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Abstract 

This paper analyses the operational efficiency of fish farming across EU Member States using 

a two-stage Data Envelopment Analysis (DEA) approach. In the first stage, a non-oriented 

Slacks-Based Measure of efficiency (SBM) DEA model is used to compute efficiency scores 

in marine and freshwater finfish and shellfish aquaculture subsectors for different EU countries 

during the period 2014-2016. In a second stage, these scores are processed by standard, 

censored and fractional regression models to test the effects of some exogenous variables. 

Between 57% and 74% of the observations, depending on the subsector considered, were 

efficient. The average technical efficiency was 0.918 for freshwater finfish, 0.885 for marine 

finfish and 0.802 for shellfish. Extending the best practices to the inefficient countries would 

involve a reduction of feed costs (2.9% - 4.3%), livestock costs (9.0% - 11.8%), energy costs 

(2.4% - 25.3%), repairing costs (3.7% - 13.8%) and other operating costs (4.3% - 13.8%)at the 

same time that an improvement in production value totalling 0.03% for freshwater finfish, 

2.13% for marine finfish and 0.37% for shellfish. As regards productivity change in the period 

under study, there has been a productivity regress in the case of freshwater finfish, productivity 

increase in the case of marine finfish and an initial productivity increase between 2014 and 

2015 followed by a slight decrease between 2015 and 2016 in the case of shellfish. Results also 

indicate that countries specializing in cultivating freshwater and marine populations are more 

likely to be on the efficient frontier and that technical efficiency seems to be influenced by the 

size of the country’s gross domestic product and capture fisheries.  
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1. Introduction 

Aquaculture is the fastest growing animal food producing sector in the world, with an increasing 

contribution to global food supply and economic growth (FAO, 2014; Lem et al., 2014). 

According to FAO (2018), global aquaculture production enjoyed an annual growth rate of 

9.8% over the period 1980-2000, and 5.8% during the period 2000-2016 (see Figure 1). 

Aquaculture not only contributes to food security by providing a more reliable source of food 

than wild-capture fisheries, but it also has a big potential for further growth and development 

(Kobayashi et al., 2015; Kumar and Engle, 2016). Future prospects for aquaculture are rather 

optimistic, for example, the World Bank estimates that almost two-thirds of the seafood 

consumption will be farm-raised in 2030 (Kobayashi et al., 2015). 

However, the European Union (EU) seems not to participate in this “Blue revolution”. EU 

aquaculture production has gone from a moderate annual growth rate of 3.5% over the period 

1980-2000, to a negative rate of -0.5% during the period 2000-2016 (see Figure 1). Moreover, 

EU aquaculture production currently represents less than 1/5 of the EU domestic fish and 

shellfish supply.  

This stagnation of the EU aquaculture production has been explained by a set of inter-linked 

factors that obstruct its development or expansion. These include the atomized character of the 

sector, the difficulty of competing with third countries with lower costs and less severe 

regulatory standards, limited access to space and water, hard administrative procedures 

concerning to licensing and difficulties in accessing finance and investment (European 

Commission, 2009; OECD, 2010; STECF, 2014, 2016; Bostock et al., 2016). 

========================== Figure 1 ============================== 
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Nevertheless, the European Commission in its EU’s Blue Growth Strategy has identified 

aquaculture as one of the sectors with higher potential for sustainable jobs and growth 

(European Commission, 2012). 

The European Commission together with the EU countries are trying to boost the EU 

aquaculture sector. They have invested more than €1.17 billion of public money in the EU 

aquaculture sector since the year 2000, while €1.2 billion are planned for the period 2014-2020 

(Guillen et al., 2019). EU countries developed Multiannual National Strategic Plans for the 

promotion of sustainable aquaculture between 2014 and 2015. In these plans, EU countries 

quantify the production growth objectives of their domestic aquaculture sector (European 

Commission, 2016a)1. According to the projections presented in the Member States' 

Multiannual National Strategic Plans (European Commission, 2016b), countries estimate 

aquaculture production to increase over 300,000 tonnes (25%) to a total of more than 1.5 million 

tonnes by 2020. This increase will imply reaching 480,000 tonnes from 330,000 tonnes of 

marine finfish (60% compared to 2012), 680,000 tonnes from 550,000 tonnes (25%) for 

shellfish, and a minor increase in freshwater aquaculture. However, there are significant 

differences in the projections by MS (see table A1 in the annex). 

These production targets can look rather optimistic when considering the stagnant growth of 

the EU aquaculture during the last two decades. However, production increases are already 

possible with the current levels of resources employed by the EU aquaculture sector, just by 

using them more efficiently. Efficiency in the aquaculture production is crucial to avoid waste 

of resources, lead to profitability increases and economic sustainability. 

The EU aquaculture sector can be divided into three main sectors: marine finfish, freshwater 

finfish and shellfish. According to STECF (2018), the marine finfish sector is the most 

                                                           
1 Available by country at: http://ec.europa.eu/fisheries/cfp/aquaculture/multiannual-national-plans_en. 
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important economically and generated the largest turnover of €2.73 billion, followed by the 

shellfish sector with €1.13 billion and the freshwater finfish sector with €1.03 billion. 

In the marine sector, the United Kingdom is the main producer of salmon, and only in Ireland 

salmon is also the main marine finfish species farmed. The production of seabream and seabass 

is more extended (see Table 1), with Greece being the main producer country in the EU. In the 

shellfish sector, France is the main producer of oysters, Spain is the main producer of mussels 

and Italy is the main producer of clams. In many countries, the main species produced in 

freshwater is trout, where main producer countries are Italy, Denmark and France; while carp 

is mostly produced in Eastern Europe (Poland, Czech Republic and Hungary). 

========================== Table 1 ============================== 

The objective of this study is to estimate the aquaculture efficiency performance of EU 

countries in freshwater, marine and shellfish subsectors for the period 2014-2016. To that end, 

Data Envelopment Analysis (DEA) approach is applied. The remainder of this paper unfolds as 

follows. In the next section, a literature review on aquaculture efficiency is carried out. Section 

3 presents the theoretical framework underlying the proposed approach. In section 4, the dataset 

and the variables considered are described. The empirical results for the efficiency analysis, as 

well as the impacts of the contextual factors on the efficiency scores are presented in section 5. 

Finally, in the last section, we present the conclusions and limitations of this study. 

2. Existing efficiency data analysis in aquaculture 

Most efficiency analyses on the aquaculture sector apply DEA as the quantitative method to 

estimate the technological frontier and efficiency of aquaculture operations. This is, mainly, 

motivated by the existence of multiple inputs and multiple outputs and the lack of a priori 

knowledge on the functional form of the corresponding production function. Table 2 updates 



 

6 
 

and summarizes the existing DEA research studies in aquaculture (Sharma and Leung, 2003; 

Illiyase et al., 2014), specifying the location, the number of farms, the time period, the inputs 

and outputs considered and the main features of the DEA approach used.  

==================== Table 2 ========================= 

Starting with the contribution of Sharma, Leung, Chen and Peterson (1999) that applied a CCR-

output oriented model to measure economic efficiency for a sample of Chinese polyculture fish 

farms, several other DEA efficiency studies were conducted on aquaculture farms in Malaysia 

(4 papers), US and Bangladesh (3 papers each), China and Vietnam (2 papers each), Denmark, 

Greece, Iran, Norway, Taiwan and Turkey (1 paper each). The majority of DEA models adopt 

a conventional CCR and BCC specification with input orientation, i.e., the models aim at 

minimizing the resources required to achieve the given output level. Iliyasu and Mohamed 

(2016) use a non-oriented Slacks-Based Measure of efficiency (SBM) DEA model to estimate 

technical efficiency of fresh pond culture system in Malaysia. Recently, Bayazid et al. (2019) 

compared the performance of foodplain aquaculture enterprises with different management 

approaches in Bangladesh using a SBM DEA model. Also, some researchers have used a 

bootstrapping procedure to correct the potential bias of the technical and cost efficiency 

measures computed by conventional DEA models (e.g. Chang et al., 2010; Asche et al., 2013a; 

Iliyasu et al., 2016; Hai et al., 2018). 

Other studies (e.g. Kaliba et al., 2007; Hassanpour et al., 2011; Asche et al., 2013a) have 

investigated the productivity change using a Malmquist index. Thus, for example, Kaliba et al. 

(2007) used DEA to estimate the total factor productivity growth for U.S. catfish-processing 

sector during 1986-2005. Another DEA technique, meta-frontier analysis, is used in Nguyen 

and Fisher (2014), which studied the efficiency of intensive, semi-intensive and extensive 

shrimp farming practices in Vietnam using a sample of 292 farms. Recently, the studies have 
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also focused on aquaculture cooperatives segment, like Forleo et al. (2018) who studied the 

Italian cooperatives by measuring budget indexes using CCR-BCC output oriented models. 

