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Abstract
Imprecise Dirichlet Process-based tests (IDP-tests, for short) have been recently introduced in the
literature. They overcome the problem of deciding how to select a single prior in Bayesian hy-
pothesis testing, in the absence of prior information. They make use of a “near-ignorance” model,
that behaves a priori as a vacuous model for some basic inferences, but it provides non-vacuous
posterior inferences. We perform empirical studies regarding the behavior of IDP-tests for the par-
ticular case of Wilcoxon rank sum test. We show that the upper and lower posterior probabilities
can be expressed as tail probabilities based on the value of the U statistic. We construct an impre-
cise frequentist-based test that reproduces the same decision rule as the the IDP test. It considers
a neighbourhood around the U -statistic value. If all the values in the neighbourhood belong to the
rejection zone (resp. to the acceptance region), the null hypothesis is rejected (resp. accepted).
Otherwise, the judgement is suspended. This construction puts a step forward in the reconciliation
between frequentist and Bayesian hypothesis testing.
Keywords: Wilcoxon rank sum test; imprecise tests; one-sided test; frequentist test; Bayesian
test; IDP test; interval p-values.

1. Introduction

The problem of reconciling Bayesian and frequentist techniques has been extensively treated in
the literature and seems to be still open. In the frequentist setting, the level of significance of the
outcome against the null hypothesis is determined in terms of the p-value. Notwithstanding the
“probability that the null hypothesis is true” has no meaning in this framework, but it has been ar-
gued that some practitioners attach such a meaning to the p-value (see Casella and Berger (1987)
for further discussion). Alternatively, under the Bayesian approach, evidence takes the form of the
posterior probability about the null hypothesis, based on the combination of prior evidence and the
evidence provided by the dataset. The relation between the p-value and the posterior probability of
the null hypothesis has been examined by different authors (see Berger and Selke (1987); Casella
and Berger (1987); DeGroot (1973); Pratt (1965); Shafer (1982); Jeffreys (1939) among many oth-
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ers). For two-sided tests, it has been noticed by several of them that the p-value tends to be smaller
than the posterior probability of the null hypothesis (see Berger and Selke (1987); Lindley (1957))
for some collections of priors, while for the one-sided testing problem situations can be found where
they are approximately equal (see Pratt (1965); Casella and Berger (1987)). In particular, Casella
and Berger (1987) prove that for some classes of reasonable and impartial priors, and under some
additional requirements about the distribution of X , the p-value coincides with the infimum of the
posterior probability of the null hypothesis. With respect to the large discrepancies between the
infimum for the posterior probability and the p-value in the two-sided problem observed in Berger
and Selke (1987), Casella and Berger (1987) question the impartiality of the priors considered by
the authors. The problem of selecting an appropriate prior (specially in those cases where no initial
information is available) has been a subject of study of many authors. One solution to this problem
has been proposed initially by Ferguson (1973) and afterwards by Rubin (1981) under the name of
Bayesian Bootstrap (BB). Notwithstanding, the BB model cannot be regarded as non-informative,
since it assigns zero probability to any set that does not include the observations. In order to over-
come this issue, Benavoli et al. (2015) introduced a new kind of test, by means of replacing a single
prior by a collection of priors based on the imprecise Dirichtlet process (IDP). The combination of
this near-to-ignorance prior information with our evidence obtained from the sample leads to a pair
of dual upper and lower posterior probabilities. The IDP-based test has the advantage of not decid-
ing when this decision is somehow prior-dependent. In other words, when the action that minimizes
the risk (expected loss) is not the same for all the prior probabilities, the IDP suspends its judgment.
The authors have exemplified their proposal with an IDP-based version of the well known Wilcoxon
rank sum test, also called the Mann-Withney-Wilcoxon test, or simply, the MWW test (Mann and
Whitney (1947); M.P. Fay (2010)).

Consider two random variables X and Y whose cdf’s satisfy FX(x) = FY (x + �), 8 x 2 R.
The null hypothesis of the traditional MWW test is that P (X  Y )  0.5 against the alternative
hypothesis P (X  Y ) > 0.5. When the distribution of X � Y is continuous, we can interpret a
significant Mann-Whitney-Wilcoxon test as showing that the median of the difference is negative
(Couso et al. (2015)). The IDP-based procedure will assign a pair of upper and lower probabilities
to the null hypothesis, P (H0|(~x, ~y)) and P (H0|(~x, ~y)), that encompass the collection of posterior
probabilities associated to the selected collection of priors. The authors propose the following
decision rule, for some threshold � 2 (0, 1):

• If both the upper and the lower posterior probabilities are on one side of the threshold �, we
will either reject (left side) or accept (right side) the null hypothesis.

