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Abstract. Whereas the field of aggregation theory has historically stud-
ied aggregation on bounded posets (mainly the aggregation of real num-
bers), different aggregation processes have been analysed in different
fields of application. In particular, the aggregation of strings has been a
popular topic in many fields featuring computer science and bioinformat-
ics. In this conference paper, we discuss different examples of aggregation
of strings and position them within the framework of penalty-based data
aggregation.
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1 Introduction

Binary strings are ubiquitous in computer science [1], whereas DNA sequences
are a prominent type of string arising naturally in the field of bioinformatics [2].
It is no surprise then that the aggregation of strings has been extensively stud-
ied. The computation of median strings and center strings, which respectively
minimize the sum of the distances and the maximum distance to the strings to be
aggregated, surely represents the core problem in the aggregation of strings [3].
Different distance metrics have been considered for defining median and center
strings [4]. The two most prominent examples are the Hamming distance met-
ric [5], popular in coding theory, and the Levenshtein distance metric [6], popular
for code correction.

It is nonetheless surprising that there has been little interest in this topic
from the field of aggregation theory, especially bearing in mind that the study
of median strings and center strings certainly resembles some classical prob-
lems for aggregation theorists. This is probably due to the fact that there is no
meaningful order when dealing with strings, letting aside the literature-oriented
alphabetic/lexicographic order, and the field of aggregation theory has histori-
cally been linked to processes that aggregate elements of a bounded poset. In



a recent work [7], the present authors introduced a new framework for penalty-
based data aggregation that does not restrict to the aggregation on ordered
structures and that embraces the aggregation on stuctures equipped with a be-
tweenness relation. In this paper, we position the search for median and center
strings with respect to different distance metrics within this framework. We dis-
cuss both cases in which the strings are or are not restricted to have a fixed
length.

2 The framework of penalty-based data aggregation

Penalty functions have been used for decades in the context of aggregation the-
ory [8]. Mostly confined to the aggregation of real numbers [9], the current un-
derstanding of a penalty function is more or less as follows [10] (up to a positive
additive constant).

Definition 1. Consider n ∈ N and a closed interval I ⊆ R. A function P :
I × In → R+ is called a penalty function if:

(i) P (y; x) ≥ 0, for any y ∈ I and any x ∈ In;
(ii) P (y; x) = 0 if and only if x = (y, . . . , y);

(iii) P (·; x) is quasi-convex3 and lower semi-continuous4 for any x ∈ In.

In a recent paper [7], the present authors proposed a generalization of the
definition of a penalty function based on the compatibility with a betweenness
relation.

Definition 2. A ternary relation B on a non-empty set X is called a between-
ness relation if it satisfies the following three properties:

(i) Symmetry in the end points: for any x, y, z ∈ X, it holds that

(x, y, z) ∈ B ⇔ (z, y, x) ∈ B .

(ii) Closure: for any x, y, z ∈ X, it holds that(
(x, y, z) ∈ B ∧ (x, z, y) ∈ B

)
⇔ y = z .

3 Consider a closed interval I ⊆ R. A function f : I → R is called quasi-convex if, for
any u, v ∈ I and any λ ∈ ]0, 1[, it holds that f(λu+ (1− λ)v) ≤ max(f(u), f(v)).

4 Consider a closed interval I ⊆ R. A function f : I → R is called lower semi-
continuous if, for any u ∈ I, it holds that lim inf

v→u
f(v) = f(u).



(iii) End-point transitivity: for any o, x, y, z ∈ X, it holds that(
(o, x, y) ∈ B ∧ (o, y, z) ∈ B

)
⇒ (o, x, z) ∈ B .

Two betweenness relations of importance to this paper are the betweenness
relation induced by a given distance metric and the product betweenness relation.

Proposition 1. Consider a distance metric d on a set X. The ternary relation
Bd on X defined as

Bd =
{

(x, y, z) ∈ X3 | d(x, z) = d(x, y) + d(y, z)
}
,

is a betweenness relation on X, called the betweenness relation induced by d.

