ∈ P1(K) ∀K ∈ Kh and zh ≡ 0 on Γ},

Yσ = {yσ ∈ L2(0, T ;Yh) : yσ|Ik ∈ Yh ∀k = 1, . . . , Nτ}.

The elements of Yσ can be written as

yσ =

Nτ∑
k=1

yh,kχk =

Nτ∑
k=1

NI,h∑
i=1

yi,keiχk

where yh,k ∈ Yh for k = 1, . . . , Nτ , yi,k ∈ R for i = 1, . . . , NI,h and k = 1, . . . , Nτ ,

{ei}
NI,h
i=1 is the nodal basis associated to the interior nodes {xi}

NI,h
i=1 of the triangulation

and χk denotes the characteristic function of the interval Ik = (tk−1, tk). For every
u ∈ L1(0, T )m, we define its associated discrete state as the unique element yσ(u) ∈ Yσ
such that ∫

Ω

(yh,k − yh,k−1)zhdx+ τka(yh,k, zh) +

∫
Ik

∫
Ω

f(x, t, yh,k)zhdxdt

=

m∑
j=1

∫
Ik

∫
ωj

uj(t)gj(x)zhdxdt ∀zh ∈ Yh and all k = 1, . . . , Nτ , (4.3)∫
Ω

yh,0zhdx =

∫
Ω

y0zhdx ∀zh ∈ Yh,

where

a(y, z) =

n∑
i,j=1

∫
Ω

aij∂xiy∂xjzdx ∀y, z ∈ H1(Ω).

From a computational point of view, this scheme can be interpreted as an implicit
Euler discretization of the system of ordinary differential equations obtained after
spatial finite element discretization. The proof of the existence and uniqueness of a
solution for (4.3) is standard assuming that τ |Cf | < 1 with Cf given by (1.2).

From [22, Corollaries 6.2 and 6.4], we have that for all u ∈ Uad

‖yσ(u)− yu‖L2(Q) ≤ C(h2 + τ), (4.4)

‖yσ(u)− yu‖L∞(0,T ;L2(Ω)) ≤ C(h2 + τ)| log τ |2. (4.5)

The control is discretized using piecewise constant functions. Consider

Uτ = {uτ ∈ L1(0, T )m : uτ |Ik ∈ Rm ∀k = 1, . . . , Nτ}.

We denote πh the Lagrange nodal interpolation operator in space, πτ the L2(0, T )
projection onto Uτ , and πσ = πh ◦ πτ= πτ ◦ πh. Notice that for all u ∈ L1(0, T )m we
have that

yσ(u) = yσ(πτu) and Jσ(u) = Jσ(πτu). (4.6)
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Notice that if u ∈ L1(0, T )m \ L2(0, T )m, πτu is still well defined by the expression

(πτu)|Ik =
1

τk

∫
Ik

u(t) dt, k = 1, . . . , Nτ .

We formulate the discrete problem as

(Pσ) min
uτ∈Uτ,ad

Jσ(uτ ),

where

Jσ(u) =

∫
Q

L(x, t, yσ(u)(x, t)) dx dt.

and Uτ,ad = Uτ ∩ Uad. Since this set is compact and nonempty, existence of a global
solution of (Pσ) follows immediately from the continuity of Jσ in Uτ .

For every u ∈ L1(0, T )m, we define the related discrete adjoint state ϕσ(u) ∈ Yσ
as the unique solution of∫

Ω

(ϕh,k − ϕh,k+1)zhdx+ τka(zh, ϕh,k) +

∫
Ik

∫
Ω

∂f

∂y
(x, t, yh,k)ϕh,kzhdxdt

=

∫
Ik

∫
Ω

∂L

∂y
(x, t, yh,k)zhdxdt ∀zh ∈ Yh and all k = Nτ , . . . , 1 (4.7)

ϕh,Nτ+1 = 0,

where the functions yh,k ∈ Yσ are defined by yσ(u) =
∑Nτ
k=1 yh,kχk. We also define

ψσ(u) ∈ Uτ as

ψσ,j(u)(t) =

∫
Ω

ϕσ(u)(x, t)gj(x)dx for 1 ≤ j ≤ m.

With this notation, we have that for every u, v ∈ L1(0, T )m

J ′σ(u)v =

m∑
j=1

∫ T

0

ψσ,j(u)(t)vj(t)dt

and fist order conditions read as follow.

