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Abstract 1 

The beech forests in the Cantabrian Range occur at the southwestern limit of the distribution of the 2 

species and are very important for wildlife and biodiversity in the region. Climate change is expected 3 

to increase the frequency and severity of drought events over the next few decades in southwestern 4 

Europe, and establishing how this will alter the distribution, abundance and productivity of beech is 5 

fundamental for biodiversity conservation and management. In this study, we used spatially 6 

continuous environmental variables to develop spatial distribution and site-productivity models for 7 

beech forests in the Cantabrian Range and to project these models to different climate change 8 

scenarios. Two raster-based models of resolution 250 m were constructed to identify suitable habitat 9 

(species distribution model) and to estimate site index (productivity model) for beech in the 10 

Cantabrian Range. Of the 23 variables retained in the spatial distribution model, climate, soil and 11 

terrain were the most important (explaining respectively 51.2%, 34.2% and 10.1% of the variation). 12 

The productivity model retained only three variables (percentage of silt in soil, mean diurnal range of 13 

temperature and plan curvature of the terrain) but was able to explain 54% of the total variation. 14 

Future projections based on two emission scenarios suggest that suitable habitat will be drastically 15 

reduced by 2070 (loss of 40-90% of the area for the moderate and pessimistic scenarios, respectively). 16 

The reduction will probably also be accompanied by less favourable conditions for seedling 17 

establishment, higher mortality rates and a reduction in local density of populations. However, the 18 

projections do not imply current population removal. Productivity projections for suitable habitat 19 

suggest a large increase in the average site index (from current 15.19 to 18.18 m) in the moderate 20 

scenario and an increase of only 34 cm in the pessimistic scenario. The study findings provide basic 21 

information for conservation biology and could be used by decision-makers to develop and implement 22 

actions for mitigating the impact of climate change on beech forests. 23 
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1. Introduction!1 

Climate change is expected to increase the frequency and severity of drought events over the next few 2 

decades in Western Europe (Schar et al., 2004). These changes will have a significant influence on the 3 

distribution and abundance of plant species and on forest productivity (e.g. Monzón et al., 2011; 4 

Hacket-Pain et al., 2016), thus posing a great challenge to decision-makers. In fact, forest conservation 5 

strategies and plans may be unsuccessful if the projected changes are not taken into account (Noce et 6 

al., 2017). 7 

The concept of site productivity, also known as site quality, refers to a quantitative estimate of the 8 

potential of a site (usually by designating and summarizing the local biophysical characteristics of a 9 

forest environment) to produce plant biomass (Bontemps and Bouriaud, 2014). Both terms (site 10 

quality and site productivity) can be considered equivalent when only biophysical site variables drive 11 

tree growth (i.e. absence of vegetation control, irrigation, drainage or severe effects of pest and/or 12 

diseases) (Skovsgaard and Vanclay, 2008) as, for instance, in unmanaged forests. The mean height 13 

growth of the dominant and codominant trees (dominant height) at a specific reference age, known as 14 

the site index (SI), is by far the most frequently used indicator of forest productivity and is related to 15 

stand structure, which greatly influences habitat and plant and animal species diversity (Pretzsch, 16 

2009). This strong influence explains why this variable has also been used in studies concerning 17 

biodiversity (Potter and Woodall, 2014), forest structure (Larson et al., 2008) and forest disturbance 18 

(Wei et al., 2003), amongst others. 19 

Although site quality and productivity can be predicted with reasonable accuracy in small areas by 20 

using measured SI values, the process is very costly (dominant height and stand age must be 21 

determined) and requires the species to be present. These drawbacks can be overcome by using 22 

indirect methods to estimate SI from on site environmental variables (also known as geocentric 23 

methods), applicable even when suitable trees are absent (Clutter et al., 1983).  24 

Many studies have attempted to relate SI to environmental factors by using parametric approaches 25 

(e.g. Fontes et al., 2003), nonparametric approaches (e.g. McKenney and Pedlar, 2003; Albert and 26 

Schmidt, 2010) or both (e.g. Aertsen et al., 2010). However, many of these studies include some 27 
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nutrient soil variables, which require complicated and expensive analytical techniques for their 1 

determination, making the models of little practical use. Remotely sensed data and spatially 2 

interpolated surfaces provide spatially-continuous environmental information that was not available a 3 

few decades ago, thus solving the previously mentioned problems. Developing methods that provide 4 

spatially explicit estimates of SI as a function of this environmental information would enable 5 

development of a SI map without the need for fieldwork, thus making information about forest 6 

productivity available for further ecological study (Parresol et al., 2017). For this purpose, a species 7 

distribution model (SDM), understood as an empirical ecological model that relates species occurrence 8 

to environmental predictors (Guisan and Zimmermann, 2000), is the most suitable framework to 9 

depict this site productivity information. 10 

SDMs have been widely used to estimate ecological requirements of particular species and to 11 

characterize and map the spatial distribution of habitats occupied by species at landscape scale (e.g. Li 12 

et al., 2016). However, in addition to describing the environmental needs of the populations, SDMs 13 

can also predict the potential temporal and spatial distribution in unsampled areas and future climatic 14 

conditions (Elith et al., 2006), which is fundamental for conservation biology (Johnston et al., 2015). 15 

Fagus sylvatica L. (hereinafter “beech”) is the most widely distributed of all Fagus species and the 16 

most abundant broad-leaved forest tree in Europe, with a geographical distribution spanning between 17 

southern Scandinavia and Sicily, across a wide range of environmental conditions (Fang and 18 

Lechowicz, 2006). In the southernmost part of the distribution range, where the climate is warmer and 19 

drier (e.g. Spain), beech populations are restricted to mountain slopes where there are fewer climatic 20 

constraints (Jump et al., 2006). In the Cantabrian Range (NW Spain), the climate is humid temperate 21 

and beech occurs as a climax species on slopes of elevation higher than 600 m above sea level 22 

(Gandullo et al., 2004), where the forests are characterized by natural regeneration and fast-growing 23 

stocks (Ruiz de la Torre, 2006). These forests can host diverse types of fauna, and they form part of 24 

the habitats of endangered and emblematic species such as the Cantabrian capercaillie (Tetrao 25 

urogallus sbsp. cantabricus J. Castroviejo) and the brown bear (Ursus arctos L.), leading to their 26 

inclusion in protected areas that are relatively unaffected by human influence. Indeed, the high 27 

ecological value, together with the complex topography of the area, has led to the stands being 28 
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unmanaged and not harvested, except occasional cutting to produce local domestic firewood. Because 1 

of the low economic importance, no studies have been carried out to date to determine the site quality 2 

of beech stands in the Cantabrian Range. 3 

The relationship between beech and climate has been widely investigated in Europe due to the socio-4 

economic and ecological importance of the species (Dyderski et al., 2017). Numerous studies have 5 

shown decreasing trends of growth and productivity in beech forests, which have mainly been 6 

attributed to the impact of climate change in Northern Europe (e.g. Farahat and Linderholm, 2018), 7 

Central Europe (e.g. Scharnweber et al., 2011; with Bosela et al. (2016) as an exception) and Southern 8 

Europe (e.g. Jump et al., 2006; with Tegel et al. (2014) as an exception). Moreover, simulation studies 9 

suggest future changes in the current distribution and productivity of the species as a consequence of 10 

climate change (e.g. Geßler et al., 2007; Albert and Schmidt, 2010; Meier et al., 2011; Falk and 11 

Hempelmann, 2013; Brandl et al., 2018). 12 

The Cantabrian Range has undergone a gradual increase in temperature and potential 13 

evapotranspiration, together with a decrease in precipitation in recent decades (Rubio-Cuadrado et al., 14 

2018). According to recent findings, even more dramatic changes are expected to occur in the future 15 

