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Featured Application: The current paper presents a review about solutions dealing with
uncertainty in planning and scheduling problems for the steel industry which could be useful
for researchers on similar topics.

Abstract: The following paper proposes a study about the existing solutions for dealing with
uncertainty while solving the planning and scheduling problem at steel industry manufacturing
processes. The different techniques designed to cope with uncertainty in manufacturing scheduling
are discussed, along with the main uncertainty factors affecting the scheduling. The paper proposes a
classification for the main uncertainties affecting the steelmaking process and analyzes the existing
literature about solutions for the scheduling with uncertainty in the steel sector in terms of approaches
followed and uncertainty types considered. Finally, the main remarks and future challenges within
this field are presented.
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1. Introduction

Steel process is a complex chain of transformation processes, from raw materials (iron ore, coal,
scrap, etc.) to finished products (coils, plates, rails, tubes, etc.). As in many other transformation
industries, planning and scheduling plays a capital role in the steel sector. For this reason, the topic
has been well covered by the literature [1,2]. However, lately it has been identified that the classical
deterministic approach on steel manufacturing scheduling presents difficulties when applied to the
real world production conditions where uncertainties of different nature (order cancellations, rush jobs,
etc.) and production disturbances (equipment breakdowns, deviation in product specifications, etc.)
continuously modify the initial plans and schedules, forcing the operators to change and readapt to
these new situations [3]. New ways of incorporating these elements have motivated researchers to
propose new approaches to tackle with the uncertainty problem in industrial sectors, such as multistage
stochastic programming, robust optimization, or fuzzy programming [4–6].

The purpose of this paper is to analyze the most notable contributions in the literature to address
the planning and scheduling under uncertainty problem in the steel industry and discuss the future
challenges that the community will face to close the gap between the real needs of the steelmaking
industry and the scheduling models used within it. The rest of the paper is organized in the following
structure. Section 2 introduces a definition of the general problem of scheduling under uncertainty and
the different techniques that can be applied to deal with it. Section 3 presents how the uncertainties in
the steel process have been identified in the existing literature and proposes a classification. Section 4
presents a detailed analysis of the solutions and how they deal with the uncertainty. Section 5 concludes
with the main remarks and the future challenges identified.
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2. Uncertainty in Scheduling: Definition and Approaches

The steel industry involves different production steps, each one with their own characteristics and
problematics which translates into specific planning and scheduling procedures. However, in most
cases they can be considered to be a complex Hybrid Flow Shop (HFS) scheduling problem with hard
constraints. This problem is based on the necessity to process a given set of jobs through various
processing stages, with one or more parallel machines on each stage optimizing an established objective
function. All the jobs must follow the same stages processing route [7]. The HFS scheduling problem
can be expressed as a mixed integer linear programming (MILP) problem. Let x denote the continuous
variables that represent the starting and finishing times (or processing times) of the jobs and let y
denote the binary variables referring to the selection of tasks to be processed and the machines in
which they are allocated. Considering c and d as the correspondent coefficient vectors for the decision
variables x and y, the HFS can be formulated in the following way:

Min (c Tx + dT y) (1)

Subject to Ax + By ≤ p
∣∣∣x ≥ 0; y ε {0, 1}; x ε Rn, y ε Rm where the constraints (Ax + By ≤ p)

are time limitations due to tasks durations, sequence requirements and other process-related restrictions.
The parameters A and B represent the constraint matrixes associated with decision variables x and y
respectively. The parameter p corresponds to the maximum threshold.

Ben-Tal and Nevirovski [8] state that slight modifications in the nominal values of this type of
model may lead to infeasible solutions. The uncertainties responsible for these modifications can be of
very different nature, like disruptions in the processing times, unexpected equipment stoppages or
non-fulfillment of target specifications of the order. Hence, the presence of uncertainty becomes one of
the main factors impacting the correct realization of schedules in steel manufacturing processes.

There are many studies in the literature that analyze and classify the approaches in the scheduling
uncertainty across different sectors [3,6,9]. Most of the authors agree that there are two main
groups in which these techniques can be divided: proactive scheduling solutions and reactive
scheduling solutions.

