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Abstract: High Performance Computing Clusters (HPCCs) are common platforms for solving both
up-to-date challenges and high-dimensional problems faced by IT service providers. Nonetheless,
the use of HPCCs carries a substantial and growing economic and environmental impact, owing
to the large amount of energy they need to operate. In this paper, a two-stage holistic optimisation
mechanism is proposed to manage HPCCs in an eco-efficiently manner. The first stage logically
optimises the resources of the HPCC through reactive and proactive strategies, while the second
stage optimises hardware allocation by leveraging a genetic fuzzy system tailored to the underlying
equipment. The model finds optimal trade-offs among quality of service, direct/indirect operating
costs, and environmental impact, through multiobjective evolutionary algorithms meeting the
preferences of the administrator. Experimentation was done using both actual workloads from
the Scientific Modelling Cluster of the University of Oviedo and synthetically-generated workloads,
showing statistical evidence supporting the adoption of the new mechanism.

Keywords: energy-efficient Cluster computing; multi-criteria decision making; evolutionary algorithms

1. Introduction

High Performance Computing Clusters (HPCCs) are the core infrastructure of modern
supercomputers (see Top500 (http://www.top500.org/) and The Green500 (http://www.top500.
org/green500)), given both the availability of tools for distributed and parallel computing, and the
performance/price ratio of modern commodity microprocessors [1]. Nevertheless, the economical and
environmental impact of these computing infrastructures is a growing concern. First, HPCCs have
high power consumptions due to both their computing resources and their support equipment,
such as its cooling systems [2,3]. It is estimated that, in the United States alone, data centres
consumed 70 billion kWh in 2014, which amounts to approximately 1.8% of the total U.S. electricity
consumption [4]. These large power consumptions lead to high direct operating costs [5,6]. Secondly,
there are indirect costs associated to the life cycle of equipment as a result of replacements due to
degradation and obsolescence in either computing or support systems [7]. Thirdly, there are substantial
environmental-related impacts such as the greenhouse gases emitted over the HPCC’s entire life
cycle: from the carbon footprint of the manufacturing process to that associated with the generation
of the large amount of electricity consumed during operation. These environmental impacts are,
in fact, equivalent to that of the aviation industry, as HPCCs are accountable for a carbon footprint of
100 million metric tons of CO2 every year [8].

These factors accurately depict the magnitude of the problem at hand. Both legislators, supporting
policies to improve the energy efficiency of data centres [2,9], and key players in the industry, implementing
measures to reduce their power use and energy waste [10–12], are well aware of this issue.
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Lastly, adaptive resource cluster consists of an automatic reconfiguration of the cluster resources
to fit the workload at every moment by switching on or off its compute nodes, thus saving energy
whenever these are idle.

This technique has been applied to load-balancing clusters [13–18], and in VMware vSphere
(VMware Distributed Power Management Concepts and Use, http://www.vmware.com/files/pdf/
Distributed-Power-Management-vSphere.pdf) and Citrix XenServer (Citrix XenServer—Efficient
Server Virtualization Software, http://www.citrix.com/products/xenserver/overview.html
hypervisors. Recently, various software tools implementing this technique in HPC clusters have also
been developed [19–22].

In recent years, many efforts have been made to achieve an energy-efficient cluster computing,
following both static and dynamic approaches. Static approaches focus on the development of hardware
to maximise the FLOPS/watt ratio as opposed to solely absolute performance. On the other hand,
dynamic approaches seek to adapt the cluster to the current demand by down-speeding underused
resources or by shutting them down altogether. Examples of these techniques are the dynamic
adjustment of CPU frequency and voltage (Dynamic Voltage and Frequency Scaling, DVFS) [23–30],
the development of energy-efficiency software [31–35], the thermal-aware methods [36,37] and the
energy-efficient job schedulers [38,39].

This work, however, focuses on adaptive resource clusters, a method that consists of automatically
reshaping the cluster resources to fit the current demand by powering on or off its compute nodes,
thus saving energy whenever these are underused. This method has already been applied to
load-balancing clusters [13–18], in virtual data centres running VMware vSphere (VMware Distributed
Power Management Concepts and Use, http://www.vmware.com/files/pdf/Distributed-Power-
Management-vSphere.pdf and Citrix XenServer (Citrix XenServer— Efficient Server Virtualization
Software, http://www.citrix.com/products/xenserver/overview.html hypervisors, and also in HPC
clusters [19–22].

Notwithstanding this, these proposals only target the high operating costs and carbon footprints
of HPCCs as consequence of their high power consumptions, and do not address the life cycle-related
effects. Moreover, the workload consolidation achieved with some energy optimisation techniques
negatively affects the reliability of the equipment, increasing the wear-and-tear of server components
due to thermal stressing and frequent power cycling [40–44]. As a result, when these techniques are
applied regardless of the equipment’s life-cycle characteristics, the hardware degradation incurred
may lead to an increased indirect costs and environmental impacts, which potentially outmatch the
direct savings achieved from reduced power consumptions.

On account of this, we believe an holistic solution to this problem should entail two stages in order
to jointly optimise the direct power-related costs and indirect life cycle-related costs of HPCCs. First,
the optimal amount of logical resources for the cluster must be determined to balance service quality
and energy savings. This can be done following either the proposals of other authors [19–21] or our
previously proposed reactive [45] and proactive strategies [46]. Given the better results achieved with
our proposed strategies in terms of flexibility, service quality compliance, and direct energy savings, we
use these in this paper. Secondly, the new logical resource count computed in the preceding stage must
be translated to a set of specific server reconfiguration commands. In other authors’ prior works as well
as in ours, simple heuristics are used to prioritise servers according to a predetermined metric such as
their power efficiency. However, these metrics are unaware of the life cycle-related costs of the servers,
thus inherently limiting the potential overall savings.