(e.g. IPCC, 2013; EEA, 2017). It is therefore necessary to incorporate climate variables as predictors 16 

to model how these changes will affect productivity, to predict shifts in species distribution and to 17 

identify areas where the species will be able to persist.  18 

Among the available information on a particular species, occurrence, abundance, site productivity and 19 

stand structure (and the temporal and spatial variations in these) are of major interest for the purposes 20 

of biodiversity conservation. Spatially-continuous distribution and productivity models developed for 21 

different climate change scenarios will help decision-makers to develop and implement actions for 22 

mitigating the decline in biodiversity brought about by global warming. Thus, the overall aim of this 23 

study was to simulate the effects of climate change on suitable habitat and site productivity of the 24 

beech forests in the Cantabrian Range. The specific objectives were as follows: i) to develop a site 25 

index equation for Fagus sylvatica L. in the study region, ii) to investigate the environmental factors 26 

determining the distribution and productivity of the species and iii) to develop spatial distribution 27 

(SDM) and productivity (PM) models based on environmental variables, in order iv) to generate 28 
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spatially-continuous maps, and v) to project the models and maps to different climate change 1 

scenarios. 2 

 3 
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2. Materials and Methods 1 

2.1. Study area 2 

The Cantabrian Range (NW Spain) constitutes an ecotone between the Eurosiberian and the 3 

Mediterranean biogeographic regions in Europe (Díaz and Fernández, 1987) with the main axis 4 

running in an east-west direction from the Galician Atlantic coast to the western extreme of the 5 

Pyrenees in the Basque Country. There is considerable asymmetry between the northern and southern 6 

sides of the Cantabrian Range. Thus, while the northern side always terminates at sea level, the 7 

southern side descends to the Northern Plateau (Douro River basin), with elevations rarely lower than 8 

800 m. The terrain of this mountain range is complex, and the different combinations of topography 9 

and landform influence the type and vigour of the vegetation communities (Elena, 1997).  10 

The present study was conducted in the Northwestern Cantabrian Range (42.82° to 43.51° N; -6.79° to 11 

-4.52° W), in the provinces of Asturias and León (Fig. 1). The climate of the region is Atlantic, with 12 

precipitation very uniformly distributed around the year (Rozas et al., 2015). Precipitation ranges from 13 

1,217 to 1,855 mm, with an annual average of 1,568 mm, whereas the mean annual temperature varies 14 

from 6.7 to 10.5 °C, with an annual average of 8.1 °C. Geologically, ancient Paleozoic rocks 15 

(carboniferous limestone, slate, coal, conglomerates, quartzite, sandstone) predominate in the central 16 

axis, flanked by Mesozoic (limestone, dolomite, sandstone) and Tertiary rocks in the lower mountains 17 

of the eastern part of the Basque Country (IGME, 2015a). 18 

2.2. Data collection!19 

Four different types of data were considered in this study and used for different purposes: i) 20 

longitudinal tree height-age data, obtained by stem analysis in research plots, were used to develop a 21 

site quality system, ii) occurrence data obtained from the Third Spanish National Forest Inventory 22 

were used to develop the distribution model, iii) data of current spatial environmental variables were 23 

used to model and map distribution and site productivity; and iv) future climatic data projections under 24 

different emission scenarios were used to predict the impact of climate change. 25 
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2.2.1 Dominant tree height-age data 1 

A total of 112 permanent sample plots, covering the existing range of stand densities and site qualities, 2 

were established in natural beech-dominated stands (90% or more of the standing basal area consisting 3 

of beech) throughout the Western Cantabrian Range in 2010 and 2011 (Fig. 1). The plots ranged in 4 

size from 400 to 3600 m2, depending on stand density, in order to achieve a minimum of 30 trees per 5 

plot. These beech forests are located in environmentally protected areas, and we were not able to 6 

obtain permission to cut trees in all locations. We thus finally selected a sample of 30 plots to 7 

represent all site qualities. In each plot, two dominant trees were felled and destructively sampled. The 8 

felled trees were the first two dominant trees found outside the plots, but in the same stands, within ± 9 

5% of the mean diameter at 1.3 m above ground level and mean height of the dominant trees 10 

(considered as the 100 largest-diameter trees per hectare). All of the trees (n=60) were cross-sectioned 11 

at stump height, at 0.50 m above ground, at breast height, and 1 m intervals thereafter along the stem. 12 

Each cross section was processed by electric brushing and sanding until the tree rings were clearly 13 

visible. The treated cross sections were scanned at 900 dpi (in an Epson Expression STD 1680 PLUS 14 

flatbed scanner) and the resulting data were analyzed using WinDENDRO image analysis software 15 

(Regent Instruments Canada Inc.) to produce the annual ring count. To reduce the bias when 16 

determining the height of each cross section at a given age, Carmean’s algorithm, with the 17 

modification proposed by Newberry (1991), was applied. Summary statistics, including mean, 18 

maximum, minimum and standard deviation values for the main tree and stand variables are shown in 19 

Table 1. 20 

2.2.2. Occurrence data  21 

Information on beech occurrence was drawn from the Third Spanish National Forest Inventory 22 

(SNFI3) (DGCN, 2006). The plots of the SNFI3 are located at the nodes of a 1 km UTM square grid, 23 

comprising four concentric subplots of radius of 5, 10, 15 and 25 m, with a minimum diameter at 1.3 24 

m above ground level threshold of 75, 125, 225 and 425 mm, respectively (DGCN, 2006). Presence 25 

was defined as the occurrence of one or more live beech trees in some of the subplots. A total of 1,877 26 

plots falling within the study area with data on presence/absence of beech were available for analysis 27 
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and were imported to a GIS database (ArcGIS 9.3, ESRI, Redlands, CA, USA). A minimum distance 1 

of 1 km between plots was considered in order to prevent the inclusion of spatially autocorrelated data. 2 

2.2.3. Spatial environmental variables  3 

Four types of environmental parameters were considered as possible predictors of the species 4 

distribution and site productivity: terrain, climate, soil and hydrographical variables. A total set of 48 5 

variables was available for analysis (Table 2).  6 

Terrain variables were based on a 5 m resolution digital elevation model (DEM) provided by the 7 

Spanish National Plan for Aerial Orthophotography (PNOA; www.pnoa.ign.es). We used the 8 

Automated Geoscientific Analyses Geographical Information System software v.3.0.0 (SAGA; 9 

Conrad et al., 2015) to calculate each of the terrain variables from the DEM. Seven topographic 10 

variables, plus three potential incoming solar radiation variables and one hydrographic variable were 11 

considered, excluding elevation, which is strongly correlated with climatic variables such as 12 

temperature and precipitation. Gridded data were obtained for all climate variables with a 30 arc-13 

second resolution (approximately 800 m) from WorldClim (Hijmans et al., 2005). A total of 19 14 

climatic variables were considered. Twelve soil variables were compiled from the SoilGrids250m 15 

(Hengl et al., 2017), which provides a collection of updatable soil property and world classification 16 

maps at 250 m spatial resolution, based on machine learning algorithms. Soil type and group were 17 

compiled from the European soil database (ESDB) v2.0. Lithostratigraphic type and permeability were 18 

obtained from the Spanish Stratigraphic Map (SSM) scale 1:200,000, and Geology from the Spanish 19 

Geological Map (SGM) scale 1:1,000,000 (IGME, 2015a; 2015b). All climate, soil and topography 20 

variable raster grids were resampled at 250 m resolution. To predict the future species distribution and 21 

site productivity under different climate change scenarios, we use the Global Climate Models (GCMs) 22 

for 2050 and 2070 based on the CMIP5 model of the IPCC 5th Assessment Report 23 

(http://www.worldclim.org/CMIP5). 24 
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2.3. Site quality system development and site index data !1 

The algebraic difference approach (ADA; Bailey and Clutter, 1974) and its generalization (GADA; 2 

Cieszewski and Bailey, 2000) were used to develop the site quality system. We tested the six dynamic 3 

equations used by Barrio-Anta et al. (2008) for modelling both dominant height and basal area growth 4 

of I-214 poplar plantations in Spain. The dummy variables method (Cieszewski et al., 2000) 5 

considering a continuous-time autoregressive (CAR(x)) error structure for accounting for 6 

autocorrelation was used to estimate the model parameters. The dummy variables method and the 7 

