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Abstract

Several studies have illuminated how processing manual action verbs (MaVs) affects the pro-

gramming or execution of concurrent hand movements. Here, to circumvent key confounds in

extant designs, we conducted the first assessment of motor–language integration during handwrit-

ing—a task in which linguistic and motoric processes are co-substantiated. Participants copied

MaVs, non-manual action verbs, and non-action verbs as we collected measures of motor pro-

gramming and motor execution. Programming latencies were similar across conditions, but execu-

tion was faster for MaVs than for the other categories, regardless of whether word meanings were

accessed implicitly or explicitly. In line with the Hand-Action-Network Dynamic Language

Embodiment (HANDLE) model, such findings suggest that effector-congruent verbs can prime

manual movements even during highly automatized tasks in which motoric and verbal processes

are naturally intertwined. Our paradigm opens new avenues for fine-grained explorations of

embodied language processes.
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1. Introduction

Embodied cognition research has revealed intimate links between motoric and lexico-

semantic mechanisms (Garc�ıa & Ib�a~nez, 2016a). A number of neuroimaging (e.g., Abre-

vaya et al., 2017; Liljestrom et al., 2008; Rodr�ıguez-Ferreiro, Gennari, Davies, & Cuetos,

2011; Shtyrov, Butorina, Nikolaeva, & Stroganova, 2014) and brain stimulation (e.g.,

Kuipers, van Koningsbruggen, & Thierry, 2013; Papeo, Vallesi, Isaja, & Rumiati, 2009)

experiments have illuminated such connections without forcing artificial relations between

bodily movement and verbal operations—for example, through passive reading tasks (for

a review, see Pulverm€uller, 2018). However, most behavioral evidence comes from highly

contrived designs in which subjects must respond to target words by pushing a button

with a closed hand, sliding a finger sideways on a computer screen or pinching objects

from their lower end, among other examples—for a review, see Garc�ıa and Ib�a~nez
(2016a). Though certainly informative, all such paradigms entail arbitrary relations

between independent manual and linguistic processes and are thus potentially affected by

attentional factors, since participants must keep track of two parallel sets of demands to

coordinate verbal operations with artificially paired motoric responses. To examine these

functional synergies while circumventing such limitations in behavioral research, we

explored how processing of manual action verbs (MaVs) affects the kinematics of hand-

writing, a highly automatized activity which seamlessly and necessarily integrates

linguistic processing and hand movements.

Just as modality-specific (e.g., Mulatti, Treccani, & Job, 2014; Vermeulen, Corneille,

& Niedenthal, 2008) and category-specific (e.g., Madebach, Wohner, Kieseler, & Jesche-

niak, 2017) information can yield varying grounding effects across perceptual dimensions,

so can effector-specific words affect processes in the motor domain. Note, however, that

action mechanisms possess unique functional features (Prinz, Beisert, & Herwig, 2013;

Shadmehr, Smith, & Krakauer, 2010; Shin, Proctor, & Capaldi, 2010), so that their inter-

action with higher-order operations may not be directly inferred from perception-oriented

studies. For example, contrary to most perceptual processes, bodily movements can be

analyzed in terms of planning and execution stages, each of which can be differentially

affected by ongoing cognitive operations. In particular, MaVs (e.g., erase, applaud, ca-
ress) can modulate concomitant manual responses in various ways, depending on task

demands and the time-course of the ensuing motor resonance (Garc�ıa & Ib�a~nez, 2016a).
To the best of our knowledge, the only framework that specifically accounts for such pat-

terns is the Hand-Action-Network Dynamic Language Embodiment (HANDLE) model

(Garc�ıa & Ib�a~nez, 2016a), a proposal based on the analysis of 108 experiments and

anchored in neuroimaging (Grabowski, Damasio, & Damasio, 1998) and predictive-cod-

ing (Bastos et al., 2012; Rao & Ballard, 1999) principles.

Couched in the embodied cognition framework, HANDLE is a neurolinguistic model

aimed to explain why and how processing of MaVs can modulate overt manual behavior.

Neuroanatomically, the model posits that MaVs (just like other action-related words) are

subserved by widely distributed bidirectional systems spanning effector-specific
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sensorimotor circuits (along frontostriatal and parietal hubs) and multimodal semantic net-

works (with key hubs in the anterior and superior temporal gyri). In particular, MaV pro-

cessing is proposed to distinctively modulate activity in somatotopic motor regions,

creating specific interference or facilitation effects depending on stimulus- and task-

related variables, such as the type of linguistic unit being processed, the complexity of

the motoric response, the semantic demands involved by ongoing linguistic operations,

and, more crucially, the time lapse between stimulus presentation and the associated hand

movement.

Succinctly, HANDLE proposes that, upon presentation of a MaV, activation in hand

motor networks will reach maximal (suprathreshold) levels for roughly 400 ms, followed

by a progressive decline of (subthreshold) activation in subsequent time windows. This

postulate follows from evidence that MaVs automatically enervate hand muscles within

that temporal window—with gripping strength augmenting at 100 ms, peaking at 380 ms,

and decaying after 400 ms (Frak et al., 2010)—and that they can delay or facilitate sim-

ple manual actions depending on whether these were performed before (Sato et al., 2008;

Spadacenta et al., 2014) or after (Dalla Volta et al., 2009, 2014) the 400-ms mark,

respectively. Building on such findings, HANDLE posits that, if a hand movement occurs

while relevant motor networks are maximally activated, then both operations (MaV pro-

cessing and manual action) would be competing for shared critical substrates; the ensuing

manual action would not have optimal access to its underlying resources and would thus

be delayed (Boulenger et al., 2006; Dalla Volta, Gianelli, Campione, & Gentilucci, 2009;