Proposition 2. Consider n ∈ N and a betweenness relation B on a set X. The
ternary relation B(n) on Xn defined as

B(n) =
{

(x,y, z) ∈ (Xn)3 | (∀i ∈ {1, . . . , n})((xi, yi, zi) ∈ B)
}
,

is a betweenness relation on Xn, called the product betweenness relation.

Given a betweenness relation, we have proposed a definition of a penalty
function in which the original third property aiming at providing some desirable
semantics to the penalty is substituted by the requirement of the set of mini-
mizers to be non-empty and by the compatibility with a betweenness relation
aiming again at providing the penalty with some desirable semantics.

Definition 3. Consider n ∈ N, a set X and a betweenness relation B on Xn.
A function P : X ×Xn → R+ is called a penalty function (compatible with B)
if the following four properties hold:

(P1) P (y; x) ≥ 0, for any y ∈ X and any x ∈ Xn;
(P2) P (y; x) = 0 if and only if x = (y, . . . , y);
(P3) The set of minimizers of P (·; x) is non-empty, for any x ∈ Xn.
(P4) P (y; x) ≤ P (y; x′), for any y ∈ X and any x,x′ ∈ Xn such that ((y, . . . , y),

x,x′) ∈ B.

Remark 1. If a betweenness relation on X is given instead of a betweenness
relation onXn, it is assumed that the product betweenness relation is considered.

The process of aggregation is then understood as a process of minimizing
a penalty function given the list of objects to be aggregated. Different existing
procedures coming from different fields are dicussed in [7] and are shown to fit
within this framework.



Definition 4. Consider n ∈ N, a set X, a betweenness relation B on Xn and a
penalty function P : X ×Xn → R+ compatible with B. The function f : Xn →
P(X) defined by

f(x) = arg min
y∈X

P (y; x) ,

for any x ∈ Xn, is called the penalty-based function associated with P .

It is important to note that any aggregation process characterized as above
is idempotent, i.e., the result of aggregating a list of n times the same object
needs to be this very object. Additionally, one should note that more than one
minimizer could be obtained. This is often the case in the setting of this paper
in which we deal with the aggregation of strings.

The two most common examples of penalty-based functions are defined by
means of the sum of distances or the maximum distance to the objects to be
aggregated [7].

Corollary 1. Consider n ∈ N, and a metric space (X, d). The function P :
X ×Xn → R+ defined by

P (y; x) =

n∑
i=1

d(y, xi) ,

for any (y; x) ∈ Xn+1, is a penalty function (compatible with B
(n)
d ).

Corollary 2. Consider n ∈ N, and a metric space (X, d). The function P :
X ×Xn → R+ defined by

P (y; x) =
n

max
i=1

d(y, xi) ,

for any (y; x) ∈ Xn+1, is a penalty function (compatible with B
(n)
d ).

Functions of the former type are usually referred to as medians and functions
of the latter type are usually referred to as centers5. For some types of object
such as real numbers and real vectors, centroids (which minimize the sum of
squared distances to the objects to be aggregated) have also been extensively
studied. However, centroid strings are to the best of our knowledge way less
popular than median and center strings. For this very reason, centroid strings
will not be discussed in this paper, although they would perfectly fit within the
framework of penalty-based aggregation.

5 In the context of the aggregation of strings, both terms ‘center string’ and ‘closest
string’ are found to carry the same meaning.



In case the set X is finite, there is a large literature in the field of operations
research on how to compute the minimizers of P (·; x) (for any given x ∈ Xn).
More specifically, we refer to the minimum facility location problem for the
computation of medians and to the minmax facility location problem for the
computation of centers [11].

3 Strings of the same length

Given an alphabet (set of characters) Σ, any list of m elements of Σ is called
a string of length m. The set of all strings of length m (on an alphabet Σ) is
denoted by Σm. For any S ∈ Σm and any j ∈ {1, . . . ,m}, we denote by S(j)
the j-th element of S. In this section, we fix the value of m and we discuss four
natural examples of distance metrics on the set of strings of the same length (m).