In recent years, several studies have been published that incorporate a second stage in the DEA 

analysis to evaluate the impact of specific contextual factors (e.g. non-physical inputs) on 

technical efficiency of aquaculture production of fish species. The most common second-stage 

regression method are linear regression models (Iliyasu et al., 2016; Iliyasu and Mohamed, 

2016), truncated regression models (Hai et al., 2018) and censored (i.e., Tobit) regression 

models (Cinemre et al., 2006; Kaliba and Engle, 2006; Alam, 2011; Nielsen, 2011; Hassanpour 

et al., 2011; Nguyen and Fisher, 2014; Iliyasu et al., 2016; Theodoridis et al., 2017; Zongli et 

al., 2017). For instance, using data of 89 farms, Nielsen (2011) used a two-stage DEA approach 

to analyse the impact of water purification systems in farming of freshwater trout in Denmark, 

using in the first stage input and output-oriented BCC models to compute efficiency and, in the 

second stage, a Tobit regression model to investigate if farm size had impact on technical 

efficiency. Other studies, however, adopt a non-linear regression specification in the second-

stage, such as logit specification (Hassanpour et al., 2011) and parametric/Bayesian probit 

specification (Chang et al., 2010). 

Almost all the existing efficiency studies in aquaculture refer to farms . Studies that assess the 

efficiency at the regional or country level are still limited. An exception is Mustapha, Aziz and 

Hashim (2013), which investigated the freshwater aquaculture efficiency in thirteen states in 

Malaysia using DEA window analysis over the period 2000-2008. Also, unlike the DEA studies 

reviewed above, the proposed non-oriented SBM approach considers non-discretionary inputs. 

Non-discretionary inputs are resources that are beyond managerial control, are not desirable, or 

it does not make sense to reduce them (e.g. Banker and Morey, 1986). Another contribution of 
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the proposed approach is the use of fractional regressions models in the second stage in order 

to better capture the data-generating process for DEA scores (Papke and Wooldridge, 1996). 

3. Methodology 

This study analyses the efficiency performance of the EU aquaculture producers using a two-

stage DEA approach covering the period 2014-2016. The first stage uses a non-oriented SBM 

DEA model to compute the efficiency of the countries. The second stage uses regression 

analysis to relate these efficiency scores to covariates to test which of them have an influence. 

3.1. First-stage DEA model 

In this section, the DEA model used is formulated and discussed. DEA is a data-driven 

methodology to assess the efficiency of a number of decision making units (DMU). It assumes 

an input-output production system, i.e., each DMU consumes inputs and produces outputs. No 

assumption is made on the functional form of the corresponding production function. This is 

done non-parametrically, inferring the Production Possibility Set (PPS) (i.e., the set of feasible 

operating points) from the observed data using some standard assumptions like that feasibility 

of the observations, free disposability of inputs and outputs and convexity (see, e.g., Färe et al., 

1985; Cooper et al., 2006). The non-dominated subset of the PPS is called the efficient frontier 

and represents the best practices in the sample. Those observations that do not lie on the 

efficient frontier can be projected onto it determining both an efficient target operating point 

and an efficiency score that measures the distance to the efficient frontier. How this projection 

is done depends on the specific DEA model used. Thus, input-oriented DEA models give 

priority to the input reduction while output-oriented DEA models give priority to the output 

increase and non-oriented DEA models aim at both input reduction and output increase 

simultaneously. Radial DEA models reduce all the inputs equiproportionally and increase all 
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the output equiproportionally while non-radial DEA models can reduce some inputs in a larger 

proportion than others and increase some outputs more than others. 

The DEA model applied in this paper is non-oriented and non-radial. It uses a SBM measure of 

efficiency, which is an efficiency measure which has several interesting properties (Tone, 

2001). In particular, it is units-invariant, i.e., the neither the efficiency score nor the efficient 

target computed change if the units of measurement of an input or output are changed. SBM 

has been applied in other sectors (e.g. Lozano et al., 2010; Gutiérrez and Lozano, 2013) and 

can be extended to handle undesirable outputs (e.g. Lozano and Gutiérrez, 2011) as well as 

situations in which the production system is modelled as a network of processes (e.g. Lozano, 

2015). 

In this study, a DMU corresponds to the observation of one country in a specific year during 

the period 2014-2016) whose relative efficiency is assessed. The inputs and outputs considered 

are shown in Figure 1. Thus, a single output, namely total production value (PRODUCTION) 

is considered. The rationale behind selecting the production value as output is that for example, 

mussels have a low value (0.5 €/kg) while salmon or Bluefin tuna value is much higher (5-10 

€/kg) and often they are correlated with their costs, i.e., producing 1 kg of mussels is much 

cheaper than producing 1 kg of salmon or tuna because mussels do not need to be fed artificially 

and they can often be caught easily in the wild and hence its raw materials feed and livestock 

costs are often zero. 

On the input side, seven variables are considered: the total number of persons employed 

(EMPLOYMENT), the balance sheet total (ASSETS), the input costs considered were raw 

material costs (FEED and LIVESTOCK), purchases of energy products (ENERGY), repair and 

maintenance costs (REP&MAINT) and OTHER COSTS, including outsourcing costs, 

equipment rental charges among others. The selection of the inputs was mainly based on their 

relative weight of total costs. During the last years, the intensification of aquaculture production 
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has increased mainly the use of the fish-based ingredients and the energy consumption (Waite 

et al., 2014; Shepherd and Jackson, 2013; Tacon and Metian, 2015; Llorente and Luna, 2016; 

Guillen et al., 2019). However, given the nature of shellfish farming, feed and livestock are not 

considered as input variables in shellfish production. Mussels, oysters and clams are feed by 

filtering water, and therefore, there are no feed costs in the shellfish sector. Moreover, most 

farms obtain the seeds they require directly from the environment, rather than buying them, and 

so livestock costs are not an adequate measure of the inputs used (STECF, 2018). 

Note that the first two inputs are considered non-discretionary and hence the model will not try 

to reduce them. This is so because we do not want DEA to try to achieve efficiency by reducing 

the level of employment of the sector or by reducing the assets (closing or downsizing existing 

facilities). Instead, we employ DEA to try to achieve efficiency by reducing the other three 

(discretionary inputs) and increasing the output. In other words, the efficient targets computed 

will maintain the level of employment and the current assets but will detect output shortfalls as 

well as excess consumption of raw material, energy costs (especially in offshore environments), 

repair and maintenance costs and other operating costs. The formulation of the proposed model 

that follows corresponds to finfish sectors. For shellfish sector FEED and LIVESTOCK input 

variables are discarded from the DEA model as mentioned above. 

========================== Figure 2 ============================== 

Apart from the input and output variables DEA also uses some auxiliary variables. Let 

n    number of DMUs 

j 1,2,...,n   index on DMUs 

jEMPLOYMENT , jASSETS , jFEED , jLIVESTOCK , 

ENERGYj, REP&MAINTj, jOTHERCOSTS    inputs consumed by DMU j 

jPRODUCTION        output produced by DMU j 
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0    index of a specific DMU whose efficiency is being assessed 

 1 2 n, ,...,    intensity variables used to compute the target as a linear combination of 

the observed DMUs 

FEEDs , LIVESTOCKs , ENERGYs , REP&MAINTs , OTHERCOSTSs  input slacks (i.e., reduction 

to be achieved for each discretionary input) 

PRODUCTIONs   output slack (i.e., output increase to be achieved) 

EMPLOYMENTt , ASSETSt , FEEDt , LIVESTOCKt , 
ENERGYt , REP&MAINTt  OTHERCOSTSt   target value for each input 

PRODUCTIONt       target value for the output 

0  efficiency score of DMU 0 

The proposed non-oriented SBM DEA model is thus 
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FEED LIVESTOCK ENERGY REP&MAINT OTHERCOSTS

0 0 0 0 0
0 PRODUCTION

0

n
EMPLOYMENT

j j 0
j 1

n
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j j

j 1

1 s s s s s
1

5 FEED LIVESTOCK ENERGY REP & MAINT OTHERCOSTS
Min
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1
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s.t.
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



 
      

 
  



   

  



 ETS
0

n
FEED FEED

j j 0
j 1

n
LIVESTOCK LIVESTOCK

j j 0

j 1

n
ENERGY ENERGY

j j 0
j 1

n
REP&MAINT REP&MAINT

j j 0

j 1

ASSETS

FEED t FEED s

LIVESTOCK t LIVESTOCK s

        ENERGY t ENERGY s

        REP & MAINT t REP & MAINT s











    

    

    

    











n
OTHERCOSTS OTHERCOSTS

j j 0
j 1

n
PRODUCTION PRODUCTION

j j 0

j 1

n

j
j 1

OTHERCOSTS t OTHERCOSTS s

PRODUCTION t PRODUCTION s

1

All variables non negative







   

    

 









 

(1) 

Note that the last constraint imposes convexity on the intensity variables, which corresponds to 

assuming Variable Returns to Scale (VRS). VRS is considered because the size of the sector in 

the different countries varies much and a perfect competitive market cannot be assumed to exist. 

Note also that the constraints corresponding to the non-discretionary variables are different 

from those of the discretionary ones. Thus, for the two non-discretionary inputs the target 

corresponds to the observed value for DMU 0 and the constraint only imposes that the PPS 
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contains operating points with a lower value of those inputs. This is the standard way of 

handling non-discretionary inputs as per Banker and Morey (1986). For the discretionary 

variables, on the contrary, the target is equal to the convex linear combination of the observed 

values so that those targets represent a certain reduction (in the case of the input slacks) or a 

certain increase (in the case of the output slack) with respect to the observed value of DMU 0. 