Theorem 4.2. Suppose ūσ ∈ Uτ,ad is a local solution of (Pσ) with associated
discrete state ȳσ = yσ(ūσ) and discrete adjoint state ϕ̄σ = ϕσ(ūσ). Then∫ T

0

ψ̄σ,j(t)(uτ,j(t)− ūσ,j(t))dt ≥ 0 ∀uτ ∈ Uτ,ad, 1 ≤ j ≤ m,

where ψ̄σ = ψσ(ūσ).

Analogously to (3.2), we can deduce that

ūσ,j|Ik =

{
αj if ψ̄σ,j|Ik > 0
βj if ψ̄σ,j|Ik < 0

and ψ̄σ,j|Ik

 ≥ 0 if ūσ,j|Ik = αj
≤ 0 if ūσ,j|Ik = βj
= 0 if αj < ūσ,j|Ik < βj .
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5. Error estimates for the optimal states. In this section, we first analyze
the convergence of the approximations (Pσ) of (P) in a sense to be precised below.
Then we prove error estimates for the difference between the discrete and the contin-
uous optimal states.

Theorem 5.1. Let ū be a strict strong local minimizer for (P), i.e.,

∃ρ > 0 : J(ū) < J(u) ∀u ∈ Uad \ {ū} : ‖yu − ȳ‖L∞(Q) ≤ ρ. (5.1)

Then, there exists a sequence {ūσ}σ of local minimizers of (Pσ) such that ūσ ⇀ ū
weakly* in L∞(0, T )m. Moreover,

∃σ0 : Jσ(ūσ) ≤ Jσ(uτ ) ∀uτ ∈ Uτ,ad with ‖yσ(uτ )− ȳσ‖L∞(Q) ≤
ρ

2
, ∀|σ| ≤ |σ0|. (5.2)

holds. Conversely, let {ūσ}σ be a sequence of local minimizers of (Pσ) satisfying (5.2)

for some given ρ > 0 and such that ūσ
∗
⇀ ū in L∞(0, T )m. Then ū is a strong local

solution of (P) such that

J(ū) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) <
ρ

2
. (5.3)

Before proving this theorem, we establish some auxiliary results.

Lemma 5.2. There exists µ ∈ (0, 1) and Cµ such that

‖yu − πσyu‖L∞(Q) ≤ Cµ(hµ + τµ/2) ∀u ∈ Uad. (5.4)

Proof. First, we observe that H2(Ω) ⊂ C1/2(Ω̄) for d ≤ 3. Then, according to
[20, Theorem III-10.1], Theorem 2.1, and assumptions (A2), (H2) and (H3), we infer
the existence of µ ∈ (0, 1) and Cµ > 0 such that yu ∈ Cµ,µ/2(Q̄) and

‖yu‖Cµ,µ/2(Q̄) ≤ Cµ ∀u ∈ Uad. (5.5)

Now, given (x0, t0) a point in a K × Ik, we have with the Hölder continuity of yu

|yu(x0, t0)− πσyu(x0, t0)| ≤ |yu(x0, t0)− πτyu(x0, t0)|+ |πτ [yu − πhyu](x0, t0)|

≤ 1

τk

∫
Ik

|yu(x0, t0)− yu(x0, t)| dt+
1

τk

∫
Ik

|yu(x0, t)− πhyu(x0, t)| dt

≤ Cµ
τk

(∫
Ik

|t0 − t|µ/2 dt+

∫
Ik

hµ dt
)
≤ Cµ(τµ/2 + hµ),

which implies (5.4) due to the arbitrary selection of (x0, t0)

Corollary 5.3. There exists a constant Mµ such that

‖yσ(u)− yu‖L∞(Q) ≤Mµ log
(T
τ

)
| log h|(hµ + τµ/2) ∀u ∈ Uad. (5.6)

Proof. From [22, Theorem 6.5] we know that

‖yσ(u)− yu‖L∞(Q) ≤ C log
(T
τ

)
| log h|‖yu − yσ‖L∞(Q) ∀yσ ∈ Yσ, ∀u ∈ Uad.
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Then it is enough to combine this inequality with (5.3) to deduce (5.6).

Lemma 5.4. Consider a sequence {un}n ⊂ Uad such that un
∗
⇀ u in L∞(0, T )m

and a sequence {σn}n, with |σn| = hn + τn → 0. Then, Jσn(un)→ J(u) holds.

Proof. We first write

|Jσn(un)− J(u)| ≤ |Jσn(un)− J(un)|+ |J(un)− J(u)|.