2.1. Proactive Scheduling

Proactive schedules try to estimate and anticipate the effect that potential uncertainties could have
in the production schedules. To this meaning, historical data analysis and forecasting techniques are
used to model the uncertainty inherent to the process and propose schedules to reduce the potential
impact that future disturbances could provoke in the production phase. There are several reviews that
analyze the main proactive scheduling solutions [3,4,10,11]. The most common approaches identified
in the literature for the proactive scheduling, can be considered inside the following groups: stochastic
programming, robust optimization and fuzzy programming.

2.1.1. Stochastic Programming

Stochastic programming consists on optimization models where the main variables are represented
by discrete or continuous probabilistic distributions. The most relevant example within this category is
the two-stage stochastic programming. In the first stage, the main driver decisions are taken before the
incorporation of any uncertainty parameter, while in the second stage the infeasibilities raised by the
realization of the uncertainty can be compensated by corrective recourse actions.

Let Q(x, y, ξ) be the optimal solution of the stochastic model of the second stage, with ξ being
the vector of uncertain parameters associated with the problem. These uncertain parameters can be
represented by random variables with known distributions. The first stage model can be formulated
incorporating the mathematical expectation (E) of Q(x, y, ξ) to the equation expressed in (1):

Min
{
cTx + dT y + E[Q (x, y, ξ)

]}
(2)
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Let z denote the decision variables for the second-stage problem, with the random variable q(ξ)
representing the corresponding coefficient vectors. The second-stage model can be defined as:

Min q(ξ)Tz (3)

Subject to: T(ξ)x + V(ξ)y + W(ξ)z ≤ h(ξ) | z ≥ 0, where T, V, W correspond to random
variables representing the constraint matrixes for the second stage problem associated with the decision
variables x, y, z respectively. The maximum threshold for these constraints is established by the random
variable h.

2.1.2. Robust Optimization

Preventive schedules are considered robust schedules when they are built minimizing the effects
of potential uncertainties and ensuring small deviations from the executed manufacturing schedules.
This approach assumes proactive suboptimal schedules that ensure the feasibility of the solutions and
provide near optimal results under the manifestation of disturbances during their execution. Based on
the problem formulated in (1), the model will be a robust schedule if the constraints Ax + By ≤ p can
be satisfied for the worst case of (A, B) ε P, with P being a subset of Rnxm.

2.1.3. Fuzzy Programming

Fuzzy programming follows a similar approach to the stochastic programming but, in this case,
the main variables and parameters are considered to be fuzzy numbers and the constraints are treated
as fuzzy sets. The partial violation of constraints is permitted, with the degree of satisfaction of a
constraint being defined as its membership function. Finally, the objective functions can have lower
and upper bounds defined by the expected goal levels for the user. Based on the model in (1), for a
constraint Ax + By ≤ p in which the right-side parameter p can take values belonging to the interval
[b, b + d] with d > 0, the membership function of the constraint, µ (x, y), can be defined as:

µ(x, y)


1 Ax + By ≤ b

1 − Ax + By − b
d b < Ax + By ≤ b + d

0 Ax + By > b + d

(4)

2.2. Reactive Scheduling

Techniques based on the reactive scheduling approach are mainly used in those scenarios in which
there is not enough information to allow a preventive action which would avoid the uncertainty from
occurring. Hence a change in the schedule must be proposed to readapt to the new scenario whenever
an unexpected event appears [3]. Ouelhadj and Petrovic [12] propose four main categories to classify
dynamic scheduling solutions, one being the robust scheduling, which refers to proactive scheduling
approach, and the other three representing the reactive approaches:

• Completely reactive: Tasks are directly scheduled in real time, applying mainly dispatching rules
or heuristics that evaluate the status of the scenario, considering aspects like process priority or
processing time.

• Predictive reactive: A basic preventive schedule is generated for a deterministic scenario.
According to different rescheduling strategies (on a periodic basis, each time a new job arrives or
a disturbance appears) the model can propose modifications to the initial schedule or generate a
completely new schedule.

• Robust predictive reactive: In this approach, the reactive schedules proposed whenever an
unexpected event appears try to minimize the effect of the disruption upon the initial schedule.
This is done by considering not only the schedule efficiency criteria, but also the deviation from
the original preventive schedule (stability).
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Chaari et al. [6] propose additional criteria to classify these models differentiating between
distributed solutions and centralized approaches and according to the usage of priority rules for the
reassignment of the tasks after the disturbance: they can be static (they do not depend on the time) or
dynamic (they depend on the time and the status of the system).