Nazir et al., 2008). By contrast, if a manual movement is performed when hand motor

networks are in a given subthreshold (partially activated) state following MaV presenta-

tion, ensuing manual actions should be facilitated, as they would be primed by extant

activity levels in those shared mechanisms—that is, hand-specific processes would benefit

from prior subthreshold excitation induced by MaVs (Dalla Volta, Fabbri-Destro, Gen-

tilucci, & Avanzini, 2014; Dalla Volta et al., 2009). More particularly, the model further

predicts that such facilitation effects could be observed even in long-latency windows

when the task poses considerable linguistic or motoric demands (e.g., when movements

from one or two hands need to be coordinated to achieve fine-grained target-directed

actions). Indeed, as observed in different studies (Glenberg & Kaschak, 2002; Kaschak &

Borreggine, 2008; Lugli, Baroni, Gianelli, Borghi, & Nicoletti, 2012), such substantial

demands can lead to durable subthreshold states capable of inducing priming even beyond

2 seconds after trial onset.

In addition to informing HANDLE, extant motor–language–coupling paradigms have

illuminated numerous aspects of the interface between language and bodily action. Yet,

despite their major contributions, virtually all such paradigms rely on dual tasks involving

artificial, ad hoc combinations of verbal and motor processes, such as indicating sentence

comprehension by pressing a predefined key on a vertically oriented keyboard (Borregine

& Kaschak, 2006; Glenberg & Kaschak, 2002; Lugli et al., 2012), turning a knob (Zwaan

& Taylor, 2006), pushing a huge button with a pre-assigned hand shape (Aravena et al.,

2010), or grasping an object when reading a word (Lindemann, Stenneken, van Schie, &

Bekkering, 2006).1 In contrast to these tasks, writing affords a highly relevant framework
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to study dynamic embodied effects in a more naturalistic fashion, as in this activity hand

movements are necessary for and consubstantiated with linguistic processes.

However, there is scant evidence on these dynamic synergies during written produc-

tion. For example, using a keyboard typing task, Garc�ıa and Ib�a~nez (2016b) found that

MaVs yielded distinct interference effects on motor planning (the time needed to type the

first letter), which were notably reduced on motor execution (the time needed to type the

whole word). Interestingly, this pattern mirrors previous research showing that interfer-

ence on motor planning is usually accompanied by null (Mirabella, Iaconelli, Spadacenta,

Federico, & Gallese, 2012) or facilitation (Dalla Volta, Gianelli, Campione, & Gentilucci,

2009) effects on execution measures, whereas execution effects often emerge alongside

null motor–planning results (Boulenger et al., 2006, 2008; Dalla Volta et al., 2009; Nazir

et al., 2008). In short, such results further indicate that embodied effects are characterized

by a trade-off between both processing stages.

While, prima facie, the effects observed for typewriting might be presumed valid for

any writing modality, a different pattern could actually be expected for handwriting.

Typewriting is a bimanual activity involving very similar motor patterns for each letter

(downward finger motions), which basically vary in terms of which key is being pressed.

Conversely, handwriting is accomplished with only one hand, and each letter requires a

particular motor routine. Moreover, relative to studies on typing, those investigating hand-

writing usually report shorter response onsets but slower motor routine completion

(Afonso, Su�arez-Coalla, & Cuetos, 2015; Bertram, Tønnessen, Str€omqvist, Hy€on€a, &

Niemi, 2015; Delattre, Bonin, & Barry, 2006; Garc�ıa & Ib�a~nez, 2016b), further emphasiz-

ing the salient execution differences between both activities. In terms of the HANDLE

model, these discrepancies should considerably modulate motor–language integration

dynamics, resulting in different effects for each modality.

To address this issue, here we report the first investigation of motor–language coupling

dynamics during handwriting of MaVs, non-manual actions verbs (nMaVs), and non-

action verbs (nAVs). More particularly, we assessed the impact of these word classes on

(a) motor programming, indexed by first-letter lag (FLL, the latency of writing onset);

and (b) motor execution, represented by whole-word lag (WWL, the overall duration of a

word’s writing process). We conducted two word-copying experiments, one involving

shallow processing and the other one requiring explicit semantic access. Guided by the

HANDLE model, and considering that handwriting involves long response latencies

(Afonso, Su�arez-Coalla, Gonz�alez-Mart�ın, & Cuetos, 2017; Damian & Stadthagen-Gonza-

lez, 2009; Delattre et al., 2006) which surpass those proper to typing (Garc�ıa & Ib�a~nez,
2016b) and fall within the timespan yielding facilitation effects on motor execution mea-

sures (e.g., Lugli et al., 2012), we hypothesized that production of MaVs would selec-

tively reduce WWL—namely, the variable capturing motor execution duration.

Moreover, by combining two separate experiments involving implicit and explicit

semantic access, we examined the consistency of the predicted effects at different

depths of processing. In particular, previous evidence indicates that embodied effects

are varyingly sensitive to task-related factors, with some studies revealing them to

emerge exclusively, more durably or similarly (for a review see Garc�ıa & Ib�a~nez,
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2016a) in explicit relative to implicit semantic paradigms. However, previous writing

studies in the embodied framework (Garc�ıa & Ib�a~nez, 2016b; Garc�ıa-Marco et al.,

2019) have failed to consider both processing levels, thus casting doubts on the system-

aticity of such effects—which proves problematic, given that embodied effects may

only be interpreted as primary if obtained via implicit tasks (Garc�ıa et al., 2019; Hauk

et al., 2008; Kiefer et al., 2008; Mollo et al., 2016) and their thorough understanding

calls for assessments contemplating both conditions (Fernandino et al., 2013). By

addressing these questions, this study aims to further illuminate the embodied synergy

between linguistic and motoric processes during an early learned, highly automatized

activity.