CAR(x) error structure were programmed using the SAS/ETS® MODEL procedure (SAS Institute 8 

Inc., 2004), which allows dynamic updating of the residuals. We carried out a cross-validation, 9 

estimating the residuals in dominant height estimation for the two trees of one plot by fitting the model 10 

without the two trees from that plot. The root mean square error (RMSE) and the coefficient of 11 

determination for nonlinear regression (R2) were calculated from the residuals obtained from cross-12 

validation. The curves fitted over the dominant height trajectories were visually inspected to select the 13 

best model (Barrio-Anta et al., 2008). Determining SI at a particular location is generally a two-step 14 

process (McKenney and Pedlar, 2003): i) a dominant height-age equation for a particular species must 15 

first be developed on the basis of data obtained by destructive sampling of dominant trees, and ii) a 16 

site index is obtained for a site by measuring the height and age of several dominant and/or 17 

codominant trees and including the data in a previously developed equation. 18 

2.4. Modelling species distribution and productivity !19 

Various statistical approaches ranging from multiple linear regression to complex machine learning 20 

algorithms have been used to predict species occurrence (e.g. Falk and Hempelmann, 2013; Shirk et 21 

al., 2018) and forest productivity (e.g. Aertsen et al., 2010). However, simulating changes in 22 

vegetation characteristics relative to environmental variables can be extremely complex, posing 23 

significant challenges to traditional parametric regression analysis (Prasad et al., 2006). Thus, newly 24 

developed non-parametric methods have become more popular in recent decades.  25 

In this study, we used the Random Forest (RF) non-parametric ensemble learning method (Breiman, 26 

2001). RF is a widely used non-parametric classification and regression approach that consists of 27 



 

11 
 

building an ensemble of decision trees (Gislason et al., 2006). The success of this technique is based 1 

on the use of numerous trees and different independent variables that are randomly selected from the 2 

complete original set of features (e.g. Deschamps et al., 2012). In machine learning, spurious data 3 

features must be removed before a model is generated (Hall, 1999). Thus, the potentially most 4 

important variables are selected. For this purpose, WEKA open source software (Hall et al., 2009) was 5 

used to fit the RF algorithm by implementing a wrapper methodology to select the subsample of 6 

variables, which usually produces the best results (Zhiwei and Xinghua, 2010). This method selects 7 

the subsample of variables by using a learning algorithm as part of the evaluation function. Final fitted 8 

models were applied to environmental spatial variables resampled at a 250m x 250m resolution to 9 

generate spatially continuous maps. 10 

2.5. Model assessment and analysis!11 

Several approaches can be used to test the accuracy of supervised learning algorithms. We used the 12 

common method of k-fold cross validation. In this process the data set is divided into k subsets. Each 13 

time the model is applied, one of the subsets is used as the test set and the other k-1 subsets form the 14 

training set. This provides a good indication of how well the classifier will perform on unseen data. 15 

We used k=10 and applied the RF algorithm several times and computed various standard metrics to 16 

assess the model performance. In order to assess the accuracy of SDM predictions, we used a 17 

confusion matrix that reflects the four possible ways that a sample point can be classified and observed 18 

(Fielding and Bell, 1997). The values of this matrix were used to calculate several metrics. Some of 19 

the metrics commonly used include the following (Shirk et al., 2018): i) the overall accuracy (OA), ii) 20 

sensitivity (SN), iii) specificity (SP), iv) the True Skill Statistic (TSS), v) Cohen’s Kappa; and vi) the 21 

area under the ROC curve, (AUC). A binary model, which was required to calculate Cohen’s Kappa 22 

and OA, was created on the basis of a threshold probability where sensitivity equals specificity, with 23 

equally weighted errors of omission and commission. All modelling methods report a probability of 24 

presence (PoP) for each species as an output variable. We selected a threshold PoP for converting all 25 

other PoP data to binary presence–absence outputs. To select a threshold for presence–absence 26 

delineation from the PoP data, we used the average result of two methods: (1) the PoP that maximized 27 
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the sum of sensitivity and specificity, and (2) the PoP that minimized the difference between the 1 

absolute values of sensitivity and specificity. 2 

To evaluate the productivity model, we used the coefficient of determination for nonlinear regression 3 

(R2) (Ryan, 1997), the absolute and relative values of respectively the mean absolute error (MAE) and 4 

the root mean squared error (RMSE). RF has an embedded feature ranking technique called the 5 

variable importance measure (VIM), which was used to guide selection of predictors for the final 6 

model. These scores were determined as follows. The out-of-bag Mean Squared Error (MSE) was first 7 

stored in each tree of the RF. Each of the predictors was then permuted in turn (values are randomly 8 

reassigned among the set of out-of-bag samples) and the difference in MSE, usually an increase, was 9 

computed and averaged over all the trees. Finally, normalization was carried out by standard deviation 10 

of the differences and the output represented as a percentage increase in MSE. Thus, the potentially 11 

most important variables were selected by RF according to the VIM. To ensure values of variable 12 

importance were expressed in comparable scales, the VIM values were normalized so that they 13 

summed to a unitary value (normalized importance) and they were also expressed in relative terms 14 

(relative importance = (VIM-VIMmin)/(VIMmax-VIMmin)). The marginal response curves were then 15 

constructed in order to explore the relationships between the response and each of important predictor 16 

variables. These curves represent the predicted probability of presence of the species or the site 17 

productivity prediction value (y-axis) as function of a single environmental variable (x-axis), when all 18 

other explanatory variables are held constant at their mean values. 19 

2.6. Current and future predictions of models 20 

Two raster databases of resolution 250 x 250 m were obtained, resulting in fitting SDM and PM 21 

models to the current environmental variables to enable generation of a current map of suitable habitat 22 

and site productivity for beech. 23 

We also projected the fitted models onto spatial projections at 250 m resolution of the environmental 24 

variables reflecting two climate change scenarios (moderate and pessimistic) for 2050 and 2070 under 25 

different emissions pathways. These scenarios are expressed by the Representative Concentration 26 

Pathways (RCP), using values comparing the level of radiative forcing between the preindustrial era 27 
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and 2100. The moderate scenario (RCP 4.5) assumes that climate policies limit greenhouse-related 1 

emissions and total radiative forcing is stabilized at 4.5 W m−2 in 2100 without ever exceeding that 2 

value in prior years with a CO2 concentration of 650 ppm and 1.0–2.6°C increase by 2100 (Thomson 3 

et al., 2011). The pessimistic scenario (RCP 8.5) assumes continued increases in greenhouse gases 4 

following recent trends (but does not include any specific climate mitigation target), reaching a total 5 

radiative forcing of 8.5 W m−2 by 2100 (Riahi et al., 2011) and 1,350 ppm CO2 and 2.6–4.8°C increase 6 

by 2100 (IPCC, 2013; Harris et al., 2014). For the current and future scenarios, we used FRAGSTATS 7 

4.2 (McGarigal et al., 2016) to quantify the area of habitat and degree of habitat fragmentation based 8 

on the binary model. We use three indicators to quantify suitable habitat surface: i) total area (TA), ii) 9 

mean patch area (MPA) and iii) largest patch index (LPI; the percentage of the landscape 10 

encompassed by the largest patch). The fragmentation was assessed with the aggregation index (AI), 11 

which equals 0 when suitable habitat is maximally disaggregated into single grid cell patches 12 

disconnected from all other patches and increases to 1 as suitable habitat is increasingly aggregated 13 

into a single, compact patch. We also quantified the degree of change for each future scenario relative 14 

to the current situation, classifying habitat as either gained, maintained or lost. In Figure 2, we 15 

graphically summarize the main methodological steps of the approach used in the present study. 16 
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3. Results 1 

3.1. Site index model!2 

The GADA formulation of the Hossfeld equation (Cieszewski, 2002) (Eq. 1) yielded the best 3 

compromise between graphical and statistical considerations (R2 = 0.98 and RMSE = 0.74). All 4 

parameter estimates were significant at the 5% level, and the plot of residuals against estimated values 5 

showed a random pattern of residuals around zero, with homogeneous variance and no detectable 6 

significant trends, after modelling the error structure of the site quality equations following Diéguez-7 

