
Virtual Sensor Based on a Deep Learning
Approach for Estimating Efficiency in Chillers?

Seraf́ın Alonso1[0000−0003−3467−4938], Antonio Morán1[0000−0002−2762−6949],
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Abstract. Intensive use of heating, ventilation and air conditioning
(HVAC) systems in buildings entails an analysis and monitoring of their
efficiency. Cooling systems are key facilities in large buildings, and par-
ticularly critical in hospitals, where chilled water production is needed
as an auxiliary resource for a large number of devices. A chiller plant
is often composed of several HVAC units running at the same time, be-
ing impossible to assess the individual cooling production and efficiency,
since a sensor is seldom installed due to the high cost. We propose a
virtual sensor that provides an estimation of the cooling production,
based on a deep learning architecture that features a 2D CNN (Convolu-
tional Neural Network) to capture relevant features on two-way matrix
arrangements of chiller data involving thermodynamic variables and the
refrigeration circuits of the chiller unit. Our approach has been tested
on an air-cooled chiller in the chiller plant at a hospital, and compared
to other state-of-the-art methods using 10-fold cross-validation. Our re-
sults report the lowest errors among the tested methods and include a
comparison of the true and estimated cooling production and efficiency
for a period of several days.

Keywords: HVAC systems · Efficiency · Cooling power · Virtual Sensor
· Deep Learning · Convolutional Neural Network.

? This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion
(MICINN) and the European FEDER funds under project CICYT DPI2015-69891-
C2-1-R/2-R.
This is an author-created version of a contribution published in Communications in
Computer and Information Science. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-030-20257-6_26.

http://suppress.unileon.es
http://dx.doi.org/10.1007/978-3-030-20257-6_26


2 S. Alonso et al.

1 Introduction

Energy consumption in large buildings, represents more than 20% of the global
energy consumption in developed countries. The proliferation of heating, venti-
lation and air conditioning (HVAC) systems is one of the main reasons behind
such a high consumption [16]. In central air conditioning systems, chillers are the
main energy consumers, consuming more than 40% of the total energy in com-
mercial and industrial buildings [17]. Thus, their efficiencies have a significant
effect on the overall energy performance of these buildings.

Several Energy Efficiency Indicators (EEI) can be used to determine the
chiller efficiency [1]. Most of the EEI require measuring the cooling power deliv-
ered to chilled water (the chiller output). However, manufacturers do not usually
include energy meters in their chiller designs due to high installation, mainte-
nance and recalibration costs [14]. A physical cooling meter can be replaced by
a virtual sensor [13].

Virtual sensors refer to software, usually including mathematical models that
allow measuring process variables or quantities using indirect measurements of
related variables, useful in cases where physical sensors are not available, ex-
pensive, slow or imprecise. They are a low-cost and non-invasive choice to ob-
tain observations from a real system [15] and have been widely applied for flow
and efficiency metering in cooling plants [19,18]. Data based models for virtual
sensors using radial basis functions, multilayer perceptrons and other machine
learning methods, can provide accurate estimations for cooling power [11,3] pro-
vided input-output training data are available, which in cooling systems can be
acquired with portable energy meters.

Recent deep learning methods have been used for time ahead cooling pre-
diction [4,6]. However, those methods have been barely applied for estimating
the current output of a virtual sensor. Therefore, we suggest that deep learning
methods can achieve more accurate models for virtual sensors of cooling power.
We propose here a virtual sensor based on a deep learning approach for esti-
mating the cooling production and efficiency in chillers. The proposed model,
based on 2D Convolutional Neural Network (2D CNN) [12], is compared to other
state-of-the-art methods and tested on a real air-cooled chiller of the plant at
the Hospital of León achieving better results.

This paper is organized as follows: Section 2 states the problem. In Section
3, the adopted methodology is exposed. Here, the proposed deep approach is
explained in detail. In Section 4, the experiment is presented and results are
discussed. Finally, conclusions and future work are drawn in Section 5.

2 Problem Statement

2.1 Chiller efficiency

A chiller is an HVAC system in charge of providing cooling energy to building
facilities. Normally, a chiller is formed by a set of refrigeration circuits with
similar or even different capacity in order to achieve a better adaptation to
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Fig. 1. A chiller unit with several refrigeration circuits.

variable cooling loads (see Fig. 1). Each individual circuit provides cooling power
according to central chiller control. The total cooling production of the chiller is
the sum of the cooling power from each circuit.