2. Experiment 1

2.1. Methods

2.1.1. Participants
Experiment 1 comprised 30 first-year undergraduate psychology students (23 female;

29 right-handed) from the University of Oviedo, who enrolled to fulfil a course credit

requirement. A power estimation analysis on G*Power 3.1.9.2 (Faul, Erdfelder, Buchner,

& Lang, 2009) revealed that this sample size ensured a power above .9, meaning that a

true effect would almost certainly be detected.2 The participants’ age ranged from 20 to

36 (M = 21 years and 6 months, SD = 2 years and 7 months). All of them were native

Spanish speakers, with no cognitive, linguistic, motor, or perceptive disorders. Handwrit-

ing ability was assessed through a questionnaire (see Supplementary material, Table S1)

including items about the average "daily time spent handwriting" (M = 108 min,

SD = 109 min) and the estimated age at which they first began to develop such a skill

(M = 4 years and 6 months, SD = 7 months). No subject had a history of handwriting

difficulties. Importantly, at the time of testing, none of them had received any formal

teaching about embodied cognition in their coursework. Before the study, all participants

read and signed an informed consent form in accordance with the Declaration of Helsinki.

The study was approved by the ethics’ committee of the Faculty of Psychology of the

University of Oviedo.

2.1.2. Materials
Experimental stimuli comprised 81 infinitive Spanish verbs, namely: 27 MaVs, denot-

ing actions performed with the hands (e.g., agarrar [grab]); 27 nMaVs, evoking actions

from other effectors (e.g., agachar [bend down]); and 27 nAVs, alluding to mental or

affective processes that imply no bodily motion (e.g., admirar [admire]). To verify the

adequacy of the stimuli selected for each category, we conducted a rating study following

previously reported procedures (Garc�ıa-Marco et al., 2019). Thirty-eight native Spanish

speakers were presented with the whole list of target verbs and asked to indicate whether

O. Afonso et al. / Cognitive Science 43 (2019) 5 of 21



they believed each process was as follows: (a) mainly performed with the arms/hands, (b)

mainly performed with other parts of the body (feet, legs, mouth), or (c) done with no

need to perform any bodily movement. Results showed that items for all three conditions

were consistently associated to their assigned semantic category (MaVs = 99.22%,

nMaVs = 94.05%, nAVs = 87.62%), with means similar to those obtained in previous

validations of the same categories (Garc�ıa-Marco et al., 2019).

The adequacy of the stimuli selected for each condition was further confirmed by an

analysis of their concreteness levels—based on data from BuscaPalabras (Davis & Perea,

2005). An ANOVA test revealed a significant effect of concreteness [F(2, 44) = 10,776,

p < .001], with a post hoc analysis (Tukey’s HSD test, MSE = .44852, df = 44) corrobo-

rating that nAVs were less concrete than both MaVs (p = .001) and nMaVs (p < .001).

Crucially, however, no significant differences emerged between the latter two sets of

words (p = .83). Note that, since nAVs are abstract by definition, they should in fact

prove less concrete than action verbs at large (Dalla Volta et al., 2014; Garc�ıa & Ib�a~nez,
2016a).

Furthermore, verbs were matched across conditions in terms of (a) first-letter identity,

(b) total number of strokes [F(2, 77) = .2, p = .82], (c) word frequency [F(2, 77) = .01,

p = .99], (d) orthographic length [F(2, 77) = .47, p = .63], (e) syllabic length [F(2,
77) = .14, p = .87], (f) orthographic neighborhood [F(2, 77) = .12, p = .89], and (g) mean

bigram frequency [F(2, 77) = .23, p = .79]—based on data from BuscaPalabras (Davis &

Perea, 2005)—, as well as (h) age of acquisition [F(2, 77) = .28, p = .75]—based on vali-

dated norms (Alonso, D�ıez, & Fern�andez, 2016). The full set of experimental stimuli and

descriptive statistics for each variable are provided in the Supplementary material (Tables

S2 and S3, respectively). Forty-two additional words (21 verbs and 21 nouns) of the same

orthographic length as the experimental words were selected as fillers to conceal the

study’s experimental manipulations. Prior to the task, participants completed a practice

session with 10 words (5 nouns, 5 verbs) not included in the experiment.

2.1.3. Apparatus and procedure
The experiment consisted of an immediate copying task and was conducted individu-

ally in a sound proof room. Participants were told that they would partake in a word writ-

ing experiment, but they remained unaware of its specific manipulations and underlying

hypotheses until the task was over. They sat comfortably at a desk with a stimulus-dis-

play screen and a Wacom Intuos LD-1218-u digitizer, and they were given a digital pen.