Aranda et al. (2006) (Fig. S1).  8 

 
(Eq. 1) 

Where, H1 represents the predicted dominant height (m) at age t1 (years) and H2 represents the predicted dominant height (m) 9 

at age t2 (years).  10 

We used the method proposed by Diéguez-Aranda et al. (2005) to select the reference age. This 11 

consists of using different reference ages and their corresponding observed heights to estimate heights 12 

at other ages (both forward and backward) for each tree, and of comparing the results with the values 13 

obtained from stem analysis by using the relative error in predictions. Following this procedure, a 14 

reference age of 80 years was selected for the SI (Fig. S2) used to classify the stands according to their 15 

productivity.  16 

The predicted dominant height curves overlaid on observed data from stem analysis (Fig. 3) showed 17 

that the model satisfactorily described the real trajectories. SI, which in this case was defined as the 18 

dominant height at a reference age of 80 years, can be easy obtained for a particular plot by 19 

substituting H2 for SI and 80 years for t2 and including the dominant height (H1) and the age (t1) of the 20 

plot in Eq.1.  21 
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3.2. Species Distribution Model!1 

Of the 3,121 sites surveyed in the provinces of Asturias and León, beech was present at 539 sites and 2 

absent from 2,582. Beech was present at elevations ranging from 69 m to 1,797 m (mean elevation = 3 

837 m), and the latitudinal distribution among the sampled sites ranged from 42.82 to 43.51 degrees 4 

north (mean latitude = 43.1 degrees north).  5 

The performance of the beech distribution model was excellent (Table 3). As result of the feature 6 

selection process, a total of 23 out of 48 variables were retained as the optimal subset size for the RF 7 

method, indicating that the distribution of the species is driven by many interrelationated variables 8 

(Table 4). According to the normalized importance score, climate variables contribute most to the 9 

model (51.2%) with the thermal and pluviometry variables making the same contribution, although the 10 

relative importance of the thermal variables was higher. Nine soil variables were retained and 11 

contributed 34.2% to the model. With the exception of soil pH, all of these variables were related to 12 

physical properties. However, soil pH was the relatively most important variable among this type. 13 

Three terrain variables contributed 10.1% to the model but all were variables with low relative 14 

importance. 15 

The functional form of the marginal response plots for the five most important variables was clearly a 16 

unimodal relationship with the peak or maximum probability of presence at intermediate levels (Fig. 17 

4). Isothermality (BIO_03) was the most important variable, with a response peak in probability at 18 

40%. This variable can be interpreted as the stability of temperature over the course of a year, or 19 

quantification of the day-to-night temperature oscillation relative to the summer-to-winter oscillation. 20 

A value of 100% would represent a site where the diurnal temperature range is equal to the annual 21 

temperature range. For the annual mean diurnal range (BIO_02), the peak response occurred at 9.3 ºC. 22 

For temperature seasonality (BIO_04), a measure of temperature change over the course of the year, 23 

the peak response was 500%. The annual temperature range (BIO_8) provides mean temperatures 24 

during the consecutives three wettest months of the year, and the peak response occurred at 6 °C. The 25 

fifth most important variable was the precipitation of the wettest month (BIO_13), which reached a 26 

peak of 115 mm. 27 
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3.3 Productivity Model!1 

As productivity models enable SI to be predicted as a function of environmental variables (including 2 

several climatic variables), they are capable of predicting changes in SI under non-constant climate. 3 

As result of the feature selection process, only 3 of 48 variables were retained as the optimal subset 4 

size for RF method. Based on variable importance scores, soil silt percentage and the monthly mean 5 

diurnal range contributed most to the model (78% of the importance score). The plan curvature (PLC) 6 

of the terrain contributed the remaining 22 % of the importance score (Table 5).  7 

The functional form of the marginal response plots of the first two variables is similar, with a 8 

continuous increase in site index as silt percentage in soil increased from 31% to 40-42 %, at which a 9 

peak or maximum site index of 17.5 m is reached (Fig. 5). The monthly diurnal mean ranged from 7.5 10 

to 9.5 and the SI increased gradually from 13 to 15 m; after reaching a value of 10, the SI increased 11 

rapidly from 12.5 to a peak of 20 m at a 10.5. The relationship between the functional response of the 12 

PLC and the peak SI around a PLC zero value was very flat and unimodal (for linear surfaces, neither 13 

convex nor concave). 14 

Model performance was good; no trends were observed in residuals (Fig. 6) and about 54.09 %. of the 15 

variance was explained. Taking into account the metrics of average residuals, the root mean square 16 

error was 3.4936 m and the mean average error, 1.0245 m, representing respectively 20.82% and 17 

16.50% of the mean site index value (16.78 m). 18 

3.4. Predictable effects of climate change on beech forest habitat suitability and 19 

productivity!20 

The predictions regarding the impact of climate change on the potential distribution of beech in the 21 

Cantabrian Range suggest that there will be a drastic reduction in the area of suitable habitat for the 22 

species (Fig. 7). SDM projections under the two different emissions scenarios reveal very important 23 

shifts in suitable beech habitat towards more favourable environmental conditions, the magnitude of 24 

which mainly depends on the scenario considered. Under the moderate scenario (RCP 4.5), the mean 25 

latitude of the suitable habitat will shift 0.01352 degrees north and the elevation will increase by 26 

almost 100 m. Considering the area occupied and the degree of habitat fragmentation of beech forests, 27 
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the total surface area will decrease by 40% and 45% by respectively 2050 and 2070, the mean path 1 

area will decrease by 40%, the large path area index will decrease by 59% and aggregation index by 2 

6%. Under the pessimistic scenario (RCP 8.5), the suitable optimal conditions for beech forest will 3 

almost disappear from the Cantabrian Mountains:  suitable habitat will shift 0.02409 degrees 4 

northwards and 300 m higher in elevation, and the total surface will decrease dramatically, by around 5 

90% and 95% by respectively 2050 and 2070; the mean path area will decrease by 93%, the large path 6 

area index by 99% and the aggregation index by 36% (Fig. S3). 7 

Figure S4 shows projections for 2050 and 2070 of the distribution of the five climatic variables of 8 

relative importance greater than 60% under the two future climatic scenarios. The future projections 9 

reveal that main climatic variables will shift under both climatic scenarios, but the greatest change will 10 

occur under the more pessimistic scenario (RCP 8.5) with the time horizon being less important. 11 

Isothermality (BIO_03) will clearly shift towards lower values under the pessimistic scenario. This 12 

score is result of dividing the diurnal range between annual ranges. As the mean diurnal range 13 

(BIO_02) decreased only slightly under this scenario, the large annual variation in temperature 14 

(BIO_04) confirmed the changes in BIO_03. Mean temperatures of the wettest quarter (BIO_08) will 15 

shift toward warmer days, whereas precipitation of wettest month (BIO_13) will decrease slightly in 16 

the moderate scenario and increase slightly in the pessimistic scenario. It appears that change in 17 

temperature ranges rather than changes in precipitation will have a greater impact on the suitable 18 

beech habitat. 19 

Finally, Figure 8 shows the predicted SI for the future suitable habitat under the two future climatic 20 

scenarios for 2050 and 2070 time horizons. The future projections reveal that under the lower emission 21 

scenario (RCP 4.5) the mean SI for the suitable habitat will undergo a large increase from 15.19 m to 22 

18.18 m with very little influence of the time horizon. However, under the higher emission scenario 23 

(RCP 8.5), SI will increase only slightly from 15.19 to 15.53 and 16.42 m by 2050 and 2070 24 

respectively. 25 

 26 

 27 
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4. Discussion 1 

4.1. Site index model!2 

Site index (SI) is a key variable in modelling forest productivity. In this study, the generalized 3 

algebraic difference approach (Cieszewski and Bailey, 2000) was used to generate polymorphic curves 4 

with data from stem analysis. The selected equations provided good fits for both dominant height 5 