Measuring the total cooling production of a chiller is crucial to know the
chiller efficiency over time. Typically, chiller manufacturers use the COP (co-
efficient of performance) indicator as an efficiency ratio, providing theoretical
values for given surrounding conditions during the manufacturing process. How-
ever, chiller efficiency varies over time and depends on external conditions, so
it is required to monitor this performance indicator. COP values can be easily
computed using the total cooling power and electric power (see Eq. 1).

COP =
CoolingPower[KW ]

ElectricPower[KW ]
=
KWcooling

KWelec
=

∑n
i=1KWcoolingi∑n

i=1KWeleci
(1)

Manufacturers incorporate electric power meters in the chillers since they use
the compressor current for controlling cooling capacity. However, they seldom
include cooling power meters, because it is not essential for capacity control and
increases the cost of the chiller. Moreover, cooling power meters are based on a
flow meter, whose measuring principle is usually invasive, thereby becoming a
new drawback for their installation. Furthermore, chiller units used to be placed
outside so, low temperatures could damage the flow meter. Therefore, virtual
sensor implementation becomes crucial in order to measure the cooling power
and to compute COP value in a chiller. The virtual sensor should be able to
estimate the cooling production and the COP value based on internal variables
of the refrigeration circuits.

Applying the energy conservation equation Q−W = ∆H to the theoretical
refrigeration cycle [10], we have Qevaporator = ∆H = HD − HA. So, cooling
production can be obtained using Eq. 2:

KWcooling = Qevaporatorε = (HD −HA) ε (2)

ε is the efficiency of the heat exchanger. It demonstrates that cooling production
depends mainly on enthalpies H in the evaporator input and output (see Fig.
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1). On the other hand, COP value of the theoretical refrigeration cycle can be
defined as follows (see Eq. 3):

COP =
Qevaporator

Wcompressor
=
HD −HA

HA −HB
(3)

It proves that chiller performance (COP) depends mainly on enthalpies H.
The enthalpy of an ideal gas provides information about internal energy vari-
ations and depends mainly on kinetic and vibration energies of molecules, i.e.,
on temperature and pressure. On the other hand, the enthalpy is a magnitude
which characterizes the state of a system in equilibrium, but it does not consider
how the system reaches that state. Thus, it can be stated that cooling produc-
tion and COP depend on enthalpies (given the type of refrigeration gas), i.e, gas
pressure and temperature in suction and discharge lines and compressor work.
Our hypothesis is that these variables can define the state of the system.

2.2 Air-cooled chiller at the Hospital of León

The chiller plant at the Hospital of León has been used in the experimental
setup. Basically, that plant consists of 5 air-cooled and 2 water-cooled chillers.
An air-cooled chiller is used for the experiments.

Fig. 2. The air-cooled chiller with 3 refrigeration circuits.

The air-cooled chiller (model Petra APSa 400-3) has a maximum cooling ca-
pacity of 400 tons (approximately 1407 kW) and includes 3 refrigeration circuits
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Table 1. Main internal variables for each refrigeration circuit of the chiller.

Symbol Name Unit
Te Evaporating temperature ◦C
Pe Evaporating pressure KPa
Tc Condensing temperature ◦C
Pc Condensing pressure KPa

KWelec Compressor electric power KW
KWcooling Cooling power KW

(see Fig. 2). Each one is composed of a screw compressor, an electronic expansion
valve (EEV) and a condenser in V form. A common evaporator is used for the 3
circuits. The compressor, driven by a three-phase induction motor (400 V; 109
kW), has a maximum displacement of 791 m3/h of R134a refrigeration gas. Its
capacity can be regulated between 50-100 % of maximum value by means of two
auxiliary load and unload valves. The condensers have 16 fans of 1.5kW, driven
by variable speed drives. Note that the condensing control signal is common
to the 3 circuits. The control board regulates the operation of 3 refrigeration
circuits. It communicates with a BMS (Building Management System) which
collects and stores data from main internal variables (listed in Table 1) using
Modbus protocol.

It should be remarked that it is impossible to measure the individual cooling
production of each refrigeration circuit, since the evaporator is common to all the
circuits and only the total cooling production is accessible for measuring. More-
over, the condensing control signal is common for the 3 refrigeration circuits,
so overpressures in one circuit can affect to the other two circuits (assuming all
of them are running). Thus, some interactions among the refrigeration circuits
are expected in this chiller. On the other hand, dependencies among variables
are expected since the refrigeration cycle is closed, i.e, suction and compressor
variables will determine the evolution of discharge variables.