3.1 The discrete distance metric

The first and most trivial example of distance metric on the set of strings of
length m is the discrete distance metric, defined as δ(S, S′) = 0, if S = S′, and
δ(S, S′) = 1, otherwise. This distance metric induces the betweenness relation Bδ
on Σm illustrated in Figure 1, known as the minimal betweenness relation. Note
that the minimal betweenness relation is contained in any possible betweenness
relation [7]. For this reason, the semantics brought to any penalty function by
the betweenness relation Bδ are negligible.

cat dog

Fig. 1. Illustration of the strings (in grey) that are in between the strings cat and
dog (in red) according to the betweenness relation Bδ for the English alphabet Σ =
{a, b, c, . . . , z}. Please note that there is no string in grey.

Still, one could think of identifying the median string(s) and the center
string(s) of a given list of strings S with respect to the discrete distance metric.
A median string of S is characterized as a string appearing with the highest
frequency in S, whereas any possible string in Σm is a center string of S unless
there exists a string S ∈ Σm such that S = (S, . . . , S), a case in which S is the
unique center string (due to the idempotence of any penalty-based function).

Example 1. Consider the following list of strings of length 3 on the English
alphabet Σ = {a, b, c, . . . , z}: S = {cat, dog, cat, dot, cog}. The unique median
string is cat, whereas any possible string in Σ3 is a center string.



3.2 The Hamming distance metric

The Hamming distance is a popular distance metric for strings of the same
length [5]. Intuitively, this distance metric assigns to each couple of strings of
the same length m the number of positions at which both strings differ, i.e.,

H(S, S′) = |{j ∈ {1, . . . ,m} | S(j) 6= S′(j)}| .

This distance metric induces a betweenness relation BH on Σm, illustrated in
Figure 2. As can be seen, the semantics induced by any penalty function com-
patible with BH is richer than that induced by any penalty function compatible
with Bδ.

cat dogcot

cag

dat

dag

cog

dot

Fig. 2. Illustration of the strings (in grey) that are in between the strings cat and
dog (in red) according to the betweenness relation BH for the English alphabet Σ =
{a, b, c, . . . , z}.

The search for the median string(s) and the center string(s) of a given list
of strings S = (S1, . . . , Sn) with respect to the Hamming distance metric is a
popular topic in computer science. Median strings with respect to the Hamming
distance metric are easily characterized as the strings S such that S(j) appears
with the highest frequency in (S1(j), . . . , Sn(j)) for all j ∈ {1, . . . ,m}. Unfor-
tunately, center strings with respect to the Hamming distance metric are not
characterizable and they are known to be NP-hard to compute [1]. The latter
problem of finding the center string (usually referred to as the closest string
problem) is of interest to many scientific disciplines such as molecular biology
and coding theory [12] and thus has led to many works aiming at finding an
efficient algorithm/approximation for the closest string problem [13].

Example 2. Consider again the list of strings of length 3 on the English alphabet
Σ = {a, b, c, . . . , z}: S = {cat, dog, cat, dot, cog}. The unique median string is cot



since c appears with the highest frequency (three) at the first position, o appears
with the highest frequency (three) at the second position and t appears with the
highest frequency (three) at the third position. Center strings are dag and all
strings of the form co∗ or ∗ot, where ∗ represents any element in Σ.

3.3 The lexicographic distance metric

The use of lexicographic orders arises naturally when dealing with strings [14]. In
this setting, the most common lexicographic order is the widely-known alphabet-
ical order. Because of its popularity, both terms are often used interchangeably
when talking about strings. Obviously, the set of strings of length m is linearly
ordered if we consider the lexicographic order ≤. Thus, as in every linearly or-
dered set, we can define the lexicographic distance metric:

L(S, S′) = |{S′′ ∈ Σm | min(S, S′) ≤ S′′ ≤ max(S, S′)}| − 1 .

This distance metric induces the betweenness relation BL on Σm (which amounts
to B≤ if we consider the betweenness relation induced by the alphabetical order
≤ – for more details see [7]), illustrated in Figure 3. Note that this betweenness
relation BL carries a totally different semantics than BH . For this very reason,
a penalty-based function compatible with BL will almost surely lead to quite
different results than a penalty-based function compatible with BH .

cat dogcau dof· · ·

Fig. 3. Illustration of the strings (in grey) that are in between the strings cat and
dog (in red) according to the betweenness relation BL for the English alphabet Σ =
{a, b, c, . . . , z}.