(Dieguez-Aranda et al., 2006) and basal area (Barrio-Anta et al., 2008), and they fulfilled most of the 6 

desirable properties that a site quality equation should possess (Diéguez-Aranda et al., 2006).  7 

Beech is a widespread forest tree in Europe. However, very few site quality curves have been 8 

developed for the species relative to others (e.g. conifers). As a result, site quality curves are often 9 

applied outside the area for which they were explicitly constructed. In Spain, beech site quality curves 10 

have been developed for the regions of La Rioja (Iberian Range) (Ibáñez, 1989) and Navarra 11 

(Pyrenees) (Madrigal et al., 1992). Nevertheless, the curves elaborated by Madrigal et al. (1992) are 12 

often applied in Spain, even for different biogeo-climatic zones (Elena, 1997) such as Catalonia (Elena 13 

et al., 2001), La Rioja (Blanco et al., 2003) and Castilla y León (Sánchez et al., 2003).  14 

Our SI model fitted well to the observed values of the stem analysis and distinguished 4 site qualities 15 

defined by heights of 5, 12, 19 and 26 m at a reference age of 80 years. The results were based on trees 16 

of ages between 43 and 199 years. The curves can therefore be used over the entire rotation of the 17 

species in Spain, between 100 and 150 years (Madrigal et al., 2008). 18 

Visual comparison of our curves with the Navarra curves constructed by Madrigal et al. (1992) shows 19 

different growth and range of site qualities (Fig. S5). Previous studies in the Iberian Peninsula have 20 

pointed out that the Cantabrian Range encompasses a huge variety of site qualities (e.g. Gandullo et 21 

al., 2004), with the best occurring in the region of Navarra (Ruiz de la Torre, 2006). We confirmed 22 

that this is generally true as five of the site qualities reported for Navarra are between our site qualities 23 

1 and 3, and none were as low as our site quality 4. This may be because beech forest grows in steeper 24 

sites in the Cantabrian Range and also because of the existence of damaged stands, remains of ancient 25 

forests, maintained on poor sites. By contrast, the forests in Navarra occupy comparatively flatter and 26 

more undulating land (Gandullo et al., 2004). As an exception, our best site quality corresponded to a 27 
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stand selected for seed production for its above average quality (Agúndez-Leal et al., 1995), better 1 

than any of those in Navarra. 2 

4.2. Species Distribution Model 3 

SDMs correlate species occurrence and environmental parameters and have arisen as a widely used 4 

modelling technique to map the current species distributions (Gray and Hamann, 2013). Our study 5 

revealed the main environmental factors driving the distribution of beech in the Cantabrian Range, a 6 

region characterized by a temperate oceanic climate and a unique elevational gradient in the context of 7 

the Atlantic biogeographic region in Europe. According to our results, climate makes the greatest 8 

contribution to the beech distribution in the Cantabrian Range, as indicated by e.g. Fang and 9 

Lechowicz (2006). Temperature-related variables had the strongest effects, with isothermality, annual 10 

mean diurnal range, temperature seasonality and mean temperature of wettest quarter (Dec-Ja-Feb, 11 

BIO_08) identified as the four most important variables. Precipitation in the wettest month 12 

(December) is the fifth most important variable according to the relative importance score and the first 13 

variable related to pluviometry. Considering the Atlantic influence in the study area (Roces-Díaz et al., 14 

2015; Rozas et al., 2015), it is not surprising that precipitation has a weaker influence than temperature 15 

on the distribution of beech, unlike other studies carried out in the Mediterranean region (e.g. 16 

Catalonia) where beech was mainly restricted to areas with > 950 mm of annual rainfall and within 17 

this, in areas with < 1050 mm, the distribution was related to winter and summer precipitation 18 

(Thuiller et al., 2003). 19 

In the study area, only Roces-Díaz et al. (2015) have analyzed the distribution of beech forests with 20 

SDMs. These researchers found that the presence of beech was positively related to soil fertility 21 

(suggesting that the species prefers basic substrates) and negatively related to mean temperature of 22 

daily minimum during January (reflecting the ability to resist frost damage) and to the accumulated 23 

solar radiation during one year. The mean daily minimum temperature during January may be 24 

comparable to the BIO_08 parameter, which acted similarly in our model. However, lithostratigraphic 25 

permeability (comparable to soil fertility) appeared in the 21st position (low importance), and solar 26 

radiation was not significant in our study.  27 
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4.3. Productivity Model 1 

Models that use environmental parameters as SI predictors (indirect or geocentric models) may help 2 

forest managers to classify stand productivity when the stand age is not known or when tree 3 

measurements are not available (Clutter et al., 1983). In the past few decades, the geocentric approach 4 

has been widely used, incorporating all types of environmental parameters. Our findings showed that 5 

soil physical, climatic and terrain parameters are driving factors in determining SI for beech in the 6 

Cantabrian Range. The model used to predict SI included only three predictor variables: soil silt 7 

percentage, monthly mean diurnal range and plan curvature of the terrain. As beech is very sensitive to 8 

water deficit, it is surprising that the model did not include any rainfall parameter.  9 

Soil physical parameters are often included in SI geocentric models as predictor variables (e.g. Bravo-10 

Oviedo and Montero, 2005; Brandl et al., 2014). Silt is related to texture and therefore to soil drainage 11 

conditions, which are important for estimating forest productivity (e.g. Jokela et al., 1988), and it is a 12 

key factor in the Mediterranean area (Bravo and Montero, 2001). According to Brandl et al. (2014), 13 

silt content can be interpreted as a proxy for soils with more favourable physical properties regarding 14 

water and air balance than soils with high sand or clay content, because silt is associated with better 15 

soil aeration and water retention capacity. Beech can grow on any type of soil as long as the soil is 16 

sufficiently well drained (Leuschner et al., 2006). Is therefore very sensitive to excess water (it does 17 

not tolerate flooding) as well as to a lack of water in the soil (its shallow rooting makes it susceptible 18 

to drought), so clay-rich and sand-rich soils are not favourable for beech (Le Tacon, 1981). In fact, soil 19 

water availability, mainly in early summer, has been identified as the main driver of beech growth 20 

(e.g. Scharnweber et al., 2011) and it is linearly related to the percentage of silt in soil texture 21 

(Gandullo et al. 2004). A silt percentage of around 42% (our optimal) (Fig. 5) mainly corresponded to 22 

loamy soils, which are characterized by being well-aerated, fertile and fresh soils with a high water 23 

retention capacity (Costa et al., 1997). 24 

Climatic data are commonly used parameters in geocentric models (e.g. Albert and Schmidt, 2010; 25 

Bosela et al., 2016; Brandl et al., 2018). The diurnal temperature range and its monthly mean represent 26 

the thermal amplitude that beech can endure throughout the year in the environment where it grows. 27 
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Thus, more continental climates have a greater thermal amplitude than other more temperate climates. 1 

In the same way, thermal amplitude decreases as elevation increases, as the air is colder at higher 2 

elevations (e.g. Rubio-Cuadrado et al., 2018). Our SI predictions indicated that SI increases as the 3 

monthly mean diurnal range increases up to 10 degrees, then increases rapidly and reaches its 4 

optimum at around 10.5 degrees (around 5 m for half a degree), beyond which it begins to decrease 5 

rapidly (Fig. 5). Similar findings were reported by Albert and Schmidt (2010) and Brandl et al. (2018). 6 

These researchers observed that SI increases with temperature during growing season and slows down 7 

at high temperatures, but in a wider thermal range than in the present study. In other words, for beech, 8 

SI is higher in sites where the average daily temperature is around 10.5 oC throughout the year, which 9 

apparently indicates temperate environmental conditions without frost or drought.  10 

Several studies have shown the effects of temperature on beech growth, both in height and in diameter. 11 

For instance, both very low and high temperatures in January cause a reduction in height growth (e.g. 12 

Seynave et al., 2008; Brandl et al., 2018). Cold temperatures that induce late frosts in spring, at the 13 

beginning of the vegetative period, also have a negative effect on beech growth (e.g. Seynave et al., 14 