Because of this, we introduce a novel mechanism to optimise hardware allocation, implemented
by means of a genetic fuzzy system tailored to the underlying equipment of the HPCC,
explicitly accounting for its power efficiency and reliability. The both direct and indirect
cost-consciousness of this new mechanism allows it to achieve noticeable additional savings in
real world heterogeneous HPCCs. Is it noteworthy that this proposal is intended primarily for
heterogeneous clusters. In scenarios where all servers share the same reliability specifications and have
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been used evenly for the same amount of time, a simple power-efficiency sorting heuristic may suffice,
since the indirect costs of all servers would likely be the same, and thus additional savings would not
be attainable on account of indirect costs, but rather solely to reduced direct energy consumptions.
However, according to our experience, this scenario is infrequent in real world HPCCs as the entirety
of their computing resources is unlikely to be replaced all at once, but rather progressively, leading
into a growing heterogeneity over time.

The remainder of the paper is as follows. Section 2 explains the architecture of the HPCCs that are
addressed in this paper along with the metrics used to assess the eco-efficiency of an HPCC. Section 3
explains the architecture of the EECluster software tool. Section 4 summarises the first stage of the
decision-making mechanism. Section 5 explains the node allocation algorithm proposed. Section 7
shows the experimental results. Section 8 concludes the paper.

2. System Overview

The systems under study in this paper are the High Performance Computing Clusters (HPCCs),
a type of computing system consisting of multiple commodity-hardware standalone computers
interconnected by high-bandwidth and low-latency networks, running a software middleware that
allows them to work as a single computing resource [1]. The main purpose of these systems is to address
computationally demanding problems, such as cancer detection and therapies, semiconductors or drugs
design, CO2 sequestration, cardiovascular engineering, new combustion systems, new materials, etc. [47].

The architecture of HPCCs is composed of one or more master nodes and several compute nodes
interconnected and sharing network storage space (see Figure 1 for a representation of a typical
RMS). The master nodes are the core component of the infrastructure, as they are the only nodes
accessed by the users and are responsible for managing the cluster resources. They do this through
the Resource Management System (RMS), a software layer that presents the cluster to the users as a
unified computing system composed of logical slots by abstracting them from the cluster underlying
hardware of the compute nodes. The RMS also allows users to submit resource requests to run software
programs supplied by them (hereafter denoted as jobs). Once jobs are submitted, the RMS first gathers
them in an internal queue, then runs a scheduling algorithm to determine the best matching between
resource requests and available slots, and finally assigns computing slots and dispatches the jobs to
the corresponding compute nodes. It must be noted that the granularity of the compute resources
provided to the users is configured in the RMS by determining what each slot represents, whether it is
a single core, a CPU, or an entire host. Finally, shared network storage through network file systems or
storage area networks are leveraged to transmit data and results between the nodes in the cluster.

Master

Resource Management System

Compute node 1

  Slot 1

  Slot 2

Job scheduler

Job 1

Job 1

Compute node 2

  Slot 1

  Slot 2 Job 1

Job 3Job 4Job 5

Job queue

Compute node m

  Slot 1

  Slot 2

Job 2

 Jobs

User 1

User 2

User 3

User n

Network storage

Job 1 

Standard 

Output
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Error 

OutputJob 1 data

Job 1 

software

Job 2 
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Output
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Figure 1. Resource management system components using only one master node.
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Traditionally, these computing systems have only focused on the Quality of Service (QoS)
delivered to the end user, which relies solely on the amount of computing power made available to the
clusters users. However, as environmental and economic impacts grow larger in importance to the
cluster operators, the focus in HPCCs is moving to improve their eco-efficiency, having this concept
represented by the relation between QoS and the economic and environmental footprint of the cluster
operation [48].

To explicitly assess the eco-efficiency of an HPCC, we have extended the model introduced in [49]
by defining a series of metrics that accurately depict the service quality of the cluster along with its
direct and indirect operating costs measured in both monetary and environmental terms. Specifically,
we measure the direct operating cost as the amount of energy consumed by the compute nodes
measured in Kilowatts-hour (kWh) along with equivalent figures in terms of carbon footprint (kg CO2)
and monetary cost (EUR). On the other hand, indirect costs are measured in terms of manufacturing
costs of hardware replacements according to estimated failures rates under simulated stress conditions
and power-on/off cycles, as these are known to be the main factors affecting servers and disks reliability
[40,41]. To estimate the effective failure rates of both the computes nodes as a whole and their hard
disk drives, the models described in [41,42,44] are used to approximate the effect of temperature rise
and thermal cycling in processors, and increased disks start/stop frequencies.

Assuming that the QoS in an HPCC depends only on the waiting time of the jobs before their
requested resources are assigned, as jobs cannot be interrupted once its execution start, and that the
jobs may have great disparity in running times, the waiting time of a job is not directly measured in
seconds but rather divided by the job execution time. Let us suppose that there are n jobs and the jth
job (j = 1 . . . n) is scheduled to start at time tschj but it actually starts at tonj and stops at time toffj.
QoS is defined as follows [45]:

QoS = min

{
p : ||{j ∈ 1 . . . n :

tonj − tschj

toffj − tonj
≤ p}|| > 9n

10

}
(1)

where ||A|| is the cardinality of the set A. It is remarked that the 90th percentile is used instead of
average, because outliers are possible.

Let c be the number of nodes, let state(i, t) be 1 if the ith node (i = 1 . . . c) is powered on at time t
and 0, otherwise let power(i, t) be the power consumption of the ith node at time t. Lastly, let the time
scale be the lapse between tini = minj{schj} and tend = maxj{toffj}, then the overall cluster power
consumption is measured by adding the power consumption of every compute node:

Power consumption =
c

∑
i=1

∫ tend

tini

power(i, t)
1000

· state(i, t)dt.

