
Agile development of multiplatform educational video games using a

Domain-Specific Language

Notice: this is the author's version of a work accepted to be published in Universal Access in
the Information Society. It is posted here for your personal use and following the Elsevier
copyright policies. Changes resulting from the publishing process, such as editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this
document. A more definitive version can be consulted on:

González García, C., Núñez-Valdez, E. R., Moreno-Ger, P., González Crespo, R., Pelayo G-
Bustelo, B. C., & Cueva Lovelle, J. M. (2019). Agile development of multiplatform educational
video games using a Domain-Specific Language. Universal Access in the Information Society, 1–
16. https://doi.org/10.1007/s10209-019-00681-y

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1007/s10209-019-00681-y
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

Agile development of multiplatform educational video games using a

Domain-Specific Language

Cristian González Garcíaa*, Edward Rolando Núñez-Valdeza, Pablo Moreno-Gerb, Rubén

González Crespob, B. Cristina Pelayo G-Busteloa, Juan Manuel Cueva Lovellea

a
 Department of Computer Science, University of Oviedo, Oviedo, Spain.

a gonzalezcristian@uniovi.es (0000-0002-8810-6023), nunezedward@uniovi.es (0000-0003-4928-4035), crispelayo@uniovi.es

(0000-0002-8246-8840), cueva@uniovi.es (0000-0002-7812-7242)

b
 Universidad Internacional de La Rioja (UNIR), Logroño, Spain.

b pablo.moreno@unir.net (0000-0003-4817-8150), ruben.gonzalez@unir.net (0000-0001-5541-6319)

* Corresponding author, +34985103391

Keywords: Model-Driven Engineering; Domain-Specific Language; Education Tool; Human-Computer Interface;

Interactive Learning Environments.

ABSTRACT

Educational video games are becoming an

increasingly popular alternative in the academic

field. However, video game development is a

very complex task that requires programming

skills and knowledge of multiple technologies,

as well as lengthy and costly processes. This has

hindered the adoption of educational video

games in real settings, and therefore the global

acceptance of educational games as a viable

approach. In contrast, teachers with limited time

and resources are a key factor for educational

video game adoption. If enthusiastic teachers

can be empowered to create games to engage

their students, and if these games were ready to

be played in a variety of devices and platforms,

we could bring a new generation of low-cost

games for immediate deployment in the

classroom, using the students’ own devices. We

aim to achieve this goal by creating a Domain-

Specific Language for the development of

multiplatform educational video games without

requiring any programming skills and with a

reduced time investment. This approach should

reduce the barriers for using educational video

games in the classroom and ease the way

towards generalised adoption of educational

video games.

1 INTRODUCTION

The current use of new technologies is widely

spread due to the use of Smartphones, the

Internet, tablets, or computers [1], for personal

use and learning, offering and opening a world

of possibilities. This has resulted in schools,

high schools, and colleges having a new variety

of devices to help students learn. Educators are

also becoming more interested in these

educational video games to motivate the

students and improve learning [2]–[4]. Games

help reinforce student motivation when they try

to win and they receive emotional benefits when

they obtain their reward [5]. According to recent

research [6], educators are discovering the

cognitive potential of games in the classroom.

Furthermore, the use of educational video games

is increasing [4], [6]–[8] in fields like health

care, soft skills training, math, engineering,

business, language, and other domains. We can

boost the students’ motivation for learning

through entertainment software, as proposed in

[2], [9]–[11]. Then, through the use of video

games, cooperation, competence and self-

improvement will be stimulated. This will have

mailto:gonzalezcristian@uniovi.es
mailto:nunezedward@uniovi.es
https://orcid.org/0000-0003-4928-4035
mailto:crispelayo@uniovi.es
https://orcid.org/0000-0002-8246-8840
mailto:cueva@uniovi.es
mailto:pablo.moreno@unir.net
mailto:ruben.gonzalez@unir.net
https://orcid.org/0000-0001-5541-6319

repercussions in the individual learning, by

trying to surpass other students, and in the team

cooperation, by trying to find a combined

solution to the problem. The student will also

have the possibility of repeating the lessons and

exams suggested by the teacher repeatedly. This

will prevent students from getting frustrated

when failing, because they will be able to repeat

the same lessons until they achieve their goals,

which will positively improve his motivation for

learning [10], [12], [13].

These arguments may announce a new era of

education, with a strong presence of

technologies [14] and games in the classroom.

However, the reality is that games are not that

close to global acceptance.

Effective day-to-day classroom innovation

works better when adopted by grassroots

teachers trying to engage their students.

However, teachers cannot be expected to create

educational games for their students on their

own. There are some educational tools that aim

to facilitate this and have been successfully used

in the past, including eAdventure (previously

known as <e-Game> and after as <e-

Adventure>) [11], [15], Scratch [16], [17], and

Alice [18], [19]. However, even these tools still

demand a lot of time for the development of

educational games and can be too much for a

single teacher to face alone.

Furthermore, once the games are created,

deploying them so that they can be played by a

large group of students is challenging. Different

schools use different platforms and approaches,

and the alternative of using student devices (i.e.

BYOD approaches [20]) is even more

challenging from a platform perspective, due to

the youth and fast evolution of mobile devices

and their operating systems. This wide diversity

presents additional challenges in terms of

developing educational applications that may be

supported by all platforms simple and effective

way [21].

These difficulties could be tackled by using

specific development approaches that target

simultaneously different platforms, including

mobile platforms. One possible solution would

be to create a Domain-Specific Language (DSL)

to obtain that abstraction layer and encapsulate

the domain of the problem in it [22]. To solve

this problem partially, derived from the software

development of the application, we will leverage

Model-Driven Engineering (MDE).

In this research, we present a DSL that can be

used to create educational multiplatform video

games. With this DSL, teachers can be enabled

to small and simple educational video games in

a matter of hours rather than days or months.

Teachers can define the different menus,

questions, answers, pictures, insert videos and

sound and their own images. Teachers can also

create different question types: logic, math,

trivia, memory, tutorials and other.

While the games themselves are relatively

simple, the process is so straightforward that a

teacher may create a small game focused on

current events in one evening so that students

can play it the following day in any platform.

The DSL also provides an abstraction of the

actual game platforms and look & feel settings,

therefore creating games that can be deployed to

many different platforms without a significant

effort.

The remainder of this paper is structured as

follows: In section 2, we analyse the current

situation of the development of applications for

mobile devices and make a brief explanation of

Model-Driven Engineering and Domain-Specific

Languages, as well as research on some existing

video game editors and the situation of video

games in education. Section 3 details the kind of

questions that can be created in games and the

implementation of our DSL in our Case Study.

Section 4 explains all the methodology and the

results of the experiment. Section 5 contains the

discussion of the research and the future work.

2 STATE OF THE ART

Educational video games could be a good tool to

motivate students [4], [23], giving positive

effects on them. Nevertheless, not all people

have programming skills or know how to create

a video game and then people would require

time for learning about these things.

Furthermore, another challenge is the necessity

of a high investment because game development

requires high development costs [24].

 4

Therefore, a possible solution would consist in

facilitating the development of educational video

games for teachers with a DSL which facilitates

the game development. This is why we chose to

abstract the problem using MDE to create the

DSL. With this DSL, teachers could create

educational video games with no programming

skills, but in an easy and quick way as we can

see in literature [25], including lessons and the

corresponding tests.