• Alternatively, if they satisfy the inequalities P (H0|(~x, ~y)) < �  P (H0|(~x, ~y)), then we are
in an indeterminate decision, i.e, we suspend our judgement.

After presenting their new proposal, the authors have performed some empirical comparisons
with respect to the Bayesian bootstrap-based test as well as with the traditional frequentist MWW
test, under different conditions for the shift parameter �. They suggest that when the IDP based test
is indeterminate, both the frequentist and the Boostrap Bayesian test behave as “random guessers”.
What they check in fact is that, for some values of �, the proportion of rejections under those
situations is nearly 50%, which coincides with the proportion of rejections of a randomized test
derived from the IDP test (the one called the 50/50 test by the authors) that returns the same response
as the IDP test when it is determinate, and a random answer otherwise.
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Our paper deepens the study about the relations between this new imprecise test and its prece-
dents. We will first empirically check that the p-value of the traditional MWW test coincides with
the posterior probability of the null hypothesis for the BB test. Afterwards, we will show that there
is a one-to-one correspondence between the upper (resp. the lower) posterior probability of the IDP
test and the p-value of the MWW test. Thus the outcome of the latter is univocally determined by
the upper (equivalently, by the lower) posterior probability of the former. In fact, upper and lower
posterior probabilities derived from the IDP-based approach can be calculated in terms of the cdf
of U + ✏ and U � ✏, for some ✏ > 0, where U represents the MWW statistic. On the basis of this
relation, we construct an imprecise frequentist-based test whose performance mimics the one of the
IDP-based test. These findings help us to better understand the behaviour of the new IDP-based test,
and put a step forward in the reconciliation between the frequentist and Bayesian approaches in this
imprecise setting. In particular, this kind of imprecisiation over the set of priors seems to produce
similar effects on the decision mechanism as an imprecisiation of data around the observations.

2. Preliminaries

The Mann-Withney U test (also called Wilcoxon rank sum or Mann-Whitney-Wilcoxon test) is
used to check whether or not it is equally likely that a randomly selected value from one population
will be less than or greater than a randomly selected value from a second one, assuming that both
selections are independent from each other.

Consider two independent samples containing n1 and n2 elements respectively from each pop-
ulation. The U statistic is calculated as the sum of the ranks of the elements contained in the first
sample, with the minimum value n1(n1 + 1)/2 subtracted. In other words, it counts the number of
items (xi, yj) such that xi is less than or equal to yj ,

U =
n1X

i=1

n2X

j=1

I[Xi,1)(Yj).

Under the assumption P (X  Y ) = 0.5, the expectation and the variance of U are respectively:

µ0 =
n1 n2

2
�
2
0 =

n1 n2(n1 + n2)

12
.

Let us consider the one-sided test of H0 : ✓  0.5 against H1 : ✓ > 0.5, where ✓ = P (X  Y ).
The rejection region of the Mann-Whitney U test of size ↵ is defined in terms of U as follows:

R↵ =

⇢
(~x, ~y) :

U(~x, ~y) � µ0

�0
> z↵

�
,

where z↵ = ��1(1 � ↵) is the quantile 1 � ↵ of the distribution N(0, 1). Alternatively, it can be
defined as:

R↵ = {~x, ~y) : p(~x, ~y) < ↵} ,

where
p(~x, ~y) = 1 � �

✓
U(~x, ~y) � µ0

�0

◆

denotes the p-value of the sample, i.e.,

p(~x, ~y) = inf{↵ 2 (0, 1) : (~x, ~y) 2 R↵}.
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Under the Bayesian approach, the problem of hypothesis testing is seen as a decision problem
where the possible actions are a = 0 (accept H0) and a = 1 (reject H0). We start from a prior
distribution over the set parametric space ⇥ = [0, 1], determined by a density function ⇡ : ⇥ ! R+.
A loss function ` : ⇥ ⇥ {0, 1} ! R links the action to the unknown value of the parameter
✓ = P (X  Y ): when the true state of nature is ✓ 2 ⇥ and we take the action a 2 {0, 1} we incur
in a loss `(✓, a) determined as follows:

a = 0 a = 1
✓  0.5 0 K0

✓ � 0.5 K1 0

The decision rule d that minimizes the posterior expected loss is the one defined as follows:

• d(~x, ~y) = 1 if P (H0|(~x, ~y)) <
K0

K0+K1

• d(~x, ~y) = 0 otherwise,

where P (H0|(~x, ~y)) denotes the posterior probability of the null hypothesis calculated as fol-
lows:

P (H0|(~x, ~y)) =

Z 0.5

�1
L(~x, ~y; ✓)⇡(✓) d✓,

and L(~x, ~y; ✓) represents the likelihood function.
The Dirichlet process was proposed by Ferguson (1973) as a second-order probability (in our

context, a probability on the space of joint probability distributions for (X, Y )). Since every joint
distribution determines a specific value for ✓ = P (X  Y ), a Dirichlet process determines a (prior)
probability distribution over the parametric space, ⇥. But how do we choose this prior in case
of lack of information? Rubin (1981) addressed this problem by means of selecting the so-called
Bayesian bootstrap. It is the Bayesian analogue to the Efron’s bootstrap Efron (1979). Instead of
simulating the sampling distribution of a statistic estimating a parameter, it simulates the posterior
distribution of the parameter. This choice nevertheless seems controversial (see Rubin (1981) and
Benavoli et al. (2015) for detailed discussions), since it cannot be seen as a representation of a
lack of knowledge. In fact, the Bayesian bootstrap assigns probability one to the collection of
observations (see Rubin (1981)). To overcome this issue, Benavoli et al. (2015) proposed to use
the imprecise Dirichlet process (IDP). It is considered as a prior near-ignorance model. In fact, it
corresponds to a set of priors that generates vacuous prior probabilities and therefore, leading to an
infimum and a supremum for the (prior) expectations of ✓ = P (X  Y ) respectively equal to 0 and
1. This collection of priors leads to a collection of posterior probabilities for H0 and H1, given the
dataset, whose bounds we will respectively denoted by P (H0|(~x, ~y)) and P (H0|(~x, ~y)). To perform
the hypothesis test H0 : ✓  0.5 against H1 : ✓ > 0.5, they compare each of these bounds with
� = K0

K0+K1
and consider the following decision rule:

• dI(~x, ~y) = 1 if P (H0 : (~x, ~y)) <
K0

K0+K1

• dI(~x, ~y) = 0 if P (H0 : (~x, ~y)) >
K0

K0+K1

• dI(~x, ~y) =? otherwise,

where “0”, “1” and “?” respectively denote “accept H0”, “reject H0” and “no decision’.
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3. Relations between p-value, posterior probability and upper and lower posterior
probabilities

3.1 Formal relations between p-value and Bayesian posterior probability

As mentioned in the Introduction, different authors have studied the relations between the frequen-
tist p-value and the Bayesian posterior probability of the null hypothesis. Casella and Berger (1987)
studied this relation for one-sided tests under some additional conditions: In particular, when the
underlying distribution is assumed to be symmetric and it satisfies the property of monotone likeli-
hood ratio (MLR), then the p-value coincides with the infimum of the set of posterior probabilities
for H0, for several reasonable collections of priors.

We can prove an additional result relating the p-value and the posterior probability of the null
hypothesis derived from any prior. It requires a MLR condition but it does not require any symmetry
about the underlying distribution.

Definition 1 The set of distributions {P✓ : ✓ 2 ⇥} has a monotone likelihood ratio (MLR) with

respect to a statistic T if we can represent the likelihood ratio as

L(~x, ~y; ✓1)

L(~x, ~y; ✓2)
= g✓1,✓2(T (~x, ~y)),

where g✓1,✓2 is strictly increasing for every pair ✓1 > ✓2.

Now we will prove that, when the family of distributions satisfies the MLR property with respect
to some statistic T , the posterior probability associated to a one-sided-test is increasing wrt T :

Lemma 2 Let us suppose that the set of distributions {P✓ : ✓ 2 ⇥} has a monotone likelihood ratio

(MLR) with respect to a statistic T and let us consider the test H0 : ✓  ✓0 against H1 : ✓ > ✓0.

