
Highlights

 Fast Fourier Infrared (FTIR) analysis in grape skin provided information enough for the 

identification of the sample variety using Artificial Neural Networks (ANN);

 Attenuated total reflectance (ATR) allows recording spectra very fast without sample 

pre-treatment avoiding undesired structural changes of the samples;

 ANN together with Olden’s Connection Weight Algorithm allowed identifying the 

principal compounds influencing the classification and ripeness;

 Pectin, polysaccharides and specially fructose, have the strongest influence in class and 

ripeness identification;
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11 Abstract 

12 The vineyard grown in the territories included in the Protected Designations of Origin 

13 (PDO) classification of the European Union, present unique organoleptic properties of 

14 colour, aroma and flavour. Development of techniques for identifying grape varieties or 

15 ripeness among other characteristics, are key interesting for the PDO control and quality.

16 Attenuated total reflectance (ATR) allows fast recording spectra without sample pre-

17 treatment, thus avoiding undesired physical and/or chemical changes of the sample. This 

18 method works in a rapid, non-destructive and easy-to-use way. The fast-fourier transform 

19 infrared spectroscopy (FTIR) analysis of five grape varieties (Alabarín 

20 blanco, Mencía, Verdejo negro, Albarín negro and Carrasquín) used for wine production 

21 of PDO Vino de Cangas provided information enough for the identification of grape class 

22 using artificial neural networks (ANN).

23 Despite the statistical similitude of the FTIR spectra among different grapes and maturity 

24 state, ANN resulted to be a helpful tool for classifying grape samples according to the 

25 variety or to their ripeness degree. Furthermore, compounds present in grapes that can 

26 most influence such classification can be outlined from the ANN. In this context, pectin 

27 and polysaccharides are especially significant in variety and ripeness identification, 
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28 whereas polyphenols and fructose provide useful information for ripeness degree 

29 classification of grapes. 

30 Keywords: Artificial Neural Networks; Grapes; Connection Weight Algorithm; ATR-

31 FTIR

32

33 1. Introduction

34 Commonly, viniculture is restricted to territories where the exposition to the sun lasts for 

35 long periods of the year. This makes the countries around the Mediterranean Sea 

36 outstanding places for grape culture and wine industry, thus becoming the most famous 

37 producers and exporters of wine. Spain is known for being a sunny country which 

38 dedicates huge extensions of terrain to viniculture, having seventy-five different 

39 Protected Denominations of Origin (PDO) for wine.

40 Polyphenolic compounds constitute an important aspect in the quality of grapes and wines 

41 and can be found in high concentrations in the skin of fruits, having important and 

42 different roles as secondary metabolites [1]. Polyphenolic compounds can be divided into 

43 two groups: non-flavonoid (hydroxybenzoic and hydroxycinnamic acids and stilbenes) 

44 and flavonoid compounds (anthocyanins, flavan-3-ols and flavonols). Among the 

45 flavonoid compounds, anthocyanins are the family of polyphenols responsible for colour 

46 in grapes and young wines, while flavan-3-ols (monomeric cathechins and 

47 proanthocyanidins) are mainly responsible for the astringency, bitterness and structure of 

48 wines [2]. For its part, flavonols (quercetin, myricetin, kaempferol, isorhamnetin and their 

49 glycosides), contribute to bitterness. In grape berries, flavonols are the most abundant 

50 phenolic compounds in grape skins, while grape seeds are rich in flavan-3-ol [3]. The 

51 concentration of phenolic compounds in grapes depends on the variety of grapevine and 

52 it is influenced by viticultural and environmental factors [4]. 

https://www.sciencedirect.com/topics/chemistry/metabolite
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53 Another important group of chemicals that provide useful information for 

54 characterization of different varieties of fruit are those located in the skin cell wall. The 

55 primary cell wall of plants mainly consists of various polysaccharides (pectins, 

56 hemicelulloses and cellulose) and comparably, smaller amounts of structural 

57 glycoproteins, phenolic esters, minerals and enzymes [5]. Plant cell walls and their 

58 constitutive polysaccharide networks are vital with regard to the mechanical properties of 

59 the plant organ, such as stiffness or strength. 

