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Abstract. One of the most recent and interesting trends in intelligent scheduling is trying to
reduce the energy consumption in order to obtain lower production costs and smaller carbon foot-
print. In this work we consider the energy-aware job shop scheduling problem, where we have
to minimize at the same time an efficiency-based objective, as is the total weighted tardiness,
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cho 1.1.03. 33203 Gijón. Spain.
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and also the overall energy consumption. We experimentally show that we can reduce the en-
ergy consumption of a given schedule by delaying some operations, and to this end we design
a heuristic procedure to improve a given schedule. As the problem is computationally complex,
we design three approaches to solve it: a Pareto-based multiobjective evolutionary algorithm,
which is hybridized with a multiobjective local search method and a linear programming step,
a decomposition-based multiobjective evolutionary algorithm hybridized with a single-objective
local search method, and finally a constraint programming approach. We perform an extensive
experimental study to analyze our algorithms and to compare them with the state of the art.

Keywords: Multiobjective optimization, job shop, energy, metaheuristics

1. Introduction

This work addresses an energy-aware variant of the classical Job Shop Scheduling Problem (JSP).
Its study is highly relevant due to the fact that it finds numerous applications in manufacturing and
is central to many supply chain problems that integrate production planning and scheduling [1]. The
problem is NP-hard [2] thus very challenging, and so it has been studied for decades.

The makespan is clearly the objective function that received the most attention over the years.
However, due date related objective functions are usually more important in real applications. In fact,
several research papers conclude that meeting due dates is the most important scheduling objective in
competitive markets [3, 4]. The total weighted tardiness (TWT) is a particularly interesting objective
function, as we may assign different priorities to different jobs.

Several reasons motivate the study of energy considerations in scheduling problems, for example
the increasing price of energy or the need for reducing carbon footprint. Energy-saving practices are
remarkably important in modern industries, both for economical and environmental reasons.

Unfortunately, it may occur that the improvement in energy costs is obtained at the cost of losing
solution quality, and therefore we face a multi-objective scheduling problem. As this is a problem
often found in real environments, there is an increasing interest in multi-objective optimization in
scheduling problems, and in the use of metaheuristic algorithms to solve them [5].

In the literature we can find many research papers proposing solving approaches for the JSP with
TWT minimization and/or energy considerations (see Section 2).

In this work we propose the following approaches to minimize both the energy consumption and
the TWT in a JSP.

1. A dominance-based evolutionary algorithm, using the NSGA-II framework [6]. We describe a
mechanism to penalize repeated individuals, thus improving diversity. The genetic algorithm is
hybridized with a multi-objective local search method.

2. A decomposition-based evolutionary algorithm, using the MOEA/D framework [7], which is
hybridized with a single-objective local search method. MOEA/D variants are much less used
than genetic algorithms in combinatorial optimization, but its study is also interesting as it is a
very powerful framework.
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3. A constraint programming approach that solves a model of the problem by using the ε-constraint
method [8].

Both the NSGA-II and MOEA/D based approaches implement a couple of methods to optimize the
energy consumption of a given solution: a fast, low-polynomial heuristic procedure to be used every
time a solution is evaluated, and an exact, linear programming step, more computationally costly and
thus only applied to the best solutions obtained at the end of the execution.

We present an experimental study to analyze the proposed approaches and to compare them with
the state of the art.

Preliminary versions of this work have been already published in the Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS 2017), in the Proceedings
of the 11th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling (COPLAS
2016), and also presented in the 24th RCRA International Workshop on Experimental Evaluation
of Algorithms for Solving Problems with Combinatorial Explosion. In these preliminary works the
NSGA-II based method and a simpler version of the constraint programming approach are described.
The main contributions and improvements with respect to those previous works are enumerated in the
following:

• We have proposed a new multi-objective evolutionary algorithm based on the MOEA/D frame-
work.

• We have improved the experimental study by considering a larger number of instances with
different characteristics, as in previous research we only considered four variants of the small
FT10 instance.

• We introduce a modified version of the constraint programming model originally presented
in [9] that improves performances.

• We report an extensive literature review that includes many recent papers about energy-aware
scheduling problems.

• We also provide more comprehensive descriptions of the proposed approaches, graphical exam-
ples, and more detailed conclusions.

The structure of this paper is as follows. In Section 2 we present some recent papers about solving
energy-aware scheduling problems. Then, Section 3 describes the scheduling problem while also pro-
viding some examples. In Sections 4 and 5 we define our NSGA-II and MOEA/D based evolutionary
algorithms, respectively, whereas in Section 6 we describe the constraint programming approach. Sec-
tion 7 reports the results of an extensive experimental study where we analyze our proposals. Finally,
Section 8 summarizes the conclusions.

2. Literature review

The classical JSP has been studied for decades, but most works focused on the makespan objective
function (see for example [10], [11] or [12]). However, the interest in other objective functions has
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grown over the years. The first approaches that considered TWT minimization in the JSP were a
branch and bound algorithm [13], shifting bottleneck [14] and a large step random walk heuristic [15].
More recent papers include genetic local search [16], local search [17], shifting bottleneck hybridized
with tabu search [18] or genetic algorithm combined with tabu search [19]. The work [20] is also
interesting, as the authors study some novel neighborhood structures for the problem.

In these last years, interest in energy-aware scheduling problems has exponentially increased.
Many different scheduling problems are studied, for example single machine problems [21, 22, 23],
flexible JSP [24, 25, 26, 27, 28, 29, 30, 31, 32, 33], flow shop [34, 35, 36], flexible flow shop [37],
two-machine sequence dependent permutation flow shop [38], batch-processing machine scheduling
problem [39], hybrid flow shop [39], flexible flow shop [40], uniform parallel machine [41], unrelated
parallel machine [42], dynamic JSP [43], the dual-resource constrained JSP with interval processing
time and heterogeneous resources [44] or the classical JSP [45, 46, 47, 48, 49, 50, 9, 51]. Another ex-
ample is [52], where the authors study the Energy-Constrained Scheduling Problem with Continuous
Resources, which is a generalization of the well-known cumulative scheduling problem.

There are also papers that report the utilization of intelligent scheduling approaches in real ap-
plications. For example, in [53] the authors implement their scheduling system at a manufacturing
company located in Tucson, Arizona state of USA, and prove that it achieves energy cost savings
without sacrificing the productivity. Other real applications are related to manufacturing of cast iron
plates [35], recycling carbon fiber reinforced polymer [24], a metalworking workshop in a plant [37],
animal feed manufacturing and home energy management systems [54] or a moulding industry, which
involved a major producer of plastic dispensers [55].

About the objective functions, most papers try to optimize two objectives at the same time, one of
them is efficiency-related (makespan [24, 25, 30, 32, 33, 38, 44, 42, 46, 51, 37], TWT [45, 48, 39, 50,
47, 9], total completion time [21, 22], total late work [29], or cycle time [34]) and the other objective
is related to the energy consumption of the schedule. However, some papers optimize additional
objectives, as for example the total setup [55] or the total availability of the system [28], while others
impose a restriction on peak power consumption, in addition to the traditional time-based objectives
[35]. Another example of a third objective function is the numbers of turning-on/off machines [27],
total workload of machines [32], noise reduction [26] or peak power [34, 39]. Some papers also
consider robustness objectives, as for example [43], where given a disruption, the main goal is to
reschedule the minimum number of operations so that the energy consumption is minimized and the
makespan does not increase.

As for how to tackle several objectives at once, some authors opt to use a lexicographical approach
[44], whereas others impose an upper limit to some objective and minimize the other [35], but most
papers propose to build the Pareto Front [45].

Regarding the energy model, some papers consider that the machine cannot be switched off when
idle [45, 50, 9], whereas other papers consider the possibility of turning the machines on and off
[21, 27, 48, 31], or even to choose the speed level of the machines, of course consuming more energy
when working faster [34, 27, 26, 47, 49, 43, 38, 42]. Some papers also consider that machines can
switch to stand-by state, aside from turning it on and off [46, 51]. Also, while most papers consider
fixed energy costs, some papers consider the presence of time-of-use electricity prices [36], a time-of-
use policy [33] or variable energy prices [54, 23].
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As these scheduling problems are really complex, exact methods are able to tackle small instances,
however metaheuristics are recommended when solving real-life sized instances. In the literature we
can find all kinds of approaches to solve energy-aware scheduling problems, the most common are
probably multi-objective genetic or memetic algorithms [45, 46, 27, 43, 29, 24, 26, 22, 39, 49, 50, 9].
However, many more different approaches can be found, as for example: ant colony optimization
metaheuristic [36], particle swarm optimization algorithm [41], dynamical neighborhood search [44],
constraint programming approach [9, 51], memetic differential evolution [42], hybrid fruit fly opti-
mization algorithm [25], nested partitions algorithm [30], biogeography-based optimization algorithm
combined with variable neighborhood search [33], genetic-simulated annealing [37], a dynamic game
theory based two-layer scheduling method [32], dispatching rules [21], mixed integer programming
model [40], mathematical programming model [21, 34]. In fact, some papers propose both exact
(mathematical programming) and combinatorial approaches [35, 31, 23] in order to be able to opti-
mally solve small instances and also give decent solutions to large instances.

As we have seen, although there are a huge number of works about energy-aware scheduling, each
of them solves a specific problem with a specific energy model, set of constraints and number and type
of objective functions. Therefore, most of them cannot naturally be compared with the approaches
presented in this work, with the exception of [45] and [9], which solve exactly the same problem. In
fact, [9] is the preliminary version of the research described in this paper, where the NSGA-II and a
simpler version of the constraint programming approach are described.

In [45] the authors describe a basic NSGA-II to solve the problem. We have to remark that our
NSGA-II approach has several differences with respect to it: for example its crossover operator, elim-
ination of repeated solutions in the replacement strategy, hybridization with a local search method,
the additional energy optimization procedure included in the schedule builder, and the final linear
programming step. We will see that these additional components lead to a much better overall perfor-
mance.

3. Problem formulation

The JSP consists of processing a set of N jobs, J = {J1, . . . , JN}, in a set of M resources or
machines, R = {R1, . . . , RM}. A job Ji consists of a sequence of ni tasks or operations (θi1, . . . ,
θini), each requiring the uninterrupted and exclusive use of a given machine during all its processing
time. The goal here is to minimize some objective functions subject to a set of constraints. The
precedence constraints indicate the sequence of machines for each job, which is prescribed. Also,
each machine can process at most one operation at a time, due to the capacity constraints. We define
two additional parameters for each job: its due date, which is a time before which all its operations
should be processed, and its weight, which represents its priority or importance. It is also necessary to
define the idle power level of each machine, in order to calculate its energy consumption. We denote
by:

• Ω : the set of all operations.