Then the posterior probability P (H0|~x) can be expressed as an increasing function of T (~x), i.e.:

T (~x) < T (~x0) ) P (H0|~x) < P (H0|~x0).

The following result is well known in the literature:

Theorem 3 Assume the set of distributions {P✓ : ✓ 2 ⇥} has a monotone likelihood ratio (MLR)

with respect to a statistic T . Let us consider the one-sided test H0 : ✓  ✓0 against H1 : ✓ > ✓0.

Then the test � : Rn ! {0, 1} defined as follows:

�(~x) =

⇢
0 if T (~x)  c

1 if T (~x) > c

is a uniformly most powerful (UMP) test (among all the tests of size ↵c = P✓0(T > c)).

We deduce the following result:

Theorem 4 Let us suppose that the set of distributions {P✓ : ✓ 2 ⇥} has a monotone likelihood

ratio (MLR) with respect to a statistic T and that the cdf of T is strictly increasing for some ✓0.

Let us consider the test H0 : ✓  ✓0 against H1 : ✓ > ✓0. Let us consider the family of UMP

tests associated to the rejection regions {R↵ : ↵ 2 (0, 1)}, each of them defined as R↵ = {~x :
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T (~x) > c↵}, with P✓0(T > c↵) = ↵. Let us consider the p-value associated to this family of tests

as follows:

p(~x) = inf{↵ : ~x 2 R↵} = P✓0(T > T (~x)), 8 ~x. (1)

Let us consider an arbitrary prior over ⇥. Then there exists a (one-to-one) strictly increasing

function h : [0, 1] ! [0, 1] linking the posterior probability of H0 and the p-value as P (H0|x) =
g(p(~x)), 8 ~x, and therefore

p(~x) < p(~x0) , P (H0|~x) < P (H0|~x0).

As a consequence we can state the following corollary:

Corollary 5 Let us suppose that the set of distributions {P✓ : ✓ 2 ⇥} has a monotone likelihood

ratio (MLR) with respect to a statistic T and that the cdf of T is strictly increasing for some ✓0. Let

us consider the test H0 : ✓  ✓0 against H1 : ✓ > ✓0. Let us consider the family of UMP tests

associated to the rejection regions {R↵ : ↵ 2 (0, 1)}, each of them defined as R↵ = {~x : T (~x) >

c↵}, with P✓0(T > c↵) = ↵. Let us consider an arbitrary prior over ⇥, an arbitrary pair of loss

values K0 and K1, and the Bayesian test associated to it. Then there exists a UMP frequentist test

that coincides with it, the size of it being an increasing function of � = K0
K0+K1

.

According to the above result, under the condition of MLR, and regardless the prior distribution
we select, there exists a one-to-one correspondence between � and ↵. This is to say, if we set an
arbitrary prior, there exists a bijection h : [0, 1] ! [0, 1] such that the Bayesian test associated
to � = K0

K0+K1
coincides with the UMP test of size ↵ = h(�). The next section deals with the

particular case of the MWW and its variations considered in Benavoli et al. (2015). In that particular
case, this one-to-one correspondence is the identity, i.e., the p-value coincides with the posterior
probability of the null hypothesis. Furthermore, we empirically show that the upper and lower
posteriors can be also calculated as strictly increasing functions of the p-value.

3.2 Relations between the p-value and the pair of upper and lower posterior probabilities:
an empirical study

Benavoli et al. (2015) have developed an empirical study in order to compare their IDP-based test
with the MWW frequentist test and the DP-based test obtained as the prior strength goes to zero
(called the Bayesian Bootstrap Dirichlet Process test -the BB-DP test, for short-). They have con-
sidered a Monte Carlo experiment in which n1, n2 observations from X, and Y respectively are
generated, where X ⌘ N(0, 1) and Y ⌘ N(�, 1), and � ranges from �1.5 to 1.5. For each value
of �, they have performed 20000 Monte Carlo runs. They first compare the performance of the IDP
test and the BB-DP test. They consider three different options for the loss quotient � = 1, � = 0.1
and � = 0.05. They conclude that, in all those cases where the first of them is determinate, both
of them return the same answer, the difference between them focussing only on those samples for
which the first one is indeterminate. In a second round of experiments, they compare the IDP test
with the frequentist MWW test. They select the significance level ↵ = 0.05 in order to construct
the frequentist test, and � = 0.05 in order to define the IDP test. Again, the frequentist test returns
the same answer when the IDP test is determinate. They also compute the proportion of rejections
of the MWW among those samples for which the IDP test is indeterminate. They observe that such
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a proportion increases with respect to �. As an example, for n1 = n2 = 10 and � = 0.9, the IDP
is indeterminate in 30% of the runs, and the MWW test rejects the null hypothesis 50% of them.
As it returns the same proportion of rejections as a 50/50 randomized test derived from the IDP test
and they conclude that the MWW test “guesses at random” 30% of the times. Let us nevertheless
notice that the MWW does not return a random answer from a given sample.