2008; Rozas et al., 2015). However, Rubio-Cuadrado et al. (2018) observed that cool conditions 15 

between February and April enhance beech growth in the Cantabrian Range. Similar findings were 16 

observed in the north-eastern Italian pre-Alps (Piutti and Cescatti, 1997), Western Carpathians (Bosela 17 

et al., 2016) and Northwest Germany (Mausolf et al., 2018). These studies convert these cool 18 

conditions into water availability during the growing season. Their results indicate that early-season 19 

water shortage (February-March to May) and not summer water shortage (June to August) is the main 20 

driver of declining radial growth rates in beech. However, other studies have shown that high summer 21 

temperatures favour water deficit and stomatal closure, resulting in a reduction in height and radial 22 

growth both in the year of the summer drought (e.g. Seynave et al., 2008; Scharnweber et al., 2011) 23 

and in the following year (e.g. Hacket-Pain et al., 2016; Farahat and Linderholm, 2018). The previous 24 

findings suggest that beech develops correctly within a certain temperature range, so that when the 25 

temperatures are either very low or very high, and are consequently outside of that range, growth of 26 

the trees is negatively affected. 27 
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Many studies have also shown the effect of topographic variables on site productivity (e.g. Bergès et 1 

al., 2005; Bergès and Balandier, 2010). Topographic position, exposure and slope usually have 2 

significant effects on SI. Our findings show the optimum beech SI around a plan curvature equal to 3 

zero (Fig. 5), i.e. neither convex nor concave (what Bergès and Balandier, 2010 refer to as “neutral”). 4 

The aforementioned authors converted the topographic position into soil water availability, so that 5 

more concave surfaces correspond to higher water content and more convex surfaces correspond to a 6 

lower water availability. In the Cantabrian Range, beech forests grow in mountain areas where rainfall 7 

is high enough, but where surface run-off is also high because of the slope (Rozas et al., 2015). As 8 

previously mentioned, beech is very sensitive to drought and does not tolerate flooding. A convex 9 

curvature reduces percolation of water into the soil and is also related to higher nutrient loss and soil 10 

erosion (Bueis et al., 2017). On the other hand, a concave curvature favours flooding, which causes 11 

oxygen deprivation in plants and entails a reduction of energy demanding processes such as growth 12 

(Kreuzwieser et al., 2009).  13 

As mentioned above, rainfall was part of the model, although indirectly. The three selected parameters 14 

had an indirect effect on the water available for beech forests. However, the non-inclusion of explicit 15 

rainfall parameters in the model can be explained. According to Rozas et al. (2015), cloud immersion 16 

and foggy conditions mitigate the drought-sensitivity of beech in the Cantabrian Range. Both directly 17 

affect the forest water budget (via the capture of cloud water by the canopy), increase air humidity and 18 

reduce leaf transpiration. This is particularly true in unmanaged forests, as in the present study, where 19 

stem density and canopy closure were higher, resulting in a higher air humidity (Latif and Blackburn, 20 

2010).  21 

From the point of view of model performance, the selected model explained 54.09% of the total 22 

variance, which is an usual intermediate value in this type of studies (McKenney and Pedlar, 2003). 23 

Some authors reported better performance than in the present study for SI prediction with other 24 

species, mainly conifers (e.g. Bravo and Montero (2001) for Scots pine, Bravo-Oviedo and Montero 25 

(2005) for Pinus pinea L., Brandl et al. (2014) for Norway spruce, Bueis et al. (2017) for Pinus 26 

halepensis Mill., etc.). However, several studies have reported similar results (e.g. Fontes et al. (2003) 27 

for Douglas fir, Bergès et al. (2005) for Sessile oak, etc.) and others slightly poorer results than in the 28 
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present study. However, many of those models are of little practical application as they include some 1 

soil variables that require the application of complicated, expensive analytical techniques. 2 

As far as we are aware, only three other studies have examined the relationship between abiotic site 3 

characteristics and SI in beech forests: Seynave et al. (2008) in France, Albert and Schmidt (2010) in 4 

Germany, and Brandl et al. (2018) in Germany and France. The model proposed by Seynave et al. 5 

(2008) explained 59% of the variance in SI and included four climatic variables (mean temperatures 6 

for May, July and January, and December precipitation) and three soil variables (pH, Carbon/Nitrogen 7 

ratio and soil depth). The model developed by Albert and Schmidt (2010) correctly classified 34% of 8 

the cases with water balance and mean temperature in growing season, centered mean annual nitrogen 9 

deposition, longitude and latitude as environmental variables. The model produced by Brandl et al. 10 

(2018) explained 40.13% of the variation in SI, and the selected model variables were mean 11 

temperature of the warmest quarter, total precipitation during the growing season (May to September) 12 

and elevation.  13 

Although our results are not identical to those obtained in these three studies, they do share a common 14 

basis, as shown above. Of the parameters found to be significant in these studies, our database did not 15 

include monthly temperatures and rainfall, or the carbon/nitrogen ratio, or the centred mean annual 16 

nitrogen deposition. However, they do share the effects of soil fertility, and excessively high or 17 

excessively low temperatures throughout the year and their relation to water availability. Other 18 

parameters such as pH and soil depth were taken into account in our study, but they were not 19 

significant.  20 

Finally, studies that use geocentric models to predict SI apply various methodologies, both procedural 21 

and statistical. The two-step methodology used in this study has already been applied in the previously 22 

mentioned studies focused on beech forests, as well as in other studies involving different species (e.g. 23 

Fontes et al., 2003; Bergès et al., 2005; Bravo-Oviedo and Montero, 2005; amongst others). Brandl et 24 

al. (2018) reflect on this procedure, indicating two reasons why they prefer it to modelling SI 25 

dependence on age and environmental variables in one step. First, determination of SI as a measure of 26 

age is independent of the uncertainty of environmental variables. Second, modelling the SI 27 

dependence on environmental variables in a separate step has the advantage that the effect and 28 
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explanatory power of environmental variables on SI is immediately clear and separated from the effect 1 

of age. For instance, Brandl et al. (2014) explained 65.2% of the variance in SI for Norway spruce in 2 

Bavaria, whereas age alone explained 56.9% of the variance.  3 

Several statistical approaches have been used to develop these geocentric methods, ranging from 4 

multiple linear regression to artificial neural networks (Aertsen et al., 2010). Nonparametric 5 

techniques such as regression tree-based methods are among the most flexible and robust for this 6 

purpose (Jiang et al., 2014). Random Forest is a nonparametric ensemble classification and regression 7 

tool, which constructs hundreds of decision trees using randomized subsets of predicted and predictor 8 

variables (Breiman, 2001). Despite its virtues (see Jiang et al., 2014), it is less widely used than other 9 

techniques such as multiple regression and General Additive Models. Very few studies have used RF 10 

to predict SI from environmental parameters (e.g. Weiskittel et al., 2011; Jiang et al., 2014), although 11 

they have obtained good results. However, several studies have shown that RF tends to overestimate 12 

lower values and underestimate higher values (e.g. Nunes and Görgens, 2016), unlike in the present 13 

study. 14 

4.4. Predictable effects of climate change on suitable habitat for beech and the associated 15 

productivity!16 

Climate change is a global phenomenon that has already clearly contributed to changes in forest 17 

productivity and in the distribution and abundance of plant species (e.g. Monzón et al., 2011; Hacket-18 

Pain et al., 2016). Plants are particularly vulnerable to the alterations produced by climate change, 19 

among which beech can be highlighted for its sensitivity to water deficit, which has led to an increase 20 

in studies aiming to predict the response to this type of environmental change.  21 