For the first term, by the mean value theorem, we know that there exists a measurable
function 0 < θn(x, t) < 1 such that, if we name ŷn = yσn(un) + θn(yun − yσn(un)),
then using (4.4), (H3) and (A2) we obtain

|J(un)−Jσn(un)| =
∣∣∣ ∫ T

0

∫
Ω

(
L(x, t, yun(x, t))− L(x, t, yσn(un)(x, t))

)
dx dt

∣∣∣
≤
∫ T

0

∫
Ω

∣∣∣∂L
∂y

(x, t, ŷn(x, t))
(
yun(x, t)− yσn(un)(x, t)

)∣∣∣ dx dt
≤
∥∥∥∂L
∂y

(·, ·, ŷn)
∥∥∥
L2(Q)

‖yun − yσn(un)‖L2(Q) ≤ C(h2
n + τn).

The convergence to zero of the second term follows from assumption (A2) and Lemma
2.2.

Proof of Theorem 5.1. Part I: Consider the set

Vad,σ,ρ = {uτ ∈ Uτ,ad : ‖yσ(uτ )− ȳ‖L∞(Q) ≤ ρ}.

From Corollary 5.3 we deduce the existence of σ1 such that ‖yσ(ū)− ȳ‖L∞(Q) ≤ ρ for
every |σ| ≤ |σ1|. Since, yσ(ū) = yσ(πτ ū) and obviously πτ ū ∈ Uτ,ad, we conclude that
πτ ū ∈ Vad,σ,ρ ∀|σ| ≤ |σ1|. Hence, Vad,σ,ρ is compact and nonempty. Therefore the
problem

min
uτ∈Vad,σ,ρ

Jσ(uτ )

has a solution ūσ. We can extract a subsequence, denoted in the same way, such that
ūσ

∗
⇀ ũ in L∞(0, T )m. Since Uτ,ad ⊂ Uad and Uad is weakly* closed in L∞(0, T )m,

ũ ∈ Uad. We also have that ȳσ = yσ(ūσ)→ yũ in L∞(Q). To check this we write

‖ȳσ − yũ‖L∞(Q) ≤ ‖yσ(ūσ)− yūσ‖L∞(Q) + ‖yūσ − yũ‖L∞(Q). (5.7)

From Corollary 5.3 and Lemma 2.2 we infer that both terms converge to 0. Since
ūσ ∈ Vad,σ,ρ, we have that

‖yũ − ȳ‖L∞(Q) ≤ ‖yũ − yσ(ūσ)‖L∞(Q) + ‖yσ(ūσ)− ȳ‖L∞(Q)

≤ ‖yũ − yσ(ūσ)‖L∞(Q) + ρ→ ρ as |σ| → 0.

Passing to the limit in Jσ(ūσ) ≤ Jσ(πτ ū) with Lemma 2.2, we infer that J(ũ) ≤ J(ū).
Due to (5.1), this is possible only if ũ = ū, and so (5.7) implies that ‖ȳσ−ȳ‖L∞(Q) → 0
as |σ| → 0. Let us take σ0 such that ‖ȳσ − ȳ‖L∞(Q) < ρ/2. Then for any uτ ∈ Uτ,ad

such that ‖yσ(uτ )− ȳσ‖L∞(Q) ≤ ρ/2, we get

‖yσ(uτ )− ȳ‖L∞(Q) ≤ ‖yσ(uτ )− ȳσ‖L∞(Q) + ‖ȳσ − ȳ‖L∞(Q) < ρ ∀|σ| ≤ |σ0|.
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Then uτ ∈ Vad,σ,ρ and, hence, J(ūσ) ≤ J(uτ ) for every |σ| ≤ |σ0|, which proves the
first part of the theorem.

Part II: We denote, as above, ȳσ and ȳ the discrete and continuous states asso-
ciated with ūσ and ū, respectively. We observe that, proceeding as in (5.7), ‖ȳσ −
ȳ‖L∞(Q) → 0 as |σ| → 0. Let us take an arbitrary element u ∈ Uad such that
‖yu − ȳ‖L∞(Q) < ρ/2. We have to prove that J(ū) ≤ J(u). To this end, we consider
the discrete controls πτu. It is obvious that πτu ∈ Uτ,ad and, from Corollary 5.3 and
the fact that yσ(πτu) = yσ(u), see (4.6), we have that ‖yσ(πτu) − yu‖L∞(Q) → 0 as
|σ| → 0. Therefore, we get

‖yσ(πτu)− ȳσ‖L∞(Q) → ‖yu − ȳ‖L∞(Q) <
ρ

2
as σ → 0.

Hence, there exists σ1 with |σ1| ≤ |σ0| such that

‖yσ(πτu)− ȳσ‖L∞(Q) <
ρ

2
∀|σ| ≤ |σ1|.