Stimulus presentation and digital recording of the responses were controlled by Ductus

(Guinet & Kandel, 2010), a specialized software for the construction, implementation,

and analysis of word-writing experiments, including kinematic measures of handwritten

responses and detailed chronometric information of each response. The experiment was

run on an Asus F9Eseries laptop. Each trial started with the presentation of a 300-ms fix-

ation point in the center of the screen, immediately followed by a centered, lowercase,

16-point stimulus word that remained visible for 500 ms. Participants were instructed to

use the digital pen to copy the word in uppercase (print handwriting was not enforced),

as fast and as accurately as possible, on a sheet of paper placed over the digitizer3. As in
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previous writing and spelling studies (Afonso, �Alvarez, & Kandel, 2015; Afonso, Su�arez-
Coalla, et al., 2015; Tainturier & Rapp, 2001), the conversion of lower- to uppercase

print ensured that the task forces sublexical and/or lexical access and the to-be-copied

stimulus is processed as a linguistic form rather than a visual shape. Subjects were

instructed to write each response on a line placed at the center of the paper, starting at

the beginning of the line, which was marked with a cross (+). Once they had finished a

response, they were further instructed to use the tip of the pen for tapping on a square

labeled “next” (at the bottom right of the sheet) and to immediately return the pen to the

response line without making any contact with the paper. Importantly, note that this first

experiment did not require paying attention to the meaning of the stimuli. A whole exper-

imental session lasted around 20 min.

2.1.4. Measures of interest
As in previous embodiment research on written production (Garc�ıa & Ib�a~nez, 2016a;

Garc�ıa-Marco et al., 2019), the main measures of interest were FLL, calculated as the

time between stimulus onset and the first contact of the pen with the tablet; and WWL,

defined as the time between the first contact of the pen with the tablet and the last pen

lift for a given stimulus. In line with reported protocols (Afonso et al., 2017; Garc�ıa &

Ib�a~nez, 2016a; Garc�ıa-Marco et al., 2019; Roux, McKeeff, Grosjacques, Afonso, & Kan-

del, 2013), FLL yielded a measure of motor programming, whereas WWL reflected

mechanisms operative in the execution of the writing routine.

2.1.5. Statistical analysis
Separate repeated measures analyses of covariance (ANCOVA) were conducted on FLLs

and WWLs to determine the effects of verb type (MaV, nMaV, or nAV) including the

average "daily time spent handwriting" as a covariate to control for the impact of writing

abilities on the results. For these analyses, effect sizes were calculated through partial eta-

squared (g2
p). Significant effects were further analyzed via t tests, and p-values were

adjusted via the Holm–Bonferroni method. For t tests, effect sizes were calculated through

Cohen’s d. Only correct responses were included in the analyses conducted on FLLs and

WWLs. As in previous studies (Garc�ıa & Ib�a~nez, 2016a; Garc�ıa-Marco et al., 2019), trials

containing misspellings or self-corrections (e.g., overwriting one letter with another), as

well as those with faulty recordings, were considered errors and removed from the analy-

ses. Note that, in line with other writing experiments on effector-specific embodiment

effects (Garc�ıa-Marco et al., 2019), all analyses were performed with a by-subjects

approach. Indeed, given that our stimuli were non-randomly sampled, strictly matched for

multiple variables, and close to exhausting the population of our target condition (MaVs),

the inclusion of item variance would violate the assumptions of random effects models,

leading to a substantial decrease in power and an unduly conservative overcompensation

that could mask true effects (Hutchinson et al., 2014; Raaijmakers, 2003; Wickens &

Keppel, 1983). Interested researchers can freely access all raw data used in this

experiment and in Experiment 2 through the Open Science Framework repository

(Su�arez-Coalla, 2019).
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2.2. Results

2.2.1. Incorrect responses and outliers
Overall, 2.06% of the responses were considered as errors and removed from the anal-

yses (MaVs = 1.36%, nMaVs = 2.71%, and nAVs = 2.10%). There were no significant

differences in the number of errors made across conditions [F(2, 58) = 1.86, MSE = .00,

p = .16, g2
p = .06]. FLLs and WWLs above and below 3 standard deviations from each

participant’s mean (1.07% and 2.18%, respectively) were also excluded from the analyses

(for FLLs, MaVs = .74%, nMaVs = .99%, nAVs = 1.48%; for WWLs, MaVs = 2.22%;

nMaVs = 2.22%; nAVs = 2.10%). There were no significant differences in the number of

rejected trials across conditions in FLL [F(2, 58) = 1.08, MSE = .00, p = .35, g2
p = .04]

or WWL [F(2, 58) = .33, MSE = .01, p = .72, g2
p = .01].

2.2.2. FLL and WWL
The ANCOVA revealed no effect on FLL of verb type [F(2, 56) = .23, p < .80,

MSE = 81.26, g2
p = .01] or an interaction between verb type and the covariate average

daily time spent handwriting [F(2, 56) = .48, p = .62, MSE = 173.25, g2
p = .02]—

Fig. 1A. By contrast, verb type did yield a significant effect on WWL [F(2, 56) = 17.68,

p < .001, MSE = 44,154.19, g2
p = .39]. This effect did not interact with the covariate aver-

age "daily time spent handwriting" [F(2, 56) = .27, MSE = 669.48, p = .77, g2
p = .01).

Planned comparisons revealed that MaVs were typed faster than nMaVs [t(29) = 2.87,

p = .007, d = .52] and nAVs [t(29) = 8.34, p < .001, d = 1.52]. Also, WWLs were

shorter for nMaVs than for nAVs [t(29) = 7.26, p < .001, d = 1.33]—Fig. 1B.

Fig. 1. Motor programming and execution latencies during handwriting obtained in Experiment 1. Outcomes

for these variables are indexed by (A) first-letter lag (FLL) and (B) whole-word lag (WWL), respectively.