60 Chemometric techniques coupled to Near Infrared (NIR), FTIR or ATR-FTIR have been 

61 successfully applied for identifying plant leaves [6], for studying adulteration of cumin 

62 seed oil [7] or grape nectars [8], for determining the geographic origin of chardonnay 

63 grapes [9], for classifying different brands of fruit wines [10] or for identifying apples 

64 used in the production of cider [11].

65 The aim of the present work is to use the absorption bands in the mid-IR region, which 

66 reveals information about the type of molecules present in the grape skins in a fast, 

67 powerful and non-destructive way. The basis of the measurements relies on the 

68 wavelength-dependent interaction of light with the skin grape components. The FTIR 

69 technique, coupled with the use of chemometric procedures to extract the information 

70 from the IR spectrum [10,11], provides an accurate, reliable method suitable for 

71 discriminating grape varieties despite the quite similar composition of their skins. Also, 

72 FTIR-chemometrics, may provide important information for assessing ripeness degree 

73 classification of grapes. 

74 Results obtained demonstrate that FTIR coupled to chemometrics allows the consistent 

75 identification of several grape varieties used for the production of PDO Vino de calidad 

76 de Cangas (Wine Cangas Quality), which must be exclusively made with the admitted 

77 and/or authorized grape varieties, as the listed in the legislation (Table 1) [12]. The sample 
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78 grapes used in this work come from a small vineyard in northern Spain (Cangas de 

79 Narcea, Asturias), endowed with an especial microclimate and soil suitable for 

80 viniculture. The wines derived from this vineyard own PDO according to the 

81 classification of the European Union [12, 13] and present unique organoleptic 

82 characteristics in terms of colour, aroma and flavour, looking clean, bright and a right 

83 alcohol / acidity balance. 

84 Table 1 Varieties of grapes allowed in PDO ‘‘Vino de Calidad de Cangas’’. The 
85 varieties used in this study appear in bold.

Accepted varieties  Albarín blanco 
Albillo
Garnacha tintorera
Mencía 
Picapoll blanco
Extra
Verdejo negro

Authorized varieties Albarín negro
Carrasquín
Godello
Gewurztraminer
Merlot
Pinot noir
Syrah

86

87 2 Materials and methods

88 2.1 Grape samples and leaves collection

89 Grapes of five varieties Albarín blanco (AB), Mencía (MN), Verdejo negro (VN), Albarín 

90 negro (AN) and Carrasquín (CQ) were kindly provided by “Bodegas Vidas” cellar. 

91 Every week (along 3 weeks) three different clusters of three different plants (nine clusters) 

92 were collected for every variety. Three different grapes were collected from every cluster, 

93 yielding 27 grapes per variety and week (a total of 135 grapes per week). During the third 

94 week, grapes from varieties AB and VN could not be collected due to the industrial needs 

95 of the vineyard.
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96 Leaves for every variety were collected every week along three weeks. A single leaf was 

97 taken every time from three different plant to avoid its further damage.

98 2.2 Instrumentation

99 A Varian 670-IR spectrometer equipped with a DLaTGS detector and a diamond-based 

100 Golden Gate ATR device was used for all the measurements.  Mathematical data 

101 processing and calculations were performed with MatLab R2018a from Mathworks.

102 2.3 Measurement protocol

103 Grapes were thoroughly washed with distilled water prior to analysis. A thin skin layer 

104 was cut using a scalpel and the external part brought into close contact with the ATR 

105 diamond. Every grape skin was sampled three times and its spectrum was recorded from 

106 600 cm-1 to 4000 cm-1 with resolution 4 cm-1 (average of 16 scans). A final number of 

107 1053 spectra were recorded.  Leaves were analysed without any previous treatment taking 

108 the FTIR spectra in different points of their surface. A total number of 135 spectra were 

109 recorded. Unused grapes and leaves were frozen for future needs.

110

111 2.4 Artificial Neural Network (ANN) training

112 Data were randomly selected between training (85%) and test (15%) datasets. 

113 Performance of ANN was checked with cross-validation (15%) of training dataset. The 

114 selected ANN for this work is a two-layer feed-forward network with a simple perceptron 

115 with sigmoidal activation, and the network was trained with a scaled conjugate gradient 

116 backpropagation. Four different ANN were trained: for classifying grapes (Gr-ANN), for 

117 identifying ripeness (Ri-ANN) and for identifying the grape variety and ripeness from the 

118 leaf spectra (LeGr-ANN and LeRi-ANN), each of which consisted on an input layer with 

119 forty variables, a hidden layer with 10 neurons and an output layer with 5 components 

120 (Gr-ANN and LeGr-ANN) or 3 components (Ri-ANN and LeRi-ANN). In the context of 
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121 this work, ripeness means the number of weeks passed since the first sampling (week 1).  