2.1 Development of educational applications for

mobile devices

The wide range of electronic devices in the

student’s daily life offers endless possibilities.

These devices allow to do the exercises and

learn by playing anywhere, as long as they have

smartphones, laptops, tablets, or any other

similar devices, even in places with few

technological means or where the access to the

Internet is not possible [26]. But, because of the

great variety of electronic devices, it becomes

very difficult to develop educational applications

for all kind of devices efficiently [21]. This is

due to the big differences that exist between the

different mobile operating systems in the

market. For example, Android uses Java, and

iPhone uses Objective-C or Swift [27].

Furthermore, evolution in the mobile world is

fast and constant.

As we have seen, game development is very

expensive and needs educational experts to help

in the creation of the game. However, teachers

do not have much time and usually no external

incentives to participate in game design [28]. It

is a reason why they need tools to facilitate the

development of educational video games in an

easy and quick way with a low individual cost

[29].

2.2 Video Games in Education

Learning through video games is nothing new.

For instance, video games are able to motivate

the students and encourage them to solve

problems, reflect, and think in a more creative

way. This makes students learn through

participation instead of memorisation [12].

There is also significant evidence that video

game players improve their reaction times, their

hand-eye coordination, and their self-esteem

[30].

We can see in literature as some teachers have

used AAA video games in education. For

example, with Age of Mythology, students

learned about various mythologies from the

ancient world and Age of Empires contained

information about ancient civilisations, heroes,

weapons, wars, and history [31]. With

Civilization IV it was demonstrated that students

learned about the history of civilisations by

giving life to all kind of ancient empires [9], or

to teach politics, civics, and history [29]. There

are also economy games, like Patrician and

Pharaoh, in which the player has to manage an

empire, check the needs of the citizens, and raise

money, something that helps the players to

understand better the way an economy worked

back then, as well as experiencing a whole

history lesson while playing an entertaining

game. Other games, like SimCity 2000 are

useful to learn about urban geography [10] or

social dynamics and evolution [23]. Other games

depend on the player to make some moral

decisions on the entrusted requests in order to

advance through the game, like what happens in

Star Wars: Knights of the Old Republic [31].

Other ones allow players to create their own

map for the game, with the possibility of

generating things and not only learning, which is

what usually happens in schools [32].

On the other hand, the research literature on

(non-commercial) educational video games

shows that they have been successfully applied

in multiple fields, including high-stakes areas

such as reducing the errors of health

professionals [33], [34]. Other examples are:

[35] that obtained an increment of the average

student note in the midterm exam and reduced

the student stress and increased their

satisfaction; [36] that compared the game-based

learning with the traditional methods with

undergraduate students, with an increment of the

mean score in the first group; while [37]

researched that the students that used the game

to learn had obtained a higher level of their

cognitive process and more satisfaction than

students using traditional methods.

In other cases, the games were used for

obtaining benefits in some specific users,

improving their memory, reflexes, and

knowledge. For instance, educational video

games for toddlers, so they can learn basic

things, like colours or the alphabet. Games could

be used to help elderly people [38] too,

improving and reinforcing the technique or

strategies with health professionals [33], [34].

Besides, video games can help people with some

kind of disabilities [39] or disorders, for

example on kids with Attention Deficit

Hyperactivity Disorder (ADHD) [30], hearing

impairment [40], between others as we can see

in this systematic review [33]. Even, games can

be aimed to stimulate specific capacities [7],

such as: memory, logic, eye-hand coordination,

reaction time, self-esteem, spatial vision, etc.

2.3 Model-Driven Engineering

Model-Driven Engineering (MDE) appeared to

solve software development problems [41], to be

precise, the problems of the Software Crisis,

which was already present in the 1960s and are

still present, as can be seen in [42], [43], in spite

of the use of agile approaches [44]. One solution

to these problems can be obtained through the

automation or semiautomation of processes,

something in which MDE is quite popular for

solving different problems [45]–[49].

With the use of MDE we manage to reduce the

complexity of the design and the

implementation, which helps to obtain a much

more reliable software and with more

sophisticated functionalities [50]. Using MDE,

we can increase the abstraction over third

generation programming languages (e.g., C++,

C#, Java, and so on). This offers the use of a

concept much closer to the problem domain by

converting the elements of the domain into one

or more models. This model makes easier for us

to create a DSL that we manage to increase the

abstraction of the problem, giving us an increase

of the productivity [50], [51].

By applying MDE, we manage to simplify the

abstraction level for the different generated

educational video games. This gives us the

necessary abstraction to create the DSL that

allows people without knowledge the creation of

simple educational video games in an easier way

for teachers, also being able to port these games

to target different platforms, one of the main

objectives of this research.

2.4 Domain-Specific Language

A Domain-Specific Language (DSL) is a

language, commonly declarative, that generates

calls for subprocesses in order to solve a certain

problem within a specific domain. DSLs have a

great power of expression [22]. The main

advantages that the use of a DSL can offer are

the increase of the productivity, the lesser

chances of errors, easy maintenance [52], [53],

portability, the knowledge of the problem

domain, and the reutilisation for different

purposes [22], [54]. On the other hand, DSLs

present handicaps like a worse efficiency than

native codification and a higher difficulty to

create the domain and construct the DSL [22],

[52]. However, DSLs can be created applying

MDE to solve a problem [51], thus creating an

abstraction level of software engineering [55].

By providing a DSL, it is possible for any

person to define the desired educational video

game, which is our domain, in a quick and

simple way, creating a supported language for

the different platforms, which guarantees the

reusability of all the elements they share.

2.5 Video Game Editors

Currently, several tools make it easier to develop

video games (educational or not). Some tools

allow exporting the game to various platforms at

the same time, making it possible to develop the

game once and then running it in multiple

platforms, The biggest differences amongst the

different editors are: the type of games

supported (graphic adventure, simulators,

arcades, etc.), the possibilities for editing and

expanding existing video games, the usability of

the tools themselves, and the

straightforwardness they offer when creating a

video game. In this section, we will describe

some of the editors used by collegues from other

research projects.

eAdventure Project is a research project that

has been created and it is maintained by e-UCM

research group from Complutense University of

Madrid [15]. The first prototype was developed

by [56] and it was called <e-Game> Project.

The project offered a DSL to create adventure

video games to motivate their students. Around

2006-2007 it was renamed to <e-Adventure>

[21], [57], [58]. It allowed developing the video

game by teachers without the necessity to have a

development team to help teachers during the

process. Furthermore, the development cost for

educational video games was drastically

reduced. However, it only supports adventure-

like video games.

GameMaker Studio allows developing

multiplatform video games quickly [59]. It was

designed to be used by inexperienced users [60].

This editor allows creating the levels and menus

of the video game in a graphic way, by dragging

the elements where we want. It also allows

programming in its own language, GameMaker

Language, which requires some basic

programming knowledge. Notwithstanding, the

editor generates an executable file, which does

not allow further modifications, it does not offer

special help to create educational video games,

and it has very expensive licenses.

GameSalad is a free software tool that allows

the user to develop and export games for Mac,

PC, iOS and Android devices, and HTML5 [61].

In [13], it was used to create a video game to

teach wind and gravity theory on iOS. In [62], it

was compared with App Inventor for Android.