3 Methodology

Based on the considerations exposed in section 2, the proposed approach should
take into account the following aspects in order to address the regression prob-
lem:

– A chiller unit can comprise several refrigeration circuits, which provide cool-
ing energy.

– Cooling energy and efficiency depend on the state of the refrigeration cir-
cuits, which is defined by internal variables (pressures, temperatures and
compressor work).

– Interactions among refrigeration circuits could appear, depending on the
chiller manufacturing structure.

– Dependencies among variables are expected since the refrigeration cycle is
closed.
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The cooling production of a refrigeration circuit can be defined as a function
f of its main internal variables (see Eq 4).

KWcoolingi = f (Tei, P ei, T ci, P ci,KWeleci) ∀i ∈ {1, . . . , n} (4)

According to this, a virtual sensor for the overall chiller production (KWcooling)
can be designed using the next regressor

Te1, P e1, T c1, P c1,KWelec1, T e2, P e2, T c2, P c2,KWelec2, . . .

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , T en, P en, T cn, P cn,KWelecn (5)

and obtaining a model function f that relates it to KWcooling. To model f ,
we propose treating the instances of regressor (5) as images of size (circuits ×
variables), which define the state of the chiller. Then, we propose to use a 2D
convolutional layer to allow us to extract relationships among refrigeration cir-
cuits and variables. As proved in Section 2, the chiller state can be characterized
by internal variables of each refrigeration circuit. Let us suppose several “pho-
tos” of the chiller are taken over time. These images contain information about
different chiller states that can be used as input data. This suggests the use of
an image processing method which allows to detect patterns in 2D images. Our
approach is based on a 2D Convolutional Neural Network (2D CNN) which takes
advantage of coherence among refrigeration circuits and variables of the chiller.

The adopted methodology is depicted in Fig. 3. First, real data are collected
from chiller. Data from internal variables (see Table 1) and from cooling power
are required. These data are merged and preprocessed. Next, the deep approach
is trained and validated in order to choose the best model function f for the
virtual sensor and to delimit its error range. Finally, the model is deployed as
a virtual sensor, enabling monitoring and providing the estimation of cooling
power and COP computation. Note that COP is computed from the estimated
cooling power and the measured electric power.

3.1 Deep learning model architecture

Our approach is based on 2D Convolutional Neural Network (2D CNN). It con-
sists of several layers: an input layer whose dimension is (circuits × variables), a
2D CNN layer to detect relationships among circuits and variables, a fully con-
nected layer and an output layer with dimension 1. The choice of the filter kernel
is crucial since it should consider all possible pair-wise combinations among cir-
cuits and also among variables, so it should be (2,2). If the number of circuits is
too high, data augmentation can be required to obtain new images by shuffling
circuits. Note that, the number of pair-wise relationships among circuits is given

by c2−c
2 , assuming a filter kernel of (2,2).

A downsampling layer is not required since the size of the images is expected
to be small. A nonlinear activation function is used for all units. Then, a fully
connected layer is applied with resulting units. Finally, an output layer with
dimension 1 provides cooling estimation as a virtual sensor measurement.
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Fig. 3. Methodology based on a Deep Learning approach.

The proposed deep approach is compared with other linear and non-linear
methods used widely in the literature: a) two linear methods, including Mul-
tiple Linear Regression (MLR) [8] and Random Sample Consensus (RANSAC),
based on selecting uniformly at random a subset of data samples to estimate
model parameters [5]; and b) several nonlinear methods, including a kernel
method Support Vector Regression (SVR) [2], a shallow Multilayer Perceptron
(Shallow MLP), with just one hidden layer [9] and trained using backpropagation
algorithm, a deep Multilayer Perceptron (Deep MLP) with many hidden layers
using a special initialization strategy to avoid the vanishing/exploding gradient
problem [7].

4 Results

4.1 Collecting Data

Data have been collected from two sources. First, we have gathered data from
BMS (Building Management System) logs (plant manager subsystem). BMS
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stores these data when changing in order to optimize storage capacity. The sec-
ond data source is an ultrasonic portable meter (Fluxus F601 by Flexim). It
supplies the lack of cooling power meter in the chiller. Cooling power is acquired
and stored each minute from flow and leaving and return chilled water temper-
atures. Both data sources (CSV format) were preprocessed. For that, data from
BMS logs were resampled with 1 minute and then synchronized and merged with
data from ultrasonic portable meter.