• di : due date of job Ji.
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• wi : weight of job Ji.

• P idlek : idle power level of machine or resource Rk.

• mθij : machine or resource required by operation θij .

• pθij : processing time of operation θij .

• sθij : starting time of operation θij (that we need to determine).

The goal of this scheduling problem is to obtain a feasible schedule, which can be formally defined
as an assignment of a starting time sθij ≥ 0 for each θij ∈ Ω such that the following constraints are
met:

sθij + pθij ≤ sθij+1
∀i ∈ {1, . . . , N} ∀j ∈ {1, ni − 1} (1)

(sθij + pθij ≤ sθkl) ∨ (sθkl + pθkl ≤ sθij ) ∀i, j, k, l such that mθij = mθkl and θij 6= θkl (2)

As we have seen, the JSP has two types of binary constraints. (i) Precedence constraints are
defined by the sequential routings of the operations within a job, and translate into linear inequalities
(Equation 1). (ii) Capacity constraints limit the use of each machine to one operation at a time, and
translate into disjunctive constraints (Equation 2).

In the following, in order to simplify expressions, we will denote operations by a single letter
whenever possible, instead of using θij . Also, given a feasible schedule, we denote by PJv and SJv
the predecessor and successor of v in the job sequence, respectively, whereas we denote by PMv and
SMv the predecessor and successor of v in its machine sequence.

In particular, we are looking for feasible schedules that minimize two objective functions at the
same time: the TWT and the energy consumption. The TWT is defined as follows:∑

i=1,...,N

wiTi (3)

where Ti is the tardiness of job i, given by Ti = max{Ci − di, 0}, being Ci the completion time of
job i.

We borrow the energy consumption model from [45], where it is assumed that it is not possible
to turn the machines off when idle. It is easy to prove that in a job shop environment minimizing the
total consumption can be reduced to minimize the total non-processing energy (NPE), which is the
time a machine is idle (i.e., not processing any job). The reason is that in every possible schedule, all
machines have to process the same fixed set of operations, and therefore the total processing energy
must be the same (that is, if we do not consider setup times between operations, which could be an
interesting research line for future work).

Therefore, our energy objective function will be to minimize the sum of all the NPE consumed by
all machines to process a given job schedule. The total NPE is defined as:∑

k=1,...,M

[P idlek × (sωk + pωk − sαk −
∑
u∈Mk

pu)] (4)
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where αk and ωk are respectively the first and last operations on machine Rk in the given schedule,
and Mk is the set of all operations that must be executed in machine Rk.

Generally speaking, for a minimization problem with fi, i = 1, . . . , n objective functions, a given
solution S is said to be dominated by another solution S′ (denoted S′ � S) if and only if for each
objective function fi, fi(S′) ≤ fi(S) and there exists at least one i such that fi(S′) < fi(S). Then,
the goal of the described scheduling problem will be to find a set of non-dominated solutions with
respect to TWT and NPE, the so-called Pareto set.

We have to remark that the described energy model is quite simple, and it is based on the assump-
tion that it is not possible to turn off the machines when idle. In some real applications energy can be
saved by turning off machines, but in others it will not be possible, either because the machines simply
cannot be switched off, or because the process of switching them off and then on again consumes more
energy than keeping them idle ([46, 51]).

In Sections 2 and 8 we discuss some possible more complicated energy models.
In [56] it is defined that a regular performance measure is one such that its value can only be

increased by increasing at least one of the completion times in the schedule. In order to minimize
a regular performance measure it is enough to consider “left-shift schedules”, which are schedules
built from a partial ordering of the operations, in such a way that we assign to each operation its
earliest possible starting time, following the given ordering. It is easy to see that the TWT is a regular
performance measure, but the NPE is not. Notice that the NPE can be increased if we are able to
decrease the starting time of the first operation of a machine, while maintaining all other operations
intact, and also it can be decreased by delaying the starting time of some operations. As stated in
[57], research on non-regular objective functions has always been isolated and scattered, compared to
regular objectives, as they are more difficult to minimize.

3.1. Example instance

For illustrative purposes, we are going to describe a small example instance with 3 jobs and 3 ma-
chines. Each job consists of 3 operations, and their processing times and machine requirements are
detailed in Table 1.

Table 1. Processing times and machine requirements of the operations of the example instance.

First operation Second operation Third operation
Proc. time Machine Proc. time Machine Proc. time Machine

Job 1 4 R1 4 R2 2 R3

Job 2 2 R1 5 R3 3 R2

Job 3 3 R2 7 R1 3 R3

The due dates are d1 = 16, d2 = 12 and d3 = 14, whereas the weights are w1 = 3, w2 = 2 and
w3 = 1. Finally, the idle power level of the machines are P idle1 = 1, P idle2 = 2 and P idle3 = 3.

Figure 1 shows the Gantt chart of one possible feasible schedule for the described example in-
stance.
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Figure 1. A feasible schedule for the instance described in Section 3.1, with TWT=8 and NPE=26.

Notice that the last task of job J1 ends at time 18, and its due date is 16 whereas its weight is 3,
therefore it adds (18− 16)× 3 = 6 to the TWT of the schedule. Job J2 adds nothing to the TWT, as
it ends two time units before its due date of 12, hence having zero tardiness. Finally, job J3 ends at
time 16, having a due date of 14 and a weight of 1, and so it adds (16 − 14) × 1 = 2 to the TWT. In
summary, the TWT of the schedule is 6 + 0 + 2 = 8.

About the NPE calculation, machine R1 adds nothing to it because it has no idle intervals between
the start of its first operation and the end of its last operation. Machine R2 has an idle interval of 4
time units between tasks θ31 and θ23, so given that P idle2 = 2 it adds 4 × 2 = 8 to the NPE. Finally,
machine R3 has an idle interval of 6 time units between tasks θ22 and θ33, and P idle3 = 3, so it adds
6× 3 = 18 to the NPE. Overall, the NPE of the schedule is 0 + 8 + 18 = 26.

3.2. The disjunctive graph model representation

A common representation in scheduling problems is the disjunctive graph. For the JSP with TWT
minimization we follow a similar representation to that already used in several papers [15, 17, 16,
19, 20]. In particular, it is a directed graph G = (V,A ∪ D). Each node of set V represents an
operation, with the exception of the dummy nodes start and endi 1 ≤ i ≤ N , which represent
fictitious operations with zero processing time and that do not require any machine. A is a set of arcs
(denoted conjunctive arcs) that represent precedence constraints between operations of each job. The
set A also contains additional arcs from node start to the first operation of each job, and arcs from the
last operation of each job i to its corresponding endi node. D is a set of arcs (denoted disjunctive arcs)
that represent capacity constraints. Set D is partitioned into subsets Dj , with j = 1, . . . ,M , where
Dj corresponds to machine Rj and includes two directed arcs (v, w) and (w, v) for each pair v, w of
operations that require machine Rj . Arcs (v, w) in A and in D are weighted with the processing time
of the operation at the source node, pv (as already defined, pstart = 0 and pendi = 0).

A feasible schedule S can be represented by an acyclic subgraph of G: GS = (V,A ∪ H),
where H = ∪j=1...MHj . Hj is a minimal subset of arcs from Dj defining a processing order for all
operations requiring machine Rj . Therefore, obtaining a solution to the problem can be reduced to
finding compatible orderings Hj , or partial schedules for each machine, that translate into a solution
graph GS without any cycle. As an example, Figure 2 shows the disjunctive graph corresponding to
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Figure 2. Disjunctive graph corresponding to the feasible solution depicted in Figure 1.

the feasible schedule depicted in Figure 1; dotted arcs belong to set H , while continuous arcs belong
to set A.

Given the acyclic subgraph GS , the TWT of the schedule is determined by a set of critical arcs.
A critical path is a largest cost path from node start to a node endi 1 ≤ i ≤ N . The length of these
paths represents the completion time of operation endi (and hence the completion time of job Ji),
which can be used to calculate the contribution of job Ji to the TWT. Nodes and arcs in a critical path
are also termed critical. A critical path may be decomposed as a sequence start, B1, . . . , Br, endi,
1 ≤ i ≤ N , where each Bk, 1 ≤ k ≤ r, is termed critical block, defined as a maximal subsequence of
consecutive operations in the critical path that require the same machine.

These definitions are relevant, as many solution methods, formal properties and neighborhood
structures proposed in the literature for the JSP are based on the concepts of critical path and critical
block. In fact, the neighborhood structure used in this work relies on reversing the processing order of
two consecutive operations in a critical block, as similarly done in [58] and many other works.

Although the disjunctive graph representation is useful for minimizing TWT, it is unfortunately
not as useful for NPE minimization, as this performance measure is not directly related to finding
largest cost paths in a graph representation.

4. Dominance-based multi-objective evolutionary algorithm

In this section we describe a dominance-based hybrid method, taken from [9], that combines a mod-
ified NSGA-II multi-objective genetic algorithm with a multi-objective hill climbing local search
method and a linear programming approach.

Several papers have already tackled the minimization of non-regular objectives in the JSP. An
interesting example is [59], where the authors propose to decompose the overall problem in two sub-
problems: sequencing and timing. In our work (both in the dominance-based approach described in
this Section and also in the decomposition-based approach described in Section 5) we follow a similar
approach, and so we represent the solutions as permutations in order to solve the sequencing subprob-
lem. Then, to solve the timing subproblem we introduce two approaches: a low-polynomial energy
post-optimization procedure when evaluating each and every solution, and a more computationally ex-
pensive optimal linear programming approach, applied only to the final set of non-dominated solutions
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returned by the evolutionary algorithm.

4.1. Genetic algorithm

The basis of our dominance-based evolutionary algorithm is the well-known NSGA-II template [6].
Firstly, an initial population set Pop0 of size popSize is created at random and evaluated. Then,
the algorithm iterates over numGen generations. At each generation i a set of offspring solutions
Off(Popi) is built from the current one Popi by applying selection, crossover and mutation operators,
and finally a replacement strategy is applied to select the solutions that will form the next population
Popi+1. At the end of the execution, the set of non-dominated solutions present in the population is
returned as an approximation of the Pareto set.

4.1.1. Representation and evaluation of chromosomes

We codify solutions into chromosomes using permutations with repetitions [60]. This is a permu-
tation of the set of operations, each denoted by its job number, which represents a linear ordering
compatible with precedence constraints. As an example, consider a problem instance with 3 jobs:
J1 = {θ11, θ12, θ13}, J2 = {θ21, θ22, θ23}, J3 = {θ31, θ32, θ33}, then the ordering of operations
π = {θ21, θ11, θ22, θ31, θ23, θ32, θ33, θ12, θ13} is represented by the chromosome v = (2 1 2 3 2 3 3 1
1).