GameSalad offers a series of advantages that

makes video game development easier using a

drag-n-drop program creation feature, defining

actors and scenes, and configuring their

parameters to establish their design, behaviour,

and the game rules [62]. However, we consider

it a limited tool because the created video games

can be modified only from the tool itself and

GameSalad does not have special templates to

facilitate the development of educational video

games.

Stencyl is a tool that provides video game

designers with a graphic editor that enables

game creation for iOS, Mac, Windows, Flash,

Android, and HTML5. Stencyl is also based on

the definition of scenes and actors. Nonetheless,

Stencyl is intuitive enough for people that have

experience with design programs. However,

programming and algorithm logic knowledge is

necessary, as many of the modifications done to

a game require the creation of complex flow

diagrams.

Unity is a video game engine developed by

Unity Technologies [63] that allows the creation

of 2D and 3D multiplatform video games. It

features a graphic interface that allows dragging

components and customizing them with the

editor. This allows modifying the physics,

graphics, behaviours, and interactions of the

elements, and allows importing object models

created with graphic design tools. It also has its

own scripting language to program actions in

video games, adding behaviours, and making the

objects more customizable [64]. However, once

the game is generated, the editor gives a

compiled solution, which makes impossible to

edit the game or its levels without using the

editor. Besides, Unity does not have special

templates to facilitate the development of

educational video games.

3 CREATING THE DSL

In this research, we have implemented the DSL

in the Gade4All project. Gade4All was a

national research project financed by the

AVANZA plan and performed by the ‘Ingeniería

Dirigida por Modelos MDE-RG’ research group

at the University of Oviedo, which resulted in

the creation of a 2D native multiplatform video

game editor.

In [65], [66], we can see the basic idea about the

editor and how Gade4All works to create

platform video games and the idea of this

project. In these first articles, the main idea of

the different typologies was presented along

with the design templates for the menus, how

they work, their creation, and the editor

architecture. In this work, we focus on the DSL

itself, the game-building process and the results

of an evaluation of the overall agility of the

process.

In this new iteration of our research, we

implement the necessary logic to develop

educational video games based on questions.

Figure 1 Montage featuring examples of the different types of questions

This current iteration contains a DSL, which

allows creating simple educational video games

with educational questions in an easier way.

From a software engineering perspective, we

used Model-Driven Engineering to abstract the

problem, create the DSL, and make easier the

video games portability among platforms. One

of the main pillars of this platform is the creation

of a DSL that allows defining the main

characteristics and working on the games

taxonomies in a specific and non-platform-

dependent way. The implementation of this DSL

in Gade4All allows creating multiplatform

educational video games using the Gade4All

editor with a minimum effort for teachers.

The games first offer an educational part and

then ask questions about its content. However,

this can be manipulated at will by placing the

information and the questions in the order that

we prefer. After getting to the end of the game,

the player immediately obtains his score. All the

generated educational applications run on

mobile devices (Android, iPhone) and in any

web browser with HTML5 support.

3.1 Designing the games

In this subsection, we will describe, in general

terms and with a high level of abstraction, the

possible kind of questions that can be created.

We show an example of questions in Figure 1.

The questions can be divided into six groups:

tutorials, mathematics, trivia, mental agility,

interaction, and software. All the questions share

common elements and any kind of question can

have multiple answers, include sounds and

videos and add properties from another type of

questions. There is also a time meter that can be

adjusted individually for each question in order

to establish a time limit.

However, any type of action and customisation

for a question is applicable to any other. For

instance, every question can contain video and

audio and the actions performed in the

interactive questions or the mental agility ones

can be performed even in the tutorial question.

Still, these six groups are merely indicative,

because the customisation possibilities allow the

user to create new kinds of questions:

Tutorials: As it can be seen in Figure 1A, the

teacher can include the information that he

wants to give to the student. Like the normal

questions, this is totally customizable and

multimedia components can be added, like video

and audio files. This way, the teacher will be

able to teach the student by creating one or more

tutorials, followed by an educational video

game.

If implemented, the audio and video files can be

played, paused and stopped at will by the

students. In this case, it is possible to offer an

audio tutorial to make things easier for the

students and let them choose between reading

and listening.

Trivial: Figure 1B and Figure 1C show

examples of trivia-like questions. One features

an image and the other a video. This kind of

question can contain both images, texts, videos

and sounds, so the teachers are given a lot of

freedom to create their own questions. For

instance, the teachers can include images of

pictures and drawings in their questions about

history and art, or images of clocks to ask the

students what hour is displayed on them, maps

and flags of countries for the geography lessons

or even sound files for the questions about

music. Regarding the text of the question, the

teachers can write their own text, including

numbers and mathematical signs. Another

possibility would be to include videos for the

creation of cultural games about movies,

documentaries, history, theatre, interviews or

videos of experiments performed in the physic

and chemistry lessons, even videos of exercises

for physical education lessons.

Interaction: Teachers can also create interactive

questions. As it can be seen in Figure 1D, it is

possible to create a sequence of additions so the

student selects the proper way to reach the last

number. Another example of an interactive

question could be a geographic map in which the

student would have to search for a certain

country or province. With this kind of

functionality, the student is motivated to perform

a task that would normally be boring in a more

entertaining way.

Mathematics: As seen in Figure 1E, the teacher

can help the students to practice and improve

their calculation capacity and mental agility. In

these, the answers can be a number, an

operational symbol, or both, if we choose to

create a multi-answer question. For the

aforementioned, there is the option of creating

more complex operations by adding brackets

and square brackets. There can be many possible

right answers that have to be selected.

Mental Agility: Teachers can configure the

elements on the screen so they disappear after a

small amount of time. Because of this, they can

create questions that allow the students to test

their mental agility. Figure 1F is a good example

of this, as it features a memory question, where

three elements are shown, later they are replaced

by question marks, and a second set of images

appear, showing only two of the three initial

elements. Some seconds later, the next four

answers appear and the students must choose the

element of the first set of images that is missing

in the second one.

Other examples of this kind of question could

be: give the image of an element and ask the

students to find it in a collage with a similar

image, count the number of times that an

element appears in an image or search the

differences between two very similar images.

3.2 Implementation of the Domain-Specific

Language

To make the process of porting the educational

application between platforms easier, we used

MDE. For this reason, the architecture of the

system can be divided into two big groups. The

first one is the created DSL to abstract the code

that is common to all platforms. The DSL allows

defining all the information about the menus and

levels of the educational video games and it is

the same on all the platforms. In this way, we

generate a language that can be interpreted by

the templates in native language that we

developed for each device. Then, after the

teachers define their educational video game

using our DSL, they obtain the model of their

game. The model has all the information that the

user had defined using the DSL, and the DSL

allows creating with an abstraction the video

games. The model consists of two XMLs. These

XMLs files contain the information of the menus

and levels of the educational video games. These

XMLs are common to each platform, so the

same level/menu file can be used in any

platform.

The second group are the templates. They

contain the native source code for each platform

and the parser of the files that contains the

information that a user defined using our DSL.

The templates do not have the images, nor the

information about menus, nor levels, which

means that they cannot be compiled without the

DSL nor the resources.

3.2.1 Abstract Syntax

In this section, we show one part of the abstract

syntax of our DSL. We use Ecore [67] as meta-

metamodel to create the metamodel of the DSL.

In Figure 2, we can see this first metamodel of

the part that corresponds with the levels. The

principal component is questions. It wraps all

the data that define a game level and it contains

the general information about the level: number

of questions and the order.