4.2 Experiments

An experiment has been performed to test our approach. Data from air-cooled
chiller no. 5 were selected from 2 months (2018 December and 2019 January),
with a sampling time of 1 minute, so the number of samples was 38169. Note
that, that chiller was not running consecutive time since its operation was
alternated with other chillers in the plant. Five regressor variables are used,
Te, Pe, Tc, Pc,KWelec (see Table 1) for each of the 3 refrigeration circuits, re-
sulting in 15 regressor variables. The estimated variable was the cooling power
KWcooling. Total data were split into 2 datasets: The training and test
model dataset (70% of total data) is used to train and test all models. The
proposed approach, 2D CNN, and the remaining linear and non-linear models
are trained using this dataset. A 10-fold cross validation has been applied to
test models and select the best one. The virtual sensing test dataset (30% of
total data) is used to test virtual sensor estimation of cooling power and COP.
In this case, we suppose that the F601 portable meter is disconnected and the
virtual sensor based on the proposed 2D CNN model is used to measure cooling
production and efficiency.

The hyperparameters for each model were tuned after several preliminary
experiments, choosing the best ones in each scenario. The proposed 2D CNN
model consists of a 4 layers, an input layer (3, 5, 1), a 2D CNN layer (2, 4,
32), a flatten layer (256) and a dense output layer (1). A dropout regularization
(0.001) was applied to avoid overfitting. Activation relu function was selected.
The number of filters was 32 with a filter kernel of (2, 2) in order to detect pair-
wise patterns among circuits and variables. The padding was defined as valid,
achieving feature maps with a lower dimension. No downsampling is required
due to small size of input images.

The SVR model uses a radial basics function as kernel with 0.01 gamma
coefficient. The penalty parameter C of the error was established in 0.001 and the
epsilon-tube within which no penalty is associated in the training loss function
was 0.01.

The Shallow MLP model consists of 3 layers, a input layer with a dimension
of 15, a hidden layer (64 units) and an output layer (1 unit). It is trained with
backpropagation algorithm. The Deep MLP model consists of 12 layers, a input
layer with a dimension of 15, 10 hidden identical layers (64 units) and an output
layer (1 unit). The dropout regularization was 0.001 to avoid overfitting and relu
was selected as activation function (also for Shallow MLP). For all methods, the
training epochs were 1000.
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4.3 Model validation

A 10-fold cross validation has been carried out to test and validate our approach.
Using training and test dataset (70% of total samples), 2D CNN and the remain-
ing methods have been trained and tested. MAE (Mean Absolute Error), MAPE
(Mean Absolute Percentage Error) errors have been selected as evaluation met-
rics since that values are easily understood by any engineer. Average errors and
standard deviations of each 10-fold iteration have been computed. Two addi-
tional evaluation metrics are also included in order to compare the performance
of our approach (and that of the other methods) against the linear (MLR) ap-
proximation, which provides a closed-form and fast solution and so, it is taken
as a baseline reference:

MAER = 1−
MAE(methodm)

MAE(MLR)
; MAPER = 1−

MAPE(methodm)

MAPE(MLR)

They allow us to check how much the scores of a certain method improve (+
errors) or worsen (- errors) with respect to MLR scores (reference method).

According to train errors (see Table 2), Deep MLP is the best method, im-
proving around 67% a MLR and nearly 13% the second one (Shallow MLP). Our
approach is the third method providing also very low errors (MAPE is 1.85%
and MAE is 8.96 KW).

According to test errors (see Table 2) and focusing on MAPE errors, our
approach is the best method, improving around 29% a MLR and nearly 13% the
second one (SVR). The difference with the following methods (Deep MLP and
Shallow MLP) is 14% and 18%, respectively. Checking MAE errors, our approach
is also the winner. It can be stated we could estimate cooling production and
efficiency either with a relative error of 3.04% or with an absolute error of 13.24
KW (see Fig. 4). Considering the standard deviation (±1.23), relative errors can
range between 1.81% and 4.27% (in the best and the worst scenario). Therefore,
we can conclude that 2D CNN is the best method to build the virtual sensor.

4.4 Virtual sensor test and COP computation

Once the 2D CNN model was validated, we performed a new test using virtual
sensing dataset (30% of the total data). Now, we suppose the portable F601

Table 2. Training and test errors.