The panels show results for manual action verbs (MaVs), non-manual action verbs (nMaVs), and non-action

verbs (nAVs). Error bars represent standard errors. Asterisks indicate statistically significant results at

p < .001.
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2.3. Brief interim discussion

In Experiment 1, participants copied MaVs, nMaVs, and nAVs. Although the time

required to initiate writing (FLL) was similar across conditions, the overall duration of

handwriting proper (WWL) was reduced for action verbs, in general, with even greater

facilitation for MaVs, in particular. These findings suggest that both gross and effector-

general motor mechanisms are activated during action–verb processing and that this reac-

tivation differentially affects the unfolding of concurrent hand movements. More particu-

larly, the detection of this effect in a task that does not explicitly require semantic

processing, such as the copying task (Bonin, M�eot, Lagarrigue, & Roux, 2015), indicates

that motor–language integration is a robust phenomenon that takes place even when word

meanings are implicitly accessed. However, given that depth of processing seems to

affect the nature of embodied effects (Garc�ıa & Ib�a~nez, 2016a), this result cannot be a

priori assumed to hold identically when semantic operations are explicitly required. In

Experiment 2, we address this issue by modifying the above copying task to unavoidably

require semantic processing of the to-be-produced words.

3. Experiment 2

Experiment 2 was conducted as a conceptual replication of the first experiment, with

the aim of examining the role of explicit semantic access on the observed effects. Specifi-

cally, we employed a go/no-go paradigm with word pairs, such that each target verb

(MaVs, nMaVs, nAVs) had to be written only if the immediately preceding word was

synonymous with it.

3.1. Methods

3.1.1. Participants
This experiment comprised a new sample of 27 first-year undergraduate psychology

students (20 female; 25 right-handed) from the University of Oviedo, who enrolled to ful-

fil a course credit requirement. Their age ranged from 21 to 27 years old (M = 21 years

and 8 months, SD = 1 year and 6 months). All of them were native Spanish speakers,

with no cognitive, linguistic, motor, or perceptive disorders. As in Experiment 1, partici-

pants completed a questionnaire about their handwriting ability (see Supplementary mate-

rial, Table S4), including items about the average "daily time spent handwriting"

(M = 106 minutes, SD = 99.12) and the estimated age at which they acquired such a skill

(M = 4 years and 2 months, SD = 1 year). None of the participants had a history of

handwriting difficulties. Also, as in Experiment 1, no participant had received any formal

teaching about embodied cognition in their coursework. Before the study, all participants

read and signed an informed consent form in accordance with the Declaration of Helsinki.

The study was approved by the ethics’ committee of the Faculty of Psychology of the

University of Oviedo.
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3.1.2. Materials
Experimental stimuli comprised 144 trials composed of a word pair each. All items

were Spanish verbs in the infinitive form. In half the trials (n = 72), the second (tar-

get) verb corresponded to the three categories under study, namely: 24 MaVs (e.g.

coger [grasp]), 24 nMaVs (e.g., caminar [walk]), and 24 nAVs (e.g., so~nar [dream]).
All target verbs were also target verbs in Experiment 1—note that the number of

stimuli per condition was reduced in this experiment from 27 to 24, as we detected

that specific words from the original lists did not have a clear synonym. The remain-

ing trials consisted of 72 semantically unrelated word pairs (e.g., dry-suggest) serving

as fillers—note that none of these items appeared in the 72 target trials. The inclusion

of these fillers requiring a no-response ensured that the items actually being copied

were objectively driven by semantic processes. As in Experiment 1, target verbs for

all three critical conditions were matched in terms of (a) first-letter identity, (b) total

number of strokes [F(2, 71) = .66, p = .52], (c) word frequency [F(2, 71) = .03,

p = .97], (d) orthographic length [F(2, 71) = .50, p = .58], (e) syllabic length [F(2,
71) = .21, p = .81], (f) orthographic neighborhood [F(2, 71) = .18, p = .83], (g) mean

bigram frequency [F(2, 71) = .38, p = .68], and (h) age of acquisition [F(2, 71) = .5,

p = .91]. The full set of experimental stimuli and descriptive statistics for each vari-

able are provided in the Supplementary material (Tables S5 and S6, respectively). In

line with previous protocols (Afonso & �Alvarez, 2011), the synonymous word preced-

ing each target verb was established by at least one dictionary of Spanish synonyms

—sinonimosonline (7Graus Lda., 2014), Wordreference (Kellogg, n.d.), synoni-

mos (Storpub, n.d.). Across conditions, synonyms were matched by (a) word frequency

[F(2, 71) = .47, p = .63], (b) orthographic length [F(2, 71) = 1.00, p = .37], (c) syl-

labic length [F(2, 71) = .99, p = .38], (d) orthographic neighborhood [F(2, 71) = 1.15,

p = .32], (e) mean bigram frequency [F(2, 71) = .13, p = .88], and (f) age of acquisi-

tion [F(2, 71) = 1.15, p = .32]. The full set of experimental stimuli and descriptive

statistics for each variable are provided in the Supplementary material (Tables S5 and

S6, respectively). Prior to testing, participants completed a practice session with 10

words (5 nouns, 5 verbs) not included in the task.

3.1.3. Apparatus and procedure
The same apparatus as that used in Experiment 1 was employed in Experiment 2 to

present the stimuli and record participants’ responses. Each trial started with the presenta-

tion of a 300-ms fixation point in the center of the screen, immediately followed by cen-

tered, lowercase, 16-point word pair (e.g., coger-agarrar, both meaning grasp) that

remained visible for 1,000 ms. Participants were instructed to use the pen to write the

second word of the pair only if both words could be used with a similar meaning in an

appropriate context. They were asked to write the word in uppercase (print handwriting

was not enforced), as fast and as accurately as possible, on a sheet of paper placed over

the digitizer. The instructions to continue to the next stimulus were identical to those

described for Experiment 1. A whole experimental session lasted around 25 min.
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3.1.4. Measures of interest and statistical analysis
The same measures of interest and statistical analyses described in Experiment 1 were

applied in Experiment 2. Trial rejection criteria were also identical to those adopted for

the first experiment.