As regards the objective function, it minimizes a ratio whose numerator represents the average 

percentage input reduction (applicable only to the five discretionary inputs) and whose 

denominator represents the percentage output increase. Note that, an alternative way of 

expressing the objective function is 

FEED LIVESTOCK ENERGY REP&MAINT OTHERCOSTS

0 0 0 0 0
0 PRODUCTION

0

1 t t t t t

3 FEED LIVESTOCK ENERGY REP & MAINT OTHERCOSTS
Min

t

PRODUCTION

 
     
 
    (2) 

Since the computed target must dominate DMU 0, i.e., FEED
0t FEED , 

LIVESTOCK
0t LIVESTOCK , ENERGY

0t ENERGY , REP&MAINT
0t REP &MAINT , 

OTHERCOSTS
0t OTHERCOSTS  and PRODUCTION

0t PRODUCTION , it follows that the 

three ratios in the numerator are less than (or at most equal to) one and the denominator is larger 

than (or at most equal to) one. Hence 00 1    with a value 0 1   indicating that DMU 0 is 

efficient, in which case  

FEED LIVESTOCK ENERGY REP&MAINT OTHERCOSTS PRODUCTIONs s s s s s 0      , and 

FEED
0t FEED , LIVESTOCK

0t LIVESTOCK , ENERGY
0t ENERGY , 

REP&MAINT
0t REP &MAINT , OTHERCOSTS

0t OTHERCOSTS , and 

PRODUCTION
0t PRODUCTION . It is also easy to see that the computed target is efficient 
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because any additional reduction of the discretionary inputs or any additional increase of the 

output, if any such additional improvements were feasible, would reduce the ratio and hence 

the target would not the optimal solution of (1). 

The current study involves observations in different time periods. In those cases, different 

alternatives exist (see Tulkens and VandenEeckaut, 1995). One is to use an intertemporal 

approach in which the observations of different time periods are pooled to define the DEA 

technology. Another is to use a contemporaneous approach in which the observations in each 

time period define the DEA technology corresponding to that time period. A third alternative 

is to use a sequential approach so that the DEA technology corresponding to each period is 

inferred from the observations of all previous time periods. When using a contemporaneous or 

a sequential approach the conventional Malmquist Productivity Index (MPI) and its 

decomposition into its technical efficiency change and technology change components can be 

used (Färe et al., 1985). If VRS is assumed, as in this paper, a more complex MPI decomposition 

is necessary to account for scale efficiency change between periods (see Färe et al., 1994, Ray 

and Desli, 1997). Instead, when an intertemporal approach is used, the global MPI proposed in 

Pastor and Lovell (2005) can be used. In this paper, since the time horizon covered by the 

dataset is relative short (just three time periods) it seems more reasonable not to assume a 

different DEA technology for each time period and hence use an intertemporal approach. This 

has the added benefit of using a global MPI, which is simpler than the conventional MPI. In 

particular, given a certain country c  and two different periods t and h , the corresponding 

global MPI can be computed as 
c,ht,h

c
c,t

MPI





. Thus, if the global efficiency increases from t 

to h then t,h
cMPI 1  and productivity increase has occurred while if the global efficiency 

decreases from t to h then t,h
cMPI 1  and productivity decrease has occurred. 
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3.2. Second-stage regression analysis 

In order to study the impact of factors that can influence efficiency, the SBM efficiency 

estimates are regressed on some contextual variables in a second stage analysis. Several 

statistical regression models are considered. Since they are based on different assumptions their 

results can also differ. The second-stage regressions models considered include a linear 

specification (estimated by Ordinary Least Squares, OLS), a censored specification (estimated 

by maximum likelihood, ML) and fractional specification (estimated by quasi-maximum 

likelihood, QML). 

The standard linear model is not suitable for DEA analyses because it can have boundary 

problems, i.e., the regression model can estimate efficiency values that fall outside the [0,1] 

interval. To overcome this drawback, a censored regression with limits efficiency to the [0,1] 

interval is also considered, with the corresponding validation of normality and 

homoskedasticity assumptions. However, as Simar and Wilson (2007) pointed out, DEA 

efficiency estimates from both OLS and ML regression approaches are serially correlated, 

affecting the results of the conventional inference.  

In order to avoid complex prior data transformation and to solve the controversy between 

competing statistical regression models the Fractional Regression Model (FRM) is considered 

(Papke and Wooldridge, 1996). The fractional model does not involve any fully parametric 

assumption about the distributional form of the response variable and DEA efficiency scores 

are considered descriptive statistics of the relative achievement of DMUs in the sample. The 

fractional regression model uses a Quasi-Maximum Likelihood Estimator (QMLE) approach 

and only requires assuming a functional form for conditional mean of the estimated values of 

the efficiency scores, E(ξi|xi), that incorporates the desired constraints on it, as it is expressed 

as follows: 
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 ( ) 1, 2,..., i i iE G i n x x β  (3) 

where 0 1 i , xi denotes the k-dimensional vector of the variables of the i-th DMU 

observation and β a k-dimensional vector of unknown parameters and G(·) is a nonlinear 

function satisfying 0≤ G(·)≤1 that can adopt different specifications: 

 
 logit

exp( )

1 exp( )



iG i

i

x β
x β

x β
 (4) 

 probit ( )i iG x β x β  (5) 

  ( )
loglog exp( exp )i

iG


 
x β

x β  (6) 

  ( )
cloglog 1 exp( exp )   i

iG
x β

x β  (7) 

Ramalho et al. (2010) proposed other alternative models, labelled two-part fractional models, 

which can be used in cases where the probability of observing a DEA efficiency score of one 

is large. The two-part models assume that contextual factors have a different impact on the 

frontier efficiency and on the inefficiency scores. The first part model is a binary choice model 

that characterises the probability of observing an efficient Member State using the complete 

sample. Whereas, the second part of the two-part models only considers the subset of inefficient 

Member States and uses a different model specification. In order to assess the specification of 

the one-part fractional and two part fractional models a robust version of RESET test (Ramalho 

et al., 2011), P test based on Davidson and MacKinnon (1981) and GOFF (Ramalho et al., 2011) 

can be performed. It should be noted that the efficiency scores are treated as descriptive 

measures in one-part and two-part fractional regression models. 
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3.3. Dataset description 

The dataset used corresponds to an unbalanced panel database of finfish and shellfish farming 

across 18-EU Member States and involve labour, physical and monetary inputs used to generate 

the output of sales volume. The data have been extracted from the biennial reports on economic 

performance of EU aquaculture sector (STECF, 2016; STECF, 2018) and correspond to the 

years 2014, 2015 and 2016 (latest year available), covering freshwater finfish, marine finfish 

and shellfish aquaculture segments.  

As indicated in section 3.1, the input variables include EMPLOYMENT, measured as total 

number of full-time equivalent employees, total ASSETS expressed in million euros, total fish 

feed costs (FEED), total costs for feed livestock (LIVESTOCK) measured in million euros, 

energy costs (ENERGY) measured in million euros, repair and maintenance costs 

(REP&MAINT) measured in million euros, and other operating cost (OTHERCOSTS), 

measured in million euros. The measure of output is the production/sales value 

(PRODUCTION) measured in million euros.  

In order to identify potential outliers a super-efficiency DEA model (Banker and Chang, 2006; 

Banker et al., 2017) is applied, using, in our case, an adapted non-oriented VRS SBM 

formulation (considering EMPLOYMENT and ASSETS as non-discretionary variables). Once 

an observation is suspicious of being an outlier, a detailed analysis is carried out based on the 

work of technical experts, in order to understand how the “outlier” contaminates the database. 

In the present analysis, all the potential outliers were discarded from the final database. This 

occurs in fresh water sector for three observations, in marine sector for five observations and 

in shellfish sector for five observations. Thus, some of the arguments for not considering those 

observations in the final database were the following. Finland in year 2015 and 2016 because 

of a change in the regulation and segmentation, marine segments are now reported inside 

freshwater. Italy in 2015 had sometimes wrongly estimated number of employed people. Italy 
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data in 2016 may refer just to the most important species. Hence, some segments could be 

underestimated by not including minor productions (and it may lead to e.g. overestimated 

productivity). Bulgaria: marked decrease in raw materials for freshwater in 2015 and 2016. 

Summarizing, as mentioned above all in all, thirteen observations were discarded, so the 

database during the period 2014-2016 contains 39 observations referring to 15 countries in 

freshwater sector, 28 observations referring to 12 countries in marine sector, and 38 

observations referring to 14 countries in shellfish sector. The packages deaR (Coll-Serrano et 

al., 2018) and frm (Ramalho, 2018) for the statistical software R were used to calculate the 

efficiency scores and to fit the fractional regression models. The descriptive statistics of the 

input and output variables by sector, after outlier analysis, are presented in Table 3. They 

indicate a great variability of inputs and outputs among EU countries (consider that standard 

deviations are in most variables as large as the mean). Shellfish sector is the sector that 

employed more labour during the period, although with a high variability (FTE dispersion 

increased from 2,220.8 to 2,246.91). In this regard, note that, according to STECF (2016, 2018), 

the majority of the businesses in the EU aquaculture sector are micro-enterprises with less than 

10 employees. On the other hand, it can be observed, on average, large differences in inputs 

and output over time in the finfish freshwater sector, those difference being less pronounced in 

the rest of the sectors. In general, the inputs and outputs figures considered fluctuate widely 

between countries, as a result of the national sector size and on the species and aquaculture 

farming techniques of each EU country. The expenditures are dominated by raw material (feed 

costs and livestock costs) over the period 2014-2016. The average value of the FEED variable 

in freshwater sector decreased from €20.30 million to €17.31 million (15%) and increased in 

marine sector from €57.55 million to €86.46 million (50%). However, the average value of the 

LIVESTOCK variable in freshwater sector increased from €14.98 million to €25.32 million 

(69%) and increased in marine sector from €5.67million to €6.30 million (11%). ENERGY 
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costs have decreased, on average, in freshwater sector (32%) and shellfish (24%), however, in 

marine sector has increased (42%). In terms of REP&MAINT, total costs kept stable, in 

freshwater and shellfish sector, while marine sector has increased (40%). Total PRODUCTION 

value increased by 57% in freshwater finfish and by 3% in shellfish while in marine finfish it 

decreased by 4%. 