The search for the median string(s) and the center string(s) of a given list
of strings S with respect to the lexicographic distance metric is similar to the
search for the median(s) and center(s) of a list of real numbers. Actually, it
suffices to identify each string with its position in the alphabetical order and
compute the median of these positions for identifying the median string(s) (as
usual, only assured to be unique if the number of strings is odd). If, instead of
the median of the positions, we compute the arithmetic mean of the smallest
position and the greatest position, then we would obtain the center string (in
case this arithmetic mean of the smallest position and the greatest position is
not a natural number, there will be two center strings identified by the floor and
the ceiling of said value).

Example 3. Consider again the list of strings of length 3 on the English alphabet
Σ = {a, b, c, . . . , z}: S = {cat, dog, cat, dot, cog}. We identify the string cat with



the position 2 · 262 + 0 · 26 + 19 · 1 + 1 = 1372, the string dog with the position
3 · 262 + 14 · 26 + 6 · 1 + 1 = 2399, the string dot with the position 3 · 262 +
14 · 26 + 19 · 1 + 1 = 2412 and the string cog with the position 2 · 262 + 14 ·
26 + 6 · 1 + 1 = 1723. The median string is the string identified with the median
of {1372, 2399, 1372, 2412, 1723}, which is 1723 – thus being the median string
cog. The center string is the string identified with the position 1372+2412

2 = 1892.
Since 1892 = 2 · 262 + 20 · 26 + 19 · 1 + 1, the center string is cut.

In the particular case in which we are dealing with existent words and not
with just any possible string, both the median string(s) and the center string(s)
could be nonexistent words even though all strings to be aggregated are perfectly
fine existent words (for the case of the median string this is only possible if an
even number of strings is to be aggregated). A potential way of solving this
issue would require to compute medoid [15] (or set median) strings: instead of
considering the set of minimizers of some certain P (·; S) in the whole Σm, we
would just restrict our attention to the minimizers among those strings in S.

Example 4. Consider the list of strings of length 3 on the English alphabet Σ =
{a, b, c, . . . , z}: S = {cat, car}. The center string is cas. Since this word does not
appear in the English dictionary, one might think of computing a medoid-like
center string (sometimes called set center string). We would thus obtain both
cat and car as solutions.

3.4 The Baire distance metric

The Baire distance metric [16] (also referred to as Generalized Cantor distance
metric) is an ultrametric6 on the set of strings of length m that is defined as
B(S, S′) = 0, if S = S′, and B(S, S′) = αr, otherwise, where α ∈ ]0, 1[ is a
parameter to be fixed and r is the first position at which S and S′ differ.

Like the discrete distance metric, the betweenness relation induced by the
Baire distance metric is the minimal betweenness relation. This is actually a
common result for all ultrametrics. Suppose that three pairwisely different ele-
ments x, y, z of the ultrametric space are such that d(x, y) + d(y, z) = d(x, z). A
contradiction then arises from the fact that d(x, z) ≤ max(d(x, y), d(y, z)) and
being both d(x, y) and d(y, z) greater than zero.

Nevertheless, the fact that the induced betweenness relation is the minimal
one (and thus does not bring any interesting semantics to the penalty) does not
mean that penalty-based functions compatible with the betweenness relation
induced by an ultrametric are not interesting. In this case, both the search for

6 We recall that an ultametric on X is a distance metric on X satisfying that d(x, z) ≤
max(d(x, y), d(y, z)), for any x, y, z ∈ X.



the median string(s) and the search for the center string(s) are of interest. The
former is easily characterizable when a small enough value of α is considered. In
particular, if α < 1

n−1 (where n is the number of strings to be aggregated), the
median string(s) is(are) obtained in an iterative manner by first computing the
most frequent first element and eliminating all the strings with a different first
element, subsequently, among the remaining strings computing the most frequent
second element and eliminating all the strings with a different second element,
and so on. The computation of the center string(s) is easier. Independently of
the value of α, we compute the longest common prefix among all strings to be
aggregated. Any string starting with this prefix is a center string.