Training Dataset Test Dataset
Method MAE MAER MAPE MAPER MAE MAER MAPE MAPER

(mean±std) (mean±std) (mean±std) (mean±std)

MLR 16.64±0.65 0 3.55±0.15 0 19.80±5.94 0 4.27±1.62 0
RANSAC 18.25±2.70 -0.10 4.31±0.89 -0.21 20.43±5.80 -0.03 4.76±1.75 -0.11

SVR 10.23±0.34 0.38 2.14±0.09 0.40 15.82±6.89 0.20 3.58±1.88 0.16
Shallow MLP 7.94±0.31 0.52 1.65±0.08 0.54 15.95±6.58 0.19 3.79±2.19 0.11
Deep MLP 5.53±0.40 0.68 1.13±0.09 0.67 16.66±6.85 0.16 3.64±1.58 0.15
2D CNN 8.96±0.46 0.46 1.85±0.09 0.48 13.24±3.71 0.33 3.04±1.23 0.29
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Fig. 4. Cooling production estimation using the proposed deep approach (2D CNN)
for training, test and virtual sensing datasets.

meter is disconnected from the chiller and we try to verify the virtual sensor
measurement, estimating the cooling production and efficiency. In this case, we
have chosen MAPE error to test estimations.

The results can be observed in Fig. 5. The virtual sensor provides measure-
ments of cooling power with an error of 3.41% and with an absolute error of
16.43 KW. It is very accurate, except when starting or stopping a compressor.

The final aim of virtual sensor is to monitor chiller efficiency. For that, COP
value is computed using estimated cooling power and measured electric power
(sum of 3 electric compressor powers) for all virtual sensing dataset. The result
can be seen in Fig. 6. The chiller efficiency can be estimated with a relative error
of 3.41% and with an absolute error of 0.16. Note that the maximum errors occur
when a compressor starts or stops.

5 Conclusions

In this paper, we have proposed a virtual sensor for cooling power estimation
based on available internal chiller variables (temperatures, pressures and com-
pressor power) and using a deep convolutional neural network (2D CNN). The
proposed architecture uses a convolutional layer that takes advantage of coher-
ence between the three refrigeration circuits of the chiller, and was systematically
compared to a set of state-of-the-art methods, using several performance metrics
with a 10-fold validation methodology, where our proposed method achieved the
best results.

On the application side, the developed virtual sensor is very valuable for
several reasons. First, the estimations of the virtual sensor can replace the current
measurements from the expensive portable measuring system used for training,
that can be only available provisionally. This methodology can be extensible
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Fig. 5. Cooling production estimation using the proposed deep approach (2D CNN)
for virtual sensing dataset.

(“copy-pasted”) to any chiller, specially to the 5 identical chillers in this plant,
resulting in a highly cost-effective way to track and monitor the overall cooling
power of the plant. Second, the availability of electric power consumption and an
accurate enough estimation of cooling power allows to have also an estimation of
the chiller efficiency, highly valuable for energy optimization of the overall plant.
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16. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy
consumption information. Energy and Buildings 40(3), 394 – 398 (2008).
https://doi.org/10.1016/j.enbuild.2007.03.007

17. Saidur, R., Hasanuzzaman, M., Mahlia, T., Rahim, N., Mohammed,
H.: Chillers energy consumption, energy savings and emission analy-
sis in an institutional buildings. Energy 36(8), 5233 – 5238 (2011).
https://doi.org/10.1016/j.energy.2011.06.027, pRES 2010

18. Wang, H.: Water flow rate models based on the pipe resistance and pressure dif-
ference in multiple parallel chiller systems. Energy and Buildings 75, 181 – 188
(2014). https://doi.org/10.1016/j.enbuild.2014.02.017

19. Zhao, X., Yang, M., Li, H.: Development, evaluation and validation of a robust vir-
tual sensing method for determining water flow rate in chillers. HVAC&R Research
18(5), 874–889 (10 2012). https://doi.org/10.1080/10789669.2012.667036

http://docs.lib.purdue.edu/iracc/190
https://doi.org/10.1016/j.apenergy.2009.12.008
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
https://doi.org/10.1080/10789669.2011.573051
https://doi.org/10.1016/j.egypro.2015.11.071
https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/10.1016/j.energy.2011.06.027
https://doi.org/10.1016/j.enbuild.2014.02.017
https://doi.org/10.1080/10789669.2012.667036

	Virtual Sensor Based on a Deep Learning Approach for Estimating Efficiency in Chillers