122 Forty different mid-IR peaks were selected, whose areas were used as input variables. 

123 These peaks were selected taking into account the absorption maxima at which the main 

124 chemical components of the grape skin absorbed IR radiation. Every peak was normalized 

125 with the MatLab mapminmax function, so the input data were in the range [-1,1].   Every 

126 spectrum was taken as the average of 16 scans, providing a good signal-to-noise ratio. 

127 Furthermore, the use of peak areas instead of heights contributed to minimize the effect 

128 of the noise in the signal. Consequently, no further noise-reduction protocol was followed 

129 so as not to overload the system with calculations.

130 3 Results and discussion

131 The mid-IR spectra provide precise information about the chemical groups present in the 

132 skin of the grapes. In this case the peaks of the spectra obtained (Figure 1) correspond to 

133 the following functional groups: 2916 and 2849, stretching (CH2); 1733, stretching (C=O) 

134 ester; 1687 stretching (C=O) acid; 1629 stretching (COO-); 1470, 1386 and 761 bending 

135 (CH2); 1210 and 825 ring vibration; 1060 glycosidic bond (C-O-C); 960 bending(C-O).  

136 The spectra of the different varieties of grapes were very similar to the naked eye. In order 

137 to check whether this similitude was statistically significant, a study of the correlation 

138 coefficient of every variety pair was carried out with the aim to evaluate if the spectral 

139 difference for every variety pair was significantly different from zero.
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140 Figure 1 Mean spectra of the grape skin of the five tested varieties in this work: albarín 
141 blanco (AB), albarín negro (AB), carrasquín (CQ), mencía (MN) and verdejo negro 
142 (VN). Cellulose (CEL), cutin (CTN), fructose (FRC), hydroxycinnamic acids (HYD), 
143 lipids (LPD), pectins (PCT), phenolic compounds (PHC), polyesters (PLY), water 
144 (WTR), waxes (WXS) and xyloglucan (XLG).
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146 In a first step, the correlation coefficient as suggested by Varmuza et al. [14] was 

147 determined (Equation 1) and the probability p associated to the Student’s t value was then 

148 calculated from that correlation coefficient. 

149 CORa ‒ b =
𝑧 '

𝑎𝑧𝑏

‖𝑧𝑎‖‖𝑧𝑏‖   (Equation 1)

150 where za and zb are the mean-centred absorbance spectra calculated according to Equation 

151 2:

152 za = xa ‒ 1·xa     (Equation 2)

153 In which  xa the vector containing the absorbances of compound a,  the vector (1,1,1,…) 1

154 and  the mean value of the absorbances of compound a. The degrees of freedom are the 𝑥𝑎

155 number of wavenumbers scanned, 1765.
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156 Using Li’s approach [15], the null-hypothesis (H0=’the spectra are not correlated’) is 

157 discarded if p value falls below 0.05. Results are collected in Table 2. 

158

159 Table 2 Similitude of IR absorbance spectra of the different varieties of grapes 
160 according to COR and Student’s t.

COR
t AN CQ MN VN

AB 0.9973
13.5841

0.9984
17.4448

0.9983
17.2682

0.9959
11.0407

AN 0.9985
18.2114

0.9985
18.3300

0.9964
11.7384

CQ 0.9996
35.3545

0.9933
8.6135

MN 0.9941
9.1972

161

162 The probability associated for the t-values shown in Table 2 are below 10-5 in every case 

163 and, consequently it is possible to discard the null-hypothesis of not being correlated. 

164 These results could be understood taking into account that the chemical composition of 

165 the grapes skin is correlated in the different grape varieties, even in AB which is the only 

166 one white grape in the study.

167 Once confirmed that the different varieties are all correlated, the next step was to guess 

168 whether the spectra could be considered statistically undistinguishable or not. For doing 

169 that, a statistical study of the spectral differences between each possible variety pair was 

170 carried out. If two spectra are similar, the mean value of the absorbance differences, as 

171 defined in Equation 3, should be 0.