In this section, we deepen this study, with the aim of providing further insight about the behavior
of the three tests (BB-DP, IDP and MWW) in practice. On one side, the p-value of the (frequentist)
MWW test coincides with the posterior probability of the null hypothesis for the BB-DP, as we
empirically show:
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The posterior probability of the BB test depends on a bootstrap-based computation, and there-
fore small differences between the values of the posterior probability may occur if we launch the
algorithm repeated times for the same sample (~x, ~y), the average of those posterior probabilities
being the p-value. Consequently, the MWW test of size ↵ = 0.05 coincides with the BB-DP test
for � = 0.05.

Let us now examine the relation between the frequentist test and the IDP test. Since the p-value
of the MWW coincides with the posterior probability of the BB test, we know that it is always
bounded by the upper and lower posterior probabilities associated to the IDP test, P (H0|(~x, ~y))
and P (H0|(~x, ~y)). Therefore, we can write P (H0|(~x, ~y)) = p(~x, ~y) + �(~x, ~y) and P (H0|(~x, ~y)) =
p(~x, ~y) � �

0(~x, ~y), with �(~x, ~y) > 0 and �
0(~x, ~y) > 0 for every pair of samples (~x, ~y).

Let us now recall an empirical result from Benavoli et al. (2015) about the distribution of the p-
values over the collection of samples for which the IDP is indeterminate, i.e., those pairs of samples
(~x, ~y) satisfying the inequalities P (H0|(~x, ~y)) < � < P (H0|(~x, ~y)). The figure illustrates the
distribution of the p-values for � = 0.5 and n1 = n2 = 20 and � = 0.05:
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Figure 3: Power as a function of the difference of the medians ∆ for the case n1 = n2 = 10 (left) and n1 = n2 = 20 (right)
with γ = 0.05.

case n1 = n2 = 20 (Figure 3, right) it is evident that the performance of the MWW and 50/50 tests
practically coincide. Since it can be verified experimentally that when the IDP is determinate
the two tests return the same results, this again suggests that when the IDP is indeterminate we
have equal probability that p< 0.05 or p> 0.05, as it is shown in Figure 4. The IDP test is able
to isolate some instances in which also the MWW test is issuing a random answer. Note that, for
∆= 0.5, the maximum percentage of runs in which the IDP test is indeterminate is large, about
18%; this means that MWW is issuing a random answer in 18% of the cases.
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Figure 4: Distribution of MWW p-values in the IDP indeterminate cases for n1 = n2 = 20, γ = 0.05 and ∆= 0.5.

The results for the case n1 = n2 = 10 (Figure 3, left) lead to similar conclusions. The
performance of the MWW and 50/50 tests (almost) coincide. The 50/50 test is slightly better for
∆ 0.9 and slightly worse for ∆> 0.9. ∆= 0.9 is the value which corresponds to the maximum
indeterminacy of the IDP, i.e. 30%. Thus, for ∆= 0.9, MWW is guessing at random in 30% of
the runs.

It is worth analyzing also the case ∆ = 0. We know that in this case the frequentist test
is calibrated, i.e., when γ = 0.05 the percentage of correct answers is 95% (although it can be
noticeably larger for small values of n1, n2 since the discreteness of theMWWstatistic originates
a gap between the chosen γ and the actual significance of the MWW test). Table 1 shows the
accuracy for ∆= 0. The performance of the MWW and 50/50 tests are similar also in this case.
The difference is about 1% (for n1 = n2 = 10) and 0.5% (for n1 = n2 = 20).

According to the above notation, these are the samples satisfying the following inequalities:

p(~x, ~y) � �
0(~x, ~y) < 0.05 < p(~x, ~y) + �(~x, ~y)

or, equivalently
0.05 � �(~x, ~y) < p(~x, ~y) < 0.05 + �

0(~x, ~y).