In terms of the techniques employed to solve the reactive scheduling problem, the solutions can
be sorted by [12]:

• Dispatching rules and simulation: Dispatching rules for dynamic environments are usually
combined with simulation techniques to evaluate and select the best suited rule for the current
scenario. Most of the completely reactive approaches rely on this technique.

• Heuristics: They are mainly employed to define the schedule repairing strategies for the initial
schedules according to the type of disturbance produced.

• Metaheuristics: In recent years, metaheuristics have developed an increasing presence in
the scheduling literature. Some of the most common include: genetic algorithms (GA),
ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee colonies (ABC),
differential evolution (DE) or tabu search (TS).

• Multi-agents and other Artificial Intelligence techniques: A multi-agent framework is used for
distributed approaches where the manufacturing system is split into separate agents that negotiate
to achieve global optimal results. Other Artificial Intelligence-based techniques also employed are
knowledge-based-systems, neural networks, case-based reasoning.

2.3. Hybrid Approaches

In some situations, the difference between reactive and proactive methods is not so clear.
Some authors consider hybrid approaches that combine simplified proactive methods to define the
preventive schedule and afterwards define a reactive approach to deal with uncertainties not covered
by the proactive initial stage [6,9]. However, there are still few works that could be included within this
category, due to the novelty of the proactive scheduling solutions [9]. Figure 1 represents the behavior
of the different approaches in terms of uncertainty analysis and rescheduling capabilities.
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3. Classification of Uncertainties in the Steel Sector

3.1. General Manufacturing Uncertainty Factors

Two main levels of classification for the uncertainty factors affecting the manufacturing process
scheduling can be considered [5]. The first level of classification consists on distinguishing those who
are external to the process from those who are internal to the process. The other level of classification
proposes to sort these factors according to the time horizon of the uncertainty. In the case of the
scheduling, the most relevant are the short-term uncertainties. Vieira et al. [13] propose a summary of
the most common factors identified by the existing rescheduling studies in the manufacturing process
which can be grouped in two main groups:

• Job related: Urgent (rush) job arrival, job cancellation, due date change (delay or advance),
change in job priority.

• Resource related: Machine failure, delay in the arrival or shortage of materials, over or
underestimation of process time, rework or quality problems, operator absenteeism.

3.2. Steelmaking Uncertainty Factors

Different authors have elaborated several studies with the purpose of analyzing and classifying
the main factors contributing to the uncertainty in the steel industry, most of them focused on the
steelmaking process. Hao et al. [14] establish a general classification for the continuous casting process,
differentiating the possible disturbances according to the impact caused to the scheduling between
critical and non-critical events. Roy et al. [15] present a list of the main disruptions that can appear
in the steelmaking process such as steel composition being out of specification, steel temperature
not according to process specifications, lack of hot metal supply or ladle gate failure. Hou and
Li [16] study the different disturbance events that can arise in the steelmaking process classifying
them attending to the origin of the event: internal to the steelshop (machine breakdowns, steel grade
variations) and external to the steelshop (urgent orders, unavailability of slabs). Worapradya and
Thanakijkasem [17] divide the main daily disruptions events that can happen in this environment into
4 groups: machine failure, rush orders, excessive defects during an operation and order cancellations.
Tang et al. [18] consider the differentiation of real-time events affecting the steel making phase between
resource-related and job-related but propose also a third category, which are the quality-related
(processing time changes, steel grade changes, process route changes).

Based on the previous studies and in order to analyze uncertainty scheduling solutions in the
existing literature, we propose to use the following classification of uncertainty factors:

• Orders: Uncertainties related to order cancellations, rush orders, changed priority.
• Machines: Disturbances affecting machines and equipment like breakdowns, unplanned repairs, etc.

• Product specifications: Disruptions of the schedule caused by the failure in the achievement of the
order’s target specifications.

• Processing times: Uncertainties increasing or decreasing the initially estimated processing time of
the scheduled tasks.