To evaluate a given chromosome we generate its associated schedule and then we compute its
TWT and NPE. In particular, we use an insertion strategy following the sequence given by the chro-
mosome. Each operation is scheduled at the earliest possible starting time such that all constraint are
met, leaving previously scheduled operations intact. The main advantage of using permutations with
repetitions is that every “correct” permutation (i.e., as many repetitions of a given number as number
of operations of the corresponding job) can be translated into a feasible solution.

As an example, in the instance described in Section 3.1, the chromosome v1 = (2 1 2 3 2 3 3 1 1)
would be translated as the feasible schedule represented in Figure 1.

Notice that a single schedule might be represented by several different chromosomes, as actually
the permutation is a linearization of the partial order of operations and there might be more linear
orderings. For example, the chromosome v2 = (3 2 1 2 2 3 3 1 1) would also be translated as the
feasible schedule represented in Figure 1. Although this is not a desirable property, the benefits of this
representation more than compensate for it, and so it is used in most literature about the JSP.

4.1.2. Energy post-optimization procedure

The insertion strategy described for evaluating a chromosome would be enough to produce a Pareto
optimal schedule (provided the appropriate chromosome) if the objective functions were regular. Un-
fortunately, the NPE is a non-regular performance measure, and hence scheduling each operation as
soon as possible is sometimes not the best option. Clearly, we can improve the NPE of a machine Rk
by delaying the starting time of its first operation (sαk ) without delaying the starting time of its last
operation (sωk ). Notice that it would also be possible if we decrease sωk without increasing sαk , but
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Figure 3. The solution of Figure 1 after applying the energy post-optimization procedure described in Section
4.1.2. Notice the delay of operation θ31. The TWT is still 8 but the NPE is reduced from 26 to 20.

this approach cannot be used in our algorithm, as operations are initially scheduled as soon as possible
by the insertion strategy.

In order to solve the timing subproblem we propose an energy post-optimization procedure that,
maintaining the operation ordering of a given schedule, tries to reduce its NPE while not increasing
its TWT. The procedure is detailed in Algorithm 1. The basic idea is to delay as much as possible all
operations of each machine (except the last one), while at the same time taking care when delaying
the last operation of each job, so that the TWT does not increase. Evidently, when delaying operations
we always take into account the precedence constraints between operations of the same job, so that
the final schedule is feasible.

Clearly, as we do not increase the starting time of the last operation of each machine, the resulting
NPE after applying the procedure is always lower than or equal to the NPE of the original schedule.
Additionally, the resulting TWT is not increased either, due to the fact that the completion time of the
last operation of a job may only be delayed if it is lower than the due date of the corresponding job,
and in this case it is delayed at most up to this due date.

The described procedure is embedded in the solution evaluation method, and is executed just after
the insertion strategy builds the initial schedule. Hence, it is applied when evaluating every chromo-
some generated by the genetic algorithm and every neighbor considered in the local search. Adding
this procedure to the scheduler increases the running time of the evolutionary algorithm between 10%
and 25%, however the quality improvement of the reached solutions is very substantial and so it more
than compensates the increase in running time, as we will see in Section 7.

As an example, applying this energy post-optimization procedure to the schedule represented in
Figure 1 would lead to the schedule represented in Figure 3, which has the same TWT of 8 but the
NPE is reduced from 26 to 20 (as machine R2 adds 2 whereas machine R3 adds 18), thanks to the
delay of operation θ31.

4.1.3. Genetic operators

The purpose of the selection phase is to select which chromosomes will undergo crossover and muta-
tion. Here we use a tournament strategy: we randomly select tSize chromosomes from the population,



1012 M.A. González, A. Oddi, R. Rasconi / Efficient approaches for solving a multiobjective energy-aware JSP

Algorithm 1: The energy post-optimization procedure
input : A problem instance I and a feasible schedule (i.e., an ordering O and a set of starting

times s)
output: A new set of starting times s′ for the ordering O
begin

k ← |Ω|;
while k ≥ 1 do

a← O[k];
if a is the last operation processed in a machine then

s′a ← sa;
else

if a is the last operation of its job then
j ← job of operation a;
s′a ← min{max{dj , sa + pa}, s′SMa

} − pa;
else

s′a ← min{s′SJa , s
′
SMa
} − pa;

end
end
k ← k − 1;

end
end

and the first parent will be the best of them (according to non-domination rank and crowding distance,
as described in Section 4.1.4). The second parent is selected in the same way, and then the crossover
operator is applied with probability crProb, producing two offspring solutions.

We choose as crossover operator the well-known Job Order Crossover (JOX) [60], that given two
parents it produces two offspring solutions. It selects a random subset of jobs and copies their genes
to the first offspring in the same positions as they are in the first parent, whereas the remaining genes
are taken from the second parent maintaining their relative ordering. To create the second offspring
the parents reverse their role. Finally, we mutate each offspring with probability mutProb using the
swap mutation operator, that consists on swapping two random positions of the chromosome.

4.1.4. Replacement strategy

The new population Popi+1 is generated by combining the previous population Popi and the popula-
tion Off(Popi) that results from applying selection, crossover and mutation operators to Popi. In this
work we adopt a replacement strategy based on the non-dominated sorting approach with diversity
preservation proposed in [6].

Firstly, we assign to each individual j in the pool Popi ∪ Off(Popi) a non-domination rank
(rank(j)), thus sorting the pool of solutions into different non-domination levels. In order to do
this, all non-dominated solutions in the pool are assigned level 1, then level 2 is formed by all the non-
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dominated solutions of the pool after removing those solutions from level 1, and so on (see Figure
4(a)).

Then, we assign to each individual j in the pool a crowding distance (dist(j)) (see Figure 4(b)),
which estimates the density of solutions “near” each individual from its same non-domination level.
As described in [6], to get an estimate of the density of solutions surrounding a particular solution
in its same non-domination level, we calculate the average distance of two points on either side of
this point along each objective. This quantity serves as an estimate of the perimeter of the cuboid
formed by using the nearest solutions as the vertices (call this the crowding distance). In Figure
4(b), the crowding distance of the ith solution in its front (marked with dark circles) is the average
side length of the cuboid (shown with a dashed box). The crowding distance computation requires
sorting the solutions in the non-domination level according to an objective function value in ascending
order. Then, the boundary solutions (solutions with smallest and largest function values) are assigned
an infinite distance value. All other intermediate solutions are assigned a distance value equal to the
absolute normalized difference in the function values of two adjacent solutions. The overall crowding-
distance value is calculated as the sum of individual distance values corresponding to each objective.
Each objective function is normalized before calculating the crowding distance. After all solutions are
assigned a distance metric, we can compare two solutions for their proximity with other solutions. A
solution with a smaller value of this distance measure is more crowded by other solutions.

(a) Non-domination levels. (b) Crowding distance calculation between
solutions in the same non-domination level.

Figure 4. The replacement strategy of the multi-objective genetic algorithm.

Finally, the next population Popi+1 is formed by the best popSize solutions from the pool Popi∪
Off(Popi), according to the lexicographical ordering defined by (rank, dist). Hence, we prefer solu-
tions that belong to a lower (better) non-domination rank. When choosing between two solutions with
the same non-domination rank, we prefer that located in the less crowded region, because it is more
desirable to obtain a good spread of different solutions instead of many similar ones (see [6]).

We have experimentally observed that the performance of the algorithm can be substantially im-
proved by adding an additional step to improve the diversity of the population. In particular, we
propose to firstly remove from the pool Popi ∪ Off(Popi) those solutions which are repeated, i.e.,
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there exists in the pool at least another solution having the same values for all objective functions. The
idea is to add to the next population Popi+1 the best popSize solutions based on (rank, dist) after
we perform the described elimination of repeated solutions.

In case that the elimination causes the pool to contain less than popSize solutions, then all the
unique individuals are added to Popi+1, which is then completed with some of the repeated solutions
by recursively using the same strategy. This is, we consider the pool formed by the repeated solutions
we have eliminated before, and we first remove the repeated solutions from that pool, and then add to
Popi+1 the best solutions from the resulting pool, according to (rank, dist). If Popi+1 still have less
than popSize solutions, we apply again the same strategy, and so on.

4.2. Local search

Local search methods are frequently hybridized with evolutionary metaheuristics, as the former pro-
vide exploitation while the latter focuses on efficient exploration of the search space. Local search
is essentially a single-objective optimization method, and so the main issue when designing a multi-
objective memetic algorithm is how to implement the local search. In fact, the amount of exist-
ing multi-objective local search algorithms is still reduced [61]. Some examples are PAES (Pareto
Archived Evolution Strategy) [62] or Pareto Local Search [63], but these Pareto-based local search
methods are too computationally costly to be hybridized with a genetic algorithm. In this work we
propose a local search procedure that is much less time-consuming that, instead of building a Pareto
front, it provides a single output solution, or “one-point iteration” [64].

The selection criterion for choosing the best neighbor is also a non-trivial issue when applying
local search to a multi-objective problem, as the dominance relation � only defines a partial order.
Some authors propose to scalarize the objective function vector in order to guide the search [65, 66],
whereas other authors define dominance-based acceptance criteria [62].

We propose a local search method based on hill climbing which is fast and efficient. The neighbor
selection is based on dominance, but it also considers the solutions in the current non-dominated set
of solutions present in the population of the genetic algorithm. In this way, we can select a very
interesting neighbor even if it does not dominate the current solution.

Our proposal is detailed in Algorithm 2. It starts from an initial solution provided by the evolu-
tionary algorithm. Then it generates neighbors of that initial solution one by one. They are evaluated
using the scheduler and the energy post-optimization procedure described in Sections 4.1.1 and 4.1.2
respectively, until a neighbor that fulfills at least one of the following two requirements is found:

1. The neighbor dominates the current solution.

2. The neighbor would be included in the current set of non-dominated solutions of the population
of the genetic algorithm (i.e., no solution of the population dominates the neighbor and also no
solution has the same fitness values as the neighbor), while the current solution would not be
included.