172 Difa ‒ b = (a ‒ b)  (Equation 3)

173

174 However, spectral differences didn’t follow a normal distribution according to the 

175 Kolmogorov-Smirnov test and, therefore, Student’s t was not applicable. Alternatively, 
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176 we applied a Wilcoxon Signed Rank test to check whether the median was 0 for all 

177 possible variety pairs (avoiding self-comparisons). For each possible combination it 

178 resulted to be p<10-5 except for pair MN-VN, with p= 0.476. This means that the spectral 

179 differences of every variety pair had a median significantly different from zero, with the 

180 exception of MN-VN.

181 With these results in mind, a good chance for recognizing the grape variety using an ANN 

182 (Gr-ANN) was expected. To tackle it, four different ANN, one at every ripeness status (1 

183 week, 2 weeks or 3 weeks) and a fourth (pooling together all the data) were assayed. The 

184 results collected in Tables S1 (Supplementary Information) represent the matches 

185 (percentage of grapes correctly classified) and reliability (percentage of the grapes 

186 classified into a variety, which really belongs to it, or 100 - percentage of false positives) 

187 for the test dataset classification at three different stages of ripening, as well as the area 

188 under ROC curve AUC (Table 3). Unfortunately, no AB or VN grapes could be collected 

189 the last week due to the industrial needs of the vineyard.

190 Table 3 Results of the classification of the training dataset for every variety at different 
191 ripeness states.

Gr-ANN AB AN CQ MN VN Average 

Matches 76.9% 100% 100% 91.7% 84.6% 90.6%
1st week Reliability 83.3% 90.9% 86.7% 91.7% 100% 90.5%

AUC
(1st week) 0.9979 0.9980 0.9917 0.9993 0.9994

Matches 100% 77.8% 75.0% 85.7% 100% 87.7%
2nd week Reliability 94.4% 63.6% 90.0% 92.3% 100% 88.1%

AUC 
(2nd week) 0.9997 0.9625 0.9739 0.9690 0.9997

Matches --- 92.9% 100% 92.9% --- 95.2%
3rd week Reliability --- 100% 80.0% 100% --- 93.3%

AUC (3rd week) --- 0.9816 0.9798 0.9840 ---
Matches 95.5% 70.3% 81.0% 77.4% 92.3% 83.3%All pooled 

together Reliability 87.5% 81.3% 81.0% 66.7% 100% 83.3%
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AUC (all) 0.9981 0.9585 0.9456 0.9591 0.9971
192

193 In all the cases, the area under ROC curve (AUC) value is over 0.96, indicating a good 

194 performance of the classification. It is worth noting that a diminution of the global 

195 performance of the network was observed when the ripeness of the grape was not taken 

196 into consideration (83.3% average matches) when compared to the performance for every 

197 week separately (90.6%, 87.7% and 95.2% average matches). In order to identify the 

198 origin of this effect, we trained a second ANN (Ri-ANN) to evaluate the ripeness degree 

199 regardless of the grape variety, whose results are summarised in Table 4 and S2.

200 Table 4 Results of the identification of the ripening week regardless of grape variety.

Ri-ANN 1st week 2nd week 3rd week

Matches 88.7% 83.1% 80.0%
Mixed varieties

Reliability 85.5% 83.1% 84.2%

Area under ROC curve 0.9844 0.9562 0.9758

201

202 Our overall success rates in the grape classification of 91.2% (average of weekly 

203 classification) or 83.3% (pooling all weeks together) as well as the success rate for 

204 identifying the ripeness degree of 83.9% is better than the success rates obtained by 

205 Gambetta et al. for identifying the geographical origin of Chardonnay grapes (81%-83%) 

206 [9]. Although better results can be found in the literature too (success rate 97.2%) [16], 

207 they are not directly comparable to ours as the classification was carried out just for only 

208 two varieties (Viura and Chardonnay) instead of five as in the present work. Cozzolino et 

209 al. [17] in a two-case classification (Chardonnay and Riesling) also present poorer results 

210 (86%) when using the grape juice instead of the grapes themselves.