3.2. Results

3.2.1. Incorrect responses and outliers
Overall, 14.45% of the responses were considered as errors and removed from the

analyses (MaVs = 10.65%, nMaVs = 19.91%, nAVs = 12.81%). There was a significant

difference in the number of errors made across conditions [F(2, 52) = 14.86,

MSE = 36.49, p < .001, g2
p = .36]. Results from t tests revealed that participants made

more errors on nMaVs than on MaVs [t(26) = 5.07; p < .001] and nAVs [t(26) = 4.03;

p < .001]. There was no significant difference in the number of errors made in the MaV

and the nAV conditions [t(26) = 1.24; p = .23]. FLLs and WWLs above and below 3

standard deviations from each participant’s mean (1.59% and 3.19%, respectively) were

also excluded from the analyses (for FLLs: MaVs = 1.08%, nMaVs = 1.70%,

nAVs = 2.01%; for WWLs: MaVs = 3.09%, nMaVs = 1.54%, nAVs = 4.94%). Across

conditions, the number of rejected trials was similar for FLL [F(2, 52) = 1.17,

MSE = .35, p = .32, g2
p = .04], but it did yield significant differences for WWL [F(2,

52) = 7.08, MSE = 4.49, p < .004, g2
p = .21], with t tests showing that there were fewer

outliers in the nMaV condition than in the MaV [t(26) = 2.08; p = .048] and the nAVs

condition [t(26) = 3.67; p = .001] conditions. There was no significant difference in the

number of outliers removed for the MaV and the nMaV conditions [t(26) = 1.80;

p = .08].

3.2.2. FLL and WWL
The ANCOVA revealed no effect of verb type on FLL [F(2, 50) = .16, MSE = 1,256.55,

p = .85, g2
p = .01]—Fig. 2A. The interaction between verb type and the covariate “daily

time spent handwriting” was also non-significant [F(2, 50) = .74, MSE = 5,788.62,

p = .48, g2
p = .03]. By contrast, WWL results showed a significant effect of verb type

[F(2, 50) = 22.57, p < .001, MSE = 50,615.85, g2
p = .47]. Planned comparisons revealed

that MaVs were written faster than nMaVs [t(26) = 2.18, p = .04, d = .42] and nAVs

[t(26) = 10.64, p < .001, d = 2.05], while nMaVs were produced faster than nAVs

[t(26) = 8.6, p < .001, d = 1.65]—Fig. 2B. The effect of verb type did not interact with

the covariate “daily time spent handwriting” [F(2, 50) = .18, p = .83, MSE = 409.28,

g2
p = .01].

3.3. Brief interim discussion

Experiment 2 was conducted to investigate whether depth of processing affected the

time course of embodiment effects on handwriting. We found that, in the presence of

explicit semantic access, the effect of motor–language integration was similar to that
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observed in a standard copying task, with faster execution of the writing process for

nMaVs than nAVs, and for MaVs over those two categories. This complementary result

indicates that both effector-general and effector-specific facilitation are relatively indepen-

dent of whether or not semantic processing is explicitly required to perform the linguistic

task, attesting to the robustness and ubiquity of the motor–language coupling pattern

reported in Experiment 1.

4. General discussion

This is the first study assessing motor–semantic integration via naturalistic handwriting

tasks. In line with our predictions, we found that, relative to both nAVs and nMaVs,

MaVs facilitated motor execution, irrespective of daily writing practice. By contrast,

motor planning processes were similar among conditions. Notably, these patterns

remained the same regardless of whether semantic information was accessed implicitly or

explicitly. Taken together, such findings offer novel insights on the dynamics of motor–
language coupling.

We found that action verbs, in general, facilitated motor execution, and that this effect

was larger for MaVs. Such results align with previous studies assessing embodied phenom-

ena via unimanual tasks entailing long execution times or long-latency responses (Fargier,

M�enoret, Boulenger, Nazir, & Paulignan, 2012; Glenberg & Kaschak, 2002; Glenberg,

Sato, & Cattaneo, 2008; Lugli et al., 2012). For example, Fargier et al. (2012) found that

wrist speed and velocity peak amplitudes in object grasping and displacement tasks

were higher during oral production of MaV pairs than for nMaV and nAV pairs.

Fig. 2. Motor programming and execution latencies during handwriting obtained in Experiment 2. Outcomes

for these variables are indexed by (A) first-letter lag (FLL) and (B) whole-word lag (WWL), respectively.

The panels show results for manual action verbs (MaVs), non-manual action verbs (nMaVs), and non-action

verbs (nAVs). Error bars represent standard errors. One, two and three asterisks indicate statistically signifi-

cant results at p < .05, p < .01, and p < .001, respectively.
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Moreover, evidence from action-sentence compatibility tasks (e.g., Diefenbach, Rieger,

Massen, & Prinz, 2013; Glenberg & Kaschak, 2002; Kaschak & Borreggine, 2008) shows

that long–latency manual responses are faster if primed with directionally compatible

MaVs (for a discussion, see Garc�ıa & Ib�a~nez, 2016a)—although the reliability of these

outcomes has been called into question (Papesh, 2015; for a discussion, see Garc�ıa &

Ib�a~nez, 2016a). Suggestively, too, note that MaVs have been shown to evoke somatotopic

effects in the motor cortex (Hauk et al., 2004; Willems et al., 2010), reinforcing the notion

that the observed facilitation may be driven by effector-specific patterns of sensorimotor

resonance.