When one such neighbor is found, the current solution is swapped for the newly found solution
and the process is repeated. In case that no such neighbor exists then the procedure ends and the
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Algorithm 2: Multi-objective hill climbing local search
input : A problem instance I and a feasible schedule S
output: The (hopefully) improved solution S′ for I
begin

S′ ← S; continue← True;
while continue = True do

NeighborSelected← False;
N(S′)← neighborhood of S′;
k ← 1;
while NeighborSelected = False and k ≤ |N(S′)| do

S′′ ← N(S′)[k];
Evaluate S′′;
if S′′ dominates S′, or S′′ would enter in the current set of non-dominated
solutions of the genetic algorithm and S′ would not then
NeighborSelected← True;

end
k ← k + 1;

end
if NeighborSelected = False then

continue← False;
else

S′ ← S′′;
end

end
end

current solution is returned. When the procedure ends, the chromosome is rebuilt from the improved
schedule returned, so its characteristics can be inherited to subsequent offspring solutions, an effect
known as Lamarckian evolution.

The second requirement allows our local search to select interesting neighbors even if they do
not dominate the current solution. Notice that if the current solution would already be included in
the set of non-dominated solutions of the genetic algorithm, then we restrict the search to dominating
neighbors only; it is easy to see that not doing so would result in an inefficient search process.

As this local search is based on hill climbing, it is actually not very computationally costly, and
so it can be applied to all initial chromosomes and to all the generated offspring of the genetic algo-
rithm. This would not be possible for other alternatives such as the Pareto Local Search [63], as their
computational cost is much greater.
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Figure 5. A neighbor of the schedule represented in Figure 1, created by reversing the critical arc (θ33, θ13).
The TWT of 5 is better than that of the original schedule but the NPE of 29 is worse.

4.2.1. Neighborhood structure

Most neighborhoods that have been proposed in the literature for the JSP rely on the concepts of critical
block and critical path, described in Section 3.2. In this work we adopt a neighborhood structure based
on reversing a single critical arc of the schedule. It was initially proposed in [58] and it has some
interesting properties, as for example that it always generates feasible neighbors, therefore avoiding
the need to use expensive repairing procedures.

Notice that in TWT minimization the cost of a solution can be given by up to N critical paths. As
indicated in [19], for each node endi we consider a critical path from the node start to endi when its
length is greater than the due date of job Ji (i.e., di). It is well-known that the most time consuming
part of a local search is the neighbor evaluation. As similarly proposed in [19], we opted to only
consider the critical path of the job Ji that has the highest contribution to the TWT, in order to limit
the number of neighbors and so limit the computational burden.

As an example, consider the schedule represented in Figure 2. Its TWT is 8, as job J1 adds 6 and
job J3 adds 2 (see the Gantt chart of Figures 1 or 3). As job J1 adds the most to the TWT, we choose
the critical path that ends in node end1, which is the following: (θ21, θ11, θ32, θ33, θ13). There are two
critical blocks in this critical path: (θ21, θ11, θ32) and (θ33, θ13). Therefore, there are three possible
neighbors: the first one created by reversing the critical arc (θ21, θ11), the second one reversing (θ11,
θ32) and the third one reversing (θ33, θ13). As an example, Figures 5 and 6 show the schedule of the
third neighbor, respectively before and after applying the energy post-optimization procedure. As the
only late job is J3, its TWT is 5, which is better than that of the original solution (8), but in this case
the NPE is worse (23 versus 20 after applying the energy post-processing procedure or 29 versus 26
before applying it).

This neighborhood structure is specifically designed for TWT minimization, but we have empiri-
cally seen that many neighbors that improve the TWT of the original solution also improve its NPE as
well (although this does not happen in the provided example).
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Figure 6. The schedule of Figure 5 after applying the energy post-optimization procedure to it. Notice the
delay of operation θ31, which is able to reduce the NPE from 29 to 23.
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Figure 7. The NPE of the schedule represented in Figure 3 can be further improved if we allow delaying the
last operation of a machine. By delaying operations θ12, θ23 and θ22 the TWT is still 8 but the NPE is further
reduced from 20 to 18.

4.3. The linear programming approach

The heuristic energy post-optimization procedure defined in Section 4.1.2 is fast and efficient, but it
does not necessarily produce the optimal assignment of starting times. Notice that the NPE could be
further improved in some cases even if we maintain the processing ordering of the operations on the
machines. For example, the delay of the starting time of the last operation of some machine may allow
the first operation of a different machine to be delayed as well, producing a solution with a lower NPE.
This possibility is not taken into account by the proposed energy post-optimization procedure, as it
does not allow to delay the last task of each machine.

As an example, we have seen that applying the energy post-optimization procedure to the schedule
of Figure 1 produces the schedule of Figure 3 and the NPE is reduced from 26 to 20. But further
improvement is possible if we allow to delay operation θ12, as that allows us to also delay operations
θ23 and θ22, resulting in the schedule represented in Figure 7, which has the same TWT but an even
lower NPE of 18 (machine R2 adds 6 and machine R3 adds 12).

However, checking for all these possibilities would significantly increase the computational burden
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of the heuristic procedure, and so it could not be used to improve every solution. We have decided
to propose a more computationally expensive procedure, but only use it to improve the final set of
non-dominated solutions returned by the evolutionary algorithm in its last generation. In order to do
that, given an input solution S and the problem definition of Section 3, the following relaxed Linear
Programming (LP) problem is considered.

min
∑

k=1,..,M

[P idlek × (sωk + pωk − sαk −
∑
u∈Mk

pu)]

s.t. : sv + pv ≤ sSJv v ∈ Ω \ {θ1n1 , . ., θNnN } (5a)

sv + pv ≤ sSMv v ∈Mk \ {ωk}, k = 1, . .,M (5b)

0 ≤ sθi1 i = 1, . ., N (5c)

sθini
+ pθini

≤ max{Ci, di} i = 1, . ., N (5d)

The decision variables are the starting times of the operations sv with v ∈ Ω. The constraints (5a)
represent the linear orderings imposed by the jobs J on the set of operations Ω, which hold for each
operation v ∈ Ω except when v is the last operation of a job Ji. The constraints (5b) represent the
processing orderings on the machines in S. Constraints (5c) impose to the first operation θi1 of each
job Ji to start after time 0. Constraints (5d) ensure that the final TWT value is less than or equal to
that of the input solution S, by constraining the ending times of the last operations θini of each job Ji.

Clearly, all the imposed temporal constraints are of the form x− y ≤ c. Therefore, in accordance
with [67, 68] the coefficient matrix of the described LP is totally unimodular (TU), and hence all the
optimal solutions of the LP problem remain discrete values and provide the optimal NPE given the
processing order of the operations established by the initial solution S. A similar approach is described
in [59], where the optimal timing problem for non-regular single objectives in a job-shop is reduced
to a minimum cost flow problem.

We are applying this linear programming approach to further improve the NPE of all solutions of
the final Pareto front obtained in the last generation of the memetic algorithm.

5. Decomposition-based multi-objective evolutionary algorithm

MOEA/D (multiobjective evolutionary algorithm based on decomposition) was initially proposed in
[7]. It is a generic decomposition-based multiobjective optimization framework [69], which is simple
and powerful, and has been successfully applied to solve many optimization problems. In this section
we describe the approach taken in this paper, which is one of its contributions.

5.1. MOEA/D basics

The main idea of MOEA/D is to decompose a given multi-objective problem into several single-
objective subproblems, each of them defined by a scalarizing function using a different weight vector.
Each problem is solved using evolutionary operators as crossover or mutation or even local search, as
in a single-objective setting, but a neighborhood relation is also defined between subproblems; in this
way a solution for a subproblem may help when solving some neighboring subproblems.
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To decompose the original multi-objective problem into a number of scalarized single-objective
subproblems, several scalarizing functions have been proposed so far in the literature [70]. Probably
the most used, for its proven efficiency, is the weighted Tchebycheff (gte) function which is to be
minimized:

gte(x, λ) = max
i∈{1,2}

λi · |z∗i − fi(x)| (6)

where λ = (λ1, λ2) is a positive weighting coefficient vector and z∗ = (z∗1 , z∗2) is a reference point,
which will be (0,0) in our case. Another commonly used function is the weighted sum, but it is
well known that it usually performs worse than the Tchebycheff function. We have also empirically
confirmed this on our particular problem.

Let (λ1, . . . , λNP ) be a set of NP uniformly distributed weighting coefficient vectors defining
NP subproblems that will be optimized. The goal is to approximate the solution x with the best
scalarizing function value gte(x, λi) for each subproblem i ∈ {1, . . . , NP}. To this end, MOEA/D
maintains a population P = (x1, . . . , xNP ), in which each individual corresponds to a “good” solution
for one of the subproblems.

As an example, if NP = 6, then MOEA/D will have a population of 6 solutions, and their
weighting coefficient vectors will be λ1 = (0, 1), λ2 = (0.2, 0.8), λ3 = (0.4, 0.6), λ4 = (0.6, 0.4),
λ5 = (0.8, 0.2) and λ6 = (0, 1).

Continuing with the example, now suppose we want to calculate the weighted Tchebycheff func-
tion of a given solution x for the third subproblem. In order to do it, we have to compute max(0.4 ·
fn1(x), 0.6 ·fn2(x)), where fn1(x) and fn2(x) are the normalized values of the first and second ob-
jective functions, respectively, of solution x. Hence, fn1(x) = (f1(x)− f1min)/(f1max− f1min),
where f1(x) is the value of the first objective function of solution x, and f1min and f1max are the
minimum and maximum values of the first objective function, respectively, found so far in the search.
fn2(x) is defined in a similar way.

Furthermore, in MOEA/D a set of neighborsB(i) is defined for each subproblem i ∈ {1, . . . , NP},
considering the T closest weight vectors, including i. In the standard version of MOEA/D the sub-
problems are optimized iteratively in order to evolve the population. At a given iteration corresponding
to a subproblem i, an offspring solution y is created by applying a crossover operator to a pair of solu-
tions selected at random from B(i) (i.e., from the neighboring subproblems of i), and then a mutation
operator to the resulting solution. Then it performs the replacement: for every subproblem j ∈ B(i),
it checks if y improves over j’s current solution xj (of course considering λj), and in that case y re-
places it. Notice that y might replace the current solution of several subproblems in a single iteration,
which will cause diversity problems, as detailed in the following subsection. The algorithm continues
iterating until a stopping condition is reached.

5.2. Advanced selection and replacement strategies

As stated in [71], the selection and replacement components in MOEA/D are critical when trying to
achieve an intensification-diversification trade-off when evolving the population. This trade-off is a
key ingredient in the performance of any evolutionary algorithm. In fact, in [71] it is proven that
the standard MOEA/D suffers from a loss in population diversity and premature convergence when
solving a bi-objective JSP with uncertainty. Some alternatives have been proposed in the literature to
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address this problem and maintain the diversity, as for example MOEA/D-nr [72], MOEA/D-xy [73]
or MOEA/D-RO [71], among others. In this work we have decided to implement the generational
approach proposed in MOEA/D-xy [73], because it is one of the few studies that efficiently tackle the
combinatorial case, as most MOEA/D papers study continuous multi-objective problems.