The direct operating costs measured in both monetary units and carbon footprint are computed
by multiplying the overall cluster power consumption by a translation factor according to the energy
mix of the cluster power supply. Let ρCO2 be the amount of kg of CO2 emitted per kWh generated, and
ρe the electricity charge measured in euros per kWh, then the direct cost are calculated as:

Direct monetary cost = Power consumption · ρe. (2)

Direct carbon footprint = Power consumption · ρCO2 . (3)

The indirect operating costs for each compute node are approximated by multiplying the
probability of failure for the node and its disks during the simulation time lapse (tini, tend) by
their manufacturing cost (monetary and carbon footprint), and by the remaining useful life of the
device. These partial results are then added to estimate the costs for the whole cluster:
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Ind. monetary cost =
c

∑
i=1

(1− ulifei) · (SFRsrv(i, tini, tend) ·msrvi
e

+SFRHDD(i, tini, tend) · numi
HDD ·mHDDi

e).

(4)

Ind. carbon footp. =
c

∑
i=1

(1− ulifei) · (SFRsrv(i, tini, tend) ·msrvi
CO2

+SFRHDD(i, tini, tend) · numi
HDD ·mHDDi

CO2
).

(5)

where (1− ulifei) is the remaining percentage of useful life for the ith node before it would be replaced
anyway due to its obsolescence. SFRsrv(i, tini, tend) and SFRHDD(i, tini, tend) are the simulation failure
rates for the ith node and for one of its disks, and represent the estimated probability of failure of these
devices during the simulation time lapse. msrvi

e/msrvi
CO2

and mHDDi
e/mHDDi

CO2
are, respectively,

the manufacturing costs in euros and carbon footprint for the ith node and for one of its disks. numi
HDD

is the number of disks of the ith node.
The effective failure rates during the simulation for the ith compute node as a whole are

approximated by:

SFRsrv(i, tini, tend) =
hours(i, tini, tend)

MTTFi
srv

.

where

hours(i, tini, tend) =
∫ tend

tini
state(i, t)dt,

MTTFsrv(i, tini, tend) = MTTFi
base

∫ tend

tini
cpudgr(i, t) dt

hours(i, tini, tend)
− ∆MTTFi

tc,

cpudgr(i, t) =



0 if state(i, t) = 0

1 if state(i, t) = 1

and hload(i, t) = 0

(AF)−1 if state(i, t) = 1

and hload(i, t) = 1

and

∆MTTFtc(i, tini, tend) = nd(i, tini, tend) ·
[(

Tavg_a − Tamb

Tavg_b − Tamb

)q

− 1

]
·MTTFi

base.

where hours(i, tini, tend) is the number of hours the ith node has been powered on during the
simulation, MTTFsrv(i, tini, tend) is the effective mean time to failure of the node representing the
estimated number of hours until failure, MTTFi

base the baseline mean time to failure reported by
the hardware manufacturer prior to the simulation, hload(i, t) is 1 if the ith node is at high load at
time t and 0 otherwise. AFi is the acceleration factor for CPU degradation between the higher CPU
temperature when the server is at high load (Thload) compared with the CPU temp when it is idle
(Tidle), as described in [41,42] and based on the time-to-fail model of the Arrhenius equation. ∆MTTFi

tc
is the reduction in the mean time to failure due to node power-on/off cycles (thermal cycling) and is
calculated as described in [41,42] where Tavg_b and Tavg_a are the average CPU temperatures before
and after the power-on/off cycle, q is the Coffin-Mason exponent taking the value 2.35 and Tamb is the
ambient temperature [42].
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The effective disk failure rates for the ith node are estimated as:

SFRHDD(i, tini, tend) =
hours(i, tini, tend)

MTTFi
HDD − ∆MTTFi

HDD
.

∆MTTFHDD(i, tini, tend) =
H

AFRHDD( f i)
− H

AFRHDD( f i + ∆ f i)
.

∆ f i = f i +
nd(i, tini, tend)

months(i, tini, tend)
.

being MTTFi
HDD the effective mean time to failure of the disk representing the estimated number of

hours until failure, H the number of hours in a year (8760), and ∆MTTFi
HDD the reduction in the mean

time to failure of the disk due to node power-on/off cycles. f i is the baseline disk spindle start/stop
frequency (in times per month) prior to any node power-on/off cycle, ∆ f i is the increment in the disk
start/stop frequency due to node power-on/off cycles, nd(i, tini, tend) is the number of discontinuities
of the function state(i, t) in the time interval t ∈ (tini, tend), and months(i, tini, tend) is the number of
months the ith node has been powered on during the simulation. Ultimately, AFRHDD( f ) is a function
that quantifies the disk Annualised Failure Rate (AFR) based on its spindle start/stop frequency.
Following Xie and Sun [44], AFRHDD( f ) is 1.51e−5 f 2 − 1.09e−4 f + 1.39e−4.

3. Architecture

EECluster is proposed as a software solution to convert HPCCs running open-source RMS such
as OGE/SGE and PBS/TORQUE (EECluster features two out-of-the-box connectors for PBS/TORQUE
and OGE/SGE and given the wide adoption of these RMS in HPC infrastructures [50]) into adaptive
resource clusters capable of dynamically reshaping its computing resources to suit the HPC workload
without impact on QoS, minimising idle resources and thus improving its eco-efficiency by reducing
operational and environmental costs whenever the cluster is underused.