There is a broad consensus that rising temperatures and a decline in the amount of precipitation during 22 

the growing season (mainly in spring and summer) will trigger an increase in frequency of drought 23 

periods in the upcoming decades in Southern Europe (e.g. Rubio-Cuadrado et al., 2018), which will 24 

cause a latitudinal shift towards the north and an upwards elevational shift in habitats that are suitable 25 

for beech forests (e.g. Kramer et al., 2010; Falk and Hempelmann, 2013). Our findings also indicate 26 

this geographical shift (Fig. S3) and thus suggest a drastic reduction in the area of habitat suitable for 27 
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beech forests in the Cantabrian Range, reducing the area by around half under the moderate scenario 1 

and almost total disappearance of suitable habitat under the pessimistic scenario (see Figures 7 and 2 

S3). These results are consistent with those reported in another studies. Several researchers have 3 

predicted a significant reduction in the surface area of the Cantabrian beech forests (e.g. Kramer et al., 4 

2010; Falk and Hempelmann, 2013; or Dyderski et al., 2017 for RCP 4.5 scenario), while others 5 

indicate the almost total disappearance of this type of forest (Meier et al., 2011; or Dyderski et al., 6 

2017 for RCP 8.5 scenario).  7 

However, SDM projections regarding climate change should not be literally interpreted as predicted 8 

species demographics (Gray and Hamann, 2013). Although the predicted loss of suitable habitat does 9 

not necessarily entail removal of current populations (Hampe, 2004), expected environmental effects 10 

of climate change on beech forest will lead to deterioration of the conditions necessary for future 11 

growth. These poorer conditions may lead to  rather lower levels of regeneration (Silva et al., 2012), 12 

because a decline in frequency of favourable years for reproduction is expected, but also in the 13 

reduction in local density of populations (e.g. Geßler et al., 2007; Falk and Hempelmann, 2013) or in a 14 

higher risk of mortality of trees (e.g. Allen et al., 2010). In addition, other studies provide some hope 15 

in the face of such a pessimistic outlook for beech forests in the Cantabrian Range. For example, Jump 16 

et al. (2006) and Hacket-Pain et al. (2016) have shown that climatic and site constraints at the species 17 

distribution margins can also lead to adaptive responses that may enhance the tolerance of populations 18 

to drier environmental conditions. Similarly, Psidova et al. (2018) have shown that beech forests at 19 

higher elevations are less sensitive to drought and heat stress. Finally, several studies claim that the 20 

response of beech to climate warming can be mitigated by producing more diversified stands in terms 21 

of tree height (Bosela et al., 2016), by leaving stands unmanaged (Mausolf et al., 2018) or by 22 

establishing mixed stands (Geßler et al., 2007). 23 

In terms of productivity, the study findings reveal that the mean SI of the suitable beech habitat 24 

increased under both emission scenarios considered (Fig. 8). Only three studies have indicated how 25 

climate change may affect SI in beech forests, with increases and decreases and considerable regional 26 

variation, as with other species (e.g. Jiang et al., 2014). Albert and Schmidt (2010) predicted a 27 

decrease in SI at elevations below 300 m and an increase at higher elevations in Lower Saxony. 28 
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Nothdurft et al. (2012) predicted an increase in SI in larger areas with lower elevation in the 1 

Schwarzwald and Swabian Alps, and in the south-eastern part of the Alpine foothills region (Baden-2 

Württemberg), whereas Brandl et al. (2018) predicted a decrease in SI for Southern Germany. In other 3 

words, the response depends on location, and no clear pattern has been observed for the species (e.g. 4 

Weiskittel et al., 2011). Seynave et al. (2008) did not make any SI projections in relation to climate 5 

change. 6 

Although information on the responses of forest ecosystems to climate change has increased in recent 7 

years, uncertainties due to temporal and geographical scale remain. As pointed out by Bosela et al. 8 

(2016), individual studies differ greatly in the type of data used and statistical methods applied, 9 

making comparison and generalization difficult.  10 

 11 

5. Conclusions 12 

We used powerful machine learning techniques and currently available spatially-continuous 13 

environmental variables to develop two raster-based models of 250 m resolution and thus generate 14 

suitable habitat and SI estimates for beech trees in the Cantabrian Range in Northwestern Spain. Both 15 

models incorporate climatic variables and enable prediction of future values under different climate 16 

change scenarios. Climate change is expected to cause a large reduction in the area of habitat suitable 17 

for beech by 2070 (loss of around 40 and 90% for the moderate and pessimistic scenarios 18 

respectively). By contrast, an average increase in SI of 3 m is expected for the moderate scenario and 19 

no change for the pessimistic scenario because of the almost total disappearance of suitable habitat. 20 

Predicted loss of suitable habitat may lead to less favourable conditions for seedling establishment,  a 21 

reduction in local density of populations and/or in a higher risk of mortality of adults, but does not 22 

entail current population removal, because it does not consider adaptive responses of the species or 23 

ecosystem management. In this respect, the models developed may be useful tools for helping 24 

decision-makers to develop plans for protecting biodiversity, forest management plans and species re-25 

habitation plans to prevent or mitigate the impact of climate change on beech forests. Further research 26 

aimed at obtaining a better understanding of the complex relationships between environmental 27 
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variables and species occurrence and productivity is needed to enhance these climate-sensitive 1 

predictive models. 2 
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8. Tables!1 
 2 

Table 1. Summary statistics for individual tree and stand variables used to develop the site index 3 

system. 4 

 5 

Statistic Tree variables (60 dominant trees)  Stand variables (30 plots) 

 Diameter at 
1.3m (cm) Height (m) Age (years)  Number of 

trees (ha-1) 
Basal area 
(m2 ha-1) 

Dominant 
height (m) 

Minimum 12.90 9.77 43  300 22.51 10.37 
Maximum 69.60 38.63 215  2445 94.95 35.90 
Mean 39.10 20.21 109.17  1073.70 44.04 19.25 
Standard deviation 14.20 6.50 41.88  575.40 13.46 6.02 

 6 

7 
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Table 2. Environmental variables considered as possible predictors in the distribution and site quality 1 

models. 2 

 3 
Type Code Description Unit Source 

SLP Slope based on a digital elevation model % 
ASP Aspect based on a digital elevation model º 
CU Curvature  
PLC Plan curvature  
PRC Profile curvature  
TSI Terrain shape index  
WI Wetness index  
SR_SS Potential incoming solar radiation in summer solstice kJ m2 year-1 
SR_EQ Potential incoming solar radiation in equinox kJ m2 year-1 
SR_WS Potential incoming solar radiation in winter solstice kJ m2 year-1 

Terrain 

DHN Euclidean distance to hydrographic network meters 

PNOA Lidar 

BIO_01 Annual mean temperature mm 

BIO_02 Mean diurnal range (Mean of monthly (max temp - min 
temp)) mm 

BIO_03 Isothermality (BIO_02/ BIO_07) (*100) ºC 
BIO_04 Temperature seasonality (standard deviation *100) ºC 
BIO_05 Max temperature of warmest month ºC 
BIO_06 Min temperature of coldest month ºC 
BIO_07 Temperature annual range (BIO_05- BIO_06) ºC 
BIO_08 Mean temperature of wettest quarter ºC 
BIO_09 Mean temperature of driest quarter ºC 
BIO_10 Mean temperature of warmest quarter ºC 
BIO_11 Mean temperature of coldest quarter ºC 
BIO_12 Annual precipitation mm 
BIO_13 Precipitation of wettest month mm 
BIO_14 Precipitation of driest month (mm) mm 
BIO_15 Precipitation seasonality (Coef. of variation) % 
BIO_16 Precipitation of wettest quarter  mm 
BIO_17 Precipitation of driest quarter mm 
BIO_18 Precipitation of warmest quarter mm 

Climate 

BIO_19 Precipitation of coldest quarter mm 

WorldClim 

SC Soil organic carbon content  mG/ha 
Ph_H2O Soil Ph in H2O solution   
Ph_KCl Soil Ph in KCl solution   
BD Bulk density of fine earth fraction (< 2mm)  kg m-3 
CLAY Percentage of clay in soil  Weight % 
SAND Percentage of sand in soil  Weight % 
SILT Percentage of silt in soil  Weight % 