============================= Table 3 ============================ 

4. Results and discussion 

4.1. Efficiency scores 

Tables 4a, 4b and 4c show the efficiency scores and the slacks computed by the proposed SBM 

DEA model for each of the three subsectors studied. For freshwater finfish 74% of the 

observations are efficient and the average efficiency is rather high (0.918). The corresponding 

figures for marine finfish and shellfish are 57% - 0.885 and 66% - 0.802, respectively. The 

largest margin for input savings and output increases correspond to marine finfish, followed by 

shellfish. In accordance with the larger efficiency scores, the potential savings are much more 

modest for freshwater finfish. Extending the best practices to the inefficient countries would 

involve a reduction of feed costs (between 2.9% and 4.3%), livestock costs (9.0% - 11.8%), 

energy costs (2.4% - 25.3%), repairing costs (3.7% - 13.8%) and other operating costs (4.3% - 

13.8%). These input reductions can be obtained at the same time that an improvement in 

production value totalling 0.03% for freshwater finfish, 2.13% for marine finfish and 0.37% for 

shellfish. In any case, those would be the total improvements for the sector if the different EU 

countries assessed adopted the best practices represented by the efficient producers. In general, 

the inefficiencies observed in most EU countries are more related with controlling input costs 

than with increasing the output level. The exceptions to this are the marine finfish production 

of Croatia and UK (the former producing seabream and seabass, and the latter salmon).  
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============================= Table 4 ============================ 

Tables 5a, 5b and 5c show the efficiency scores grouped by country as well as the corresponding 

global Malmquist productivity indexes (Pastor and Lovell, 2005). Some countries were efficient 

in all the periods for which observations are available. In the case of freshwater finfish, those 

countries are Croatia, Estonia, France, Greece, Italy, Portugal, Sweden and UK (all producing 

mostly trout, with the exception of Croatia producing mostly carps). For marine finfish, those 

countries are Cyprus, Italy and Slovenia producing mostly seabream and seabass, Finland 

producing mostly trout and Ireland producing mostly salmon. Finally, for shellfish, the best 

performing countries include Bulgaria, Denmark, France, Germany and Greece producing 

mostly mussels, Italy producing mostly clams and mussels, and Portugal producing mostly 

clams. As regards productivity change, it seems that in the case of freshwater finfish there has 

been a productivity reduction in the period under study. The opposite occurred in the case of 

marine finfish. Finally, in the case of shellfish, productivity increased between 2014 and 2015 

and decreased slightly between 2015 and 2016 (but leaving a net overall productivity increase). 

============================= Table 5 ============================ 

4.2. Factors that can influence aquaculture efficiency 

In order to identify the factors that can explain the variability of the computed efficiency scores 

(ξi) for the EU countries under study the SBM-DEA efficiency scores obtained in first stage 

were regressed on four exogenous factors corresponding to geographical, demographic and 

macroeconomic variables covering 2014-2016.  

 The explanatory variables selected include the coastline length in kilometres (COASTLINE) 

obtained from Corine land cover database (EEA, 2006), characteristics related to economic and 

demographic magnitude of the countries, namely Gross Domestic Product (GDP) in billion PPS 
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(Worldbank, 2018) and total population (POPULATION) in thousand (Eurostat, 2017), and a 

characteristic of alternative supply source for fish, i.e., volume of fish caught in the wild 

(FISHERY) in thousand tonnes (Eurostat, 2015). In addition, two dummy variables 

FRESHWATER and MARINE are included, which take the value of unity if the country-year 

is evaluated in the corresponding sector and zero otherwise. It can be noted that, due to the inter 

country comparison is performed in the present analysis, the variables used are different from 

those generally used at the firm level and that were shown in Table 1.  

The distribution of the efficiency scores computed in the first stage shows that 66% of the 

European Aquaculture countries were efficient and that the Q1 quartile, the median and the Q3 

quartile are 0.7823, 1.000 and 1.000, respectively, indicating a negative skew. The lowest score 

was 0.117. Hence, in the second stage a suitable lower limit for the efficiency scores is zero and 

there will not be misspecification considering two-limit censoring regression. 

The results of fitting the parametric (OLS, ML) and quasi-parametric fractional regression 

models described above and two specification tests (Reset test; P-test) are presented in Table 6. 

A global test procedure of multiple linear model assumptions (Pena &Slate, 2006), based on 

residual vector, is applied. The global statistic is 
2

4
ˆ 4.02G 

 with p-value approximately 0.40, 

thus indicating that at least one of the OLS regressions assumptions are not violated. However, 

the OLS regression fits 20% of observations outside the range of the unit interval, which 

suggests that it does not properly gauge the real effect of each factor on the efficiency scores. 

Moreover, the analysis of the distributional assumptions of Tobit regression model confirms 

evidence to reject the normality of the residuals at 5% marginal significance level. 

As regards the standard one-part fractional regression models, an examination of goodness of 

fit measures reveals that fractional regression with loglog link function dominates slightly the 

other specifications in terms of McFadden’s Pseudo R2. The latter can be motivated by the 
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asymmetric character of the distribution of efficiency scores. The specification tests show that 

the probit, loglog and cloglog specifications could be considered as potential links in the one-

part standard regression model specification. For all specifications, the results show that the the 

coefficients of COASTLINE, POPULATION and FISHERY are not significant and do not help 

to explain the observed efficiency of the different countries. GDP positively affects efficiency 

in EU aquaculture production indicating the efficiency level seems to be positively affected by 

the size of the economy. The coefficients of FRESHWATER and MARINE were also found to 

be statistically significant (and positive). This suggests that finfish sectors tend to be more 

efficient than shellfish sector. This can be explained because in finfish aquaculture, the farmer 

has a higher degree of control of the production cycle (e.g. feeding, medicines, juveniles, 

broodstock, etc.) than in shellfish aquaculture where the production feeds directly by filtering 

the water and is more dependent on environmental factors (Guillen et al., 2019). 

============================= Table 6 ============================ 

The results of the two-part fractional models are shown in Table 7. It can be seen that the 

number of significant variables is smaller (higher) in the first part (second part) of the two-part 

model than in the one-part fractional regression models. The binary component (first part) tests 

the impacts of the contextual factors considered on the efficient status of the countries, whereas 

the fractional component (second part) explains the magnitude of DEA scores of the sub-sample 

of inefficient countries. 

 Similar to what occurred in one-part fractional regression models, the results reveal a 

significant positive relationship between GDP and the probability of the country being efficient. 

The FISHERY coefficient was statistically significant and negatively explains why countries 

are associated to be on the frontier, suggesting that the probability of the country being efficient 

declines with fishing activity. Note that the cloglog specification is the one that seems to show 
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a better fit in this first part and hence the fractional component will assume that cloglog was 

used for the binary part. The goodness of fit test did not confirm the rejection of all link 

functions at 10% significance level. 

============================= TABLE 7 ============================ 

The fractional component, which only considers the inefficient countries contributes to 

explaining why some countries were inefficient, confirms that finfish sector and FISHERY 

contextual factors affect the inefficient countries at the 1%-10% significance level. RESET and 

GOFF tests, however, do not reject any specification of the fractional part of the regression 

model, therefore the link function chosen for the second part barely alter the results. The 

parameters FRESHWATER and MARINE have positive signs, indicating that finfish farming 

subsectors are more efficient and competitive in aquaculture production. At a 10% significance 

level, FISHERY activity coefficient was positive; meaning an increase in the volume of catches 

of wild species in inefficient countries contributes to an increase in their efficiencies.  

4.3. Policies to improve the efficiency of the EU aquaculture sector 

This study shows that the largest inefficiencies are found in the marine finfish, followed by 

shellfish, and less in freshwater finfish farming. In general, these inefficiencies are more related 

with controlling input costs than with increasing the output level. Thus, significant 

improvements in efficiency can be obtained by sharing best practices. 

However, almost 90% of the estimated 12,500 aquaculture enterprises in the EU are micro-

enterprises with less than 10 employees (STECF, 2018). The atomization of the EU aquaculture 

sector could be a factor that explains these inefficiences. Gasca-Leyva et al. (2002) pointed out 

that increasing the facility size often leads to an efficiency increase in the production of most 

commercial species by reducing the average cost of production and increasing productivity. 
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Similarly, concentration of enterprises (i.e., a reduction in the number of enterprises and an 

increase in their size, e.g. due to horizontal integration) can also generate economies of scale 

and efficiency gains (Asche et al., 2013b). Moreover, concentration cannot only lead to 

increases in production efficiency, but also in other aspects such as the purchases of services, 

marketing and sales (Asche et al., 2013b; Bergesen and Tveterås, 2019). 