4. Scheduling Solutions in Steel Sector Considering Uncertainty: Literature Review

The analysis of the existing literature in the current topic shows that the study of uncertainty in
scheduling in the steel sector has become a topic of interest in recent years. Prior to that, scheduling
systems used to avoid addressing the reactive scheduling problem, leaving the reaction to the
unexpected events to the responsibility of the human schedulers [19]. Table 1 summarizes the main
contributions from the literature to the problem of planning and scheduling with uncertainty in the
steel sector. The papers analyzed are organized according to the steel production process steps in which
they are applied, and the main approach followed to deal with uncertainty (proactive or reactive).
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Table 1. Planning and scheduling models dealing with uncertainty in steel production.

Reference
Process Step Approach

EAF/BOF Refining Continuous
Caster

Hot
Rolling

Finishing
Mills

Reactive
Schedule

Proactive
Scheduling

Suh et al. 1998 [19] X X
Cowling et al. 2004 [20] X X X

Oueldhadj et al. 2004 [21] X X X
Roy et al. 2004 [15] X X

Guo and Li 2007 [22] X X X
Pang et al. 2008 [23] X X X X

Rong and Lahdelma 2008 [24] X X
Tang and Wang 2008 [25] X X

Ozoe and Konishi 2009 [26] X X X X
Worapradya and Buranathiti

2009 [27] X X X X

Yu et al. 2009 [28] X X X X
Chen et al. 2010 [29] X X X X

Worapradya and
Thanakijkasem 2010 [17] X X X X

Zhu et al. 2010 [30] X X
He et al. 2011 [31] X X X X
Luo et al. 2011 [32] X X
Slotnick 2011 [33] X X

Wang et al. 2011 [34] X X
Yu et al. 2011 [35] X X X X

Hou and Li 2012 [16] X X X
Luo et al. 2012 [36] X X

Yu and Pan 2012 [37] X X
Fazel and Azad 2013 [38] X

Gerardi et al. 2013 [39] X X
Tang et al. 2013 [40] X X

Yu 2013 [41] X X X
Krumeich et al. 2014 [42] X X

Mao et al. 2014 [43] X X X X
Tang et al. 2014 [18] X X X X

Ye et al. 2014 [44] X X X
Yue and Xianpeng 2014 [45] X X

Hao et al. 2015 [14] X X
Li et al. 2015 [46] X X X X

Long et al. 2015 [47] X X X X
Luo et al. 2015 [48] X X

Mori and Mahalec 2015 [49] X X
Nastasi et al. 2015 [50] X X

Sun et al. 2015 [51] X X
Bo et al. 2016 [52] X X

Jiang et al. 2016 [53] X X X X X
Lin et al. 2016 [54] X X X
Yu et al. 2016 [55] X X X X

Guirong and Qiqiang 2017 [56] X X X X
Jiang et al. 2017 [57] X X X X

Jiang et al. 2017 (b) [58] X X X X
Long et al. 2017 [59] X X

Noshadravan et al. 2017 [60] X X
Pang et al. 2017 [61] X X X X
Sun et al. 2017 [62] X X X X

Sun et al. 2017 (b) [63] X X X X
Wang et al. 2017 [64] X X
Zheng et al. 2017 [65] X X X X

Kammammettu et al. 2018 [66] X X
Long et al. 2018 [67] X X
Niu et al. 2018 [68] X X
Peng et al. 2018 [69] X X
Yang et al. 2018 [70] X X X X

Yang et al. 2018 (b) [71] X X X X
Guo et al. 2019 [72] X X X X X X

Most of the studies (53/59) are focused on the upstream steel production sector (especially in
the steelshop scheduling) and only five papers are focused on downstream processes (specifically,
two for cold rolling mill, one for color coating mill, one for plate mill and one for all the finishing mills).
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There are two special cases: the solution proposed by Guo et al. 2019 which covers all the processing
units within the steel process and Fazel and Azad [38] who developed a generic multi-agent framework
for steel production scheduling, without associating it to a specific process step. Inside the upstream
segment proposals, almost all of them (45/53) include the continuous casting process, while half of
them (24/53) deal with the whole steelshop problem (steel making + refining + casting). There are a
few approaches (5/53) that consider the combined scheduling of casting and hot strip mill processes.
In terms of the uncertainty scheduling approach, there is a greater number of authors (37/59) who
have proposed reactive scheduling solutions against a lesser number (24/59) who have studied and
developed proactive scheduling approaches. However, proactive studies seem to be a more recent
approach, starting on 2008 and growing in frequency during the following years, while reactive
scheduling solutions are present during the whole period covered by this review. Only a few authors
consider the possibility of combining both approaches in their works (hybrid approaches), such as
Jiang et al. [53], Worapradya et al. [17,27] or Yu et al. [41]. This can be explained by the focus in recent
years on the application of metaheuristics and simulation solutions to reactive approaches (see Table 2)
which could be motivated by the necessity of improving the solutions to be executed dynamically in
real production environments.