Thus, from (5.2) and Lemma 5.4 we infer

J(ū) = lim
σ→0

Jσ(ūσ) ≤ lim
σ→0

Jσ(πτu) = J(u),

which concludes the proof.

Remark 5.5. Let us observe that if {ūσ}σ is a sequence of global minimizers of
(Pσ), then there exist subsequences converging to elements ū. Any of these controls ū
is a global minimizer of (P). This is an immediate consequence of the second part of
Theorem 5.1. Indeed, it is enough to take ρ sufficiently large.

Assuming the second order optimality conditions we can prove some error esti-
mates for the difference between the continuous and discrete optimal states.

Theorem 5.6. Let ū be a local solution of (P) satisfying the first order conditions
(3.1a)–(3.1c) and the second order sufficient conditions (3.3). Let {ūσ}τ be a sequence

of local minima of (Pσ) such that (5.2) holds and ūσ
∗
⇀ ū in L∞(0, T )m. Then, there

exists a constant C such that

‖ȳσ − ȳ‖L2(Q) ≤ C(h+
√
τ). (5.8)

Proof. By the triangle inequality we have

‖ȳσ − ȳ‖L2(Q) ≤ ‖ȳσ − yūσ‖L2(Q) + ‖yūσ − ȳ‖L2(Q).

The first term in the right hand side is of order O(h2 + τ); see (4.4). We just need to
study the second term. From Lemma 2.2 we know that yūσ → ȳ strongly in L∞(Q).
From Theorem 3.4, we deduce the existence of ε > 0 and κ > 0 such that (3.6) holds.
Then, there exists σ0 > 0 such that for all 0 < |σ| < |σ0|, ‖yūσ − ȳ‖L∞(Q) < ε. Thus,
using (3.6) we have

κ

2
‖yūσ − ȳ‖2L2(Q) ≤ J(ūσ)− J(ū)

≤ [J(ūσ)− Jσ(ūσ)] + [Jσ(ūσ)− Jσ(πτ ū)]

+ [Jσ(πτ ū)− Jσ(ū)] + [Jσ(ū)− J(ū)]

= I + II + III + IV
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Let us estimated the first term. By the mean value theorem, there exists a measurable
function ŷσ = ȳσ + θ(yūσ − ȳσ) with 0 < θ(x, t) < 1 such that

J(ūσ)− Jσ(ūσ) =

∫
Q

(
L(x, t, yūσ (x, t))− L(x, t, ȳσ(x, t))

)
dx dt

=

∫
Q

∂L

∂y
(x, t, ŷσ(x, t))

(
yūσ (x, t)− ȳσ(x, t)

)
dx dt

≤
∥∥∥∂L
∂y

(·, ·, ŷσ)
∥∥∥
L2(Q)

‖yūσ − ȳσ‖L2(Q) ≤ C(h2 + τ),

where we have used (A2), Theorem 2.1 and (4.4) for the last two inequalities. The
fourth term can be estimated exactly in the same way.

Since ūσ satisfies (5.2), we have that II ≤ 0 for |σ| small enough. Indeed, we can
argue as in the second part of the proof of Theorem 5.1 to deduce the existence of
σ1 such that πτ ū ∈ Uτ,ad and ‖yσ(πτ ū)− ȳσ‖L∞(Q) < ρ/2 for |σ| < |σ1|. Finally, the
term III is zero because of (4.6).

Collecting all the estimates, we achieve the desired result.

6. Bang-bang control and control error estimates. In the last section we
have used the quadratic growth property of the states (3.6) to prove error estimates
between discrete and continuous optimal states. The reader can be wondering if it
is possible to get an analogous condition involving a quadratic term for the controls.
The answer is negative in general. In [16], the authors prove that if ū is a local
minimizer of (P), which is not bang-bang, then there do not exist ε > 0, κ > 0, γ > 0
and r ≥ 1 such that the inequality

J(ū) +
κ

2
‖u− ū‖γLr(0,T )m ≤ J(u) ∀u ∈ Uad : ‖u− ū‖L1(0,T )m ≤ ε

holds. However, if we make a certain structural assumption on the associated adjoint
state with ū, which implies the bang-bang property of ū, then we can get the desired
inequality. Following [16], the next hypothesis will be assumed in the rest of the
paper.