The main idea developed in MOEA/D-xy [73] is that since subproblems are processed in an itera-
tive way in conventional MOEA/D, as well as in its variants [72], as soon as a solution gets replaced in
a given iteration, it is definitively discarded and gets no chance to produce any offspring solutions, even
though it could be potentially beneficial. Accordingly, the authors proposed a generational approach in
which all individuals in the population are evolved simultaneously before the replacement takes place.
They consequently described four variants denoted MOEA/D-xy with x,y ∈ {s, c}. The components
of the couple (x,y) correspond respectively to the selection and replacement strategies; the notation
s (resp. c) refers to a so-called selfish (resp. collective) variant. The experimental study reported
in [73] showed the superiority of MOEA/D-ss over conventional MOEA/D and its variants [7] [72].
Although we finally adopted MOEA/D-ss in our paper, we have also tried the variants MOEA/D-cc,
MOEA/D-sc and MOEA/D-cs and the results were usually worse.

MOEA/D-ss introduces the following modifications to the conventional MOEA/D framework.
First, for each subproblem i, a new offspring yi is generated by fixing the first parent to be the current
solution xi and the second one is selected from the remaining subproblems in the T -neighborhood of
i with probability δ, or from the whole population with probability 1 − δ. The use of the parameter
δ ∈ [0, 1] in the selection phase was initially proposed in [72] and is typically set to a high value; it can
be viewed as a way to increase diversity among parents which might potentially result in increasing
the diversity of the generated offsprings.

As for the replacement, it is not performed until we have generated one offspring for every sub-
problem. Then, an offspring yi can only replace the current solution xi of the subproblem from where
it was originated. Once the replacement is done, then the next generational round is performed and
so until the termination criterion is met. This variant is termed selfish because each subproblem privi-
leges its own solution in the selection phase (whereas in the variants with x = c the first parent is not
fixed), and it also does not include its neighbors in the replacement phase (in the variants with y = c
a solution can also replace solutions from neighboring subproblems).

5.3. Local search

One of the advantages of decomposition-based frameworks is that we do not need to define compli-
cated multi-objective local search methods. Instead, we can use local search methods designed for
single-objective optimization. To this end, we are using a standard hill climbing algorithm that works
as follows: starting from an initial solution it generates solutions one by one, until we find a neigh-
bor with a better scalarizing function value than the current solution. If we find such neighbor the
procedure is repeated switching the current solution for the newly found solution, in other case the
procedure ends returning the current solution. As for the neighborhood strategy, we use that previ-
ously defined in Section 4.2.1. This local search is applied to every individual of the initial population,
and also to every generated offspring.
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5.4. Archive of non-dominated solutions

Furthermore, we use an archive for storing all the non-dominated solutions found during the search
process. In NSGA-II this is not really necessary, as all non-dominated solutions are stored in the
population. In our MOEA/D based algorithm, however, during the single-objective local search it
is quite common to evaluate a neighbor which can be great for a different subproblem but not good
enough for the current subproblem we are trying to optimize. Therefore, we opt to maintain an external
archive of non-dominated solutions and we check the inclusion in the archive of every generated
solution in the MOEA/D framework and every neighbor generated during the local searches.

The size of the archive should not be very large at any time point, as every time a new solution is
added to it, all solutions dominated by the newly added solution are removed from the archive. In our
experimental study, the largest number of non-dominated solutions we found in any run was 163, in
the LA31 instance, which has 300 tasks (30 jobs and 10 machines). However, we conjecture that the
space of the archive is exponential in the worst case, and so difficult huge instances may have a very
large number of non-dominated solutions, and in that case it might be necessary to impose a limit on
the size of the archive and use the crowding distance criterion (see Section 4.1.4) in order to select
them. In our experimental study, this was not necessary.

5.5. Outline of the proposed algorithm

The representation of solutions is the same as described in Section 4.1.1, whereas the evaluation is also
the same: the insertion strategy described in Section 4.1.1 with the energy post-optimization procedure
detailed in Section 4.1.2. We again use the JOX crossover operator and swap mutation, both described
in Section 4.1.3, although this time we set the JOX operator to produce only one offspring solution
instead of two.

Algorithm 3 shows an overview of the described approach. Firstly, a population of popSize
individuals (or µ) is randomly created, each one corresponding to a particular subproblem. Local
search is then applied to every solution. Then, the algorithm iterates over numGen iterations or
generations. In each generation, for each subproblem the following process is applied: one parent
will be the current solution of that particular subproblem, and the other parent is selected from its
neighborhood (consisting of the T subproblems with the closest weighting coefficient vectors) with
probability δ, or from the whole population with probability 1 − δ. Then the crossover operator
is applied to these parents with probability crProb, creating one offspring solution, which is then
applied the mutation operator with probability mutProb, and finally the single-objective local search
to improve it. As soon as we have popSize offspring solutions (one for each subproblem) then the
generational replacement is performed: for each subproblem we select the best between its current
solution and its corresponding offspring. After we perform the number of generations indicated by
the stopping condition, the external archive will contain the final Pareto set. Then, we apply to those
solutions the Linear Programming step described in Section 4.3 in order to further improve them, and
we return the resulting solutions.
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Algorithm 3: The improved MOEA/D-ss (based on that proposed in [73]) hybridized with
local search. The archive of non-dominated solutions is updated every time a new solution
is evaluated (that includes all neighbors generated during the local search)

input : {λ1, . . . , λµ}: weight vectors w.r.t. sub-problems;
g: a scalarizing function;
B(i): the neighbors of sub-problem i ∈ {1, . . . , µ};
output: The archive of non-dominated solutions (which can then be further improved by the

Linear Programming step)
begin

Archive of non-dominated solutions← ∅;
Create a random initial population P ← {p1, . . . , pµ};
for i ∈ {1, . . . , µ} do pi ← localsearch(pi) ;
currentGen← 0;
while currentGen < numGen do

currentGen← currentGen+ 1;
for i ∈ {1, . . . , µ} do

if rand(0, 1) < δ then Bi ← B(i) ;
else Bi ← P ;
l← rand(Bi);
while l = i do l← rand(Bi) ;
oi ← pi;
if rand(0, 1) < crProb then oi ← crossover(pi, pl) ;
if rand(0, 1) < mutProb then oi ← mutation(oi) ;
oi ← localsearch(oi);

end
for i ∈ {1, . . . , µ} do

if g(oi, λi) < g(pi, λi) then pi ← oi ;
end

end
end

6. A Constraint Programming approach

Constraint Programming (CP) is a declarative programming paradigm [74] which is appropriate for
tackling constraint optimization problems. We have to first create a model of the problem, defined as a
set of decision variables that range on a discrete domain of values, and a set of constraints that imposes
limits on the possible combinations of variable-value assignments. Afterwards, the solver interleaves
two steps: constraint propagation (where inconsistent values are removed from the domains of the
variables) and search.

The described paradigm is particularly suited for efficiently solving scheduling problems where
the decision variables correspond to the problem operations. Each operation variable u is characterized
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by at least two features: su represents its start time, and pu represents its processing time.
Several authors have developed a number of different global constraints for scheduling problems.

The most important are probably the unary-resource constraint [75], which is useful for modelling
simple machines, the cumulative resource constraint [76] that models cumulative resources, as for
example a pool of workers, and the reservoir [77] for modelling consumable resources, as for exam-
ple a fuel tank. In particular, the constraint unary-resource(A) holds if and only if all operations
in the set A do not overlap at any time point. A number of propagation algorithms are embedded in
the unary-resource constraint in order to remove provably inconsistent assignments of operation
start-time variables.

Our starting CP model is taken from [9], where we introduce an additional set of decision variables
that represent the switch ON/OFF events in the set of machines Mk. The purpose of these decision
variables is to take into account the non-regularity of the NPE objective function. In addition, we con-
sider a lexicographic optimization method in place of a single-objective optimization, which consider
both the given objective functions, that for reader’s convenience we report in the following:

NPE =
∑

k=1,...,M

[P idlek (sωk + pωk − sαk −
∑
u∈Mk

pu)] (7a)

TWT =
∑

i=1,...,N

wi max{Ci − di, 0} (7b)

In this work, we consider two different CP models, targeted at lexicographically minimizing both
pairs of objectives (NPE,TWT) and its dual (TWT,NPE). The reader should note that in the following
we consider the OPL language [78] as reference for the description of the CP models.

min lex(NPE, TWT) (8a)

s.t. : sv + pv ≤ sSJv v ∈ Ω \ {θ1n1 , . ., θNnN } (8b)

span(OnOffk, Mk) k = 1, . .,M (8c)

noOverlap(Mk) k = 1, . .,M (8d)

sωi + pωi ≤ dTWTε/wie+ di i = 1, . ., N (8e)

In the first model the decision variables are the starting times of operations sv ∈ Ω, extended
with the starting times sOnOffk of operations OnOffk, which represents the first instant when machine
k is turned on, so that the machine will remain in this state for the entire duration pOnOffk . We as-
sume that every decision variable sv (sOnOffk ) may respectively take values in the interval [0, H − pv]
([0, H − pOnOffk ]), where H is the horizon value, representing the maximum value that each decision
variable can assume. The (8a) statement represents the lexicographic minimization of the objective
(NPE,TWT) with the energy NPE as primary key. The linear orderings imposed on the set of opera-
tions Ω by the set of jobs J are represented by constraints (8b), which hold for each operation v ∈ Ω
except when v is the last operation of a job Ji. Constraints (8c) use the OPL function span(), which
imposes that the set of operations Mk (the set of operations requiring machine k) be contained in the
spanning operations OnOffk, k = 1, 2, . . . ,M . Specifically, for each operation u ∈Mk the constraints
sOnOffk ≤ su and su+pu ≤ sOnOffk+pOnOffk must hold. Constraints (8d) represent the non-overlapping
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constraints imposed by machines Mk by means of the global constraints unary-resource() intro-
duced above, implemented through the OPL function noOverlap(). Finally, given a total bound
TWTε on the secondary key TWT (TWT ≤ TWTε), constraints (8e) impose an upper bound on the
end-times of each job Ji such that the contribution of each single job Ji to the objective TWT cannot
be greater than the given global value TWTε. The use of this last set of constraints is explained at the
end of this section, where we describe the ε-constraint method [8] for calculating an approximation of
the Pareto set.

min lex(TWT,NPE) (9a)

s.t. : sv + pv ≤ sSJv v ∈ Ω \ {θ1n1 , . ., θNnN } (9b)

span(OnOffk, Mk) k = 1, 2, . .,M (9c)

noOverlap(Mk) k = 1, . .,M (9d)

eOnOffk − sOnOffk ≤ dNPEε/P idlek e+
∑
u∈Mk

pu k = 1, . .,M (9e)

The second CP model is similar to the previous one, with two differences: (i) it lexicographically
minimizes the pair (TWT,NPE), see (9a)); (ii) it has a dual set of constraints (9e) on the duration
of the OnOffk operations (eOnOffk is the end-time of the OnOffk operation), which indirectly bound
the secondary objective NPE. In particular, given a total bound NPEε on the secondary key NPE
(NPE ≤ NPEε), the (9e) constraints impose an upper bound on the duration of the OnOffk operations,
such that the contribution of each single machine Mk to the objective NPE cannot be greater than
the given global value NPEε. As for the constraint set (8e), its use will be described at the end of this
section.