Questions has two child nodes: feedback and

question. The first one, feedback, shows the

information that will be shown when answering

a question, if desired. The second one, question,

wraps all the information about each question.

The question node is composed of three general

parameters and three child nodes: status_bar

that defines the aspect and position of that bar,

scoreboard which defines the image used for the

scoreboard, and graphics that contains all the

graphics that composed the question. Each

graphic contains the parameters that define it,

for example: images, font, audio source, or

video source.

Figure 2 Abstract Syntax of the DSL

<?xml version="1.0" encoding="utf-8"?>

<questions>

 <questions_to_ask>22</questions_to_ask>

 <questions_order>YES</questions_order>

 <feedback>

 <feedback_on>YES</feedback_on>

 <feedback_string_correct>Is correct</feedback_string_correct>

 <feedback_string_fail>You failed...</feedback_string_fail>

 <feedback_button_text>Next</feedback_button_text>

 </feedback>

Source Code 1 Example of game that contains the tags that define the feedback for an answer

3.2.2 Textual Concrete Syntax

In this section, we explain the textual concrete

syntax of the XMLs. Firstly, we show the XML

of levels. This XML is composed by three parts:

Source Code 1 shows the first part, the parent

node: questions. Within this node all the

questions are stored under the question tag and

the information about the quantity, order, and

feedback parameters shown when answering a

question. This node also contains data that is

common to all the questions of that level. These

are the question_to_ask, questions_order tags

and the child node feedback.

The question_to_ask tag indicates the total

number of questions the level has. In this

number are included the tutorial screens and it

can show an inferior number to the total amount

of questions included, if we do not want to show

all the questions included in the aforementioned

level.

The next tag is called questions_order. This tag

indicates if the questions that we will be asked

will be shown in the same order that is specified

in the XML (YES) or if they are shuffled every

time we play the level (NO). If the

question_to_ask tag does not contain the total

number of existing questions in the XML file,

we can create levels with a great amount of

questions presented in order. This way, we can

create different exams and tests for each student

using the generated educational video game.

<question>

 <question_time>50</question_time>

 <question_points>75</question_points>

 <question_is_description>NO</question_is_description>

 <status_bar>

<status_bar_image_background_source>timebar.png</status_bar_image_background_source>

<status_bar_image_front_source>greentimebar.png</status_bar_image_front_source>

 <status_bar_x_pos>160</status_bar_x_pos>

 <status_bar_y_pos>240</status_bar_y_pos>

 <status_bar_width>200</status_bar_width>

 <status_bar_height>20</status_bar_height>

 </status_bar>

 <scoreboard>

 <scoreboard_image_source>buttongreen.png</scoreboard_image_source>

 <scoreboard_x_pos>60</scoreboard_x_pos>

 <scoreboard_y_pos>460</scoreboard_y_pos>

 <scoreboard_width>100</scoreboard_width>

 <scoreboard_height>50</scoreboard_height>

 <scoreboard_font_generic_family>serif</scoreboard_font_generic_family>

 <scoreboard_font_font_family>courier new</scoreboard_font_font_family>

 <scoreboard_font_style>italic</scoreboard_font_style>

 <scoreboard_font_size>15</scoreboard_font_size>

 <scoreboard_font_color>black</scoreboard_font_color>

 <scoreboard_font_align>left</scoreboard_font_align>

 </scoreboard>

Source Code 2 Example of game containing the tags that define a time meter and a scoreboard

The children node feedback is composed of four

tags that configure the feedback: feedback_on

can be activated or deactivated after answering a

question. With feedback_string_correct we

specify the chain of text that we want to display

when a question is answered correctly. With

feedback_string_fail we specify the chain of

text that we want to display when we choose a

wrong answer. For the text in the button, we use

the feedback_button_text tag.

Source Code 2 shows an example of the first

part of the question node and the graphic

example corresponding to the code shown in the

status bar and the scoreboard. This one is

composed of three subsections: The children of

the question node, the status_bar children, and

the scoreboard children. Question has three

tags that are used to define the time limit for the

question (question_time), the points received

for a correct answer (question_points) and if it

is a tutorial or a normal question

(question_is_description).

<graphics>

 <graphic>

 <graphic_is_collided>NO</graphic_is_collided>

 <graphic_is_correct> </graphic_is_correct>

 <graphic_order> </graphic_order>

 <graphic_image_source>question.png</graphic_image_source>

 <graphic_image_pressed_source> </graphic_image_pressed_source>

 <graphic_font_generic_family>sans-serif</graphic_font_generic_family>

 <graphic_font_font_family>times new roman</graphic_font_font_family>

 <graphic_font_style>italic</graphic_font_style>

 <graphic_font_size>20</graphic_font_size>

 <graphic_font_color>white</graphic_font_color>

 <graphic_x_pos>160</graphic_x_pos>

 <graphic_y_pos>78</graphic_y_pos>

 <graphic_width>278</graphic_width>

 <graphic_height>86</graphic_height>

 <graphic_text>What is the capital of Spain?</graphic_text>

 <graphic_text_align>center</graphic_text_align>

 <graphic_time_to_appear>0</graphic_time_to_appear>

 <graphic_time_to_desappear>0</graphic_time_to_desappear>

 <graphic_audio_source> </graphic_audio_source>

 <graphic_audio_autoplay> </graphic_audio_autoplay>

 <graphic_audio_loop> </graphic_audio_loop>

 <graphic_audio_controls> </graphic_audio_controls>

 <graphic_video_source> </graphic_video_source>

 <graphic_video_autoplay> </graphic_video_autoplay>

 <graphic_video_loop> </graphic_video_loop>

 <graphic_video_controls> </graphic_video_controls>

 </graphic>

Source Code 3 Example of game containing the tags that define a graphic belonging to a question

If we want to create a tutorial screen (for

example, an explanation of the multiplication

tables) the question_is_description tag must

contain YES. In that case, points and time will

not be taken into consideration.

The second part is the status_bar children,

which is composed of two images, the back

image

(status_bar_image_background_source) and

the front image, which is the one that becomes

smaller as time passes by

(status_bar_image_front_source). The other

tags define the central position of the image in

the x-axis (status_bar_x_pos) and the y-axis

(status_bar_y_pos), as well as the width

(status_bar_width) and weight

(status_bar_height) of both images.

In the third part is the scoreboard node. This

defines the image used for the scoreboard

(scoreboard_image_source), its central

position in the x-axis (scoreboard_x_pos) and

the y-axis (scoreboard_y_pos), as well as its

width (scoreboard_width) and height

(scoreboard_height). This node also has tags

that define the font, family, style, colour, size of

the text, as well as its horizontal alignment

regarding the image that contains it.

Source Code 3 shows the code of the second part

of the question node. The rest of the question

node is formed from the graphics node. Within

it, we must place the graphic nodes in the order

they are painted. The first to appear will be the

first to be painted, so if the second is painted

over the first, it will be screened. Each graphic

node is a new layer.

This type of node contains all the required

information to paint a graphic on the screen.

Then, a graphics group of nodes conform a

question. The great amount of tags it has and the

variety of them, makes this node the most

complex of all. This is because in the game

everything is a graphic: backgrounds, buttons,

images, sounds, videos, etc. This way we have

the required power to put all the workload in the

auto-generated part that is contained in the

templates (the logic), making the creation of

games easier and more intuitive.