∃K > 0, ∃γ ∈ (0, 1] : meas{t ∈ [0, T ] : |ψ̄j(t)| ≤ ε} ≤ Kεγ , ∀ε > 0, 1 ≤ j ≤ m. (6.1)

Remark 6.1. Notice that under this assumption ū is a bang-bang control. Let
us comment on this. Assumption (6.1) rules out the possibility of having meas{t ∈
[0, T ] : ψ̄j(t) = 0} > 0, so we will not have singular arcs.

If ψ̄j is regular enough and there is a finite number of points {tk}Nk=1 such that

ψ̄
(n)
j (tk) = 0 for 0 ≤ n < mk and ψ̄

(mk)
j (tk) 6= 0, then (6.1) is fulfilled by ψ̄j with

γ = min{1/mk : k = 1, . . . , N}.
Suppose now that ψ̄j ∈ C1[0, T ]. Then, (6.1) holds with γ = 1 if and only if

the number of points where ψ̄j vanishes is finite and the derivatives at these points
are not zero. To prove this, first we suppose that there is an infinite number of
points in [0, T ] where ψj vanishes. Then, we can extract a sequence {tn}∞n=1 ⊂ [0, T ]
converging to some point t0 ∈ [0, T ]. By continuity of ψj, ψ̄j(t0) = 0. By the mean
value theorem, between every two consecutive terms of this sequence there is a point
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t∗n such that ψ̄′j(t
∗
n) = 0, hence ψ̄′j(t0) = 0. In a neighbourhood of t0, we have that

|ψj(t)| = o(t− t0). This contradicts (6.1).

The converse implication follows from the first part of this remark.

Next we prove that, under the assumption (6.1), the sufficient second order con-
dition (3.3) leads to a better growth condition than the one given in (3.6). Actually,
this new growth condition involves also the controls. Before stating this result, we
establish a lemma whose proof is the same as the one of [24, Proposition 3.2] with the
obvious changes; see also [16, Proposition 2.7] for the case γ = 1.

Lemma 6.2. Let ū ∈ Uad satisfy (3.1a)–(3.1b) and (6.1), then

J ′(ū)(u− ū) ≥ ν‖u− ū‖1+ 1
γ

L1(0,T )m ∀u ∈ Uad, (6.2)

where ν =
1

2

(
2K

m∑
j=1

(βj − αj)
)−1/γ

.

Theorem 6.3. Under the assumptions and notations of Lemma 6.2 and suppos-
ing that ū satisfies the sufficient second order condition (3.3), then there exist ε > 0
and κ > 0 such that

J(ū)+
ν

2
‖u−ū‖1+ 1

γ

L1(0,T )m+
κ

2
‖yu−ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖yu−ȳ‖L∞(Q) < ε, (6.3)

where ȳ is the state associates with ū.

Proof. To prove (6.3) it is enough to make a Taylor expansion and to use (6.2) as
follows

J(u) = J(ū) +
1

2
J ′(ū)(u− ū) +

1

2
[J ′(ū)(u− ū) + J ′′(ū+ θ(u− ū))(u− ū)2]

≥ J(ū) +
ν

2
‖u− ū‖1+ 1

γ

L1(0,T )m +
1

2
[J ′(ū)(u− ū) + J ′′(ū+ θ(u− ū))(u− ū)2].

Now we can estimate the last term with (3.23) taking ρ = 1.

Remark 6.4. In the case γ = 1, it was proved in [15] , see also [16], that the
condition

J ′′(ū)v2 ≥ −ν′‖v‖2L2(0,T )m ∀v ∈ Cτū

with 0 ≤ ν′ < 2ν implies the existence of ε > 0 and κ > 0 such that

J(ū) +
κ

2
‖u− ū‖2L1(0,T )m ≤ J(u) ∀u ∈ Uad : ‖u− ū‖L1(0,T )m ≤ ε.

Next, we consider the discrete control problems (Pσ) defined in section 4. Let ū be
a local minimizer of (P) satisfying the second order condition (3.3) and the assumption
(6.1). Then, from Theorem 5.1 we get the existence of a sequence {ūσ}σ of local

minimizers of problems (Pσ) such that ūσ
∗
⇀ ū in L∞(0, T )m, ‖ȳσ − ȳ‖L∞(Q) → 0 as

|σ| → 0, and (5.2) is fulfilled. In addition, since ū is a bang-bang control, we have that
ūσ → ū strongly in Lp(0, T )m for every p ∈ [1,∞). Indeed, it is enough to observe
that ∫ T

0

|ūσ,j − ūj | dt =

∫
Iαj

(ūσ,j − ūj) dt+

∫
Iβj

(ūj − ūσ,j) dt −→ 0 as τ → 0,
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where

Iαj = {t ∈ (0, T ) : ūj(t) = αj} and Iβj = {t ∈ (0, T ) : ūj(t) = βj}.