Example 5. Consider again the list of strings of length 3 on the English alphabet
Σ = {a, b, c, . . . , z}: S = {cat, dog, cat, dot, cog}. The most common first element
is c, thus we consider the strings cat, cat and cog. Among those three strings,
the most common second element is a, thus we consider the strings cat and cat.
Among those two strings, the most common third element is t. Thus, the median
string is cat. Since there is no common prefix among all strings in S, all strings
in Σ3 are center strings.

4 Strings of different length

Given an alphabet Σ, we denote by Σ∗ the set of all possible strings of any
length m ∈ N, i.e., Σ∗ = ∪∞i=0Σi (Σ0 = {∅}).

An edit operation is a basic change that allows to transform one string into
another. Typically, edit operations are related to spelling errors. According to
Damerau [17], the most common spelling errors (and thus examples of edit op-
erations) are addition of a single character, removal of a single character, sub-
stitution of a single character and transposition of two consecutive characters,
which amount to more than 95 percent of the spelling errors found in different
texts. Other possible edit operations could include inversion of the whole string
or, when dealing with proper words, substitution by a homophonous word.

Edit distance metrics [4] are defined relative to a set of edit operations E and
a cost function c : E→ [0,∞[:

EE,c(S, S
′) = min

E∈E(S,S′)

∑
e∈E

c(e) ,

where E(S, S′) represents the set of all lists of edit operations in E that turn
S into S′. Undoubtedly, the most common edit distance – which is almost con-
sidered a standard – is the Levenshtein distance metric [6] (just denoted by E,
without subscripts). For the Levenshtein distance metric, the set of edit opera-
tions is formed by addition of a single character, removal of a single character



and substitution of a character into another one, and the cost function is any
constant function (e.g., c(e) = 1, for any e ∈ E). Note that the Hamming dis-
tance metric is a special case of edit distance metric in which the unique edit
operation allowed is substitution.

The betweenness relation BE on Σ∗ (illustrated in Figure 4) is quite inter-
esting for error detection. Note that we use two different strings compared to
the previous cases, otherwise we would obtain the same diagram as displayed in
Figure 2.

era sea

sera

ea

eea

sra

Fig. 4. Illustration of the strings (in grey) that are in between the strings era and
sea (in red) according to the betweenness relation BE for the English alphabet Σ =
{a, b, c, . . . , z}.

Obtaining the median string(s) and the center string(s) with respect to the
Levenshtein distance metric is known to be an NP-complete problem [3]. Some
approximation techniques have been proposed. For instance, Kohonen [18] pro-
posed to compute the set median string (or medoid string), which is straightfor-
ward, and then proceeding in a hill-climbing-like style of making small changes
until (hopefully) the median is found.

Example 6. Consider the list of strings on the English alphabetΣ = {a, b, c, . . . , z}:
S = {era, sea}. Note that any string S such that (era, S, sea) ∈ BE is a median
string. This means that all among era, ea, eea, sra, sera and sea are median
strings. Obviously, only era and sea are medoid strings. Finally, center strings
are only ea, eea, sra and sera.



5 Conclusions

In this paper, we have discussed the problem of finding median and center strings
for five popular distance metrics on the set of strings within the framework of
penalty-based data aggregation. Some other popular distance metrics such as
the Damerau-Levenshtein distance metric (in which all edit operations proposed
by Damerau [17] instead of those proposed by Levenshtein [6] are considered),
the Jaccard distance metrix (based on the Jaccard index [19]), the Jaro dis-
tance metric [20] and the Jaro-Winkler distance metric [21] have also been used
for measuring distances between strings – thus they could potentially be con-
sidered for searching for median and center strings. Future research concerns a
more in-depth study of the aggregation of strings in which all these different
distance metrics are analysed. The study of centroid strings and an analysis of
the property of monotonicity from a betweenness-based (instead of order-based)
perspective are also highlighted as interesting future research subjects.
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