It is important to remark that both the above CP models remain perfectly feasible and solvable
without the sOnOffk decision variables. Although such variables are not strictly necessary, we have
observed in a preliminary study that their addition to the models is beneficial and helps the solver to
minimize the NPE objective. In fact, due to the non-regularity of the NPE objective (i.e., NPE non-
monotonically decreases as the start-times of the activity increase), a delay decision on the start-time
sOnOffk influences the whole set of operations Mk and could have the effect of “grouping” them, with
a consequent reduction of the NPE objective.

As previously introduced, we use the ε-constraint method [8] to generate the Pareto front. It
is a well-known multi-objective optimization method that proceeds by choosing only one objective
function as the only objective, while properly constraining all the remaining objectives during the
optimization process. Different solutions of the Pareto front can be obtained by systematically varying
the constraint bounds.

In Algorithm 4 we present the ε-constraint method for the particular case of a bi-criterion ob-
jective function f = (f (1), f (2)). The algorithm takes as inputs: (i) the objective f , (ii) the bounds
f
(2)
min and f (2)max on the second component of the objective, and (iii) the decrement value δ. As previ-

ously mentioned, the method iteratively leverages a procedure provided in input to solve constrained
optimization problems, which in our case is the CP() procedure implementing the constraint program-
ming models previously described. Note that in this work we consider an ε-constraint method that is
slightly different w.r.t. the “canonical” one, as the given CP model considers a lexicographic min-
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Algorithm 4: Bi-criterion ε-constraint method

input : the objective f , the bounds f (2)min and f (2)max, and the decrement value δ
output: the Pareto set P
begin

P ← ∅;
ε← f

(2)
max;

while ε ≥ f (2)min do
S ← CP(f , ε);
if (S 6= nil) ∧ (6 ∃S′ ∈ P : S

′ ≺ S) then
P ← (P ∪ {S}) \ {S′ ∈ P : S ≺ S′};

end
ε← ε− δ;

end
end

imization instead of single-objective minimization, with f (1) as primary key and f (2) as secondary
one. In addition, according to the constraints (8e) ((9e)), we do not impose a direct bound on the TWT
(NPE) objective; rather, we impose a bound on the end-times of the jobs (the duration of the OnOffk
operations) through the constraints (8e) ((9e)), which indirectly affects the corresponding objective
function TWT (NPE).

Algorithm 4 proceeds as follows: after initializing the constraint bound ε to the f (2)max value, a new
solution S is computed by calling CP() at each step of the while solving cycle. If S is not dominated
by any of the existing solutions in the current Pareto front approximation P , then S is inserted in P ,
and all the solutions possibly dominated by S are removed from P . The rationale behind this method
is to iteratively tighten the constraint bound by a pre-defined constant δ at each step of the solving
cycle. Although we use a slightly different version of the ε-constraint method, in a preliminary study
we have observed that the substitution of the constraint TWT ≤ TWTε (NPE ≤ NPEε ) with the
combined action of the constraints (8e) ((9e)) and the lexicographic minimization of the objectives
(NPE,TWT) ((TWT,NPE)) yields results that bend in favor of the latter solution. This fact is probably
due to the lack of a constraint mechanism that propagates the bounds imposed on the two objectives
on the start-times of the operations (the problem decision variables).

7. Experimental results

We have conducted an experimental study to evaluate our proposed algorithms. We start describing
the benchmark instances. Then, we briefly report about the performed parameter tuning. Finally we
analyze the contribution of each of the components of our algorithms to its overall performance, and
also compare them with the state-of-the-art method of the literature.
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7.1. Benchmarks considered

The authors of the [45] paper that inspired our work about this problem, only consider the well-known
FT10 instance in their experiments. In our work we also consider this instance, but we add eight more
JSP instances from the literature of different sizes in order to perform a more exhaustive experimental
analysis. In particular we take one well-known instance from a set of possible sizes (number-of-jobs×
number-of-machines): LA01 (size 10×5), LA06 (size 15×5), FT10 (size 10×10), FT20 (size 20×5),
LA21 (size 15×10), LA27 (size 20×10), LA31 (size 30×10), LA40 (size 15×15) and ABZ7 (size
20×15). All these instances are available in the OR-library ([79, 80]) and most of them are well-
known for being very difficult to solve in the classical JSP with makespan minimization [81].

The due date di of each job Ji is assigned using the expression di = k×
∑ni

j=1 pij , where ni is the
number of activities related to the i-th job, and k is a parameter that controls the tightness of the due
dates. For the FT10 instance we take the values k = 1.5, k = 1.6, and k = 1.7, as these are the values
used in [45] (we omit the k = 1.8 case so as to have three k values for each instance, considering also
that the k = 1.8 case has shown to be not very challenging). On all remaining instances we consider
the values k = 1.3, k = 1.5 and k = 1.6, as these are common in the TWT literature (see for example
[19, 16, 18]). Considering these values for the k parameter we have a total of 27 different instances.

This technique for creating due dates was originally proposed in [82], but it was used afterwards in
most papers about TWT minimization in the JSP (see for example [83, 15, 16, 19, 18]). The selected
values for the k parameter are known to produce a good range of instances, where k = 1.3 produces
tight and very difficult to meet due dates, whereas k = 1.7 produces loose and quite easy to meet due
dates. This is especially true in “square” instances (i.e., instances with the same number of jobs and
machines), although in [16, 19, 18] these values of k are also used for “rectangular” instances.

The weights of the jobs are assigned in the same way as in other papers in TWT minimization: the
first 20% of jobs are assigned weight w = 4 (high priority), the next 60% of jobs are assigned weight
w = 2 (average priority) and the last 20% of jobs are assigned weight w = 1 (low priority). The
exception is instance FT10, where we take the weights used in [45], which are the following: w1 = 1,
w2 = 2, w3 = 3, w4 = 1, w5 = 3, w6 = 2, w7 = 3, w8 = 2, w9 = 1 and w10 = 1.

Finally, the idle power consumption of the machines is based on that used in [45]: P idle1 = 2400,
P idle2 = 3360, P idle3 = 2000, P idle4 = 1770, P idle5 = 2200, P idle6 = 7500, P idle7 = 2000, P idle8 =
1770, P idle9 = 2200, P idle10 = 7500, P idle11 = 2400, P idle12 = 3360, P idle13 = 2000, P idle14 = 1770 and
P idle15 = 2200. In instances with 5 or 10 machines we simply cut the extra machines.

7.2. Parameter tuning

The NSGA-II and MOEA/D based hybrid metaheuristics were fully implemented by the authors of
this paper in C++ using a single thread. Besides, the Linear Programming (LP) and Constraint Pro-
gramming (CP) approaches are implemented using IBM CPLEX Optimization Studio 12.7.1. Target
machine is an Intel Core i5-2450M CPU at 2.5 GHz with 4 GB of RAM, running on Windows 10
Pro. Firstly, we have performed a parametric analysis in order to fix some of the parameters of our ap-
proaches, using the set of instances described in Section 7.1. For the NSGA-II based approach, Table 2
reports a summary of the tested values, in which bold numbers indicate the configuration that obtained
the best average results. The stopping condition numGen is modified accordingly in these tests so
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Table 2. Values tested in the parameter tuning for the NSGA-II based approach. Bold values indicate the best
configuration found.

Parameter Values tested

popSize 500, 1000, 2000
tSize 2, 4, 8, 16

crProb 0.6, 0.8, 1.0
mutProb 0, 0.1, 0.2, 0.3

that all possible configurations take similar computational times. Using the proposed configuration
and the setting numGen = 2000, we have confirmed that the convergence pattern is appropriate and
the running time is reasonable. Precisely, the computational time depends on the instance size, and in
average is as follows: 23 minutes for ABZ7, 4 minutes for FT10, 6 minutes for FT20, 1.5 minutes for
LA01, 3 minutes for LA06, 7 minutes for LA21, 12.5 minutes for LA27, 34 minutes for LA31, and
11 minutes for LA40.

The time taken by each component of the hybrid metaheuristic is in average 73% for the local
search, 27% for the genetic algorithm and less than 1% for the linear programming final step. It
is worth to remark that, even if the time taken by the LP step is less than 1% of the total time, it
would be too computationally costly to apply the LP procedure in all generations of the algorithm. We
have tried to do it in some preliminary experiments and we have confirmed that the huge increase in
computational time does not compensate for the very slight improvement in solution quality.

For the MOEA/D based approach we decided to use a base configuration as similar as possible
to the NSGA-II based approach. Therefore, we also choose popSize = 1000, numGen = 2000,
crProb = 1.0 and mutProb = 0.2. Aside from those parameters, we also have to fix the δ parameter
(that indicates the probability of choosing the second parent from the neighborhood) and the T pa-
rameter (that indicates the size of the neighborhood for each subproblem, including the subproblem).
After some preliminary experiments we decided to set δ = 0.95 (we have also tested δ = 0.9 and
δ = 1.0) and T = 21 (we have also tested T = 11 and T = 41). Using this configuration, the running
times are similar to those used by the other metaheuristic approach.

7.3. Analysis of our algorithms and comparison with the state of the art

To compare the performance of the algorithms we choose the hypervolume indicator (HV) [84], as it is
one of the most popular indicators in multi-objective optimization. If solutions are considered as points
in objective space, hypervolume is the n-dimensional volume of the set relative to some reference
point. Figure 8 shows an example of Pareto set containing three solutions relatively to a bi-objective
minimization problem; the hypervolume value is the area of the shaded portion, provided the reference
point delimiting the area bounds. It is expected that a set of solutions with larger hypervolume presents
better trade-offs than sets with lower hypervolume.