Table 2. Reactive scheduling models in steel production.

Reference

Approach Technique

Completely
Reactive

Predictive
Reactive

Robust
Predictive
Reactive

Dispatching
Rules and

Simulation
Heuristics Metaheuristics

Multiagent
and other

AI

Suh et al. 1998 [19] X X
Cowling et al. 2004 [20] X X

Oueldhadj et al. 2004 [21] X X
Roy et al. 2004 [15] X X

Guo and Li 2007 [22] X X
Pang et al. 2008 [23] X X

Tang and Wang 2008 [25] X X TS
Ozoe and Konishi 2009 [26] X X

Worapradya and Buranathiti
2009 [27] X GA

Chen et al. 2010 [29] X X GA
Zhu et al. 2010 [30] X GA
He et al. 2011 [31] X X GA
Luo et al. 2011 [32] X X

Wang et al. 2011 [34] X ACO X
Yu et al. 2011 [35] X X

Hou and Li 2012 [16] X X
Luo et al. 2012 [36] X GA

Yu and Pan 2012 [37] X X
Fazel and Azad 2013 [38] X X

Tang et al. 2013 [40] X X TS
Yu 2013 [41] X X

Tang et al. 2014 [18] X DE
Mao et al. 2014 [43] X X
Hao et al. 2015 [14] X X PSO
Li et al. 2015 [46] X FOA

Long et al. 2015 [47] X X
Bo et al. 2016 [52] X PSO

Jiang et al. 2016 [53] X X X
Yu et al. 2016 [55] X X

Jiang et al. 2017 [57] X X DE
Long et al. 2017 [59] X GA + VNS
Pang et al. 2017 [61] X X X
Sun et al. 2017 [62] X X

Sun et al. 2017 (b) [63] X X
Zheng et al. 2017 [65] X X GA
Peng et al. 2018 [69] X X ABC
Guo et al. 2019 [72] X MILP + DE

Table 2 presents the studies considered to be using a reactive approach. The solutions analyzed
are mainly distributed between predictive reactive (26/37) and robust predictive reactive (8/37).
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The category with fewest studies corresponds to the completely reactive, which only contains three
studies: Suh et al. [19] present an heuristic to propose repair solutions for disturbances in the hot strip
mill scheduling, Hou and Li [16] define a set of repair strategies to tackle with the uncertainties as they
occur in the steelshop, while Long et al. [47] propose a simulation framework in which dispatching
rules are used to schedule the jobs in the different machines within the steelshop according to an
established matching decision algorithm. Regarding the techniques employed, heuristics (16/37) and
metaheuristics (16/37) are developed in most of the papers, while the rest of solutions are based either
on dispatching rules and simulation (8/37) or on multiagent systems and other Artificial Intelligence
techniques (7/37).