One of the factors that explains the higher efficiency of larger companies is their capacity to 

produce and incorporate innovation (Asche et al., 2013b; Misund and Asche, 2016; Billington 

and Hydle, 2017). Indeed, innovation and productivity growth have played an important role 

for the production growth of most successful aquaculture species (Kumar & Engle, 2016; 

Asche, 2019; Rocha Aponte and Tveterås, 2019). 

Despite some concentration in the EU aquaculture sector, most enterprises are micro-

enterprises. Most of the enterprises cannot affort having their own R&D staff. Hence, 

collaboration, between private enterprises and with the public sector, becomes essential to boost 

efficiency gains in the sector (Bergesen and Tveterås, 2019). Public policies to support R&D 

and ease general access to its outcomes are essential to boost the efficiency of the sector. 

This study also shows that for the inefficient countries, the bigger the wild-capture fisheries 

sector is, the more efficient aquaculture is. This shows that aquaculture is more efficient in 

those countries where there is already an established seafood value chain. Therefore, the 

importance of policies to support different aspects of the value chain, such as transportation, 

transformation and commercialization, in particular for the most inefficient countries and for 

micro-enterprises. 

Despite some progress, the administrative burden remains an important obstacle to the 

enlargement and development of the EU aquaculture. Further work on simplifying the 

administrative procedures is required. Thus, it is required common and harmonised standards 
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for the aquaculture sector to prove that it produces sustainably and that its development should 

not be blocked.  

Likewise, the lack of available space to set or enlarge aquaculture farms is often an obstacle. 

Maritime spatial planning is a tool to organize the different activities and uses that take place 

in the sea. Therefore, maritime spatial planning should be able to secure the aquaculture sector 

some access to the required space. Progress in maritime spatial planning is still reduced in some 

EU member states. 

5. Conclusions 

Aquaculture industry in the EU is promoted from a food security perspective, as a driver to 

provide population with high-quality and healthy seafood. In addition, it is also considered an 

economic activity that contributes to create employment, to fix population to coastal and rural 

areas, and that helps to develop environmentally friendly seafood production. However, as an 

economic activity, efficiency, leading to decreasing resource waste and increasing profitability 

and economic sustainability must be one of the objectives of any public support program. This 

will help not only to increase aquaculture production and generate positive social and 

environmental externalities, but also to make all of this sustainable.  

This paper applies a non-oriented SBM DEA model with non-discretionary inputs to the 

efficiency assessment of different EU Member States during the period 2014-2016. This differs 

from most DEA studies on aquaculture, which measure efficiency at the farm level. The inputs 

considered include operational and monetary variables. The output is the value of fish produced. 

The non-oriented character of the DEA analysis implies that all possible sources of inefficiency 

are removed, be they in the discretionary inputs or in the output. The DEA analysis indicates 

that technical efficiency is higher in finfish production (both fresh and marine) than in shellfish, 
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with average efficiency levels in the 0.8-0.9 range. This pattern can be explained by farmers 

having more control of the production cycle in the finfish aquaculture, than in shellfish 

aquaculture that is more dependent on environmental factors. Others factors such as consumer’ 

preferences, market concentration and the increase in marine finfish supplies and the decrease 

in shellfish supplies to a competitive market causing price reductions (in case marine finfish) 

and price increases (in case shellfish) can also help to explain this pattern. The potential input 

savings for the whole period are significant, reaching up to 25% in some variables. The potential 

increase in production is lower, up to 2% in the case of marine finfish. As regards productivity 

change in the period under study, there has been a productivity reduction in the case of 

freshwater finfish, productivity increase in the case of marine finfish and an initial productivity 

increase between 2015 and 2016 followed by a slight decrease between 2015 and 2016 in the 

case of shellfish. The analysis of the aquaculture efficiency determinants reveals that the 

efficiency level of EU countries is not completely a consequence of managerial inefficiency. 

Thus, some contextual factors, particularly the size of the economy and capture fishery affect 

the efficiency level of aquaculture production. The results indicate that the exogenous variables 

affect efficient and inefficient EU countries differently, given the extensive number of efficient 

countries. In particular, countries with a high GDP and poor catches volume are more likely to 

be on the efficiency frontier. On the other hand, for the inefficient countries larger amounts of 

wild-caught fish contribute to increase their efficiency score. These factors may be taken into 

consideration by European institutions, Member States and aquaculture industry stakeholders 

when assessing performance and evaluating potential technical and operational improvement 

strategies or policies. Nevertheless, these results should be interpreted with caution as the 

number of MS considered in the study (18 countries) is relatively small. Some countries (most 

notably, Germany and Poland) were not included or had disproportionately scarce presence in 

the study because data on freshwater aquaculture were not available. 



 

27 
 

Once the performance of European countries in each aquaculture subsector has been assessed, 

further research can aim at benchmarking the different aquaculture subsectors (freshwater 

finfish, marine finfish and shellfish). This can be done by using a meta-frontier approach (see, 

e.g., O’Donnell et al., 2008). Another interesting line of research is to include in the 

performance assessment, similar as it is done in agriculture (see, e.g., Gutiérrez et al., 2017), 

the undesirable outputs (e.g. greenhouse gas emissions) generated by aquaculture activities. 

This would allow computing not only productive efficiency but also environmental efficiency. 

In addition, this would also allow identifying the best practices among European countries, 

using them to set improvement targets for the corresponding variables. Finally, a Network DEA 

approach may be used to model the internal structure of the supply chain of aquaculture 

production. Although they require more detailed data on the functioning of the system (i.e. at 

the sub-process level), Network DEA models allow a more fine grained analysis and can also 

handle undesirable outputs (see, e.g., Lozano, 2016). 
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Table 1. Main species farmed by environment in EU countries 

 Freshwater Marine Shellfish 

Bulgaria trout, carp  mussels 

Croatia carp seabream & seabass mussels 

Cyprus  seabream & seabass  

Denmark trout trout mussels 

Estonia trout   

Finland trout trout  

France trout  oysters 

Germany   mussels 

Greece trout seabream & seabass mussels 

Ireland trout salmon oysters 

Italy trout seabream & seabass clams, mussels 

Malta  bluefin tuna  

Netherlands   mussels 

Portugal trout turbot, seabream & seabass clams 

Romania carp   

Slovenia  seabream & seabass mussels 

Spain trout seabream & seabass mussels 

Sweden trout  mussels, oysters, crayfish 

United 

Kingdom trout salmon mussels 
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Table 2. Overview of aquaculture DEA studies 

Country/ 

Region 

Aquaculture 

species/subsector 

Dataset 

(year) 
Inputs (unit) Outputs (unit) DEA approach Reference 

Bangladesh Prawn-carp 
105 farms 

(2001-2002) 

Labor (man-hours) 

Fingerling (No) 

Organic fertilizer (kg) 

Inorganic fertilizer (kg) 

Feed (kg) 

Prawn production (kg) 

White fish production 

(kg) 

BCC- Input and output oriented 

Alam & 

Murshed-e-

Jahan (2008) 

Bangladesh Pangas fish 
60 farms 

(2006-2007) 

Fingerling (No./ha) 

Bran (rice and wheat) (kg/ha) 

Wheat flour (kg/ha) 

Oil cake (kg/ha) 

Fish meal (kg/ha) 

Peleted commercial feed (kg/ha) 

Inorganic fertilizers (kg/ha) 

Labour (man-day/ha) 

Pangas production 

(kg/ha) 

BCC- Input oriented 

Second stage (Tobit regression: age 

of the operator; pangas culture 

experience of the operator; size of 

pangas  ponds; average size of 

fingerling released; pangas culture 

period; ratio of peleted commercial 

feed; location) 

Alam (2011) 

Bangladesh 
Collective Foodplain 

aquaculture  

15 

foodplains 

enterprises 

(2015-2016) 

Area of foodplain(ha) 

Fingerling (Million BDT) 

Feed and other (Million BDT) 

Salaries (Million BDT) 

Fish sales (Million BDT) 
CCR-BCC-SBM- Input 

oriented/Output oriented 

Bayazid etl al. 

(2019) 

China Fishpolyculture 
115 farms 

(2007) 

Seed (ka/ha) 

Feed (ton/kg) 

Labor (Yuan/ha) 

Other costs (Yuan/ha) 

Black carp (kg/ha)  

Grass carp (kg/ha) 

Filter-feeder (kg/ha) 

Other carp (kg/ha) 

Black carp (Yuan/kg)  

Grass carp (Yuan/kg) 

Filter-feeder (Yian/kg) 

Other carp (Yuan/kg) 

CCR-Output oriented 
Sharma et al. 

(1999) 

China Tilapia 
48 farms 

(2012-2013) 

Seed (pcs/ha) 

Feed (Tons/ha) 

Labor (man/farm) 

Other costs (Yuan/ha) 

Price of Tilapia (Yuan/kg) 

Polyculture species price (Yuan/kg) 

Price of fry (Yuan/piece) 

Price of feed (Yuan/ton) 

Tilapia (kg/ha) 

Polyculture species (kg/ha) 

CCR-BCC-Input oriented 

Second stage (Tobit regression: age 

of operator, education of operator, 

experience of operator, family 

members, culture mode, technology 

support, culture period, fry size, farm 

size) 

Zongli et al. 