Tables 3, 4, and 5 report the hypervolume values for all the 27 previously mentioned instances.
The first column of each table shows the problem instance, while the second column shows the general
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Figure 8. The hypervolume measure (shaded area) for a bi-objective minimization problem.

solving approach. In particular, Genetic is the algorithm described in Section 4.1, MOEA/D is the
algorithm described in Section 5, CP is the algorithm described in Section 6, while LIU is the NSGA-
II-based algorithm proposed in [45], which only appears in Table 3 because only the FT10 instance
is analyzed in that paper. We note that, in order to run LIU in the remaining instances we could have
tried to obtain the source code (it is not publicly available) or reimplement the method from scratch.
However, we did not deem it necessary, due to the fact that its results in the FT10 instance with
every value for the k parameter are considerably far away from those obtained by any of our methods.
The third column shows the particular version of every approach (i.e., 〈emptybox〉 = plain version,
+LS = Local Search (see Section 4.2), +PO = Post-Optimization (see Section 4.1.2), +LS + PO
= Local Search + Post-Optimization). For the FT10 instance only, we have added an extra row
related to the Genetic case called noDR (i.e., no duplicate removals), that reports the results obtained
with the plain genetic version without removing duplicate solutions in the population. Comparing the
results obtained without the duplication removal method with those obtained by using it (i.e., the row
called noDR with the previous row), it can be seen that removing duplicates has beneficial effects, as
demonstrated by the larger hypervolume values.

The remaining columns divide the tables in three sections, one for each value of the k parameter.
Lastly, for each k value there are two columns (labelled no LP and LP ) that report the results of the
solving approach without and with the final linear programming step, respectively.

For Genetic + LS + PO and MOEA/D + LS + PO we set numGen = 2000. For Genetic + LS
and MOEA/D + LS we set numGen = 2500 for all instances. Finally, for Genetic, Genetic+PO,
Genetic+PO+LP, MOEA/D, MOEAD/D+PO, MOEA/D+PO+LP the parameter numGen varies be-
tween 4000 and 32000 depending on the instance size and on the particular method.

The proposal of [45] (labelled LIU ) is a standard NSGA-II algorithm using OOX crossover op-
erator and swap mutation. The crossover probability is set at 1.0 and the mutation probability at 0.6.
The population size varies between 800 and 1000 depending on the instance, and the total number
of generations vary between 25000 and 40000. As the authors do not report the computational time,
we have implemented a version of their method and concluded that their running time is considerably
larger than that of our approach: about 15 minutes per run.
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Table 3. Hypervolumes computed for the LA01, LA06, FT10 instances.

Instance Algorithm Version k = 1.3 k = 1.5 k = 1.6

no LP LP no LP LP no LP LP

LA01

Genetic

0.42 0.45 0.54 0.58 0.60 0.65

+LS 0.43 0.46 0.55 0.60 0.60 0.66

+PO 0.46 0.46 0.61 0.61 0.66 0.66

+LS+PO 0.47 0.47 0.61 0.61 0.67 0.67

MOEA/D

0.42 0.45 0.53 0.58 0.60 0.65

+LS 0.43 0.46 0.55 0.60 0.60 0.65

+PO 0.46 0.46 0.59 0.59 0.66 0.66

+LS+PO 0.47 0.47 0.61 0.61 0.66 0.66

CP 0.43 0.43 0.55 0.55 0.61 0.61

LA06

Genetic

0.41 0.43 0.52 0.53 0.57 0.59

+LS 0.43 0.44 0.53 0.55 0.57 0.59

+PO 0.45 0.45 0.56 0.56 0.61 0.61

+LS+PO 0.46 0.46 0.57 0.57 0.62 0.62

MOEA/D

0.40 0.41 0.50 0.51 0.56 0.58

+LS 0.41 0.43 0.53 0.55 0.57 0.59

+PO 0.44 0.44 0.55 0.55 0.62 0.62
+LS+PO 0.46 0.46 0.57 0.57 0.62 0.62

CP 0.44 0.44 0.56 0.56 0.61 0.61

k = 1.5 k = 1.6 k = 1.7

FT10

Genetic

0.63 0.63 0.68 0.69 0.72 0.75

no DR 0.59 0.60 0.64 0.67 0.72 0.73

+LS 0.62 0.63 0.70 0.70 0.76 0.77

+PO 0.62 0.64 0.72 0.73 0.75 0.76

+LS+PO 0.65 0.67 0.73 0.74 0.76 0.76

MOEA/D

0.59 0.61 0.70 0.71 0.75 0.76

+LS 0.64 0.64 0.71 0.72 0.76 0.76

+PO 0.64 0.65 0.71 0.72 0.78 0.78
+LS+PO 0.65 0.66 0.73 0.74 0.78 0.78

CP 0.59 0.59 0.69 0.70 0.70 0.71

LIU 0.38 0.45 0.52

About the CP approach, we generate an approximation of the Pareto set by using the ε-constraint
algorithm (see Algorithm 4) by running the procedure twice: in the first run we lexicographically opti-
mize the (NPE,TWT) pair, while in the second run we lexicographically optimize the (TWT,NPE) pair.
Afterwards, we merge the two approximations of the Pareto sets into a single one, and calculate the
hypervolume value of the Pareto approximation thus obtained. Each run of the ε-constraint algorithm
is composed of 10 solving cycles. In each solving cycle, we leverage the random nature of the CP Op-
timizer algorithm (i.e., a Large Neighborhood Search strategy) running the CP solver 10 times, thus
generally obtaining 10 different solutions. Each of the previous CP runs is allotted a maximum CPU
time of 50 seconds; thus, each of the two runs of the ε-constraint algorithm is characterized by a total
CPU time bound of 5000 seconds. About the intervals [f

(2)
min, f

(2)
max] on the objective functions, we

proceeded as follows. Relatively to the set of solved instances, when we optimize the NPE primary
objective (TWT primary objective) in the CP model, the interval of NPE values [NPElb, NPEub]
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Table 4. Hypervolumes computed for the FT20, LA21, LA27 instances.

Instance Algorithm Version k = 1.3 k = 1.5 k = 1.6

no LP LP no LP LP no LP LP

FT20

Genetic

0.43 0.43 0.52 0.52 0.54 0.54

+LS 0.45 0.45 0.54 0.54 0.57 0.57
+PO 0.43 0.43 0.51 0.51 0.54 0.54

+LS+PO 0.45 0.45 0.54 0.54 0.57 0.57

MOEA/D

0.41 0.41 0.50 0.50 0.54 0.54

+LS 0.44 0.44 0.52 0.52 0.56 0.56

+PO 0.41 0.41 0.48 0.48 0.52 0.52

+LS+PO 0.44 0.44 0.53 0.53 0.56 0.56

CP 0.41 0.41 0.49 0.49 0.53 0.53

LA21

Genetic

0.38 0.39 0.51 0.52 0.61 0.62

+LS 0.38 0.39 0.55 0.56 0.62 0.63

+PO 0.40 0.40 0.56 0.56 0.65 0.65

+LS+PO 0.40 0.40 0.60 0.60 0.65 0.65

MOEA/D

0.37 0.37 0.51 0.52 0.58 0.60

+LS 0.39 0.40 0.56 0.57 0.64 0.65

+PO 0.39 0.39 0.57 0.57 0.66 0.66

+LS+PO 0.41 0.41 0.59 0.59 0.67 0.67
CP 0.38 0.38 0.56 0.56 0.64 0.64

LA27

Genetic

0.32 0.32 0.47 0.50 0.54 0.57

+LS 0.37 0.38 0.53 0.55 0.60 0.62

+PO 0.33 0.33 0.51 0.51 0.59 0.59

+LS+PO 0.36 0.36 0.55 0.55 0.65 0.65

MOEA/D

0.32 0.33 0.47 0.49 0.53 0.56

+LS 0.36 0.37 0.54 0.56 0.61 0.62

+PO 0.34 0.34 0.55 0.55 0.59 0.59

+LS+PO 0.37 0.37 0.56 0.56 0.63 0.63

CP 0.34 0.34 0.50 0.51 0.60 0.60

(TWT values [TWTlb, TWTub]) for each value of k is given in Table 6. Note that the second column
of Table 6 reports the H0 values that are imposed as fixed horizon constraints for all of our instances;
such values are computed increasing each instance’s optimal known makespan by 15%.

As a last step, we apply the Linear Programming (LP) algorithm described in Section 4.3 to the
set of solutions obtained with the CP algorithm. It is worth noting that we tested additional ways to
generate the Pareto set within the same total CPU time: a run with a single objective and/or a single
run at each solving step of the ε-constraint algorithm.

All tables show that the hybridization with local search clearly improves the performance over
the non-hybrid approaches: in general, LS+PO approaches are better than their LS, PO, and Plain
counterparts. In the FT10 case, we can also observe that even our plain Genetic and MOEA/D
algorithms (that is, without local search, PO and LP ) is much better than LIU . Note that both
our genetic algorithm and the genetic algorithm used in [45] are NSGA-based. The main reason
why our genetic algorithm is better is the procedure for eliminating repeated individuals to create
each generation, which significantly improves the diversity of the population. Our crossover operator
(JOX) also represents a slight improvement with respect to the OOX used in LIU . Also, note that
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Table 5. Hypervolumes computed for the LA31, LA40, ABZ7 instances.