211 The success rate of the Ri-ANN was lower than that of Gr-ANN, thus suggesting a 

212 stronger dependence of the IR spectra on the grape variety rather than on the ripeness 

213 degree. This fact was expectable considering the chemical changes that the grape skin 
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214 may suffer over the short period of three weeks. On the other hand, since the whole pool 

215 of 40 variables were used in Gr-ANN and Ri-ANN, it was possible that those variables 

216 influencing more the ripeness degree were contributing to mask the variety identification 

217 and vice-versa. For this reason, new approaches were carried out to evaluate which 

218 experimental variables were influencing the most every trained ANN. 

219 Several algorithms have been described with this purpose, being the Connection Weight 

220 Algorithm as proposed by Olden et al. [18] one of the most accurate. The Connection 

221 Weight Algorithm was carried out independently for each output neuron (that is, each 

222 target variety). Details are collected in Tables S3 and S4. When analysing the three Gr-

223 ANN trained with a controlled ripeness degree, the critic variables resulted to be 35, 33, 

224 27, 24, 16, 5 and 3; when checking the Gr-ANN trained with all the grape samples 

225 regardless of the ripeness degree, the variables selected were 35, 3, 36, 33, 5 and 2. 

226 Variables 35, 33, 5 and 3 were common to both lists, suggesting that they had the most 

227 weight in the variety identification.  Finally, we classified the variables according to the 

228 number of times they appear considering all the classifications together (1st week, 2nd 

229 week, 3rd week and all Gr-ANN) finding as main variables 35, 33, 3, 5, 36, 27 and 16 

230 (sorted in decreasing importance). Similarly, the application of the Olden’s Connection 

231 Weight Algorithm to the Ri-ANN showed that the ripeness-related variables were 6, 30, 

232 19 and 9. Table 5 summarises these variables and their assignation to chemical 

233 compounds in grape skin [10, 19 - 24]. The peak at 1210 cm-1 (variable #16) was not easy 

234 to assign, but considering the FTIR spectra accessible from the Spectral Database for 

235 Organic Compounds SDBS [25], apple pectin exhibes intense absorption at 1250 cm-1 and 

236 citrus pectin at 1210 cm-1, it was plausible that the grape absorption at 1210 cm-1 arose 

237 from pectin too, although other authors assign this band to phenolic compounds [17]. The 

238 IR band corresponding to variable #27 is that at 761 cm-1. Although this band is difficult 
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239 to assign too, it is quite close to the δ (CH2) rocking from cutin and waxes as reported by 

240 Heredia-Guerrero et al [23] and can also be assigned to water, according to Cozzolino et 

241 al.[17]. Fructose, with an absorption peak at 1070 cm-1 has also been described as the 

242 most contributing variable to the identification of the geographical origin of Chardonnay 

243 grapes by Gambetta et al.[9].  Fructose, at 1070 cm-1, together with water, at 780 cm-1, 

244 and phenolic compounds, at 1256 cm-1, seem to play also an important role in the 

245 identification between Chardonnay and Riesling varieties in grape juices according to 

246 Cozzolino’s work [17]. These wavenumbers are consistent with the variables shown in 

247 Table 5.  It is clear that pectin has a strong influence both in the variety identification and 

248 in the ripeness degree. Polyphenols and sugar (fructose) are closely related to the ripeness 

249 degree as already described [24], and appear as important variables in our results too.

250 Once identified the main variables, the network was trained again using only the most 

251 influencing variables (35, 33, 3, 5, 36, 27 and 16 for Gr-ANN and 6, 30, 19 and 9 for Ri-

252 ANN), but less satisfactory results were obtained (best match rate for Gr-ANN 74.4%, 

253 best reliability for Gr-ANN 79.2%; best match rate for Ri-ANN 82.5%, best reliability 

254 for Ri-ANN 64.4%). Despite using the most representative variables, a drastic reduction 

255 in the number of them impaired the success rate.

256 Table 5 Chemical assignation of the main influencing variables [10 ,19 - 24]

Variable 
#

Associated 
to Wavenumber Compound

3 Variety 1733 cm-1 Polyesters, pectins, cutin

5 Variety 1687 cm-1 Hydroxycinnamic acids

6 Ripeness 1629 cm-1 Pectin

9 Ripeness 1386 cm-1 Cellulose, Xyloglucan

16 Variety 1210 cm-1 Possibly pectin or phenolic compounds

19 Ripeness 1063 cm-1 Fructose

27 Variety 761 cm-1 Probably cutin and waxes; possible 
water
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30 Ripeness 1470 cm-1 Waxes, cutin, lipids

33 Variety 1417 cm-1 Carboxylate (pectin ester group)

35 Variety 825 cm-1 Pectin

36 Variety 1433 cm-1 Cellulose
257

258 Once found which variables were mainly involved in the classification, we tried to 

259 understand the confusion matrixes of Gr-ANN (regardless of ripeness state) and Ri-ANN. 