The first thing to do is point out if the graphic is

collisionable (graphic_is_collided). This way

we can decide which elements we can interact

with, as well as creating elements that change

their image when they are clicked. To

distinguish a correct answer from a wrong one

we use the graphic_is_correct tag. With the

graphic_order tag we can define the order in

which the graphics must be clicked. For

instance, if we display a set of numbers and we

want the student to click them in a certain order,

we must assign a number to each graphic to

define that order. If we do not want to establish

any order, we simply leave this field empty.

To assign an image to a graphic, we have to put

its name in the graphic_image_source tag. If

we want this image to change after a while or

when the graphic is selected, we have to place

that new image in the

graphic_image_pressed_source tag. As with

other tags, the central position of the image

regarding the x and y axes, its width and height

are defined in the corresponding tags:

graphic_x_pos, graphic_y_pos,

graphic_width y graphic_height.

To define the text of the graphic it must be

written in the graphic_text tag. The text will be

aligned to the vertical centre of the image by

default. This tag supports carriage returns, so it

is possible to leave blank spaces to fill them with

images or more text. As the previous nodes, here

we can configure the text size, font, style,

colour, alignment, etc. With the

graphic_time_to_appear and

graphic_time_to_desappear tags, we can make

the graphic appear or disappear after some time

or even both. This way, we can create questions

where a graphic appears after X seconds while

others disappear. In the given example some

graphics appear by default in the second 0 and

after a few seconds they disappear while others

appear.

Lastly, we have the tags that define the sound

and the video, which require four tags to control

all the options. First, we change the name of the

file with the source tag. The file can play

automatically as the question starts (autoplay),

be restarted when it ends (loop) or show its

audio/video controls (controls).

<number_of_levels>7</number_of_levels>

<screen_width>320</screen_width>

<screen_height>480</screen_height>

<screen_orientation>portrait</screen_orientation>

<menu_view>

 <image_start_button>button.png</image_start_button>

 <start_button_align>center</start_button_align>

 <start_button_size>20</start_button_size>

 <start_button_generic_font>courier new</start_button_generic_font>

 <start_button_color>white</start_button_color>

 <height_start_button>78</height_start_button>

 <width_start_button>230</width_start_button>

 <pos_x__button_start_menu>160</pos_x__button_start_menu>

 <pos_y_button_start_menu>270</pos_y_button_start_menu>

 <start_button_text>Play</start_button_text>

 ...

</menu_view>

<music_view>

 ...

</music_view>

<pause_view>

 ...

</pause_view>

<select_level_view>

 ...

</select_level_view>

<play_again_view>

 ...

</play_again_view>

<end_game_view>

 ...

</end_game_view>

<images_levels>

 ...

</images_levels>

<loading_view>

 ...

</loading_view>

Source Code 4 XML containing the tags that define the menus and levels used in the game

In Source Code 4, we can see the menus’ XML.

This XML contains all the information about the

different screens and the game’s global

characteristics: the information about the total

number of levels of the educational video game

(number_of_levels) and the width

(screen_width) and height (screen_height) of

the screen in which it was generated. This is

because, aside from being multiplatform, the

generated educational video games fit the screen

of any device. That is why it is necessary to

indicate the width and height of the screen for

the correct functioning of the resolution adapter.

With the screen_orientation tag the game

changes the visualisation of the screen from

vertical to horizontal and vice versa.

The rest of the XML is composed of two

children nodes. Each node is a screen of the

game. The main menu (menu_view) is where

the student chooses between playing the game,

changing the options, or exiting the game. The

pause screen (pause_view), as its name

suggests, is for pausing the game in the middle

of a question. The level selection screen

(select_level_view) allows the student to select

which level he wants to play. The ‘play again’

screen (play_again_view) appears after

checking the score for a level and lets you

choose between replaying the level or going

back to the level selection screen. The screen

that appears after a level is completed

(end_game_view) shows the score for that level.

The loading screen (loading_view) appears

while the game is loading. There is also an

images_levels node, which contains the images

that represent each level in the level selection

screen. Each node contains all the customizable

elements of the screen it belongs to. For

instance, menu_view contains the image of the

Play button, as well as the text of that button,

with all its characteristics. The same happens

with the rest of elements: Options button, Exit

button and the background image. The

remaining images follow the same standard:

each element on the screen read from the XML

because every element is customizable because

of the templates of each platform.

3.2.3 Templates

The templates were created through an

educational video game natively created in each

platform: Android, iPhone, and HTML5. The

only difference with that native video game is

the absence of the models that contain the

information that the user defined using our DSL,

images and videos. At the beginning of the

project, we studied the four systems to see the

possibilities that each one offered. After this, we

started creating the first template for the most

restrictive system. Then, we ported it to the

other systems, adequating everything to the

different programming languages and the

possibilities of the systems to paint images,

display text, and play audio and video. In this

way, to convert the templates for the desired

system, we only have to insert the models that

we created using our DSLs, images, sounds and

videos in their folders, and then compile

everything.

3.2.4 Software

To create the templates for the educational video

games in each platform, we used the proper

environment for each case:

• To create the game template for Android

mobiles, we used the Software

Development Kit (SDK) for Android.

• For iPhone, we used xCode and a Mac

OS X operating system with Mavericks.

• For the HTML5 template, we simply

used a text editor and the latest version

of the Apache web server. In addition,

we checked its proper operation and

performed the tests with the most used

Internet browsers: Google Chrome,

Internet Explorer, Firefox, Opera, and

Safari.

The smartphones used to test the Android, and

iPhone versions were different in size and

worked with different operating system.

4 EVALUATION AND DISCUSSION

In this section, we describe in detail the

processes of evaluation selected and then we

describe the obtained results. First of all, in the

Methodology subsection, we will describe the

used methodology to perform the evaluations.

Finally, we will describe and discuss the

obtained results.

4.1 Methodology

To test the performed research, we combined a

formative and a summative evaluation. On the

one hand, we wanted to see how users would use

the language in a real unassisted setting in order

to find bugs and syntax shortcomings. On the

other hand, we wanted to get a clear idea of how

close we were to our goal of allowing agile

game development in the scope of hours rather

than days or months.

With these goals, we started by creating four

fully functional games in native code for each

platform. Secondly, we tested the ecosystem

with students, developers, researchers,

engineers, and PhDs at University of Oviedo.

The primary objective of the first phase was the

validation of our hypothesis: User can create an

educational video game faster with our DSL

than if he had developed the video game with

their own code. Furthermore, we could obtain a

lot of information to improve the DSL and the

templates. With this information, we changed

some syntax of the DSL. For example, we

introduced new attributes, changed some nodes,

and included new options for some nodes.

Moreover, we corrected some errors and bugs.

The second phase also took place at the

University of Oviedo. This test was a contest

open to every student and teacher, in which the

contestants had to create a video game using the

Gade4All editor. In the contest, the participants

created different educational video games with

the Gade4All editor. In addition, we could test a

new version that included the Improvements that

we realised after the first phase, and the DSL

with new and more users to find new bugs and

suggestions.

In both phases, we took note of the errors that

popped up and the things that were not very

clear for the participants when they were

creating their educational video games. Each

user had a personal assistant for the test.