Instance Algorithm Version k = 1.3 k = 1.5 k = 1.6

no LP LP no LP LP no LP LP

LA31

Genetic

0.28 0.29 0.36 0.38 0.4 0.41

+LS 0.33 0.33 0.42 0.42 0.46 0.47

+PO 0.32 0.32 0.40 0.40 0.46 0.46

+LS+PO 0.33 0.33 0.43 0.43 0.48 0.48

MOEA/D

0.27 0.28 0.33 0.34 0.39 0.41

+LS 0.31 0.32 0.38 0.39 0.42 0.44

+PO 0.31 0.31 0.39 0.39 0.45 0.45

+LS+PO 0.33 0.33 0.42 0.42 0.46 0.46

CP 0.25 0.27 0.34 0.35 0.36 0.39

LA40

Genetic

0.11 0.14 0.22 0.27 0.24 0.30

+LS 0.15 0.19 0.25 0.30 0.27 0.31

+PO 0.15 0.15 0.35 0.35 0.35 0.35

+LS+PO 0.21 0.21 0.36 0.36 0.36 0.36

MOEA/D

0.11 0.14 0.21 0.28 0.25 0.30

+LS 0.15 0.19 0.26 0.31 0.26 0.31

+PO 0.17 0.17 0.34 0.34 0.36 0.36
+LS+PO 0.21 0.21 0.35 0.35 0.36 0.36

CP 0.13 0.13 0.27 0.28 0.31 0.31

ABZ7

Genetic

0.23 0.25 0.37 0.40 0.43 0.47

+LS 0.28 0.30 0.43 0.45 0.49 0.52

+PO 0.24 0.24 0.46 0.46 0.50 0.50

+LS+PO 0.27 0.27 0.46 0.46 0.51 0.51

MOEA/D

0.23 0.24 0.39 0.42 0.44 0.47

+LS 0.26 0.28 0.42 0.45 0.47 0.50

+PO 0.27 0.27 0.45 0.45 0.49 0.49

+LS+PO 0.30 0.30 0.47 0.47 0.53 0.53
CP 0.22 0.22 0.43 0.43 0.50 0.51

the CP-based algorithm clearly outperforms LIU , whereas the hybrid evolutionary algorithm further
improves over the CP performance. Hence, even if the ε-constraint algorithm is a basic strategy to
generate a Pareto set, the set of results generated with a state-of-the-art CP solver is clearly a further
confirmation of the effectiveness of the proposed evolutionary approach.

In general, all tables show that the evolutionary approaches outperform the CP-based approach,
even though the CP results always remain rather competitive. The tables also show that there exists an
advantage in the exploitation of the final LP step (see the LP columns), with the exception of all the
approaches that use the heuristic-based energy post-optimization procedure (PO) described in Section
4.1.2, where the LP advantage is negligible. This is not surprising, given that the PO procedure pursues
the same goal as the LP procedure, even though in different phases of the solving process.

Despite the fact that in general the CP method obtains reasonable results in all instances (the CP
hypervolumes in Tables 3, 4, and 5 are in general not exceedingly far to the best), it should be observed
that the CP performance tends to decrease as the instance size increases (the distance between CP-
related hypervolumes and the best hypervolumes progressively increases as the problem’s size grows).
This property is clearly shown in Figure 9, which compares the performances of the Genetic+LS+PO,
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Table 6. CP model: imposed horizon constraint H0, the interval of both the NPE values [NPElb, NPEub]
and TWT values [TWTlb, TWTub]) for each value of k.

Instance Horizon H0 NPElb NPEub TWTlb TWTub

ABZ7 755 80 130 3000 8000

FT10 1070 0 200 0 5000

FT20 1340 0 30 0 20000

LA01 766 0 50 2000 5000

LA06 1023 0 80 4000 9000

LA21 1203 40 100 4000 8000

LA27 1420 30 130 12000 18000

LA31 2052 30 100 30000 55000

LA40 1405 180 240 2000 5000

the MOEA/D+LS+PO and the CP algorithms for the instances of increasing size FT10, FT20, LA27,
LA40, LA31, and ABZ7, showing that CP obtains the worst performance in the bigger instances
ABZ7, LA31, and LA40. In order to deepen the analysis of the CP performance, we decided to
perform some tests by providing the CP solver with a greater CPU time. Figure 9 also reports the plots
related to the CP results obtained by extending each run from 50 to 300 seconds (CP-300 plots). The
test reveals that giving more time to the CP solver significantly pays off in terms of solution quality,
showing that our CP-based ε-constraint method had not yet reached a “minimization plateau” after 50
seconds.

In terms of hypervolume improvement, in order to fully appreciate the performance difference,
we provide the exact figures in the following. The values relative to the CP approach with CPU time
equal to 50 seconds per run are already reported in Tables 3, 4, and 5. Passing from 50 to 300 seconds
per run, for the FT10 instance we have a 0.59 → 0.60 improvement; for the FT20 instance we have
a 0.41 → 0.43 improvement; for the LA27 instance we have a 0.34 → 0.40 improvement; for the
LA31 instance we have a 0.27 → 0.33 improvement; for the LA40 instance we have a 0.13 → 0.17
improvement; finally, for the ABZ7 instance we have a 0.22→ 0.27 improvement.

Finally, Figure 10 shows two solutions, respectively before and after the application of the post-
optimization algorithm presented in Section 4.1.2, in the k = 1.5 case (the behavior is similar with
other values of k). The TWT is the same, while the NPE value is significantly improved by introducing
delays on the start times of some operations (the most evident delays are those related to machinesR5,
R6, and R10). In general, such improvement is caused by the exploitation of the solution’s temporal
flexibility which allows to reduce the idle time of the machines that contribute the most to the NPE
reduction, according to their respective P idle values.

8. Conclusions and Future Work

In this paper we have tackled the difficult problem of minimizing at the same time the TWT and
the energy consumption in the JSP. We have described three methods: a dominance-based evolution-
ary metaheuristic based on the NSGA-II framework which is hybridized with a multi-objective local
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(a) FT10 instance (10×10)

������

������

������

������

������

������

������

������

�� �� ��� ��� ��� ��� ��� ���

�
�
��
��
�
�
��
�
��
�

�
�
�
��
��
�
�
�
�
��
�
�
�

���������������������������

�������������������

�������������
�����������

��
������

(b) FT20 instance (20×5)
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(c) LA27 instance (20×10)
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(d) LA40 instance (15×15)
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(e) LA31 instance (30×10)
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(f) ABZ7 instance (20×15)

Figure 9. Scalability of the CP model: comparison with the best evolutionary strategies

search method, a decomposition-based evolutionary metaheuristic based on the MOEA/D framework
which is hybridized with a single-objective local search method, and a constraint programming ap-
proach that uses the ε-constraint method. The approach based on the MOEA/D framework is a contri-
bution of this paper, whereas the other two methods are taken from [9].

To minimize the energy-related objective function we propose two methods: a low-polynomial,
fast heuristic procedure which is used when evaluating every solution produced by the two metaheuris-
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(a) Before post-optimization (TWT = 3347, NPE = 91.98 KWh)

(b) After post-optimization (TWT = 3347, NPE = 31.35 KWh)

Figure 10. Improvement of the NPE value as a consequence of the application of the post-optimization proce-
dure (Algorithm 1).

tic approaches, and also an optimal linear programming method which is more costly and thus only
applied to the final set of non-dominated solutions returned by our approaches, in order to further
improve them.

The results of the reported experimental study prove the efficiency of the proposed energy opti-
mization procedures. We also show the superiority of the metaheuristic approaches over the constraint
programming method and also over the state-of-the-art algorithm in the literature, which is the NSGA-
II based approach proposed in [45]. The remarkable performance of the evolutionary algorithms is,



M.A. González, A. Oddi, R. Rasconi / Efficient approaches for solving a multiobjective energy-aware JSP 1035

in our opinion, due to an adequate balance between the intensification provided by the local search
and the diversification provided by the NSGA-II and MOEA/D frameworks. The design of fast local
search methods is critical as it allowed us to apply it to every generated solution in a reasonable com-
putational time. Also, the proposed energy optimization procedures were able to efficiently minimize
a complicated non-regular objective function such as the energy consumption.

However, a careful observation of Figure 9 suggests that the CP-based ε-constraint method we
apply in this work can be considered a complementary approach w.r.t. the evolutionary strategies, as
it appears to be rather efficient in finding good solutions in zones of the (NPE, TWT ) plane that the
evolutionary approaches do not easily reach, i.e., at the extremes of the graphs, while the evolutionary
strategies are particularly effective on the central zone of the Pareto set. We believe that the Pareto set
obtained by merging all the solutions obtained by means of all methods is a rather challenging set to
further improve.

As already stated in Section 3, in our approaches we have considered a quite simple energy model.
Therefore, the presented methods are only efficient in practical applications where turning off the
machines is not an appropriate method for saving energy. This can happen, for example, when turning
the machines off and on again consumes more energy than keeping them in idle state. Hence, the most
interesting line for future work is to consider more realistic and complicated energy consumption
models; for example, models that permit varying the energy consumed by machines by varying their
processing mode (i.e., we can reduce the processing time of an operation if we consume more energy)
[47], models that consider shifting energy costs through the time horizon [54], models where the
machines can be Turn off/Turn on [21], or even where they can also be switched to Stand-By state
[46].

In order to extend the proposed metaheuristics to tackle energy models where machines can be
turned off or stand-by, the main things that should be addressed are: 1) the schedule builder and 2) the
energy optimization procedures. The schedule builder should decide, between every two consecutive
tasks in a machine, if it is worth to switch the machine Off or to Stand-By state, or remain it in
idle state. That decision would depend on the length of the idle interval, the energy consumed in
each state, and the energy/time required for transitions between states. Hence, only if the interval is
large enough it is probably worth to switch off the machine. Additionally, the energy optimization
procedures should be completely modified. Delaying some tasks may, again, improve the schedule,
but not in the same way as in our current problem because if, for example, in some idle interval the
machine is already off, that interval could be increased without spending additional energy (assuming
that the machine consumes no energy when off). In summary, this is a very interesting line for future
work.

Another research direction is detailed in [85], where the authors try to minimize energy consump-
tion and machine error using automated planning in order to vary the energy consumed by machine
tools in between the working intervals. The machines can be in several different states, each con-
suming a different amount of energy. This work is interesting, as the use of automated planning
in scheduling problems is a very promising approach, and also the machine error metric is another
objective function which can be very relevant in real applications.



1036 M.A. González, A. Oddi, R. Rasconi / Efficient approaches for solving a multiobjective energy-aware JSP

References
[1] Pinedo M. Planning and Scheduling in Manufacturing and Services. Springer, 2005.

[2] Garey M, Johnson D, Sethi R. The complexity of flowshop and jobshop scheduling. Mathematics of
Operations Research, 1976. 1(2):117–129.

[3] Wisner J, Siferd S. A survey of US manufacturing practices in make-to-order machine shops. Production
and Inventory Management Journal, 1995. 1:1–7.

[4] Conner G. 10 questions. Manufacturing Engineering Magazine, 2009. pp. 93–99.

[5] Dabia S, Talbi EG, van Woensel T, De Kok T. Approximating multi-objective scheduling problems.
Computers & Operations Research, 2013. 40:1165–1175.

[6] Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 2002. 6(2):182–197.

[7] Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. Evolu-
tionary Computation, IEEE Transactions on, 2007. 11(6):712–731. doi:10.1109/TEVC.2007.892759.

[8] Miettinen K. Nonlinear Multiobjective Optimization. International Series in Operations Research &
Management Science. Springer US, 2012. ISBN 9781461555636. URL https://books.google.it/

books?id=bnzjBwAAQBAJ.
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