CF Coarse fragments  Volumetric 
% 

CEC Cation-exchange capacity  cmol+ kg-1 
DB Absolute deep to bed rock  cm 
DB200 Depth to bedrock (R horizon) up to 200 cm cm 
R Probability occurrence of R horizon % 

SoilGrids250m 

Geo_units Geological units  
Geo_lit_units Lithological units  SGM 
LIT_dco Lithostratigraphy  
LIT_per Lithostratigraphy permeability  SSM 

WRB-FULL Full soil code of the Soil typological units from the 
World Reference Base (WRB) for Soil Resources  

Soil 

WRB-LEV1 Soil reference group of the Soil typological units from the 
World Reference Base (WRB) for Soil Resources  

ESDB 
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Table 3. Model fit metrics for species distribution (SDM).  1 

 2 

Model Data set AUC OA TSS Kappa Sensitivity Specificity PoP 
Test 0.9630 0.7240 0.7620 0.7371 0.8190 0.9430 0.2500 SDM Train 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2500 

 3 

AUC = area under the receiver operator curve; OA = overall accuracy; TSS = true skill statistic; Kappa = 4 

Cohen’s kappa.; PoP = probability of presence. Model fit was assessed on the training data used to fit the model 5 

as well as the withheld test data used for model evaluation. All values represent the mean 10-fold cross-6 

validation. 7 

 8 
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Table 4. Variables included in the beech SDM, including type and relative importance.  1 

 2 

Summarized values in the suitable habitat  
Type Variable Normalized 

Importance 
Relative 

Importance mean max min sd 
Climate BIO_03 0.064 100 40.15 44 38 0.93 
Climate BIO_02 0.061 92 9.90 11.0 7.3 0.48 
Climate BIO_04 0.055 72 4975 5472 3849 274 
Climate BIO_08 0.055 72 55.68 121 -28 21.83 
Climate BIO_13 0.054 68 116.52 158 90 10.06 
Climate BIO_14 0.046 44 46.18 73 32 4.95 
Terrain SR_ws 0.046 44 897 2206 165 401 
Climate BIO_19 0.045 40 261.44 415 189 38.61 
Terrain DHN 0.045 40 1740 5161 200 939 
Climate BIO_18 0.044 36 167.65 244 126 14.36 
Soil Ph_H2O 0.044 36 51.56 64 43 3.39 
Climate BIO_15 0.042 28 25.77 34 21 2.18 
Soil CLAY 0.040 24 23.10 36 13 3.16 
Soil SC 0.040 24 47.11 69 21 6.54 
Soil R 0.039 20 28.04 62 10 6.45 
Soil DB 0.038 16 1513 3259 830 286 
Soil DB200 0.037 12 191.84 200 117 10.83 
Soil SAND 0.035 8 39.42 56 27 2.78 
Soil LIT_dco 0.034 4 3 9 1 - 
Soil SILT 0.034 4 37.76 44 29 1.61 
Terrain SLP 0.034 4 19.49 60.03 0.00 8.49 
Soil LIT_per 0.033 0 4 9 1 - 
Terrain TSI 0.033 0 0.00 0.47 -0.73 0.092 
 3 

To ensure values of variable importance were expressed on comparable scales for each of the response variable, 4 

the scores of all the predictors selected were normalized so that they summed to a unit value (normalized 5 

importance) or were expressed as relative values: Relative importance = (VIM-VIMmin)/(VIMmax-VIMmin). 6 

 7 
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Table 5. Variables included in productivity model, including their type and relative importance.  1 

 2 

Summarized values in the 
suitable habitat Type Variable Normalized 

Importance 
Relative 

Importance 
mean max min sd 

Soil SILT 0.436 100 37.76 44 29 1.61 
Climate BIO_02 0.344 58 9.90 11.0 7.3 0.48 
Terrain PLC 0.220 0 0.006 1.62 -1.07 0.197 

 3 

To ensure values of variable importance were expressed on comparable scales for each of the response variable, 4 

the scores of all the predictors selected were normalized so that they summed to a unit value (normalized 5 

importance) or were expressed as relative values: Relative importance = (VIM-VIMmin)/(VIMmax-VIMmin). 6 

 7 
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9. Figure Captions!1 
 2 

Figure 1. Location of the study area. 3 

 4 

Figure 2. Workflow adopted for modelling and mapping the current and future distribution and site 5 

productivity for beech forests under climate change in this study. 6 

 7 

Figure 3. Dominant height growth curves for site indices of 5, 12, 19 and 26 m at a base age of 80 8 

years overlaid on the trajectories of the observed values over time. 9 

 10 

Figure 4. Marginal response curves for the five most important variables included in Fagus sylvatica 11 

species distribution model. The variables are ordered by their contribution to the model (importance 12 

score). BIO_03 = isothermality, BIO_02 = Mean diurnal range (Mean of monthly (max temp - min 13 

temp)), BIO_04 = Temperature seasonality, BIO_08 = Mean temperature of wettest quarter, BIO_13 = 14 

Precipitation of wettest month. The mean (black line) and standard deviation (grey area) of the 15 

probability presence. 16 

 17 

Figure 5. Marginal response curves for the three variables included in Fagus sylvatica productivity 18 

model. Variables are ordered by their contribution to the model (importance score). SILT= percentage 19 

of silt in soil, BIO_02 = Mean diurnal range (Mean of monthly (max temp - min temp)) and PLC = 20 

Plan curvature. The mean (black line) and standard deviation (grey area) of the probability presence. 21 

The prediction value of site index is shown as a function of each variable while all other variables are 22 

held at their median values at presence locations. 23 

 24 

Figure 6. Field measures vs. predicted values of SI for beech in training (left) and validation (right). 25 

Solid lines indicate the regression fits (n = 30, 10-fold-CV).  26 

 27 
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Figure 7. Random forest predictions for SI of Fagus sylvatica in the Cantabrian Range (North Spain). 1 

 2 

Figure 8. Distribution of SI by area covered at sites where beech is presented for five different 3 

scenarios. The average SI by area covered is shown on the upper right-hand side of the graph. 4 

 5 
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10. Figures!1 
 2 

Fig 1. 3 

 

 4 
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Fig 2. 1 
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Fig 4. 1 

   

  

 

 2 



 

54 
 

Fig 5. 1 
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Fig 6. 1 
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Fig 7. 1 
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Fig 8. 1 
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11. Supplementary figure captions!1 

 2 

Figure S1. Residuals versus age-lag1-residuals (left column), age-lag2-residuals (middle column) and 3 

age-lag3-residuals (right column) for dominant height projection function without considering 4 

autocorrelation parameters (first row) and using a second-order autoregressive error structure (second 5 

row). 6 

 7 

Figure S2. Relative error in stand height prediction (RE) related to the choice of a reference age for 8 

dominant height model. 9 

 10 

Figure S3. Changes in the distribution (mean latitude and altitude), area (total area) and fragmentation 11 

(mean patch area; largest patch index, i.e. the percent of the study area occupied by the single largest 12 

patch; and aggregation index, a measure of fragmentation that varies from 0 to 100, with zero 13 

reflecting conditions where all suitable grid cells are maximally dispersed from each other across the 14 

landscape) of the habitat for the beech in north-western Spain, under five scenarios: (1) the current 15 

reference period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 16 

emissions scenario; (4) 2070 under the RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 17 

emissions scenario. 18 

 19 

Figure S4. Distribution of those variables that contributed to the model algorithm for more than 75% 20 

for explaining the distribution of beech and also altitude under five scenarios: (1) the current reference 21 

period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 emissions 22 

scenario; (4) 2070 under the RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 emissions 23 

scenario. The variables shown are the five presenting a relative importance higher 60%. 24 

 25 

Figure S5. Comparison between the Cantabrian site index curves (continuous lines) and the Navarrese 26 

curves developed by Madrigal et al. (1992) (dashed lines).  27 



 

3 
 

12. Supplementary figures!1 
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Fig. S1. 3 

 4 

   

   
 5 

6 



 

4 
 

Fig. S2. 1 
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Fig. S3. 1 
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Fig. S4. 1 
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Fig. S5. 1 
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