This proves the strong convergence in L1(0, T )m. Moreover, due to the boundedness
in L∞(0, T )m of the sequence {ūσ}σ, we conclude the strong convergence in Lp(0, T )m

for every p <∞.

The next theorem provides an estimate for the difference ūσ − ū.

Theorem 6.5. Under the previous notations and assumptions, there exists a
constant independent of σ such that

‖ūσ − ū‖L1(0,T )m ≤ C[(h2 + τ)| log τ |2]γ , (6.4)

‖ȳσ − ȳ‖L2(Q) ≤ C[(h2 + τ)| log τ |2]
γ+1
2 . (6.5)

Proof. Since ūσ → ū, for any ε > 0 there exists σ0 > 0 such that ‖ȳσ−ȳ‖L∞(Q) < ε
for every |σ| < |σ0|. Now, using (6.2) and the fact

J ′σ(ūσ)(ū− ūσ) =

m∑
j=1

∫ T

0

ψ̄σ,j(ūj − ūσ,j) dt

=

m∑
j=1

∫ T

0

ψ̄σ,j(πτ ūj − ūσ,j) dt = J ′σ(ūσ)(πτ ū− ūσ) ≥ 0,

we get with the mean value theorem the existence of θ ∈ (0, 1) such that we have for
uθ = ū+ θ(ū− ūσ)

ν

2
‖ūσ − ū‖

1+ 1
γ

L1(0,T )m +
1

2
J ′(ū)(ūσ − ū) ≤ J ′(ū)(ūσ − ū) ≤ [J ′(ū)− J ′σ(ūσ)](ūσ − ū)

= [J ′(ū)− J ′(ūσ)](ūσ − ū) + [J ′(ūσ)− J ′σ(ūσ)](ūσ − ū)

= −J ′′(uθ)(ūσ − ū)2 +

m∑
j=1

∫ T

0

(ψūσ,j − ψ̄σ,j)(ūj − ūσ,j) dt.

Equivalently, we have

ν

2
‖ūσ − ū‖

1+ 1
γ

L1(0,T )m +
[1
2
J ′(ū)(ūσ − ū) + J ′′(uθ)(ūσ − ū)2

]
≤

m∑
j=1

∫ T

0

∫
Ω

(ϕūσ − ϕ̄σ))gj(ūj − ūσ,j) dx dt. (6.6)

From Remark 3.6 we deduce the existence of λ > 0 such that for ε as above
sufficiently small

λ

2
‖yūσ − ȳ‖2L2(Q) ≤

1

2
J ′(ū)(ūσ − ū) + J ′′(uθ)(ūσ − ū)2 ∀|σ| ≤ |σ0|. (6.7)

Let us estimate the right hand side of (6.6). To this end, we introduce the function
ϕσ ∈W 1,p(0, T ;L2(Ω)) ∩ Lp(0, T ;H2(Ω)) for all p <∞ as the solution of

−∂ϕ
∂t

+A∗ϕ+
∂f

∂y
(x, t, ȳσ)ϕ =

∂L

∂y
(x, t, ȳσ) in Q,

ϕ = 0 on Σ,
ϕ(T ) = 0 in Ω.
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Obviously, estimate (4.5) can be applied to estimate ϕσ − ϕ̄σ, hence we have

‖ϕσ − ϕ̄σ‖L∞(0,T ;L2(Ω) ≤ C1(h2 + τ)| log τ |2. (6.8)

Now, we estimate the difference zσ = ϕūσ−ϕσ. Subtracting the equations satisfied
by ϕūσ and ϕσ we obtain

−∂z
σ

∂t
+A∗zσ +

∂f

∂y
(x, t, yūσ )zσ

=
[∂f
∂y

(x, t, ȳσ)− ∂f

∂y
(x, t, yūσ )

]
ϕσ +

[∂L
∂y

(x, t, yūσ )− ∂L

∂y
(x, t, ȳσ)

]
in Q,

zσ = 0 on Σ, zσ(T ) = 0 in Ω.

From assumptions (A2) and (A5), Theorem 2.1, and using the mean value theorem
we infer

‖zσ‖L∞(0,T ;L2(Ω)) ≤ C2‖yūσ − ȳσ‖L2(Q).