The architecture of this solution is depicted in Figure 2. Its main component is the daemon
eeclusterd deployed on the master node of the cluster, which keeps an updated record of the cluster
status, its resources and its workload, and then runs a decision-making mechanism that issues
power-on/off commands to the compute nodes through a power interface. A learning algorithm
and simulator are provided to tune the behaviour of the solution in accordance to the preferences of the
cluster administrator. In addition, a web-based administration dashboard allows the administrator to
access the information on the cluster status, resources, job records, etc. retrieved by the daemon, as well
as manually reconfiguring compute nodes and choosing the parameters that rule the decision-making
mechanism. A detailed description of the architecture of EECluster and its modules can be found in
Reference [22].

The control cycle of EECluster used to dynamically reshape its compute resources is represented
in Figure 3 and consists of four steps:

1. Synchronise EECluster’s internal records with the system current status and workload.
2. Run the first stage of the decision-making mechanism to determine the optimal number of slots

that should be on at the current time
3. Run the second stage of the decision-making mechanism to select the target compute nodes to be

powered on or off.
4. Issue power-on/off commands to the selected nodes through the power management module.
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Decision-making mechanism
Cluster records

Environment

Cluster

First Stage

Reactive or Proactive
Second Stage

job 

records

current 

jobs

slot 

status

new slot 

count

Power 

Management

node hardware 

parameters

new node 

status

reconfiguration 

commands

RMS 

Connector

Figure 3. EECluster control cycle.

As can be noted, the key element in the solution is the decision-making mechanism, which is
responsible for automatically optimising the compute resources in accordance to the cluster status while
strictly complying with the administrator preferences. This element works in two stages that produce
two consecutive decisions in order to reconfigure the cluster. The first stage is hardware-agnostic,
relying on a purely logical view of the cluster slots, since its goal is to determine the minimum number
of slots that are required to keep on in order to maximise overall saving while meeting the QoS penalty
constraints allowed by the cluster administrator. The second stage is the one that translates the number
of slots determined by the previous stage into a series of specific compute nodes to be powered on or
off. This is done by taking into account the key characteristics of the underlying hardware that drives
the economic costs and environmental impacts defined in Section 2 in order to optimise the overall
eco-efficiency of the cluster. In other words, the first stage logically optimises the resource allocation to
appropriately meet the demand while the second stage explicitly optimises the eco-efficiency of the
hardware resources in the cluster. The following sections explain in greater detail how these stages are
implemented.
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4. Optimising Slot Allocation

Given the complexity of finding the optimal amount of slots at every moment in a cluster
architecture prone to sharp changes in the workload patterns, both reactive and proactive strategies are
introduced in our previous works [45,46]. In this section, we include a brief summary of these strategies.

4.1. Reactive Strategy

The reactive strategy is introduced in Reference [45], and consists in determining the optimal
number of cluster slots relying on information from current and past records of the cluster and thus
reacting to the changes in the workload patterns after they manifest.

The starting point of this control strategy is a suboptimal but safe Knowledge Base (KB) described
in Reference [19]. In this KB, the number of active slots is increased when the average waiting time or
the number of jobs in the queue is too high, and reduced in the opposite case. There is a minimum
number of always-on slots. The thresholds (high waiting time, too many jobs in queue, etc.) are
selected by hand according to the experience of the operator. The linguistic definition of the KB is
as follows:

if srunning + sstarting < smin then power on (smin − (srunning + sstarting)) slots

if tavg > tmax or nqueued > nmax then power on 1 slot

if tavg < tmin or nqueued < nmin then power off 1 slot

where /

srunning = number of slots currently running
sstarting = number of slots currently starting
smin = number of slots that are at least required to run any of the jobs currently queued
tavg = average waiting time of the jobs in the queue
tmax = maximum average waiting time for the jobs in the queue
tmin = minimum average waiting time for the jobs in the queue
nmax = maximum number of queued jobs
nmin = minimum number of queued jobs

In addition to this KB, a set of fuzzy rules learnt from past data is set to speed up the process of
starting or shutting down compute slots. This process, which was done one slot at a time by the initial
“safe” KB, is improved when fuzzy rules are introduced, because the fuzzy KB is designed to use a
set of soft thresholds for defining the maximum waiting time for each slot. The intuitive idea under
the soft thresholds is that the degree of truth of the assert “the ith slot must be switched off” is no
longer binary, but a real value between 0 and 1. Rules that are only partially true cannot be used to
decide whether a slot must be switched on or off. On the contrary, the degrees of truth of all rules are
combined first and then the total number of active slots is determined from this aggregated value [45].

The linguistic description of the second KB comprises the following N rules for each of the s slots.
If the idle time of the hth slot is called idleh, the KB is as follows:

if idleh is T̃1 then off = w1

if idleh is T̃2 then off = w2

if · · · then · · ·
if idleh is T̃N then off = wN
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T̃1, . . . , T̃N are fuzzy sets with triangular membership functions, which form a fuzzy partition
of the input variable idleh [51]. The aggregation of the degrees of truth of the different fuzzy rules
associated to the hth compute slot is

off(idleh) =
∑N

r=1 T̃r(idleh) · wr

∑N
r=1 T̃r(idleh)

.

The number of slots in the whole cluster that are switched off is computed by adding the outputs
of the fuzzy model for every value of idleh:

Powered off slots =

⌊
c

∑
h=1

off(idleh)

⌋
.

4.2. Proactive Strategy

The proactive strategy is introduced in Reference [46] to better adapt to volatile scenarios with
stationary patterns of cluster activity, whose prediction may be leveraged to further improve the results
obtained with the reactive strategy. This proactive strategy consists in finding the optimal number of
slots to meet the expected cluster demand over a temporal horizon. It does this by running a cluster
simulation with an incoming workload that is forecast using a prediction model built from past cluster
records, and choosing the number of slots that is best valued by a machine-learned utility function
that models the administrator preferences. Therefore, this strategy proactively reshapes the cluster in
accordance with its current and expected future demand.