Firstly, the assistants explained the goal of the

project and the objective of the test. Besides, the

assistants were taking notes about all the process

to make easier the identification and localisation

of any error, type of problem (user interface,

DSL, model, code generation, template,

Gade4All tool) or suggestion.

When the test finished, we compiled and studied

all the notes to improve the DSL for the final

version.

4.2 Results

The creation in native code of the four sample

games required between 80 and 125 hours (see

Table 1) depending on the platform. Then, we

recruited 15 participants (1 to 15) to recreate

those games using the DSL, and each game was

completed in less than 1 hour.

In the second phase, we had 15 (16 to 30) new

and different participants: 10 students and 5

teachers. The participants created educational

video games with the version of the new tool

without the bugs, which we had detected in the

previous phase.

 In this test, users only needed again between

30-60 minutes to create their own educational

video games. The main difference with the

previous phase was the improvement of the DSL

and the tool.

Table 2 shows the time that each participant

needed to finish the educational video game and

the total time and average of each phase. In this

last table, we can see that in the second phase

the participants needed less time because we had

solved some bugs.

 Android iOS HTML5 Total

Hours 125 113 86 324

Table 1 Required time to create each video game

Phase 1 Phase 2

P1 46 P16 46

P2 59 P17 31

P3 57 P18 32

P4 52 P19 50

P5 51 P20 54

P6 39 P21 43

P7 49 P22 51

P8 44 P23 42

P9 56 P24 52

P10 43 P25 47

P11 48 P26 39

P12 41 P27 46

P13 58 P28 43

P14 56 P29 35

P15 44 P30 49

Total Phase 1 743 Total Phase 2 660

Average Phase 1 49.53 Average Phase 2 44

Table 2 Time of each participant in each phase

Figure 3 shows six screenshots of an educational

video game about the multiplication tables,

which was created by a student in the contest. In

Figure 3A there is an explanation of the lesson,

followed by a multiplication table in Figure 3B.

After watching all the multiplication tables, the

student is asked several questions in which he

will have to choose the correct answer (Figure

3C and Figure 3E). The creator of the game

chooses to include feedback for the

correct/incorrect answers (Figure 3D). Once the

level is finished, the player can check his score

immediately and see how many questions he has

answered correctly and how many he has failed

(Figure 3F).

Figure 3 Example of an educational video game

The main conclusion of this evaluation was that,

while the templates for each platform took

roughly 80-125 hours of development time by

expert programmers (depending on the

platform), participants without without prior

knowledge were able to create their multi-

platform educational video game in 30-60

minutes.

5 CONCLUSIONS AND FUTURE WORK

As we have described in this paper, we managed

to build a DSL able to create multiplatform

educational video games in a simple and

efficient way, oriented to people without

technical knowledge in the creation of video

games. We implemented and tested the proposed

DSL in the Gade4All editor in two occasions

with satisfactory results. In our case, teachers

could create multiplatform educational video

games in less than 1 hour.

This paves the way to educational innovation

models driven by enthusiastic teachers that

create games for their students. In an ideal case,

a teacher could create a small game in one

evening based on significant events (e.g.

something currently on the news) and then

distribute it to the students to play in their

devices (smartphones from any platform, tablets

or laptops) the following day.

The goal is not to create innovative AAA games

that are beyond the budget of any educational

budget and require specific devices for playing

them. We aim to facilitate the agile creation of

low-cost educational games that are flexible and

highly adaptable. This should normalize the

experience of playing in the classroom, and

therefore reduce the barriers for future, more

complex, and expensive game development

projects. While it is true that the generated

educational video games might look simple for

being in 2D, they can be attractive enough for

this normalization of educational play.

This therefore just a small step towards the

acceptance of educational video games.
While this novel research can provide an easy

and quick way to teachers for creating

educational video games that are based on

questions, future steps require going further.

First of all, further evaluations of the overall

process and the game formats is required, given

that the sample from this work was relatively

small and focused. More games for more

disciplines should be created and thoroughly

tested. In addition, the evaluation focused on the

agility of the creation process, rather than on the

quality and applicability of the generated games,

which should in turn be the object of further

experiments.

Regarding the resulting games, 3D educational

video games would be more aligned with student

expectations. It would be desirable to create

educational video games in 3D, while keeping

the costs down. For example, we could include a

3D object that could be rotated by the student to

observe it from any angle: a sculpture, a Rubik

Cube, polyhedrons made from blueprints, etc.

More complex game models would also make

the experience richer, although with a risk of

making the process more complex. Fortunately,

adding new options to the DSL to be able to

generate new types of questions, have a bigger

customisation capacity or offering more

versatility would be relatively easy. It should be

feasible to incrementally improve the scope of

the DSL so that the approach can be used for the

development of other game types. This would be

necessary if we wanted to perform one of the

two future Works described before.

All in all, this is a first step that aims to unlock

the current situation of educational video games,

where academics are increasingly certain of their

potential, but the practical challenges are

preventing their adoption. While these games

may be simple, the agile and streamlined

approach for creating multiplatform educational

games can be a driving factor for their

widespread adoption.

6 ACKNOWLEDGMENT

This work was performed by the ‘Ingeniería

Dirigida por Modelos MDE-RG’ research group

at the University of Oviedo under Contract No.

MITC-11-TSI-090302-2011-11 of the research

project Gade4all. Project co-financed by the

Ministry of Industry, Tourism, and Commerce

under its National Plan for Scientific Research,

Development and Technological Innovation.

 18

REFERENCES

[1] Fundación Telefónica, “La Sociedad de

la Información en España 2014,” 2015.

[2] E. Ozcelik, N. E. Cagiltay, and N. S.

Ozcelik, “The effect of uncertainty on

learning in game-like environments,”

Comput. Educ., vol. 67, pp. 12–20, Mar.

2013.

[3] M. Papastergiou, “Exploring the potential

of computer and video games for health

and physical education: A literature

review,” Comput. Educ., vol. 53, no. 3,

pp. 603–622, Nov. 2009.

[4] G. J. Hwang and P. H. Wu,

“Advancements and trends in digital

game-based learning research: A review

of publications in selected journals from

2001 to 2010,” Br. J. Educ. Technol., vol.

43, no. 1, pp. 6–10, 2012.

[5] I. Granic, A. Lobel, and R. C. . M. E.

Engels, “The benefits of playing video

games,” Am. Psychol., vol. 69, no. 1, pp.

66–78, 2014.

[6] B. Yuan, E. Folmer, and F. C. Harris,

“Game accessibility: A survey,” Univers.

Access Inf. Soc., vol. 10, pp. 81–100,

2011.

[7] T. M. Connolly, E. a. Boyle, E.

MacArthur, T. Hainey, and J. M. Boyle,

“A systematic literature review of

empirical evidence on computer games

and serious games,” Comput. Educ., vol.

59, no. 2, pp. 661–686, 2012.

[8] B. Pourabdollahian, M. Taisch, and E.

Kerga, “Serious games in manufacturing

education: Evaluation of,” Procedia

Comput. Sci., vol. 15, pp. 256–265, 2012.

[9] A. Moshirnia, “The Educational Potential

of Modified Video Games,” Issues

Informing Sci. Inf. Technol., vol. 4, pp.

511–521, 2007.

[10] H. Tüzün, M. Yılmaz-Soylu, T. Karakuş,

Y. İnal, and G. Kızılkaya, “The effects of

computer games on primary school

students’ achievement and motivation in

geography learning,” Comput. Educ., vol.