Heuristics are mainly used in predictive reactive approaches to model the required decisions
to adapt the initial predictive schedule to the disruptions that have originated the rescheduling.
Most of the metaheuristics mentioned in Table 2 can be considered within the category of evolutionary
algorithms, especially Genetic Algorithms (GA), considered by seven of the authors. Worapradya
and Buranathiti [27] define a two-level genetic algorithm to find robust schedule for continuous
casting: an outer loop to find optimal schedule and the inner loop to find worst case scenario schedule,
using this last one as fitness function for the outer loop. Chen et al. [29] present a hybrid GA adapted
for real time scheduling which remains listening for new orders and disturbances as soon as they
are registered by the system. Luo et al. [36] propose also a GA to generate a modified schedule
after any change on the processing times of the charges. Zhu et al. [30] combine the GA with a
parallel backward inferring algorithm for the construction of caster schedules and uses a simulation
based on cellular automata to validate and adjust the results obtained. He et al. [31] uses a GA
to generate a static initial schedule, which is combined with scheduling rules to adapt to potential
disturbances, introducing also the possibility of generating a complete reschedule using the GA.
Long et al. [59] develop a GA combined with variable neighborhood search (VNS) for a dynamic
schedule model to reallocate pending production orders under potential caster breakdown events.
Zheng et al. [65] define a rescheduling framework based on GA and heuristics, considering connection
problems between adjacent schedules and the matching between the created schedule and the available
production material. Other evolutionary algorithms include Wang et al. [34] who introduce the
possibility of applying an Ant Colony Optimization (ACO) for cold rolling scheduling with rebalance
of process flow on a dynamic environment in combination with a multiagent framework. Tang et al.
present three approaches based on metaheuristics: a solution combining a rescheduling heuristic
with Tabu Search for the reactive scheduling in color-coating lines [25], a Tabu Search to reallocate
slabs scheduled in the continuous caster to a different order after an event invalidated the current
assignment [40] and a solution for rescheduling of continuous casting process using a Differential
Evolution (DE) algorithm [18]. Jiang et al. [57] apply also DE technique, in this case a dynamic
multi-stage DE, combining a Multi Objective DE to perform the global scheduling considering the
values of waiting time cost and cast break penalty for the worst scenario, and a Knowledge Based
DE to perform the local scheduling considering interval values for waiting time cost and cast break
penalty. Other metaheuristics studied include Particle Swarm Optimization (PSO) [14,52], Fruit Fly
Optimization (FOA) [46] and Artificial Bee Colony (ABC) [69].

In the case of multiagents, the first proposal for the rescheduling of continuous casters and hot
strip mill was proposed by Cowling et al. [20] and Ouelhadj et al. [21]. Specific agents are defined
for each process step, capable of generating local schedules and use a negotiation protocol to obtain
global near optimal solutions. Fazel et al. [38] used multiagent systems for steel dynamic scheduling.
Ozoe and Konishi. [26] consider a solution based on three types of agents: a scheduling agent that
creates the basic schedules, a temperature evaluation agent that calculates the temperature of the
molten steel, and the evaluation agent that combines results from the other agents to evaluate the
viability of the schedule. Sun et al. [63] present a framework of intelligent agents that detect changes
in the dynamic environment and communicate the virtual system developed with the existing real
production scheduling systems. Different artificial intelligence approaches include Roy et al. [15] who
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created a knowledge-based model that tries to replicate the expert knowledge used in the rescheduling
of the steelshop operations in the presence of disturbances.

References summarized in Table 3 cover the proactive scheduling solutions focused on modeling
the uncertainty in the steelmaking process.

Table 3. Proactive scheduling models in steel production.

Reference
Modeling Techniques Uncertainty Factor

Stochastic Robust Fuzzy Others Orders Machine Product
Specification

Operation
Time

Rong and Lahdelma 2008 [24] X X
Yu et al. 2009 [28] X X
Worapradya and

Thanakijkasem 2010 [17] X X Montecarlo X X X X

Slotnick 2011 [33] X Heuristic X X
Gerardi et al. 2013 [39] X X

Yu 2013 [41] Prediction X
Krumeich et al. 2014 [42] X Forecasting X X

Ye et al. 2014 [44] X X X X
Yue and Xianpeng 2014 [45] X X

Luo et al. 2015 [48] MILP X
Mori and Mahalec 2015 [49] BN X

Nastasi et al. 2015 [50] Prediction +
MOEA X

Sun et al. 2015 [51] X X X
Jiang et al. 2016 [53] GPR X X
Lin et al. 2016 [54] IP-MOEA X

Guirong and Qiqiang 2017
[56] 2-layer CE

Jiang et al. 2017 (b) [58] EDA
Noshadravan et al. 2017 [60] X X

Wang et al. 2017 [64] NSGA-II X
Kammammettu et al. 2018

[66] X X

Long et al. 2018 [67] X Forecasting X
Niu et al. 2018 [68] X X
Yang et al. 2018 [70] X X

Yang et al. 2018 (b) [71] TR-MOEA X

The uncertainty factor most studied is the disturbance of the process time, due to the huge impact
that it has on the final makespan of the scheduling, which is considered by most of the objective
functions in the analyzed papers. Machine and equipment events, along with deviation from product
specifications are also considered by several authors, while only four works [17,33,44,48] analyze the
uncertainty associated directly with the orderbook and demand.