At the beginning of every control interval, the cluster state is monitored so that all valid slot
reconfiguration options are identified and tested in a simulation over a temporal horizon bound to
the current control interval. The simulation takes as input: (1) a given slot reconfiguration option;
(2) the current cluster status; and (3) the expected job arrivals in the current interval. The latter is
forecast by generating a synthetic workload Monte Carlo simulation method with adjusted probability
distributions of each of the three parameters that describe a job: its arrival delay after the previous
job, its requested slots and its runtime. Every simulation result is then scored by a utility function
implemented through a fuzzy model taking as input values the average waiting time of the jobs during
the simulated temporal horizon, the slot count of the reconfiguration option, and the number of slots
that were reconfigured as a result of implementing the reconfiguration. The chosen slot reconfiguration
option is the one that scores the highest value in the aforementioned utility function.

The specific details on the proactive mechanism can be found in Reference [46].

5. Optimising Cluster Eco-Efficiency

As mentioned above, the first stage of the decision-making mechanism only determines how
many slots should be available at any given time, but does not identify the precise compute nodes to
be reconfigured. This translation is done at the second stage of the mechanism.

Hitherto, in the proposals of other authors as well as in ours, simple heuristics are used to sort the
nodes according to a predetermined metric, such as the power efficiency of the node or the amount of
time that has been active (see, for example, References [19–21,46]). Nevertheless, relying on simple
heuristics derived from expert knowledge inherently limits the eco-efficiency of the node allocation
stage, since they are not tailored to the specific underlying hardware of the cluster.

To improve the eco-efficiency of the node allocation stage, computational intelligence or soft
computing techniques are leveraged to learn a custom priority function that can optimally rank the
compute nodes according to their reconfiguration preference at any given time, accounting explicitly
for the key hardware factors that drive the direct and indirect operating costs and environmental
impacts of the cluster. In particular, genetic fuzzy systems [52] are used to elicit a knowledge base
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comprised of a set of fuzzy rules building a zero-order TSK model [51,53]. The input variables of this
model are efficiencyi, indcosti and action.

efficiencyi represents the power efficiency of the ith node, computed as the relation between the
performance of the node (measured using a metric, for example the SPEC CPU benchmark [54]) and
the average power consumption:

efficiencyi =
performancei

(poweri
idle + poweri

hload)/2
. (6)

indcosti is the indirect cost of the ith node computed over the time lapse defined between the
deployment of EECluster or beginning of the simulation (tini), and the current time at which a
reconfiguration is to be performed (tnow):

indcosti = (1− ulifei) · (SFRsrv(i, tini, tnow) ·msrvi
e

+SFRHDD(i, tini, tnow) · numi
HDD ·mHDDi

e).
(7)

action is the reconfiguration command, whether it consists in switching on or off a compute node:

action =

{
0 if power on command

1 if power off command
(8)

The structure of the TSK fuzzy model: is as follows:

if efficiency is Ẽ1 and indcost is ĨC1 and action is A1 then value = p1

if efficiency is Ẽ1 and indcost is ĨC1 and action is A2 then value = p2

if efficiency is Ẽ1 and indcost is ĨC2 and action is A1 then value = p3

if efficiency is Ẽ1 and indcost is ĨC2 and action is A2 then value = p4

if · · · then · · ·
if efficiency is Ẽ1 and indcost is ĨCT2 and action is A1 then value = pT2×2−1

if efficiency is Ẽ1 and indcost is ĨCT2 and action is A2 then value = pT2×2

if efficiency is Ẽ2 and indcost is ĨC1 and action is A1 then value = pT2×2+1

if efficiency is Ẽ2 and indcost is ĨC1 and action is A2 then value = pT2×2+2

if · · · then · · ·
if efficiency is ẼT1 and indcost is ĨCT2 and action is A1 then value = pR−1

if efficiency is ẼT1 and indcost is ĨCT2 and action is A2 then value = pR

{Ẽ1, . . . , ẼT1} and { ĨC1, . . . , ĨCT2} are fuzzy sets with triangular memberships in the form of
a fuzzy partition [51] of the domain of the variables “efficiency” and “indcost”, respectively, and
{A1, A2} is a crisp set with only possible values (0 for switching off and 1 for switching on). p1, . . . , pR
are the weights of the R rules, with values in the [0.0, 1.0] interval, and depicting the priority of
choosing the ith node for reconfiguration. Note that the partition Ẽ has T1 linguistic terms and ĨC
has T2.

The priority value for the selection of the ith node at time tnow is given by the defuzzification
function computing the model output:

defuzz(efficiency, indcost, action) = ∑R
r=1 Ẽr(efficiency) · ĨCr(indcost) · Ãr(action) · wr

∑R
r=1 Ẽr(efficiency) · ĨCr(indcost) · Ãr(action)

.
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Finally, let srunning, sstarting and stotal be as defined in Section 4.1, let sexec be the number
slots currently executing a job, let snew be the optimal slot count issued by the first stage of the
decision-making mechanism, let si

total be the number of slots in the ith compute node and let exec(i, t)
be 1 if the ith node is executing a job and 0 otherwise. Then, the reconfiguration algorithm can be
expressed as displayed in Algorithm 1. This algorithm makes a decision between switching on new
nodes (“if” clause, Lines 3–9) or switching off unneeded nodes (“else” clause, Lines 11–17). The
efficiency and the indirect cost of the nodes are computed on Lines 5 and 13 as mentioned in Equations
(6) and (7), and the fuzzy rule-based system assigns a priority to each of the nodes according to its
efficiency, its cost and the requested action (power on/off). On Lines 7–9, the nodes with the highest
priority among those that are powered off are selected, and the reciprocal operation is performed on
Lines 15–17, where the eligible nodes with highest priority are switched off.