Now, (4.4) and the definition of zσ imply

‖ϕūσ − ϕσ‖L∞(0,T ;L2(Ω)) ≤ C3(h2 + τ). (6.9)

Finally, applying (6.8) and (6.9) we obtain with Young’s inequality for p = γ + 1
and q = (γ + 1)/γ

m∑
j=1

∫ T

0

∫
Ω

(ϕūσ − ϕ̄σ))gj(ūj − ūσ,j) dx dt

≤ max
1≤j≤m

‖gj‖L2(Ω)‖ϕūσ − ϕ̄σ‖L∞(0,T ;L2(Ω))‖ū− ūσ‖L1(0,T )m

≤ C4(h2 + τ)| log τ |2‖ū− ūσ‖L1(0,T )m

≤C5[(h2 + τ)| log τ |2]γ+1 +
ν

4
‖ū− ūσ‖

1+ 1
γ

L1(0,T )m . (6.10)

Finally, combining (6.6), (6.7) and (6.10) we get

ν

4
‖ūσ − ū‖

1+ 1
γ

L1(0,T )m +
λ

2
‖ȳσ − ȳ‖2L2(Q) ≤ C5[(h2 + τ)| log τ |2]γ+1,

which leads straightforward to (6.4) and (6.5)

7. Numerical experiment. Consider Ω = (0, 1), T = 1, A = −∂2
xx, y0(x) =

x(1 − x) and m = 1. Define ω = [0.25, 0.75] and g(x) = χω(x). We will take
f(x, t, y) = y3 + e(x, t) and L(x, t, y) = y4 + b(x, t)y, where e(x, t) and b(x, t) are
defined later. Finally, we take the control constraints α = 0 and β = 1.

The state equation is given by
∂y

∂t
− ∂2y

∂x2
+ y3 + e(x, t) = u(t)g(x) in Ω× (0, T )

y(0, t) = y(1, t) = 0 for t ∈ (0, T )
y(x, 0) = x(1− x) for x ∈ (0, 1)
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and the adjoint state equation is given by
−∂ϕ
∂t
− ∂2ϕ

∂x2
+ 3y2ϕ = 4y3 + b(x, t) in Ω× (0, T )

ϕ(0, t) = ϕ(1, t) = 0 for t ∈ (0, T )
ϕ(x, T ) = 0 for x ∈ (0, 1)

We fix ȳ(x, t) = x(1− x) cos(2πt), which satisfies the boundary and initial conditions
of the state equation. For specific examples, we just need to define ϕ̄ and ū. With
these choices, we define

e(x, t) = −∂ȳ
∂t

+
∂2ȳ

∂x2
− ȳ3 + ū(t)g(x),

and

b(x, t) = −∂ϕ̄
∂t
− ∂2ϕ̄

∂x2
+ 3ȳ2ϕ− 4ȳ3.

We have that (ū, ȳ, ϕ̄) satisfies the first order optimality conditions (3.1a)–(3.1c).

To solve the problem we do a Tikhonov regularization, cf. [23], i.e., we solve

min
u∈Uad

Jνj (u) = J(u) +
νj
2
‖u‖2L2(0,T )m .

for a sequence νj ↘ 0. This problem is solved using a semismooth Newton method
as described in [10, Section 14]. We use the following algorithm

Algorithm 1: Optimization algorithm

1 Set j = 0, an initial ν0 > 0 and an initial guess u0, y0, ϕ0

2 Perform one iteration of the semismooth Newton method for the functional
Jνj (u) starting at uj . Name the result uj+1, yj+1, ϕj+1

3 Set νj+1 = max{νj/2, νmin}
4 if ‖uj+1 − uj‖L1(0,T ) + ‖yj+1 − yj‖L2(Q) + ‖ϕj+1 − ϕj‖L2(Q) < ε then
5 stop
6 else
7 Set j = j + 1 and goto 2
8 end

To discretize the problem, we use two families of uniform partitions in time and
space. In time we take τk = 3−kT , k = k0, . . . ,K, so that ū 6∈ Uτ . In space, we take
hi = 2−i, i = i0, . . . , I.

We measure the error in the state variable with respect to π̃τkΠhi/2ȳ, where π̃τ
is the numerical approximation of πτ given by

πτv =

Nτ∑
j=1

1

τ

∫
Ij

v(t) dtχj ≈ π̃τv =

Nτ∑
j=1

v
( tj + tj−1

2

)
χj ∀v ∈ C[0, T ],

i.e., the mid point quadrature formula is replacing the integral.