According to the above graph, we observe that the p-values are all of them in a neighbourhood of
0.05, and therefore � and �

0 take small values.
In order to get further information, we have computed and plotted, for every sample (~x, ~y), the

upper and lower posterior probabilities from the IDP against the corresponding p-value, for different
values of � and different sample sizes. Due to length restrictions, we just include the graphs for a
specific choice of both sample sizes. In particular we have selected n1 = n2 = 10:
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According to the above simulations, P (H0|(~x, ~y)) and P (H0|(~x, ~y)) can be written as functions
of the p-value. For other sample sizes we have observed a similar shape of the graph, although the
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difference P (H0|(~x, ~y)) � P (H0|(~x, ~y)) is well known to decrease with respect to both sample
sizes.

Furthermore, these two functions do not depend on the particular choice of �. Notwithstanding,
it is well known that the p-value follows a uniform distribution over the unit interval when � = 0,
and as far as we get far away from � = 0, the distribution of the p-values tends to concentrate over
an extreme of the interval (the left side extreme for positive values of � and the right extreme for
negative valued of �). The pair of upper and lower posterior probabilities also concentrate over the
same extremes of the intervals for big values of �.

Let us now analyse some features of this functional relation. The p-value (which coincides with
the posterior probability of the BB-DP test) is always bounded by P (H0|(~x, ~y)) and P (H0|(~x, ~y)),
but it does not coincide with their half sum in general. On the other hand, when we plot their
difference against the p-value, we observe that it increases from 0 to 0.5 and decreases from 0.5 to
1.

According to Equation 1, the p-value of a pair of samples (~x, ~y) can be expressed p(~x, ~y) =
G0(U(~x, ~y)), with G0 = 1 � F0, where U denotes the MWW statistic and F0 denotes the cdf of U

under the assumption ✓ = 0.5. The cdf F0 corresponds to a unimodal distribution, and symmetric
around µ0. In other words, the density function f0 is increasing on (�1, µ0) and decreasing on
(µ0, 1). Let us now consider g1(u) = G0(u � ✏) � G0(u) and g2(u) = G0(u) � G0(u + ✏). Both
functions are increasing on (�1, µ0) and decreasing on (µ0, 1). Therefore we easily deduce that:

If either U(~x, ~y) < U(~x0
, ~y

0) < µ0 or U(~x, ~y) > U(~x0
, ~y

0) > µ0, then

g1(U(~x, ~y)) < g1(U(~x0
, ~y

0)) and g2(U(~x, ~y)) < g1(U(~x0
, ~y

0)).

According to our Monte Carlo simulations, this is exactly what happens with the differences
P (H0|(~x, ~y)) � P (H0|(~x, ~y)) and P (H0|(~x, ~y)) � P (H0|(~x, ~y)), i.e.:

If U(~x, ~y) < U(~x0
, ~y

0) < µ0 or U(~x, ~y) > U(~x0
, ~y

0) > µ0, then

P (H0|(~x, ~y)) � P (H0|(~x, ~y)) < P (H0|(~x0
, ~y

0)) � P (H0|(~x0
, ~y

0)) and

P (H0|(~x, ~y)) � P (H0|(~x, ~y)) < P (H0|(~x0
, ~y

0)) � P (H0|(~x0
, ~y

0)).

Therefore, it seems that the difference P (H0|(~x, ~y)) � P (H0|(~x, ~y)) is increasing with respect
to U(~x, ~y) on (�1, µ0) and decreasing on (µ0, 1). Something similar happens with the difference
P (H0|(~x, ~y)) � P (H0|(~x, ~y)).