Algorithm 1 Node reallocation algorithm.

input: snew, sexec, srunning, sstarting, stotal

1: if snew ≤ stotal and snew ≥ sexec then
2: if snew > srunning + sstarting then
3: sreconf ← |snew − (srunning + sstarting)| . Power on sreconf slots
4: for each i ∈ 1 . . . c do
5: Compute efficiencyi and indcosti

6: priorityi ← defuzz(efficiencyi, indcosti, 1)
7: while sreconf > 0 do
8: Power on arg maxu{priorityu | state(u, tnow) = 0}
9: sreconf ← sreconf − su

total
10: else if snew < srunning then
11: sreconf ← |snew − srunning| . Power off sreconf slots
12: for each i ∈ 1 . . . c do
13: Compute efficiencyi and indcosti

14: priorityi ← defuzz(efficiencyi, indcosti, 0)
15: while sreconf > 0 and ∃u | state(u, tnow) = 1, exec(u, tnow) = 0, su

total ≤ sreconf do
16: Power off arg maxu{priorityu | state(u, tnow) = 1, exec(u, tnow) = 0, su

total ≤ sreconf}
17: sreconf ← sreconf − su

total
18: else
19: Do nothing
20: else
21: Do nothing

6. Learning Algorithm

The decision-making mechanism described to reshape the cluster resources is sufficiently flexible
to meet the requirements and preferences of the administrator. Nevertheless, to achieve such
compliance, the KBs and the parameters that rule the behaviour of the first and second stage must be
tuned. According to the the description of these stages in the preceding sections, a valid EECluster
policy adopting the reactive strategy in the first stage is defined by the following parameters:

(tmin, tmax, nmin, nmax, T̃1, . . . , T̃N , w1, . . . , wN , Ẽ1, . . . ,

ẼT1 , ĨC1, . . . , ĨCT2 , p1, . . . , pR)
(9)
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and as follows if the proactive strategy is used:

(tinterval , r, W̃1, . . . , W̃N1 , Ñ1, . . . , ÑN2 , R̃1, . . . , R̃N3 , w1, . . . , wQ,

Ẽ1, . . . , ẼT1 , ĨC1, . . . , ĨCT2 , p1, . . . , pR)
(10)

Given that the large search space and the presence of multiple conflicting objectives render an
exhaustive search infeasible, multiobjective evolutionary algorithms (MOEAs) are used to learn a set
of non-dominated configurations (also known as Pareto-efficient frontier) for the decision-making
mechanism from which the cluster administrator can select the preferred one.

In particular, learning is done using the Non-Sorting Genetic Algorithm II (NSGA-II) [55] in a
distal supervised learning approach [56], as shown in Figure 4. This is done by computing the fitness
for each individual in the population (recall Equations (9) and (10)) by running a cluster simulation
characterised by n jobs, s slots and c compute nodes, which play the role of the training set. The fitness
function consists of three components: the quality of service (as defined in Equation (1)), the direct
operating cost (using either Equation (2) or Equation (3)) and the indirect operating cost (using either
Equation (4) or Equation (5)). The NSGA-II employed in the experiments described in Section 7 was
the MOEA Framework [57] implementation using binary tournament selection with replacement,
a population comprising 100 individuals, a maximum of 150,000 fitness evaluations and 64 seeds
(random points of initialisation). The remaining parameters were assigned their default values in
accordance to the MOEA Framework specifications.

Learning 

algorithm
Simulator

(tmin, tmax, nmin, nmax, w1, ... ,wN, p1, ... , pR) 

or

(tinterval, r, w1, ... ,wN, p1, ... , pR)

(QoS, Direct cost/carbon footprint, 

Indirect cost/carbon footprint)

(c nodes, s slots, n jobs)

Figure 4. EECluster distal supervised learning algorithm.

It is also remarked that the membership functions used in either stage
(W̃1, . . . , W̃N1 , Ñ1, . . . , ÑN2 , R̃1, . . . , R̃N3) are not adjusted, but uniform partitions are defined
instead. The reason is to simplify the learning process given that using uniform partitions does not
present a fundamental limitation since changes in the membership functions may be compensated by
modifying the consequent of the rules.

7. Experimental Results

To evaluate the solution proposed for an improved compute node allocation in a real world
environment, measuring its effect in terms of the eco-efficiency metrics defined in Section 2,
an experiment was done simulating a reference 33-node cluster under different workloads to better
assess its performance under different activity scenarios. These scenarios include both actual workloads
from the Scientific Modelling Cluster of the University of Oviedo (CMS) (further information of this
HPC cluster can be found at http://cms.uniovi.es) with a total of 2907 jobs spanned over 22 months
and displaying frequent activity patterns in production HPCCs, and synthetically-generated workloads
depicting four 24-month scenarios with an increasing degree of variation in the job arrival patterns.
Specifically, the synthetic workloads were built from a series of jobs whose arrivals follow a Poisson
process with the rates λ detailed in Table 1 and whose runtimes were exponentially distributed with a
rate λ = 10−5 s. As for the hardware characteristics of the cluster, its nodes were characterised by the

http://cms.uniovi.es
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parameters detailed in Table 2. The hardware parameters used in the experiment were adopted from
actual hardware characteristics of a subcluster at the CMS, as provided by its administrators, and were
meant to represent the most frequent casuistic in real world clusters where there was a noticeable and
overtime-growing heterogeneity in their computing equipment.

Table 1. Poisson process of job arrivals in each scenario.