These results are in line with the predictions of the HANDLE model (Garc�ıa & Ib�a~nez,
2016a). As noted at the outset, HANDLE proposes that MaV processing involves a brief

period of suprathreshold motor resonance in hand-specific circuits, followed by a progres-

sive decrease of activation of those networks. Such subthreshold states, which may last

for seconds under the motoric demands of writing (Garc�ıa & Ib�a~nez, 2016a, 2016b;

Garc�ıa-Marco et al., 2019), are proposed to facilitate concomitant manual actions, as

these would be primed by extant activity levels in embodied circuits (Garc�ıa & Ib�a~nez,
2016a). In fact, as pointed out before, MaVs have been reported to accelerate hand

actions in similar long-latency windows (>2 s) during other unimanual tasks (Glenberg &

Kaschak, 2002; Kaschak & Borreggine, 2008; Lugli et al., 2012). Our results support this

hypothesis, further showing that whereas various action-verb categories can facilitate

handwriting mechanics, the effect was significantly greater for MaVs than nMaVs. This

suggests that motor–language coupling during this naturalistic task is driven not only by

coarse-grained motor resonance, but also, and more particularly, by effector-specific reac-

tivations.

Of note, this effect did not interact with a self-reported measure of daily handwriting

time. This would indicate that effector-specific motor–language coupling is not influenced

by task-specific practice or dexterity. Although motor training can affect action–semantic

integration (Glenberg et al., 2008; Trevisan, Sede~no, Birba, Ib�a~nez, & Garc�ıa, 2017), it
seems that such factor does not affect the scope of embodiment effects on handwriting.

This might be so because handwriting is an early acquired, highly automatized skill, so

that variability in (post-acquisition) daily practice would have little bearing on associated

motor–language coupling effects. Accordingly, the embodied mechanism detected with

our paradigm may be presumably generalizable across adult subjects irrespective of their

dedication to handwriting in daily life.

The WWL effect was accompanied by null modulation of FLL, replicating the trade-

off between motor planning and execution dynamics reported in the literature (Garc�ıa &

Ib�a~nez, 2016b; Lindemann et al., 2006; Mirabella et al., 2012). In particular, MaV-speci-

fic effects on manual-action execution usually appear alongside null effects on movement

initiation (Boulenger et al., 2008; Dalla Volta et al., 2009), even in other writing tasks

like keyboard typing (Garc�ıa-Marco et al., 2019). This reflects a complex and dynamic

relationship between lexico-semantic processing and manual actions, strongly influenced

by the time-course of language-induced motor resonance. Although further research is

necessary to obtain a complete picture of this intricate phenomenon, our results indicate
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that motor–language coupling manifests differentially on pre- and post–action onset

stages, even in highly automatized, naturalistic tasks.

Also noteworthy is the fact that the selective reduction of WWL by MaVs emerged

similarly in both experiments. Given the shallow nature of direct word-copying (Bonin

et al., 2015), results from Experiment 1 indicate that such a facilitation of motor execu-

tion is strong enough to emerge even when lexical semantics is accessed implicitly.

Therefore, this finding fulfills a key requisite for interpreting embodied effects as primary

modulations rather than post-lexical epiphenomena (Hauk, Shtyrov, & Pulverm€uller,
2008; Kiefer, Sim, Herrnberger, Grothe, & Hoenig, 2008; Mollo, Pulverm€uller, & Hauk,

2016). Yet the detection of the same pattern in Experiment 2 indicates that the effect

remains present even when word meanings are explicitly evoked. This result is informa-

tive on its own, since motor–language coupling effects can be modified (typically, magni-

fied) when semantic information is directly accessed (Garc�ıa & Ib�a~nez, 2016a).

Moreover, it is in line with previous findings by Fernandino et al. (2013), who found that

Parkinson’s disease patients, compared to age-matched controls, showed a similar impair-

ment in the processing of action verbs both in tasks requiring implicit (i.e., lexical deci-

sion and priming) and explicit (semantic similarity judgment) access to meaning. Taken

together, the convergent outcomes from previous studies and both experiments reported

here suggest that MaV-induced facilitation during handwriting is pervasive enough to

manifest irrespective of the depth of processing.

That being said, other embodied dimensions may not be fully indifferent to depth of

processing. Indeed, a series of experiments investigating perceptual simulation (Lebois,

Wilson-Mendenhall, & Barsalou, 2015) revealed that spatial congruency effects emerged

only in tasks requiring explicit attention to the spatial properties of the stimuli, suggesting

that features central to word meaning are not always automatically activated. In partial

alignment with this finding, we found that only in Experiment 2 was there a significant

effect of accuracy, with more errors for nMaVs than the other two categories. Tentatively,

this could reflect an interference driven by effector incongruence, such that explicit acti-

vation of non-manual semantic features could engage broad motor-network processes

required for accurate completion of the writing routine. Specific designs could be imple-

mented in future research to directly examine this conjecture.