7.1. Bang-bang control. We define ϕ̄(x, t) = x(1 − x) sin(2πt/T ). This func-
tion clearly satisfies the boundary and end conditions of the adjoint state equation.
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k = 8

i eh,yi EOCh,yi
1 1.1E− 2 −
2 2.7E− 3 2.0
3 6.6E− 4 2.0
4 1.7E− 4 2.0
5 4.4E− 5 2.0
6 1.3E− 5 1.8

i = 10
k eτ,yk EOCτ,yk eτ,uk EOCτ,uk
1 5.0E− 3 − 1.7E− 2
2 1.7E− 3 1.0 5.6E− 3 1.0
3 5.7E− 4 1.0 1.9E− 3 1.0
4 1.9E− 4 1.0 6.2E− 4 1.0
5 6.3E− 5 1.0 2.1E− 4 1.0
6 2.1E− 5 1.0 6.9E− 5 1.0

Table 7.1
Error and EOC in space (left) and time (right). Bang bang control. Example 7.1

For T > 0 small enough, L′′(ȳ)− ϕ̄f ′′(y) > 0 in Q and second order sufficient condi-
tions hold.

We have that the switching function is

ψ̄(t) =

∫ 0.75

0.25

ϕ̄(x, t)dx =
11

96
sin(2πt/T ).

So we define

ū(t) =

{
0 if 0 < t < 0.5T
1 if 0.5T < t < T.

Assumption (6.1) is satisfied for γ = 1.

We perform two experiments: In the first one, we fix a small time step τ = 3−8T
and we measure the error eh,yi in the state variable as the space mesh size varies. We
have not been able to measure the dependence of the error in the control with respect
to the spatial discretization parameter.

In the second one, we fix h = 2−10 and measure the errors in the state eτ,yk and
in the control eτ,uk = ‖ū− ūk‖L1(0,T ) as the time step decreases. Error in the control
can be computed exactly.

The Experimental Orders of Convergence in space and time are defined as

EOCh,yi =
log(eh,yi+1)− log(eh,yi )

log(2−i−1)− log(2−i)
and EOCτ,∗k =

log(eτ,∗k+1)− log(eτ,∗k )

log(3−k−1)− log(3−k)

Since the error in space is much smaller than the error in time, we take T = 0.1.
For the optimization process, we choose ν0 = 1E − 4, ε = 1E − 14, νmin = 1E− 8.
As starting point we take u0 = 0, y0 = yσ(u0) and ϕ0 = ϕσ(u0). In all cases, the
algorithm finishes in less than 8 iterations.

The results are shown in Table 7.1. It can be noticed that the EOC in space is
O(h2), while the EOC in time is O(τ). These results are quite in agreement, up to
logarithmic terms, with the theoretical results given in Theorem 6.5.
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Fig. 7.1. Discrete optimal control for different time steps. Example 7.2

k eτ,yk EOCτ,yk Jσ(ūσ) Jσ(πτ ū)
2 3.6E− 2 −0.04728096 −0.04629675
3 1.9E− 2 0.56 −0.04639788 −0.04619277
4 1.0E− 2 0.60 −0.04629958 −0.04623007
5 1.2E− 2 −0.15 −0.04623967 −0.04622969
6 3.6E− 3 1.1 −0.04623509 −0.04623015
7 2.7E− 3 0.26 −0.04623024 −0.04623015
8 1.4E− 3 0.60 −0.04623044 −0.04623016

0.49

Table 7.2
State error, and function values for problem with a singular arc. Example 7.2

7.2. Singular control. Define ϕ̄(x, t) = x(1−x)(1−χ[0.25T,0.75T ](t)) sin(4πt/T )
and

ū(t) =

 0 if t < 0.25T
16(t− 0.25T )2(T − t)/T 3 if 0.25T ≤ t ≤ 0.75T

1 if t > 0.75T.

We fix T = 1. For the optimization process, we choose ν0 = 1, ε = 1E − 14, νmin =
1E− 8. We initialize the algorithm with u0 = 0, y0 = yσ(u0) and ϕ0 = ϕσ(u0). These
problems are much more difficult to solve: in all cases, the algorithm finished in about
40 iterations and discrete optimal controls are quite different from ū (see Figure 7.1).
Despite this, we have in all cases but one that Jσ(ūσ) < Jσ(πτ ū); see Table 7.2.

Also, the order of convergence is harder to measure. We have only been able to
perform experiment 2, i.e., we fix h = 2−10 and measure the error in the state for
τk = 3−k, k = 3, . . . , 8. The discretization errors are quite big and seemingly behave
as
√
τ in time, which is in accordance with the result of Theorem 5.6; see Figure 7.2

and Table 7.2. The part of the error depending of h is much smaller, and we have not
been able to measure it.
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Fig. 7.2. Experimental and theoretical order of convergence for problem with a singular arc.
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