Scenario Day of Week Hour Range Week of Year λ Value

1 All All All 2× 10−4 s

2
Monday–Friday 8:00–20:00 All 2× 10−4 s
Satday–Sunday 8:00–20:00 All 2× 10−5 s

Monday–Sunday 20:00–8:00 All 10−5 s

3
Monday–Friday 8:00–20:00

w % 5 = 0 10−4 s
w % 5 = 1 2× 10−4 s
w % 5 = 2 5× 10−4 s
w % 5 = 3 5× 10−4 s
w % 5 = 4 2× 10−4 s

Monday–Sunday 20:00–8:00 All 2× 10−5 s
Monday–Friday 8:00–20:00 All 10−5 s

4
Monday–Friday 8:00–20:00

w % 5 = 0 10−4 s
w % 5 = 1 10−4 s
w % 5 = 2 5× 10−4 s
w % 5 = 3 5× 10−4 s
w % 5 = 4 10−4 s

Monday–Sunday 20:00–8:00 All 2× 10−5 s
Monday–Friday 8:00–20:00 All 10−5 s

Table 2. Hardware parameters of the compute nodes used in the simulation.

Parameter/Node Value Unit
s01–s08 s09–s16 s17–s24 s25–s33

ρe 0.15 €/kWh
ρCO2 0.37 kg CO2/kWh

Power at idle 200 190 180 175 Watts
Power at high load 500 475 425 400 Watts

ulife 90 75 15 5 %
msrve 3800 4200 5000 5500 €

msrvCO2 9536 kg CO2
MTTFbase 109,500 146,000 219,000 292,000 h

Tamb 22 °C
Tavg_a 24 °C
Tavg_b 50 °C
Thload 65 °C
Tidle 50 °C

mHDDe 150 €
mHDDCO2 238.41 kg CO2
numHDD 4 HDDs

MTTFHDD 146,000 h
f 350 times/month

The same cluster simulator was used for both training and testing, and the fitness function used
to assess each solution was composed of the QoS (Equation (1)), the direct operating monetary cost
(Equation (2)), the indirect operating monetary cost (Equation (4)), the total monetary cost (sum of
(Equations (2) and (4)), and the total carbon footprint (sum of Equations (3) and (5)).
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Five different solutions were tested in the experiments to implement the node allocation algorithm
(second stage of the decision-making mechanism), while sharing the same implementation for the
first stage in the form of the reactive strategy described in Section 4.1. Note that it is not the point of
these experiments to assess the results of the slot allocation, as this has already been tested in previous
works (see [45,46,49]). In particular, four node-ordering heuristics proposed in Reference [19] were
tested along with our proposal:

1. An alphabetical node-ordering heuristic (labelled “Alphabetical heuristic”) consisting in selecting
the nodes to switch on or off according to an alphabetical sort of the name of the node, powering
off the nodes starting from the beginning of the list and powering on nodes starting from the end.

2. A randomised node-ordering heuristic (labelled “Random heuristic”) consisting in randomly
selecting the nodes to switch on or off.

3. An efficiency-based node-ordering heuristic (labelled “Efficiency heuristic”) consisting in sorting
the nodes to switch on or off according to a precomputed priority based on their power efficiency,
as given by Equation (6), so that the least efficient nodes are powered off and the most efficient
nodes are powered on.

4. A balanced node-ordering heuristic (labelled “Balanced heuristic”) consisting in sorting the nodes
according to the amount of time that each node has been active, so that the nodes that have been
active for a longer period of time are powered off, and the nodes that have been inactive for longer
are powered on.

5. The GFS-based algorithm proposed in Section 5 (labelled “GFS-based allocation”) with three
linguistic terms in the first partition (T1 = 3) and two in the second one (T2 = 2).

All solutions were learnt using the learning algorithm described in Section 6, and the criteria
adopted for selecting a single instance from the Pareto-efficient frontier consisted of choosing the one
that achieved the lowest total monetary cost with no service quality impact (QoS = 0.0), as the overall
goal was to minimise the operating cost of the cluster. The holdout method was used in all cases for
validation, with a 50%–25%–25% split in training, validation and test, respectively.

The experiment results obtained for the test set of each workload scenario are shown in the
following tables. In particular, results for Scenario 1 are displayed in Table 3, Scenario 2 in Table 4,
Scenario 3 in Table 5 and Scenario 4 in Table 6. Lastly, results for the recorded workloads of the CMS
cluster are shown in Table 7 and Figure 5 presents the status over time for every node of the cluster
under each tested solution. Given that all tested solutions achieved no penalty in service quality, QoS
values are omitted in Tables 3–7 since all were equal to 0.0. Best results for each column are boldfaced.

Table 3. Experiment results for the test set of Scenario 1.

Node-Selection Algorithm
Scenario 1 Test Set

Direct Cost Indirect Cost Total Cost Carbon Footpr.
(EUR) (EUR) (EUR) (Mt CO2)

Alphabetical heuristic 6080.89 4086.56 10,167.45 22.70
Random heuristic 6349.58 3105.76 9455.34 21.72
Efficiency heuristic 6080.89 4065.68 10,146.57 22.67
Balanced heuristic 6305.56 3244.51 9550.07 21.83
GFS-based allocation 6471.63 2506.75 8978.39 20.92
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Table 4. Experiment results for the test set of Scenario 2.

Node-Selection Algorithm
Scenario 2 Test Set

Direct Cost Indirect Cost Total Cost Carbon Footpr.
(EUR) (EUR) (EUR) (Mt CO2)

Alphabetical heuristic 2680.29 2068.65 4748.94 10.31
Random heuristic 2929.01 1254.27 4183.28 9.64
Efficiency heuristic 2679.92 2062.77 4742.70 10.29
Balanced heuristic 2926.20 1251.53 4177.73 9.62
GFS-based allocation 3135.42 528.28 3663.70 8.94

Table 5. Experiment results for the test set of Scenario 3.