Note, too, that while handwriting is a strictly unimanual activity, a number of MaVs

denoted actions that are either necessarily or optionally performed with both hands (e.g.,

atar [tie] or tejer [knit]). Though seemingly puzzling at first, this laterality pattern is consis-

tent with the observed effect. Across both experiments, 95% of participants were right-

handed. This means that, in daily life, they rely on their right hand not only for most uni-

manual activities (including handwriting), but also for all bimanual activities. Therefore,

the patterns of sensorimotor resonance underlying the observed effect would be engaging

right-hand (i.e., typically left-hemisphere) mechanisms in all MaVs. Indeed, in right-

handed samples, MaVs and other action verbs are known to predominantly engage left-

sided motor regions (e.g., Boulenger, Shtyrov, & Pulvermuller, 2012; Mollo et al., 2016;

Shtyrov et al., 2014; Willems, Hagoort, & Casasanto, 2010), with those denoting bimanual

(or bipedal) actions eliciting right-sided activation in addition to significant left-hemisphere
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motor resonance (Hauk & Pulverm€uller, 2011; Klepp et al., 2014). Tentatively, then, effec-

tor-specific facilitation during handwriting could be presumed operative for dominant-hand

actions in both unimanual and bimanual MaVs.

The relevance of these findings is highlighted by the nature of our paradigm. A limita-

tion of previous studies using dual tasks is that findings may have been influenced by

attentional demands for handling two arbitrarily paired processes—indeed, the need to

coordinate disparate verbal and motoric operations trial after trial may strain limited cog-

nitive control systems which are peripheral to the phenomena under study. Moreover,

competition for executive resources is more pronounced when one of the tasks involves

learning new motor routines (Schaefer, 2014), as is usually the case in dual-task motor–
language coupling paradigms. By relying on an overlearned activity that seamlessly and

necessarily conflates manual and linguistic operations, our paradigm circumvents the

abovementioned confounds and offers direct insights on effector-specific dynamics

throughout the integration of motoric and lexico-semantic processes.

Finally, our findings also indicate that embodied effects during writing cannot be gen-

eralized to all production modalities. Keyboard-based action-verb typing has been shown

to entail coarse-grained and effector-specific interference effects on motor planning,

which considerably attenuate in the execution stage (Garc�ıa & Ib�a~nez, 2016b). This pat-

tern differs radically from our finding of execution-exclusive effector-specific facilitation,

supporting the idea that modality-specific demands play an important role in the manifes-

tation of embodiment effects during written production. We surmise that differential exe-

cution efforts for handwriting, characterized by complex movements of the wrist and

forearm, and a considerably longer execution stage (Afonso et al., 2015; Bertram et al.,

2015; Delattre et al., 2006; Garc�ıa & Ib�a~nez, 2016b), may account for the distinct effects

identified herein. Although this claim aligns with the observation that task demands con-

stitute key determinants of motor–language coupling effects (for a review, see Garc�ıa &

Ib�a~nez, 2016a), further research is necessary to directly compare such phenomena across

diverse naturalistic tasks.

5. Limitations and avenues for further research

A number of limitations can be identified in the present study, paving the way for

future investigation. First, the participants’ handwriting profile was assessed via a self-re-

port measure. Although this covariable spoke to the potential generalizability of our

results, prospective extensions of our study should include objective measures of hand-

writing ability. Second, although we have strictly controlled for multiple variables across

our stimulus lists, the reported effects might be possibly modulated by other factors, such

as the ratio of verbs implying unilateral versus bilateral bodily actions (Hauk & Pul-

verm€uller, 2011; Klepp et al., 2014) or the motor complexity of denoted movements

(Bocanegra et al., 2017). Further research would be necessary to elucidate this point.

Third, as stated in Section 2.1.5, our stringent stimulus selection criteria and the restric-

tive lexical category targeted in our study (MaVs) prevented us from adopting a mixed
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effects model and exploring how embodied effects could generalize to other lexical

classes. New studies could extrapolate our present rationale to settings that allow contem-

plating the impact of item variance across broader word categories. At the same time, our

study carries an important methodological implication for handwriting studies in general:

Given that fine-grained semantic aspects of the target words can modulate writing kine-

matics, it seems crucial to control the ratio of action-to-non-action words in an experi-

ment’s stimulus sets, as gross outcomes could be partially driven by inconspicuous

embodied effects differing between conditions. Moreover, this consideration could be

contemplated in future studies extending our paradigm beyond the single-word level, so

as to explore language-embodiment effects on more realistic linguistic materials (Desai

et al., 2016; Garc�ıa et al., 2018; Trevisan et al., 2017).

6. Conclusion

This study is the first to examine the dynamics of motor–language coupling during

handwriting. Whereas motor planning dynamics were impervious to the meaning of the

target words, the unfolding of manual movements was faster for action than non-action

verbs, and this effect was larger for MaVs in particular. Notably, such an effect remained

present irrespective of whether word meanings were accessed implicitly or explicitly.

This finding indicates that action–semantic integration is a pervasive process in language

processing, occurring even in highly automatized tasks. Future applications of our natural-

istic writing paradigm could shed new light on the subtle manifestations of embodied

mechanisms during daily language processing.
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Notes

1. Moreover, some of these tasks, including specific versions of the action–sentence
compatibility effect paradigm, actually have low reliability across and within

laboratories (Papesh, 2015).
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2. Results from an a priori analysis of the required sample size to obtain a power of

0.9 in a repeated measures ANOVA—given the smallest size effect (g2
p = 0.1)

obtained with a sample of 22 participants, and a value of a = 0.05—revealed that a

minimum sample size of 25 participants was required. This criterion was followed

to establish the minimum sample size for both Experiment 1 and Experiment 2.

3. The use of a piece of paper over the tablet is a common feature of handwriting

experiments because it increases ecological validity (given that daily handwriting is

typically performed on paper) while protecting the writing surface from damage

due to constant contact with the pen.
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