260 These matrixes were prepared with the whole dataset (training, validation and test data) 

261 and are shown in Figure 2. The main confusions occur with varieties AN, CQ and MN 

262 which are more frequently misclassified than VN and AB. It is important to state that AN 

263 is the worst identified variety (poorest number of matches) and MN the most wrongly 

264 chosen (poorest reliability). These facts could be explained considering that AN is the 

265 variety which shares more variables with other varieties (5 variables with three different 

266 varieties, see Table 6) and, therefore, it is more likely to be misclassified. On the other 

267 hand, MN is the only variety which has at least one variable in common with the others 

268 (Table 6). Sharing a variable with every variety makes easier for them to be included in 

269 a given category (poor reliability).

270 Figure 2 Confusion matrixes considering training, validation and test datasets for Gr-
271 ANN (left) and Ri-ANN (right). Red colour remarks worst results.

272

Input class
Reliability
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AB AN CQ MN VN

AB 156 2 1 4 2 94.5%

AN 0 187 23 12 2 83.5%

CQ 3 21 190 20 1 80.9%

MN 2 32 26 207 0 77.5%

VN 1 0 3 0 157 97.5%

Matches 96.3% 77.3% 78.2% 85.2% 96.9% 85.3%

Input week
Reliability

Ou
tpu

t w
ee

k 1st 2nd 3rd

1st 376 26 6 92.2%

2nd 23 354 41 84.7%

3rd 6 25 195 86.3%

Matches 92.8% 87.4% 80.6% 87.9%

273 Table 6 Variables in common in the different varieties.

Variety Shares Details

AB 3 vars with 3 varieties AN (#33 and #36), CQ (#3), MN (#3)



14

AN 4 vars with 3 varieties AB (#33 and #36), MN (#35), VN (#2 and #35)

CQ 2 vars with 3 varieties AB (#3), MN (#3) and VN (#5)

MN 2 vars with 4 varieties AB (#3), AN (#35), CQ (#3) and VN (#35)

VN 3 vars with 3 varieties AN (#2 and #35), CQ (#5) and MN (#35)

274

275 Concerning the confusion matrix for the Ri-ANN, it was clear that every week was 

276 mistaken with each other in a similar extent with the exception of weeks 1st and 3rd. This 

277 was easily explained if we notice that every variety share with each other just two 

278 variables: 1st and 2nd share #6 and #19, 2nd and 3rd share #6 and #9 and 1st and 3rd share 

279 #6 and #30. However, as shown in Table S4, variables #6 and #30 are the two with the 

280 most weight in their respective weeks.

281

282 So as to get more information, the possibility of identification of the grape variety through 

283 the FTIR spectrum of the leaves was evaluated. Since the chemical composition of the 

284 leaves was not expected to change with the fruit ripeness, results regarding this 

285 identification were expected to be poor. Mean spectra of the leaves of the five different 

286 vines are shown in Figure 3. Similarly, to the statistical analysis of the grapes, leaves 

287 showed a high correlation degree (details in Table S5) with probabilities below 10-5 which 

288 allow discarding the null-hypothesis of not being correlated. As in the case of grapes, the 

289 spectral difference between two varieties yielded non-normal distributions according to 

290 the Kolmogorov-Smirnov test, so we performed again a Wilcoxon signed rank test. Every 

291 possible combination showed a p value below 10-3 with the exception of AN-VN 

292 (p=0.0569), CQ-VN (p=0.7033) and MN-VN (p=0.1400). This implies that these pairs 

293 are very similar, without a statistically significant difference. With this information, 

294 poorer results than those obtained with the grapes were expected.
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295 Figure 3 Mean spectra of the leaves of the five tested varieties in this work: Albarín 
296 Blanco (AB), Albarín Negro (AB), Carrasquín (CQ), Mencía (MN) and Verdejo Negro 
297 (VN).
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299 The results in Tables 7 and S6 collect the matches (percentage of leaves correctly 

300 classified) and reliability (percentage of the leaves classified into a variety, really belongs 

301 to that variety, 100-percentage of false positives) for the test dataset classification without 

302 considering the degree of matureness, as well as the area under ROC curve.