(2017) 

Denmark Trout 
89 farms 

(2007) 

Income per kilo ($), Fish and feed 

($), Labor ($), Other ($) 

Capital ($), Sum total cost ($) 

Farm production (tons) 

BCC- Input and output oriented 

Second stage (Tobit regression: 

water purification system; size 

classes) 

Nielsen (2011) 
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Table 2. Overview of aquaculture DEA studies (cont.) 

Greece Mussels 
66 farms 

(2013-2014) 

Farm size (ha) 

Labor (hours) 

Variable capital cost (€) 

Fived capital cost (€) 

Gross output (€) 

BCC- Output oriented 

Second stage (Tobit regression: age, 

experience, farn succession, training, 

education) 

Theodoridis et 

al. (2017) 

Iran Trout 
207 ponds 

(2003-2007) 

Pond area (m2) 

Fish larva (piece) 

Water flow (L/s) 

Feed (tons) 

Labor (persons) 

Trout production (tons) 

BCC- Input oriented  

Malmquist index 

Second stage (Logit and Tobit 

regression: temperature, water 

discharge imported, education level, 

number of illiterate labours, number 

of diploma labours, insurance 

coverage, governmental tenure) 

Hassanpour et 

al. (2011) 

Hawaii 

Catfish, Foodfish, 

Crustacean, 

Ornamental, 

Mollusks and Others 

82 farms 

(1997-2002-

2007) 

Labor expense ($/farm) 

Number of workers (no/farm) 

Value of land ($/farm) 

Size of land (Acre/farm) 

Value of machinery ($/farm) 

Other expense($/Farm) 

Total sale ($/farm) 
CCR-BCC-Output oriented 

 

Arita & Leung 

(2014) 

Malaysia Shrimp 

36 intensive 

farms 

36 semi-

intensive 

farms 

(1993) 

Labor (persondays/ha) 

Feed (kg/ha) 

Seed (1,000 PL/ha) 

Production value ($/ha) BCC- Input oriented 
Gunaratne & 

Leung (2001) 

Malaysia Freshwater 
13 states 

(2000-2008) 

Area of pond (square meters) 

Number of culturist  

Aquaculture production 

(tons) 

CCR 

Window analysis 

Mustapha et al. 

(2013) 

Malaysia Freshwater 

212 firms 

(unspecified 

timeframe) 

Stocking density (No) 

Feed (kg) 

Labor (Man-day) 

Other costs (Ringgit) 

Total quantity of fish 

produced (kg) 

BCC.Input oriented 

Second stage (Ordinary Least 

Squares: age; experience; educational 

level; farm status; extension services; 

household size) 

Iliyasu et al. 

(2016) 

Malaysia Freshwater 

100 firms 

(unspecified 

timeframe) 

Stocking density (No) 

Feed (kg) 

Labor (Man-day) 

Other costs (Ringgit) 

Total quantity of fish 

produced (kg) 

SBM 

Second stage (Ordinary Least 

Squares: age; experience; educational 

level; farm status; extension services; 

workshop attended; distance feed 

supplier; household size; water 

management) 

Iliyasu & 

Mohamed 

(2016) 
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Table 2. Overview of aquaculture DEA studies (cont.) 

Norway Salmon 
57 firms 

(1996-2008) 

Feed (1,000 tons) 

Smolt (1,000 tons) 

Labor (1,000 h) 

Area (million cubic meters) 

Capital cost(106 NOK real value) 

Production of salmon and 

trout (1,000 tons) 

BCC-Output oriented 

Malmquist 

Bootstrap approach 

Asche et al. 

(2013) 

Taiwan 

Tilapia, Milkfish, 

Oyster, Clam, Perch, 

Eel, Grouper 

1009 firms 

(2004-2005) 

Operated land area (ha) 

Seed expenses (NT$) 

Total used labor (persons∙days) 

Feed expenses (NT$) 

Fish production (kg) 

BCC-Input oriented 

Bootstrap approach 

Second stage (Parametric/Bayesian 

probit model: oper.characteristics; firm 

characteristics; environmental 

characteristics/regions) 

Chang et al. 

(2010) 

Turkey Trout 
73 farms 

(2001) 

Labor (1,000 h) 

Feed (tons) 
Trout production (tons) 

BCC-Input oriented 

Second stage (Tobit regression: 

personal characteristics; characteristics; 

access to institutions/public goods) 

Cinemre et al. 

(2006) 

US Catfish 
32 farms 

(2001) 

Labor (persons) 

Energy (Btu) 

Electricity (kWh) 

Fingerlings (No) 

Feeds (tons) 

Other costs ($US) 

Live catfish (kg) 

BCC-Input oriented 

Second stage (Tobit regression: size of 

operation; experience of operator; 

extension services; land ownership) 

Kaliba & Engle 

(2006) 

Vietnam Shrimp 
292 farms 

(2009) 

Seed (1,000 ind/ha) 

Feed (kg/ha) 

Labor (h/ha) 

Fertilizer (kg/ha) 

Fuel (L/ha) 

Yield (kg/ha) 

BCC-Input oriented 

Meta-frontier analysis (Intensive; 

Semi-Intensive; Extensive) 

Second stage (Tobit regression: 

education level, family size, ratio of 

females to males, shrimp farming 

experience, training, province, location 

and technology variables) 

Nguyen & Fisher 

(2014) 

Vietnam Lobster 
353 farms 

(2016) 

Fingerlings (no.) 

Feed (kg) 

Labor (man hours) 

Fingerling ($/unit) 

Feed ($/kg) 

Labor ($/man hours) 

Spiny lobsters (kg) 

Green lobsters (kg) 

BCC-Input oriented (per farm 

cultivation cycle).Second stage (age, 

education, household size, cultivation 

period, location, total cage volume, 

cage cleaning, distance from the 

nearest farm, other discharge) 

Hai et al. (2018) 

Vietnam Pangasius 
80 farmers 

(2013) 

Pond area (ha) 

Capital (1,000 $US) 

Feed (1000 $US) 

Labor (1,000 $US) 

Others (1,000 $US) 

Fish yield (tons) 

Russell-type (input-output)  

Second stage (Bootstrap truncated 

regression model: age, production 

experience, education, gender, farm 

location) 

Ngoc et al. (2018) 

Notes: BDT: Bangladeshi Taka; NOK: Norwegian Krone. NT$: Taiwan Dollar; PL: Post-Larvae; Ringgit: Malaysian currency. 

CCR: Charnes, Cooper and Rhodes (Charnes et al., 1978), BCC: Banker, Charnes and Cooper (Banker et al., 1984) 
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Table 3. Dataset with summary statistics of the variables (excluding outliers) 
 

 Mean (Standard Deviation)- 

Fresh Water  Finfish 

Mean (Standard Deviation)- Salt 

Water  Finfish 

Mean (Standard Deviation)- Shellfish 

Inputs 2014 2015 2016 2014 2015 2016 2014 2015 2016 

Number of persons employed (expressed 

as the number of full-time equivalents) 

501.50 

(523.17) 

391.87 

(295.22) 

387.47 

(292.52) 

525.46 

(630.51) 

961.39 

(884.86) 

820.58 

(920.60) 

1325.39 

(2220.80) 

1272.07 

(2250.14) 

1312.86 

(2246.91) 

Total value of assets (million EUR) 
86.15 

(126.08) 

85.80 

(140.11) 

62.75 

(57.67) 

183.96 

(200.72) 

374.52 

(362.62) 

302.91 

(360.30) 

138.33 

(247.25) 

114.55 

(231.92) 

126.03 

(253.32) 

Feed costs ( million EUR) 
20.30 

(22.67) 

19.58 

(22.35) 

17.31 

(16.07) 

57.55 

(83.87) 

99.19 

(110.95) 

86.46 

(103.59) 

- - - 

Livestock costs (million EUR) 
5.67 

(6.00) 

6.72 

(8.26) 

6.30 

(7.91) 

14.98 

(13.21) 

27.95 

(16.77) 

25.32 

(21.57) 

- - - 

Energy costs (million EUR) 
4.73 

(9.54) 

2.57 

(3.24) 

3.23 

(3.99) 

3.98 

(5.39) 

6.65 

(7.32) 

5.65 

(6.64) 

5.40 

(9.76) 

3.15 

(5.01) 

4.08 

(6.29) 

Repair and maintenance costs (million 

EUR) 

1.44 

(2.58) 

1.40 

(2.37) 

1.42 

(1.46) 

4.90 

(8.21) 

7.66 

(9.53) 

6.87 

(9.44) 

4.11 

(6.33) 

3.37 

(5.78) 

4.43 

(6.51) 

Other operational costs (million EUR) 
7.64 

(7.37) 

8.46 

(10.00) 

10.03 

(9.74) 

43.12 

(77.12) 

72.82 

(97.43) 

57.59 

(81.89) 

11.32 

(15.47) 

12.86 

(25.58) 

13.91 

(29.96) 

Ouputs          

Production value (million EUR) 
53.35 

(63.93) 

47.99 

(49.14) 

51.33 

(44.80) 

160.79 

(262.94) 

267.92 

(275.92) 

252.74 

(291.21) 

88.27 

(181.81) 

90.77 

(171.60) 

91.26 

(174.86) 
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Table 4a. Efficiency scores and inputs and output slacks in finfish production in freshwater (efficient DMUs in bold) 