In relation to the modeling techniques used in these solutions, about half of them (13/24) apply
classic approaches like stochastic and robust programming or fuzzy systems, explained in Section 2
of this review. Some of these solutions are also combined with other techniques. Worapradya and
Thanakijkasem [17] use Montecarlo simulation with historical data to model the stochastic variables for
the potential uncertainties, proposing afterwards a robust approach to solve the worst-case scenario.
Krumeich et al. [42] propose a model based on Big Data, in which Complex Event Processing (CEP)
techniques are applied to improve the stochastic forecasting methods by providing more information
from the real environment, introducing event-based forecasting which reduce the generation of
potential invalid production plans.

Yu [41] creates a prediction model to analyze the potential disturbance delays affecting operational
time of steelmaking charges and propose a prediction method to estimate abnormal conditions which
reduces the frequency of the reschedules and the modifications performed to the initial schedule
when readjusts are required. Luo et al. [48] consider a model based on historical data to estimate the
raw material demand and establish a purchasing model using on MILP. Mori and Mahalec [49] use
Bayesian Networks (BN) to predict the distribution variables for production loads and production
times at the different stages of a plate mill process. Guirong and Qiqiang [56] apply the Cross Entropy
(CE) algorithm in a two-layer approach to solve the steelmaking scheduling problem, with an outer
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layer to calculate the basic processing times and the start casting times, and an inner layer to calculate
the machine assignment of the charges. Jiang et al. [53] introduce a combined proactive and reactive
solution for steelmaking scheduling, combining rescheduling capabilities with Gaussian Process
Regression (GPR) procedure to predict the characteristic indexes (slack ratios) aiming to enhance the
robustness of the initial schedule of their model against uncertainties. On a similar problem they also
propose a continuous Estimation Distribution Algorithm (EDA) [58] applied in two phases: the first
EDA calculates the slack ratios as characteristic indexes while a second phase EDA combined with
Local Search optimizes the schedule of the jobs at the continuous casting stage.

Other authors have relied on multi-objective evolutionary algorithms to deal with the proactive
scheduling in steel production. Wang et al. [64] present an Elitist Non-Dominated Sorting Genetic
Algorithm (NSGA-II) to solve the rolling process scheduling under machine breakdown uncertainty,
where the breakdown probability is known from historical data analysis. To reduce the duration of
the fitness evaluation phase, NSGA-II is combined with a Support Vector Regression (SVR) model.
Yang et al. [71] introduce a Target-Ranking Multi-objective Evolutionary Algorithm (TR-MOEA) to
solve the charge planning problem tackling the objectives of due date difference within each charge
and the minimization of the total weight of open orders. Lin et al. [54] solve the integrated planning
of continuous caster and hot rolling processes, considering the throughput uncertainties as interval
variables and using a modified Imprecision-propagating Multi-Objective Evolutionary algorithm
(MI-MOEA) which is more suitable to work with interval valued objectives. Nastasi et al. [50] propose a
solution based on Multi-objective Evolutionary algorithms for the route planning of the orders through
all the finishing mills, considering the impact that the selected route will have on the quality of the
final product. To measure this quality impact, they propose to develop prediction models based on
neural networks or fuzzy systems.

5. Discussion and Future Research

Planning and scheduling under uncertainty in the steel industry has been a topic of interest in
recent years. Reactive approaches have been researched along the past 15 years, while proactive
solutions have gained more attention during the latest period (2013 onwards). Due to the relative
novelty of the application of proactive techniques in this sector, hybrid solutions which integrate
aspects from both approaches are not quite common yet.

Considering which part of the complete steel industry production has been more studied by the
different authors, most of the papers reviewed in the present work are focused on the primary segment
of steelmaking (specially the casting process). There can be several reasons that explain this:

• Primary steelmaking is the process in which disruptions and uncertainty have a greater impact on
the scheduling operations. Any disruption in the planning will affect not only the installation or
machine subject to the uncertainty, but also all the following downstream processes required for
the job delayed or cancelled.

• Due to the nature and the complexity of the primary steel making process itself, the number
of uncertainty factors that are present in this step is higher than in other finishing processes.
This situation causes the need to propose more robust scheduling solutions.