303 Table 7 Results of the classification of the training dataset for the leaves.

LeGr-ANN AB AN CQ MN VN

Matches 50.0% 75.0% 41.7% 50.0% 40.0%
Leaves Reliability 25.0% 54.5% 445.5% 66.7% 66.7%

Area under ROC curve 0.8677 0.8588 0.8198 0.9021 0.7875
304

305 Finally, we wanted to check whether the leaves change enough during the maturation of 

306 the grape to obtain the ripeness degree of the fruit from the IR-spectrum of the leaf. We 

307 trained then a new ANN with the IR data obtained from the leaves (LeRi-ANN) whose 

308 results are shown in Tables 8 and S7.
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309 Table 8 Results of the identification of the ripening week regardless of grape variety 
310 obtained from the leaves.

LeRi-ANN 1st week 2nd week 3rd week

Matches 80.0% 54.4% 22.2%
Mixed varieties

Reliability 63.2% 42.9% 100.0%

Area under ROC curve 0.8891 0.7955 0.8510

311

312 No further studies on the LeGr-ANN and LeRi-ANN were performed due to the poor 

313 results obtained in the above experiments.

314

315 4 Conclusions

316 Despite being statistically similar, the FTIR spectra of the grape skin retain information 

317 enough to enable the identification of the grape variety using Artificial Neural Networks. 

318 ANN resulted to be a good choice for identifying the grape varieties involved in the PDO 

319 Vino de Calidad de Cangas production as well as the ripeness degree. The use of Olden’s 

320 Connection Weight Algorithm allowed identifying the most influencing wavenumbers 

321 and chemical compounds, indicating that pectin was important for both identification of 

322 variety and the ripeness degree. As expected, fructose played an important role in the 

323 ripeness degree while polyphenols do not seem to affect the identification of the samples. 

324 Similar studies on the grape leaves did not yield relevant results because the chemical 

325 composition evolution of the studied plants was not as different as the one of the grapes 

326 in the collection time range.

327
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Gr-ANN AB AN CQ MN VN

Matches 100% 100% 98.1% 100% 98.3%
Training (1st week) Reliability 98.0% 98.3% 100% 100% 100%

Matches 94.4% 92.3% 85.7% 100% 100%
Validation (1st week) Reliability 100% 92.3% 92.3% 100% 81.8%

Matches 76.9% 100% 100% 91.7% 84.6%
Test (1st week) Reliability 83.3% 90.9% 86.7% 91.7% 100%

Matches 100% 85.0% 80.7% 86.0% 100%
Training (2nd week) Reliability 98.2% 83.6% 83.6% 86.0% 100%

Matches 100% 75% 83.3% 70.6% 100%
Validation (2nd week) Reliability 100% 64.3% 76.9% 92.3% 92.3%

Matches 100% 77.8% 75.0% 85.7% 100%Test
2nd week Reliability 94.4% 63.6% 90.0% 92.3% 100%

Matches --- 88.1% 94.8% 94.3% ---Training
3rd week Reliability --- 94.5% 91.7% 90.9% ---

Matches --- 85.7% 93.3% 92.9% ---Validation
3rd week Reliability --- 100% 87.5% 92.9% ---

Matches --- 92.9% 100% 92.9% ---Test
3rd week Reliability --- 100% 80.0% 100% ---

Matches 95.8% 79.5% 78.4% 85.7% 98.2%
Training (all) Reliability 96.6% 84.0% 80.4% 80.0% 96.5%

Matches 100% 73.5% 73.5% 88.6% 95.8%
Validation (all) Reliability 91.7% 83.3% 83.3% 76.5% 100%

Matches 95.5% 70.3% 81.0% 77.4% 92.3%
Test (all) Reliability 87.5% 81.3% 81.0% 66.7% 100%

Table S1 - Matches represent the matches (percentage of grapes correctly classified) and 
reliability (percentage of the grapes classified into a class, which really belongs to that class) of 
the classification at three different stages of ripening.