Country 0  FEEDs  
LIVESTOCKs  

ENERGYs  
REP&MAINTs  

OTHERCOSTSs  
PRODUCTIONs  

Bulgaria2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Bulgaria2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Bulgaria2016 0.715 2.74 0.47 0.00 0.27 0.00 0.00 

Croatia2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Croatia2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Croatia2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Denmark2014 0.912 1.62 2.65 0.00 0.40 3.98 0.00 

Denmark2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Denmark2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Estonia2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Estonia2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Finland2014 0.710 3.38 3.66 0.00 0.73 0.91 0.00 

Finland2015 0.759 2.25 5.61 0.31 0.53 1.22 0.00 

Finland2016 0.703 1.84 2.61 0.76 0.93 5.14 0.00 

France 2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

France 2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

France 2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Greece2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Greece2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Ireland2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Ireland2015 0.817 0.00 0.26 0.07 0.02 0.58 0.00 

Ireland2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Italy2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Italy2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Italy2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Latvia2015 0.573 0.00 0.53 0.55 0.07 0.00 0.00 

Latvia2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Portugal 2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Portugal 2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Romania2014 0.187 6.94 4.00 1.27 0.67 2.12 0.52 

Spain2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Spain2015 0.677 3.14 4.85 0.27 1.40 0.63 0.00 

Spain2016 0.761 0.00 4.49 0.00 1.06 0.00 0.00 

Sweden2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Sweden2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Sweden2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

UnitedKingdom2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

UnitedKingdom2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

UnitedKingdom2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Sum 21.90 29.12 3.22 6.07 14.58 0.52 
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Table 4b. Efficiency scores and inputs and output slacks in finfish production in marine (efficient DMUs in bold) 

Country 0  FEEDs  
LIVESTOCKs  

ENERGYs  
REP&MAINTs  

OTHERCOSTSs  
PRODUCTIONs  

Croatia2014 0.393 1.00 3.22 0.90 0.87 7.10 74.17 

Croatia2015 0.650 0.00 0.99 0.50 0.75 7.48 15.24 

Croatia2016 0.599 0.00 2.33 0.67 0.91 10.86 25.16 

Cyprus2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Denmark2014 0.801 2.28 0.37 0.19 0.47 0.03 4.96 

Denmark2015 0.924 1.06 5.15 0.02 0.09 0.62 0.00 

Denmark2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Finland2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Greece2015 0.803 8.45 1.15 4.28 0.00 6.19 0.00 

Greece2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Ireland2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Ireland2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Ireland2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Italy2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Malta2014 0.901 0.00 0.00 0.45 0.26 0.00 0.00 

Malta2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Malta2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Portugal2014 0.647 0.23 3.79 1.92 0.00 0.00 0.00 

Portugal2015 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Portugal2016 0.782 0.00 0.20 1.98 0.00 0.00 0.00 

Slovenia2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Slovenia2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Spain2014 0.698 13.54 18.57 10.32 0.00 16.98 0.00 

Spain2015 0.832 6.65 2.58 9.07 0.00 25.50 0.00 

Spain2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

United Kingdom2014 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

United Kingdom2015 0.759 63.58 18.23 7.54 3.28 51.96 14.07 

United Kingdom2016 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

Sum 96.79 56.58 37.83 6.63 126.71 133.61 
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Table 4c. Efficiency scores and inputs and output slacks in shellfish (efficient DMUs in bold) 

Country 0  ENERGYs  
REP&MAINTs  

OTHERCOSTSs  
PRODUCTIONs  

Bulgaria2014 1.000 0.00 0.00 0.00 0.00 

Croatia2014 0.160 0.28 0.04 0.30 2.95 

Croatia2015 0.155 0.08 0.04 1.86 3.37 

Croatia2016 0.117 0.19 0.16 1.99 5.26 

Denmark2014 1.000 0.00 0.00 0.00 0.00 

Denmark2015 1.000 0.00 0.00 0.00 0.00 

Denmark2016 1.000 0.00 0.00 0.00 0.00 

France2014 1.000 0.00 0.00 0.00 0.00 

France2015 1.000 0.00 0.00 0.00 0.00 

France2016 1.000 0.00 0.00 0.00 0.00 

Germany2014 1.000 0.00 0.00 0.00 0.00 

Germany2015 1.000 0.00 0.00 0.00 0.00 

Germany2016 1.000 0.00 0.00 0.00 0.00 

Greece2015 1.000 0.00 0.00 0.00 0.00 

Ireland2014 0.410 1.33 3.03 12.52 0.00 

Ireland2015 0.403 1.70 2.43 11.97 0.00 

Ireland2016 0.493 1.55 1.11 7.01 0.00 

Italy2014 1.000 0.00 0.00 0.00 0.00 

Italy2015 1.000 0.00 0.00 0.00 0.00 

Italy2016 1.000 0.00 0.00 0.00 0.00 

Netherlands2014 1.000 0.00 0.00 0.00 0.00 

Netherlands2015 1.000 0.00 0.00 0.00 0.00 

Netherlands2016 0.915 0.03 0.64 1.91 0.00 

Portugal2014 1.000 0.00 0.00 0.00 0.00 

Portugal2015 1.000 0.00 0.00 0.00 0.00 

Portugal2016 1.000 0.00 0.00 0.00 0.00 

Slovenia2014 0.427 0.00 0.00 0.03 0.51 

Slovenia2015 1.000 0.00 0.00 0.00 0.00 

Slovenia2016 1.000 0.00 0.00 0.00 0.00 

Spain2014 0.675 0.00 0.18 14.24 0.00 

Spain2015 1.000 0.00 0.00 0.00 0.00 

Spain2016 0.537 1.28 1.75 7.52 0.00 

Sweden2014 0.387 0.15 0.19 0.11 0.30 

Sweden2015 0.304 0.12 0.16 0.10 0.56 

Sweden2016 1.000 0.00 0.00 0.00 0.00 

UnitedKingdom2014 1.000 0.00 0.00 0.00 0.00 

UnitedKingdom2015 1.000 0.00 0.00 0.00 0.00 

UnitedKingdom2016 0.500 0.95 0.71 5.45 0.00 

Sum 7.67 10.45 65.00 12.94 
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Table 5a. Efficiency scores and global Malmquist indexes for freshwater finfish 

 Efficiency score Global Malmquist index 

Country 2014 2015 2016 2014-2015 2015-2016 2014-2016 

Bulgaria 1.000 1.000 0.715 1.000 0.715 0.715 

Croatia 1.000 1.000 1.000 1.000 1.000 1.000 

Denmark 0.912 1.000 1.000 1.096 1.000 1.096 

Estonia 1.000 1.000 - 1.000 - - 

Finland 0.710 0.759 0.703 1.068 0.927 0.990 

France 1.000 1.000 1.000 1.000 1.000 1.000 

Greece - 1.000 1.000 - 1.000 - 

Ireland 1.000 0.817 1.000 0.817 1.224 1.000 

Italy 1.000 1.000 1.000 1.000 1.000 1.000 

Latvia - 0.573 1.000 - 1.744 - 

Portugal 1.000 1.000 - 1.000 - - 

Romania 0.187 - - - - - 

Spain 1.000 0.677 0.761 0.677 1.123 0.761 

Sweden 1.000 1.000 1.000 1.000 1.000 1.000 

United Kingdom 1.000 1.000 1.000 1.000 1.000 1.000 

Average 0.908 0.916 0.932 - - - 

Geometric mean - - - 0.961 0.992 0.949 
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Table 5b. Efficiency scores and global Malmquist indexes for marine finfish 

 Efficiency score Global Malmquist index 

Country 2014 2015 2016 2014-2015 2015-2016 2014-2016 

Croatia 0.393 0.650 0.599 1.655 0.922 1.526 

Crypus 1.000 - - - - - 

Denmark 0.801 0.924 1.000 1.153 1.082 1.248 

Finland 1.000 - - - - - 

Greece - 0.803 1.000 - 1.246 - 

Ireland 1.000 1.000 1.000 1.000 1.000 1.000 

Italy - - 1.000 - - - 

Malta 0.901 1.000 1.000 1.109 1.000 1.109 

Portugal 0.647 1.000 0.782 1.547 0.782 1.210 

Slovenia 1.000 - 1.000 - - 1.000 

Spain 0.698 0.832 1.000 1.191 1.203 1.432 

United Kingdom 1.000 0.759 1.000 0.759 1.317 1.000 

Average 0.844 0.871 0.938 - - - 

Geometric mean - - - 1.168 1.056 1.176 
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Table 5c. Efficiency scores and global Malmquist indexes for shellfish 

 Efficiency score Global Malmquist index 

Country 2014 2015 2016 2014-2015 2015-2016 2014-2016 

Bulgaria 1.000 - - - - - 

Croatia 0.160 0.155 0.117 0.964 0.756 0.729 

Crypus - - - - - - 

Denmark 1.000 1.000 1.000 1.000 1.000 1.000 

France 1.000 1.000 1.000 1.000 1.000 1.000 

Germany 1.000 1.000 1.000 1.000 1.000 1.000 

Greece - 1.000 - - - - 

Ireland 0.410 0.403 0.493 0.985 1.223 1.204 

Italy 1.000 1.000 1.000 1.000 1.000 1.000 

Netherlands 1.000 1.000 0.915 1.000 0.915 0.915 

Portugal 1.000 1.000 1.000 1.000 1.000 1.000 

Slovenia 0.427 1.000 1.000 2.340 1.000 2.340 

Spain 0.675 1.000 0.537 1.482 0.537 0.795 

Sweden 0.387 0.304 1.000 0.786 3.284 2.582 

United Kingdom 1.000 1.000 0.500 1.000 0.500 0.500 

Average 0.774 0.836 0.797 - - - 

Geometric mean - - - 1.082 0.976 1.056 
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Table 6. OLS, censored and one part fractional regression results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Notes: 