52, no. 1, pp. 68–77, Jan. 2009.

[11] J. Torrente, Á. Blanco, E. J. Marchiori, P.

Moreno-ger, B. Fernández-Manjón, and

Á. Del Blanco, “Introducing Educational

Games in the Learning Process,” IEEE

Educ. Eng. EDUCON 2010 Conf., vol.

127, no. 10, pp. 1121–1126, 2010.

[12] J. P. Gee, “Good video games and good

learning,” Phi Kappa Phi Forum, vol. 85,

no. 2, p. 33, 2005.

[13] K. Wattanatchariya, S. Chuchuaikam,

and N. Dejdumrong, “An educational

game for learning wind and gravity

theory on iOS: Drop donuts,” in 2011

Eighth International Joint Conference on

Computer Science and Software

Engineering (JCSSE), 2011, no. Figure 1,

pp. 387–392.

[14] V. Alonso Secades and O. Arranz, “Big

Data and eLearning: A Binomial to the

Future of the Knowledge Society,” Int. J.

Interact. Multimed. Artif. Intell., vol. 3,

no. 6, p. 29, 2016.

[15] e-UCM research group (Complutense

University of Madrid), “eAdventure,”

2006. [Online]. Available: http://e-

adventure.e-ucm.es/. [Accessed: 05-Dec-

2016].

[16] Lifelong Kindergarten, “Scratch,” 2015.

[Online]. Available:

https://scratch.mit.edu/. [Accessed: 05-

Dec-2016].

[17] M. Kordaki, “Diverse Categories of

Programming Learning Activities could

be Performed within Scratch,” in 4th

WORLD CONFERENCE ON

EDUCATIONAL SCIENCES (WCES-

2012) 02-05, 2012, vol. 46, pp. 1162–

1166.

[18] Alice Team, “Alice,” 2015. [Online].

Available: http://www.alice.org/.

[Accessed: 05-Dec-2016].

[19] K. Johnsgard and J. McDonald, “Using

Alice in overview courses to improve

success rates in Programming I,” in

Software Engineering Education and

Training, 2008. CSEET ’08. IEEE 21st

Conference on, 2008, pp. 129–136.

[20] R. Afreen, “Bring Your Own Device

(BYOD) in Higher Education:

Opportunities and Challenges,” Int. J.

Emerg. Trends Technol. Comput. Sci.,

vol. 3, no. 1, pp. 233–236, 2014.

[21] P. Lavín-Mera, J. Torrente, P. Moreno-

Ger, J. A. Vallejo Pinto, and B.

Fernández-Manjón, “Mobile Game

 19

Development for Multiple Devices in

Education,” in International Journal of

Emerging Technologies in Learning

(iJET), 2007, vol. 4, no. s2, pp. 1–8.

[22] A. Van Deursen, P. Klint, and J. Visser,

“Domain-specific languages: an

annotated bibliography,” ACM Sigplan

Not., vol. 35, no. 6, pp. 26–36, 2000.

[23] P. Moreno-Ger, D. Burgos, I. Martínez-

Ortiz, J. L. Sierra, and B. Fernández-

Manjón, “Educational game design for

online education,” Comput. Human

Behav., vol. 24, no. 6, pp. 2530–2540,

Sep. 2008.

[24] D. R. Michael and S. L. Chen, Serious

games: Games that educate, train, and

inform. Muska & Lipman/Premier-

Trade., 2005.

[25] E. J. Marchiori, J. Torrente, Á. Del

Blanco, P. Moreno-Ger, P. Sancho, and

B. Fernández-Manjón, “A narrative

metaphor to facilitate educational game

authoring,” Comput. Educ., vol. 58, no.

1, pp. 590–599, 2012.

[26] M. Kam, V. Rudraraju, A. Tewari, and J.

Canny, “Mobile gaming with children in

rural India: Contextual factors in the use

of game design patterns,” in Proceedings

of the 3rd Digital games research

association international conference

(DiGRA ’07), 2007, pp. 24–28.

[27] C. González García, J. P. Espada, B. C.

P. G-Bustelo, and J. M. Cueva Lovelle,

“Swift vs. Objective-C: A New

Programming Language,” Int. J. Interact.

Multimed. Artif. Intell., vol. 3, no. 3, pp.

74–81, 2015.

[28] J. Torrente, B. Borro-Escribano, M.

Freire, Á. Del Blanco, E. J. Marchiori, I.

Martínez-Ortiz, P. Moreno-Ger, and B.

Fernández-Manjón, “Development of

game-like simulations for procedural

knowledge in healthcare education,”

IEEE Trans. Learn. Technol., vol. 7, no.

1, pp. 69–82, 2014.

[29] Federation of American Scientists,

“Harnessing the power of video games

for learning,” Summit on Eucational

Games, Washington, p. 53, 2005.

[30] M. Griffiths, “The educational benefits of

videogames,” Educ. Heal., vol. 20, no. 3,

pp. 47–51, 2002.

[31] J. P. Gee, “What video games have to

teach us about learning and literacy,”

Comput. Entertain., vol. 1, no. 1, p. 20,

Oct. 2003.

[32] A. L. Brown, “The advancement of

learning,” Educ. Res., vol. 23, no. 8, pp.

4–12, 1994.

[33] M. Graafland, J. M. Schraagen, and M. P.

Schijven, “Systematic review of serious

games for medical education and surgical

skills training,” Br. J. Surg., vol. 99, pp.

1322–1330, 2012.

[34] E. A. Akl, K. M. Sackett, W. S. Erdley,

R. A. Mustafa, M. Fiander, C. Gabriel,

and H. Schuenemann, “Educational

games for health professionals,”

Cochrane Database Syst. Rev., no. 3, p.

CD006411, 2013.

[35] R. Kanthan and J. L. Senger, “The

impact of specially designed digital

games-based learning in undergraduate

pathology and medical education,” Arch.

Pathol. Lab. Med., vol. 135, pp. 135–

142, 2011.

[36] M. Boeker, P. Andel, W. Vach, and A.

Frankenschmidt, “Game-based e-learning

is more effective than a conventional

instructional method: A randomized

controlled trial with third-year medical

students,” PLoS One, vol. 8, no. 12, pp.

1–11, 2013.

[37] M. T. Cheng, T. Su, W. Y. Huang, and J.

H. Chen, “An educational game for

learning human immunology: What do

students learn and how do they

perceive?,” Br. J. Educ. Technol., vol.

45, no. 5, pp. 820–833, 2013.

[38] M. Heron, V. L. Hanson, and I. W.

Ricketts, “Accessibility Support for

Older Adults with the ACCESS

Framework,” Int. J. Hum. Comput.

Interact., vol. 29, pp. 702–716, 2013.

[39] T. Westin, K. Bierre, D. Gramenos, and

M. Hinn, “Advances in Game

Accessibility from 2005 to 2010,” in

Proceedings of the 6th International

Conference on Universal Access in

Human-computer Interaction: Users

Diversity - Volume Part II, 2011, pp.

400–409.

 20

[40] S. Cano, D. M. Alghazzawi, J. M.

Arteaga, H. M. Fardoun, C. A. Collazos,

and V. B. Amador, “Applying the

information search process model to

analyze aspects in the design of serious

games for children with hearing

impairment,” Univers. Access Inf. Soc.,

vol. 17, no. 1, pp. 83–95, Mar. 2018.