Ri-ANN 1st week 2nd week 3rd week
Matches 93.8% 88.4% 80.7%

Training Reliability 94.1% 84.7% 86.3%
Matches 91.9% 87.7% 80.6%

Validation Reliability 89.1% 86.4% 89.3%
Matches 88.7% 83.1% 80.0%

Test Reliability 85.5% 83.1% 84.2%

Table S2 - Matches and reliability of the identification of the degree of ripening regardless of 
the grape class.

Network Most influencing variables
AB 33    4    35    14    7
AN 6    33    16    24   30
CQ 5    23    12    3     27
MN 6    27    18    16    35
VN 27    35    5    23    3

Gr-ANN
1st week

Total 35 ~ 27 (12% each)  >  33 ~ 23 ~ 16 ~ 6 ~ 5 ~ 3 (8% each)
AB 3    36     4    14    33
AN 29    24    36    16    40
CQ 35    24     3     5    38
MN 35    26    17     4    12
VN 35    28     2    32     9

Gr-ANN
2nd week

Total 35 (12%)  >  36  ~  24  ~  4  ~  3 (8% each)
AN 33    27    25    24    36
CQ 33    16     5    27    25
MN 7    40    11    32    28

Gr-ANN
3rd week

Total 33 ~ 27 ~ 25 (13.3% each)
SELECTED 35 (9.2%), 33 and 27 (7.7% each), 24, 16, 5 and 3 (6.2% each)

AB 3    36     4    33    17
AN 33     2    35    16    36
CQ 3    11     5    26    18
MN 6     3    12    35    13
VN 35    28     2     5    29

Gr-ANN
All

Total 35 ~ 3 (12%) > 36 ~ 33 ~ 5 ~ 2 (8%)
SELECTED 35 and 3 (12%), 36, 33, 5 and 2 (8%)

GLOBAL SELECTION 35 (9%), 33 and 3 (7.8% each), 5 (6.7%), 36, 27 and 16 (5.6% each)

Table S3 – Most influencing variables on Gr- ANN. In the total section, variables appear sorted 
according to their number of apparition in that ANN. In the selected variables we show the 
percentage of apparition of that variable.



Network Most influencing variables
1st 6    30     3    19     7
2nd 6    11     1     9    19
3rd 6    30     9    27    31Ri-ANN

Total 6 (20%)  >  30 (13.3%)  ~  19 (13.3%)  ~  9 (13.3%)
SELECTED 6 (20%), 30, 19 and 9 (13.3%)

Table S4 – Most influencing variables on Ri- ANN. In the total section, variables appear sorted 
according to their number of apparition in that ANN.

COR
t AN leaf CQ leaf MN leaf VN leaf

AB leaf 0.9970
12.8809

0.9974
13.8404

0.9990
22.3439

0.9989
21.3025

AN leaf 0.9995
31.6109

0.9984
17.6564

0.9990
22.3439

CQ leaf 0.9987
19.5925

0.9994
28.8545

MN leaf 0.9994
28.8545

Table S5 - Similitude of IR absorbance spectra of the different leaves according to COR and 
Student’s t.

LeGr-ANN AB AN CQ MN VN

Matches 70.8% 54.1% 59.2% 54.7% 33.3%
Training Reliability 57.1% 51.1% 73.6% 45.4% 48.7%

Matches 64.0% 58.3% 48.4% 71.8% 44.4%
Validation Reliability 64.0% 52.5% 71.4% 59.6% 48.0%

Matches 70.8% 52.9% 57.6% 74.4% 54.2%
Test Reliability 60.7% 51.4% 79.2% 60.4% 72.2%

Table S6 - Matches represent the matches (percentage of grapes correctly classified) and 
reliability (percentage of the grapes classified into a class, which really belongs to that class) of 
the classification at three different stages of ripening.



LeRi-ANN 1st week 2nd week 3rd week
Matches 75.8% 70.3% 18.6%

Training Reliability 68.8% 55.1% 48.5%
Matches 71.4% 69.8% 21.9%

Validation Reliability 66.2% 56.4% 58.3%
Matches 82.5% 71.4% 15.8%

Test Reliability 64.4% 60.8% 54.5%

Table S7 - Matches and reliability of the identification of the degree of ripening regardless of 
the grape class from the IR spectra of the leaves.