Dependent variable: SBM efficiency score. Sample: 105 observations. “*”, “**” and “***” indicate statistical significance at the 10%, 5% and 1% level, respectively. Corresponding 

robust standard error are shown in parentheses a R2=0.930. F ratio for overall significance of the linear regression model is equal to F6,99 =219.7 and p-value< 2.2e-16. b Two Limit 

Tobit (Shapiro Wilk Normality statistic= 0.814; p-value<0.01).c LM statistic 

  
Linear (OLS)a Censored 

(ML)b 

One part (QMLE) 

  Logit Probit Loglog Cloglog 

Intercept - - - - - - 

COASTLINE 
-8.438e-06* 

(3.81e-06) 

0.18e-04 

(0.14e-04) 

4.100e-05 

(2.900e-05) 

-2.100e-05 

(1.600e-05 

-4.100e-05 

(2.6e-05) 

-1.300e-05 

(1.300e-05) 

LOG(GDP) 
1.390e-01*** 

(7.06e-04) 

0.56e-03 

(0.16e-03) 

0.285*** 

(0.08) 

0.172*** 

(0.043) 

0.301*** 

(0.074) 

0.105*** 

(0.034) 

POPULATION 
-2.167e-09 

(3.09e-08) 

1.29e-07 

(1.38e-07) 

0.900e-05 

(0.99e-11) 

0.900e-05 

(0.99e-11) 

0.800e-07 

(0.900e-08) 

0.991e-07 

(0.005e-08) 

FISHERY 
-1.716e-04* 

(8.912e-05) 

-0.26e-04 

(3.26e-04) 

1.780e-04 

(7.570e-04) 

1.100e-05 

(3.980e-04) 

0.137e-03 

(0.701e-03) 

3.500e-05 

(3.110e-04) 

FRESH WATER 
2.326e-01*** 

(5.305e-02) 

1.12*** 

(0.22) 

1.154* 

(0.458) 

0.596** 

(0.239) 

1.129*** 

(0.421) 

0.421** 

(0.188) 

SALT WATER 
2.523e-01*** 

(5.633e-02) 

0.89*** 

(0.21) 

0.828** 

(0.387) 

0.444** 

(0.205) 

0.837** 

(0.358) 

0.297* 

(0.164) 

Log-scale - 
-9.22e-01 

(6.90e-02) 
- - - - 

% of fitted values out of the range [0,1] 20% 0% - - - - 

Pseudo R2 - 0.42 0.161 0.153 0.170 0.137 

Specification tests results 

(p-values) 

RESET testc 1.272 9.05*** 0.278 0.196 0.271 0.150 

P-test H1: Logit - 0.023 0.001 0.372 

P-test H1: Probit 0.372 - 5.546** 2.937 

P-test H1: Loglog 2.969 0.008*** - 5.431** 

P-test H1: Cloglog 4.455** 1.638 2.838 - 
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Table 7. Two-part fractional regression results 

 Two-part model 

 Binary component Fractional component (for probit in binary part) 

 Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog 

Intercept 
-1.91 

(1.24) 

-1.17 

(0.73) 

-1.01 

(0.96) 

-1.66** 

(0.74) 

-0.25 

(1.21) 

-0.14 

(0.72) 

0.03 

(1.02) 

-0.38 

(0.66) 

COASTLINE 
-4.40e-05 

(3.60e-05) 

-2.50e-05 

(2.20e-05) 

-3.7e-05 

(3.00e-05) 

-2.10e-05 

(2.10e-05) 

0.06e-04 

(0.03e-04) 

0.04e-04 

(0.18) 

0.01e-04 

(0.23e-04) 

0.08e-04 

(0.18e-04) 

Log(GDP) 
0.56** 

(0.24) 

0.34** 

(0.14) 

0.42** 

(0.20) 

0.37*** 

(0.13) 

-0.10 

(0.30) 

-0.06 

(0.18) 

-0.04 

(0.25) 

-0.10 

(0.16) 

POPULATION 
0.03e-08 

(0.01e-08) 

0.03e-08 

(0.01e-08) 

0.02e-08 

(0.02e-08) 

0.03e-08 

(0.01e-08) 

-0.02e-08 

(0.01e-08) 

-0.01e-08 

(0.02e-08) 

0.01e-08 

(0.01e-08) 

-0.01e-08 

(0.01e-08) 

FISHERY 
-1.67e-03* 

(9.01e-04) 

-1.02e-03* 

(0.539e-03) 
-1.25e-02* 

(0.69e-03) 

-1.08e-03** 

(1.81e-03) 

0.014e-02* 

(0.08e-02) 

0.85e-03* 

(0.48) 

1.10e-03 

(0.68e-03) 

0.88** 

(0.44) 

FRESH WATER 
0.66 

(0.53) 

0.38 

(0.32) 

0.53 

(0.43) 

0.35 

(0.31) 

1.10*** 

(0.33) 

0.68*** 

(0.20) 

0.84*** 

(0.25) 

0.74*** 

(0.22) 

SALT WATER 
0.04 

(0.55) 

0.01 

(0.34) 

0.01 

(0.43) 

0.06e-01 

(0.35) 

1.25*** 

(0.29) 

0.76*** 

(0.18) 

0.94*** 

(0.22) 

0.80*** 

(0.21) 

Pseudo R2 0.073 0.074 0.071 0.076 0.529 0.525 0.539 0.513 

P-test (Binary part)/ RESET 

test (fractional part)a  
1.350 1.281 1.374 1.190 1.974 2.117 2.150 1.239 

GOFF-test 1.738 1.200 1.241 1.120 1.949 2.118 2.203 1.310 

Notes: Dependent variable: SBM efficiency score. Sample: 105 observations. “*”, “**” and “***” indicate statistical significance at the 10%, 5% and 1% level, respectively.  

Corresponding robust standard error are shown in parentheses a LM statistic
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Figure 1. Evolution of the aquaculture production in the EU (right axis) and rest of the world (left 

axis) for the period 1980-2016. Source: FAO (2018). 
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Figure 2. Inputs and outputs considered (ND: Non-discretionary) 
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Table A1: Aquaculture production and production growth objectives by EU country compared to 

FAO production. 

Country 

Reported initial 

(2014) (t) 

FAO production 

(2014) (t) 

Reported goal 

(2020) (t) 

Reported 

increase (t) 

Percentage 

increase (%) 

Austria 3,100 3,483 5,500 2,400 77.4 

Belgium 332 44 1,032 e 700 210.8 

Bulgaria 14,000 15,754 20,000 6,000 42.9 

Croatia 13,916 d 15,805 24,050 10,134 72.8 

Cyprus 53,39.3 c 6,625 6,332 f 993 18.6 

Czech Republic 20,000 20,952 20,000 0 0.0 

Denmark 44,000 36,237 55,000 11,000 25.0 

Estonia j 868 j    

Finland 13,700 14,412 20,000 6,300 46.0 

France 218,000 166,140 265,000 47,000 21.6 

Germany 26,500 d 41,721 52,000 25,500 96.2 

Greece 114,000 d 123,314 170,000 56,000 49.1 

Hungary 21,500 16,248 27,000 f 5,500 25.6 

Ireland 36,700 40,190 81,700 f 45,000 122.6 

Italy 140,879 c 157,109 206,854 g 65,975 46.8 

Latvia 644 c 788 2,256 f 1,612 250.3 

Lithuania 3845 4,393 6,400 e 2,555 66.4 

Malta 8606 6,073 10,500 1,894 22.0 

Netherlands  62,940 i 0 0.0 

Poland 40,000 38,300 61,000 21,000 52.5 

Portugal 10,317 9,785 35,000 24,683 239.2 

Romania 10,146 c 12,574 36,000 25,854 254.8 

Slovakia 1,100 h 2,169 2,200 h 1,100 100.0 

Slovenia 1,155 d 1,844 2,420 1,265 109.5 

Spain 267,000 d 283,828 320,000 53,000 19.9 

Sweden 12,500 c 15,747 25,000 12,500 100.0 

United Kingdom 205,000 194,492 254,000 49,000 23.9 

Total EU 28 1,293,439 1,291,834 1,770,404 476,965 36.9 

Source: Multiannual National Strategic Plans for the promotion of sustainable aquaculture by EU member state, FAO, 

2018. 
c Refers to 2013 data. 
d Refers to 2012 data. 
e Refers to 2022 data. 
f Refers to 2023 data. 
g Refers to 2025 data. 
h we assume that Slovakian aquaculture production will double from the growth objective: “80% self-sufficiency in 

volume by 2020, from the current level of 40% self”. 
i we assume that Dutch aquaculture production levels will be maintained as no growth objective in weight terms is 

provided, only that production in value will increase by 3%. 
j no quantitative information is provided in the growth objective: “Estonia’s vision for aquaculture in 2020 is to build up 

a leading position in their own domestic market and to become a successful exporter of species that suit local farming 

conditions and have a high demand in foreign markets”. 

 