Node-Selection Algorithm
Scenario 3 Test Set

Direct Cost Indirect Cost Total Cost Carbon Footpr.
(EUR) (EUR) (EUR) (Mt CO2)

Alphabetical heuristic 4685.53 2528.33 7213.86 16.28
Random heuristic 4835.08 1968.35 6803.43 15.71
Efficiency heuristic 4678.91 2530.06 7208.97 16.27
Balanced heuristic 4825.33 2017.22 6842.55 15.76
GFS-based allocation 4932.14 1555.20 6487.34 15.24

Table 6. Experiment results for the test set of Scenario 4.

Node-Selection Algorithm
Scenario 4 Test Set

Direct Cost Indirect Cost Total Cost Carbon Footpr.
(EUR) (EUR) (EUR) (Mt CO2)

Alphabetical heuristic 4494.20 2442.23 6936.43 15.64
Random heuristic 4649.38 1837.98 6487.36 15.00
Efficiency heuristic 4493.77 2442.15 6935.92 15.64
Balanced heuristic 4647.97 1890.62 6538.60 15.09
GFS-based allocation 4710.18 1515.60 6225.78 14.60

Table 7. Experiment results for the test set of the CMS cluster workloads.

Node-Selection Algorithm
CMS Cluster Test Set

Direct Cost Indirect Cost Total Cost Carbon Footpr.
(EUR) (EUR) (EUR) (Mt CO2)

Alphabetical heuristic 2760.07 1927.10 4687.17 10.29
Random heuristic 2975.89 1129.52 4105.41 9.54
Efficiency heuristic 2759.22 1920.07 4679.29 10.28
Balanced heuristic 2952.79 1242.47 4195.26 9.65
GFS-based allocation 3084.11 615.89 3700.00 8.94

As described in the experimental setup, the cluster includes a variety of nodes with different
hardware characteristics in regard to their remaining useful life, expected failure rates and power
consumptions. Right away, it can be appreciated that the latest nodes in the cluster were noticeably
more power-efficient, and thus a lower direct operating cost should be expected if those nodes were
used more often than the older ones. This was observed in the results of the experiments, where the
“Efficiency heuristic” achieved the best direct operating costs, given that it consistently chose the newer
nodes since those were most efficient ones. The “Alphabetical heuristic” also selected those nodes,
albeit only due to the criteria used in the naming of the nodes, having the newer ones placed as the
last resources of the cluster from an alphabetical standpoint. Nevertheless, these two heuristics were
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also the ones that incurred the highest indirect costs. The reason for this is that, although the baseline
MTTF of the newer nodes was higher than that of the oldest ones, their longer remaining productive
life penalised their indirect costs to a greater degree than it did the older nodes.
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(c) Efficiency heuristic
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(d) Balanced heuristic
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(e) GFS-based allocation

Figure 5. Compute node status over time for the test set of the CMS workload.
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On the other hand, the “Random heuristic” and the “Balanced heuristic” both distributed the
amount of active time among all nodes evenly, which led to increased direct costs compared to the
other two heuristics because of using older nodes, but also reduced indirect costs, leading to overall
better results in terms of total monetary cost and carbon footprint.

It is noteworthy that, with the exception of the “Efficiency heuristic”, which did take into account
one key driver of the operating costs (the power consumption of the nodes), the other heuristics did not.
In fact, none of them relied on any driver of the indirect costs to select the target nodes to reconfigure,
which inherently limited the optimality of their node allocation decisions. Moreover, their lack of
configuration parameters denied the opportunity to tune their behaviour to better match a certain
hardware scenario. Given this, the GFS-based allocation algorithm achieved superior results in all
workload scenarios by leveraging its tailored KB to better optimise the overall operating cost of the
cluster. In particular, the GFS-based allocation exhibited in these experiments a tendency to select
older nodes to minimise the replacement costs, as these have a greater influence in the total operating
cost compared to the direct costs due to power consumption.

8. Concluding Remarks

Over the last years, many solutions have been proposed in response to the high operating costs
and environmental impacts of HPCCs. It is well known that adaptive resource clusters are capable
of reducing their power consumption whenever they are underused, thus improving the cost and
carbon footprint derived from the cluster operation. Nevertheless, to provide a sound solution for
eco-efficient HPCCs, both the direct and indirect costs must be addressed. Given so, a two-stage
holistic optimisation mechanism has been designed to improve the eco-efficiency of HPCCs by jointly
optimising both power-related and indirect life cycle-related costs and carbon footprints through
a dynamic reallocation of its compute resources. The first stage defines the optimal amount of
logical resources for the cluster at every given time, following either reactive or proactive strategies,
while meeting all QoS-related preferences and/or constraints. The second stage translates the logical
resources defined at the previous stage into a specific hardware reallocation decision, taking into
account the efficiency and reliability of the equipment by means of a genetic fuzzy system modelling
the hardware selection criteria. Both stages are learned through multiobjective evolutionary algorithms
under the distal supervised learning setup. Experimental results based on both actual workloads from
the Scientific Modelling Cluster of the University of Oviedo and synthetically-generated workloads
provide empirical evidence of the eco-efficiency improvements achieved with the proposed mechanism
in real world clusters.
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The following abbreviations are used in this manuscript:

HPC High Performance Computing
HPCCs High Performance Computing Clusters
RMS Resource Management System
OGE Oracle Grid Engine/Open Grid Engine
SGE Sun Grid Engine/Son of Grid Engine
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PBS Portable Batch System
TORQUE Terascale Open-source Resource and QUEue Manager
QoS Quality of Service
AFR Annualised Failure Rate
SFR Simulation Failure Rates
MTTF Mean Time To Failure
DBMS Database Management System
HGFS Hybrid Genetic Fuzzy System
TSK Tagaki–Sugeno–Kang
NSGA-II Non-dominated Sorting Genetic Algorithm-II
MOEAs MultiObjective Evolutionary Algorithms
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