[41] S. Kent, “Model Driven Engineering,”

Comput. Comput. Soc., vol. 2335, no. 2,

pp. 286–298, 2002.

[42] E. W. Dijkstra, “The humble

programmer,” Commun. ACM, vol. 15,

no. October 1972, pp. 859–866, 1972.

[43] E. Palacios-González, H. Fernández-

Fernández, V. García-Díaz, B. C. P. G-

Bustelo, J. M. C. Lovelle, and O. S.

Martínez, “General purpose MDE tools,”

Int. J. Interact. Multimed. Artif. Intell.,

vol. 1, no. 1, pp. 72–75, 2008.

[44] E. M. Schön, M. Escalona, and J.

Thomaschewski, “Agile Values and

Their Implementation in Practice,” Int. J.

Interact. Multimed. Artif. Intell., vol. 3,

no. 5, p. 61, 2015.

[45] V. García-Díaz, H. Fernández-

Fernández, E. Palacios-González, B. C.

P. G-Bustelo, O. Sanjuán-Martínez, and

J. M. C. Lovelle, “TALISMAN MDE:

Mixing MDE principles,” J. Syst. Softw.,

vol. 83, no. 7, pp. 1179–1191, Jul. 2010.

[46] V. García-Díaz, J. B. Tolosa, B. C. P. G-

Bustelo, E. Palacios-González, O.

Sanjuán-Martínez, and R. G. Crespo,

“TALISMAN MDE Framework: An

Architecture for Intelligent Model-

Driven Engineering,” in Distributed

Computing, Artificial Intelligence,

Bioinformatics, Soft Computing, and

Ambient Assisted Living, no. November,

S. Omatu, M. P. Rocha, J. Bravo, F.

Fernández, E. Corchado, A. Bustillo, and

J. M. Corchado, Eds. Springer Berlin

Heidelberg, 2009, pp. 299–306.

[47] J. Fabra, V. De Castro, P. Álvarez, and E.

Marcos, “Automatic execution of

business process models: Exploiting the

benefits of Model-driven Engineering

approaches,” J. Syst. Softw., vol. 85, no.

3, pp. 607–625, Mar. 2012.

[48] C. González García, C. P. García-

Bustelo, J. P. Espada, and G. Cueva-

Fernandez, “Midgar: Generation of

heterogeneous objects interconnecting

applications. A Domain Specific

Language proposal for Internet of Things

scenarios,” Comput. Networks, vol. 64,

no. C, pp. 143–158, Feb. 2014.

[49] C. González García, J. P. Espada, E. R.

N. Valdez, and V. García-Díaz, “Midgar:

Domain-Specific Language to Generate

Smart Objects for an Internet of Things

Platform,” in 2014 Eighth International

Conference on Innovative Mobile and

Internet Services in Ubiquitous

Computing, 2014, pp. 352–357.

[50] B. Selic, “MDA manifestations,” Eur. J.

Informatics Prof., vol. IX, no. 2, pp. 12–

16, 2008.

[51] M. Torchiano, F. Tomassetti, F. Ricca,

A. Tiso, and G. Reggio, “Relevance,

benefits, and problems of software

modelling and model driven

techniques—A survey in the Italian

industry,” J. Syst. Softw., vol. 86, no. 8,

pp. 2110–2126, Aug. 2013.

[52] A. van Deursen and P. Klint, “Little

languages: Little maintenance?,” J.

Softw. Maint., vol. 10, no. 2, pp. 75–92,

Apr. 1998.

[53] D. Hästbacka, T. Vepsäläinen, and S.

Kuikka, “Model-driven development of

industrial process control applications,”

J. Syst. Softw., vol. 84, no. 7, pp. 1100–

1113, Jul. 2011.

[54] A. Van Deursen, “Domain-Specific

Languages versus Object-Oriented

Frameworks: A financial engineering

case study,” Smalltalk Java Ind. Acad.,

pp. 35–39, 1997.

[55] V. García-Díaz, J. Pascual-Espada, C.

Pelayo G-Bustelo, and J. M. Cueva-

Lovelle, “Towards a Standard-based

Domain-specific Platform to Solve

Machine Learning-based Problems,” Int.

J. Interact. Multimed. Artif. Intell., vol. 3,

no. 5, p. 6, 2015.

[56] P. Moreno-Ger, I. Martínez-Ortiz, and B.

Fernández-Manjón, “The <E-Game>

Project: Facilitating the Development of

Educational Adventure Games,” in

International Association for

 21

Development of the Information Society

(IADIS) Cognition and Exploratory

Learning in Digital Age (CELDA), 2005,

pp. 353–358.

[57] P. Lavín-Mera, P. Moreno-Ger, and B.

Fernández-Manjón, “Development of

Educational Videogames in m-Learning

Contexts,” 2008 Second IEEE Int. Conf.

Digit. Game Intell. Toy Enhanc. Learn.,

pp. 44–51, 2008.

[58] A. Serrano, E. J. Marchiori, A. del

Blanco, J. Torrente, and B. Fernandez-

Manjon, “A framework to improve

evaluation in educational games,” in

Proceedings of the 2012 IEEE Global

Engineering Education Conference

(EDUCON), 2012, pp. 1–8.

[59] YoYoGames, “GameMaker Studio,”

2013. [Online]. Available:

http://www.yoyogames.com/gamemaker/

studio. [Accessed: 05-Dec-2016].

[60] A. Baytak and S. M. Land, “A case study

of educational game design by kids and

for kids,” Procedia - Soc. Behav. Sci.,

vol. 2, no. 2, pp. 5242–5246, Jan. 2010.

[61] M. Duggan, Making a GameSalad for

Teens. Cengage Learning PTR, 2013.

[62] K. Roy, W. C. Rousse, and D. B.

DeMeritt, “Comparing the mobile novice

programming environments: App

Inventor for Android vs. GameSalad,”

2012 Front. Educ. Conf. Proc., pp. 1–6,

Oct. 2012.

[63] Unity Technologies, “Unity,” 2013.

[Online]. Available: http://unity3d.com/.

[Accessed: 05-Dec-2016].

[64] W. A. Mattingly, D. Chang, R. Paris, N.

Smith, J. Blevins, and M. Ouyang,

“Robot design using Unity for computer

games and robotic simulations,” 2012

17th Int. Conf. Comput. Games, pp. 56–

59, Jul. 2012.

[65] E. R. Núñez-Valdez, O. Sanjuán-

Martínez, B. C. P. G-Bustelo, J. M. C.

Lovelle, and G. Infante-Hernandez,

“Gade4all: Developing Multi-platform

Videogames based on Domain Specific

Languages and Model Driven

Engineering,” Int. J. Interact. Multimed.

Artif. Intell., vol. 2, no. Regular Issue, pp.

33–42, 2013.

[66] E. R. Núñez-Valdez, V. García-Díaz, J.

M. C. Lovelle, Y. S. Achaerandio, and R.

González-Crespo, “A model-driven

approach to generate and deploy

videogames on multiple platforms,” J.

Ambient Intell. Humaniz. Comput., vol.

8, no. 3, pp. 435–447, Jun. 2017.

[67] Eclipse, “Ecore,” 2010. [Online].

Available: http://wiki.eclipse.org/Ecore.

[Accessed: 28-Sep-2016].

View publication stats

https://www.researchgate.net/publication/330486245