Since P (H0|(~x, ~y)) coincides with p(~x, ~y) = G0(U(~x, ~y)) then we can deduce that there is a
strictly increasing relation between P (H0|(~x, ~y)) and P (U(~x, ~y) � ✏), for an arbitrary but fixed ✏

and the same happens with P (H0|(~x, ~y)) and P (U(~x, ~y) + ✏). We have examined the nature of this
strictly increasing (one-to-one) correspondence, and we have observed that it is in fact the identity.
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This opens a door to the reconciliation between the Bayesian and the frequentist approaches also
in the imprecise framework, following the path of Casella and Berger (1987) for the precise case.
On one hand, there is a one-to-one correspondence between the upper (resp. the lower) posterior
probability of the IDP test and the p-value of the MWW test. Furthermore, we can easily construct
an imprecise test that relies on the MWW U-statistic and that mimics the behavior of the IDP test.
Let us take an arbitrary ↵ and let us define the new imprecise test as follows:

�(~x, ~y) =

8
<

:

0 if U(~x, ~y)  c↵ � ✏

1 if U(~x, ~y) > c↵ + ✏

? otherwise,
(2)

where c↵ is such that P✓0(U > c↵) = ↵.
According to our simulations, for a specific choice of � = K0

K0+K1
and the triple (s, n1, n2),

there exists ✏ = g(s, n1, n2) such that the above imprecise test for ↵ = � coincides with the IDP
test. Furthermore, the upper and lower posterior probabilities of the null hypothesis do respectively
coincide with G0(U(~x, ~y) + ✏) and G0(U(~x, ~y) � ✏).

3.3 Conclusions and future directions

We have constructed an imprecise “frequentist” test that mimics the behavior of the so-called IDP
test. It basically works as follows: it calculates the interval of values (U(~x, ~y) � ✏, U(~x, ~y) + ✏)
and it inherently considers the collection of samples (~x0

, ~y
0) such that U(~x, ~y) � ✏ < U(~x0

, ~y
0) <

U(~x, ~y) + ✏. If all of them are either in the rejection or the acceptance zone of the frequentist test,
then the decision is clear. Otherwise, the outcome of the test is indeterminate. Thus, we conclude
that, at least for the MWW test, the kind of “imprecisiation” over the set of priors considered in the
IDP-based test may produce similar effects on the decision mechanism as an imprecisiation around
the statistic values.
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Let us notice that, in this specific case where the statistic is based on the ranks of the observa-
tions, but not on their numerical values, the statistic is not continuous with respect to those numerical
values. Thus the following alternative test (see Perolat et al. (2015) for further discussion about it):

(
0 if p(~x0

, ~y
0)  ↵, 8 (~x0

, ~y
0) 2 B(~x, ~y; �)

1 if p(~x0
, ~y

0) > ↵, 8 (~x0
, ~y

0) 2 B(~x, ~y; �)
? otherwise.

(3)

would produce different outcomes in practice, as we observe below:

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Frecuentist.P.value

Ba
ye

sia
n.

H0
.P

ro
b

Imprecise with ∆ = 0, n1 = 10, n2 = 10, s = 0.414213562373095

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Original.P.Value

In
te

rv
al

.P
.V

al
ue

Interval Rank Sum with ∆ = 0, n1 = 10, n2 = 10, varepsilon = 0. 06Δ=0.7,n1=10,n2=10,s=0.41 Interval Rank Sum Δ=0,n1=10,n2=10,ε=0.06

In
te

rv
al

 B
ay

es
ia

n 
H

0 
Pr

ob

Se
t-v

al
ue

d 
p-

va
lu

e

Notwithstanding, for other frequentist tests, different from MWW, based on continuous statistics
the variation proposed in Equation 3, could report similar results as the one provided in Equation
2, for adequate selections of ✏ and �. For those cases, it seems that the kind of imprecisiation over
the set of priors considered in the IDP-based test may produce similar effects on the decision mech-
anism as an imprecisiation around the sample values. Let us remind the reader that our empirical
comparison in this paper refers to the case where the frequentist test completely coincides with the
Bayesian one. But this may be not the case for other tests where the MLR condition is not satisfied.

In those cases we might directly compare the IDP-based test with an imprecise version of the
Bayesian test as follows:

(
0 if P (H0|~x0

, ~y
0)  �, 8 (~x0

, ~y
0) 2 B(~x, ~y; �)

1 if P (H0|~x0
, ~y

0) > �, 8 (~x0
, ~y

0) 2 B(~x, ~y; �)
? otherwise.

(4)

Such a comparison could shed further light about the behaviour of IDP-based tests in practice.
We conjecture that they could lead to similar decision rules. If our conjecture is true, this alternative
procedure would lead to equivalent but computationally more efficient algorithms. On the other side,
it would reflect that the kind of imprecisiation over the priors considered by this almost-ignorance
model produces similar effects in the decision procedure as an imprecisiation around the sample
values.
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