In terms of uncertainty factors, most of the studies focus on the disturbances affecting processing
times, while paying less attention to other elements such as machine related events and deviations
from product specifications. There can be a couple of reasons to explain this interest in the literature to
focus on this factor:

• Many of the papers analyzed use the minimization of the makespan as the objective function to
optimize the scheduling. Not being capable of properly represent the process time of the different
jobs used to calculate this makespan objective will have an important impact on the realization of
the calculated scheduling.
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• The existing techniques (such as forecasting) and the available data from the process environments
can be better suited to model an accurate estimation of the process times, instead of detecting
potential disruptions on machines availability or product composition.

Considering the time horizon of the problem solved, most of the papers analyzed are focused on
short and mid-term scheduling scenarios, while a very small number propose a solution for long term
planning problems. This could be explained by the high quantity of reactive approach solutions and
the huge impact that uncertainty has on short and mid-term scenarios, making this type of problems
more appealing for the research community.

Future research in this field should focus on increasing the efficiency of the reaction capacity of
the industry to provide realistic schedules. Real production environments require fast solutions to
readapt to the disturbances in their operations. This increase in the scheduling efficiency should come
from several sources:

• Growing implementation of Industry 4.0 and digitalization paradigms in the steel industry shall
improve the level of control over the manufacturing process [42]. This will provide access to
additional new data and information not available before that should lead to a better understanding
of the potential disruptions. New techniques based on new trends like Big Data and the Internet
of Things will create better models to predict uncertainties, providing the opportunity for better
proactive solutions.

• Evolution of techniques used in rescheduling solutions (specially metaheuristics) should allow for
faster time response on the search of an improved reschedule upon the apparition of a disruption.

• Integration of both proactive and reactive solutions into hybrid solutions. The combination of
both approaches should allow not only to provide feasible reschedules on reasonable times but
also to reduce the number of times that the schedules need to be readapted to face uncertainties
through the improvement of the proactive techniques used to create the initial schedules.

6. Conclusions

A review of the recent studies dealing with the planning and scheduling problem in steel industry
under uncertainty has been presented in this paper. The most commonly used techniques to model
potential uncertainties or to react to disruption have been exposed. We have discussed the potential
uncertainty factors and proposed a classification to be used in the analysis on the solutions present in
the literature for this problem. The most relevant studies have been classified and discussed. Finally,
the main findings and some conclusions about future research lines have been presented.
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Nomenclature

Parameter Explanation

x Decision variable for processing times of the jobs
y Decision variable for selection of tasks and machines
c Coefficient vector for decision variable x
d Coefficient vector for decision variable y
A Constraint matrix associated with decision variable x
B Constraint matrix associated with decision variable y
p Constraints maximum threshold
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ξ Vector containing the scenario information for the second-stage problem
Q (x, y, ξ) Solution with optimal values for stochastic model of second-stage problem
E [Q (x, y, ξ)] Mathematical expectation for the solution of the second-stage problem
q (ξ) Random variable for the coefficients of objective function z
z Decision variable for the second-stage problem
T (ξ) Random variable for constraints associated with objective function x in second-stage problem
V (ξ) Random variable for constraints associated with objective function y in second-stage problem
W (ξ) Random variable for constraints associated with objective function z
h (ξ) Random variable for constraint maximum threshold
µ Membership function of a constraint
b Lower bound for parameter p
d Used in the calculation of the upper bound for parameter p

Abbreviations

Abbreviation Full Name

ABC Artificial Bee Colony
ACO Ant Colony Optimization
AI Artificial Intelligence
BN Bayesian Networks
BOF Basic Oxygen Furnace
CE Cross Entropy
CEP Complex Event Processing
DE Differential Evolution
EAF Electric Arc Furnace
EDA Estimation Distribution Algorithm
FOA Fruit Fly Optimization Algorithm
GA Genetic Algorithm
GPR Gaussian Process Regression
HFS Hybrid Flow Shop
IP-MOEA Imprecision-propagating Multi-objective Evolutionary Algorithm
MILP Mixed integer linear programming
MOEA Multi-objective Evolutionary Algorithm
NSGA-II Elitist Non-Dominated Sorting Genetic Algorithm
PSO Particle Swarm Optimization
SVR Support Vector Regression
TR-MOEA Target-Ranking Multi-objective Evolutionary Algorithm
TS Tabu Search
VNS Variable Neighborhood Search
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