- 1 2
- CONCENTRATION OF MERCURY SPECIES IN HAIR, BLOOD AND URINE OF
 INDIVIDUALS OCCUPATIONALLY EXPOSED TO GASEOUS ELEMENTAL
 MERCURY IN ASTURIAS (SPAIN) AND ITS COMPARISON WITH INDIVIDUALS
 FROM A CONTROL GROUP FORMED BY CLOSE RELATIVES.
- 7 Silvia Queipo Abad¹, Pablo Rodríguez González*¹, Eduardo Martínez-Morillo², W. Clay Davis³,
 8 José Ignacio García Alonso¹
- ¹ Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8,
 33006, Oviedo (Spain)
- ² Service of Clinical Biochemistry, Laboratory of Medicine, Central University Hospital of Asturias
 (HUCA), 33011, Oviedo (Spain)
- ³ Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg,
 Maryland 20899, USA.
- 15 * Author for correspondence: <u>rodriguezpablo@uniovi.es</u>
- 16
- 17
- 18

20 Abstract

Between November 19th, 2012 and December 3rd, 2012, 50 workers were intoxicated with gaseous 21 22 Hg in San Juan de Nieva (Asturias, Spain) during the maintenance of a heat exchanger of a zinc manufacturer. We have quantified the concentration of methylmercury (MeHg), ethylmercury 23 (EtHg) and Hg(II) in blood, hair and urine samples of those individuals taken three years after the 24 accident. Blood, hair and urine of their closest relatives were also analyzed to assess whether the 25 mercury burden present in the intoxicated individuals was due to the occupational exposure or to 26 27 environmental or lifestyle-related factors. The determination of the mercury species in the samples was carried out applying multiple spiking Isotope Dilution GC-ICP-MS. This procedure corrects for 28 29 possible interconversion reactions between the Hg species during the sample preparation procedure. 30 Linear correlations were observed for both groups when plotting MeHg in blood vs MeHg in hair, and MeHg in hair vs Hg (II) in urine. The concentrations of Hg species in the intoxicated 31 individuals were not significantly different from those obtained in the control group except for 32 33 MeHg in blood. Significantly higher levels of MeHg in blood were obtained in some of the intoxicated individuals who had not consumed fish or seafood since the accident. A different 34 correlation between MeHg in hair and MeHg in blood was obtained for these individuals compared 35 to the control group who showed a hair-to-blood ratio consistent with the reported value for people 36 exposed to Hg via fish consumption. Our results suggest that ingested MeHg followed the same 37 38 pathway of deposition in hair in exposed and non-exposed individuals. However, the exposed individuals with high MeHg levels in blood showed a significantly different extent of MeHg 39 deposition in hair compared to the control group. 40

41 Keywords

42 Methylmercury; Inorganic mercury; occupational exposure; Hg distribution in humans.

43

44 1. INTRODUCTION

Mercury (Hg) is considered by the World Health Organization (WHO) as one of the ten chemicals of major public concern. It is a globally distributed pollutant mostly released to the atmosphere as elemental mercury (Hg^{0}_{v}) by anthropogenic activities. Combustion processes, smelting industry or artisanal gold mining increase the human exposure to Hg^{0}_{v} specially in developing countries (Baeuml et al., 2011; Dolbec et al., 2000). Other sources of chronical exposure to low doses of Hg are dental amalgams constituted by 50% of Hg^{0} (Halbach et al., 2008).

Hg stays in the atmosphere and enters into a dynamic biogeochemical cycle in which it is 51 transformed into different chemical species (Selin, 2009). One of the main risks for humans is the 52 oxidation in the atmosphere from Hg⁰ to inorganic mercury (Hg(II)) and its deposition in aquatic 53 ecosystems (Fitzgerald et al., 2007). Hg(II) can be methylated by bacterial activity at the water-54 55 sediment interface to form methylmercury (MeHg), which is accumulated by aquatic organisms and biomagnified through the trophic chain (Mason et al., 1995). MeHg is considered the highest 56 neurotoxic form of Hg. Human exposure to MeHg is mostly due to the uptake of fish and seafood. 57 58 The Minamata tragedy of 1956 revealed the high neurotoxic effects of MeHg among children (Takeuchi et al., 1962). 59

The increase of Hg emissions into the atmosphere in the last decades has caused a great interest in the biomonitoring of different exposed populations. For this purpose, blood is the preferred bioindicator but due to the complexity of its matrix less invasive bioindicators such as urine or hair are often employed to estimate blood concentrations in large-scale studies (World Health Organization, 2015).

It is known that different Hg species follow a different pathway in the organism (Clarkson, 2002). For example, when Hg^0 enters the bloodstream, it is transformed into Hg(II) by catalase action and

 H_2O_2 (Halbach and Clarkson, 1978). Thus, the exposition to Hg_v^{0} is expected to be reflected by 67 68 increased levels of Hg(II) in the body. Therefore, total mercury (THg) levels in urine, blood and hair are often used as biomarkers of short-term acute exposure to Hg⁰_v (Barregard et al., 2006; Tsuji 69 et al., 2003; Wilhelm et al., 1996). In addition, the long-term exposition to MeHg by contaminated 70 fish uptake has been often evaluated with THg levels in blood and hair (Berglund et al., 2005; Bose-71 O'Reilly et al., 2010; Budtz-Jørgensen et al., 2004; Dolbec et al., 2000; Drasch et al., 2001). These 72 assumptions are not necessarily true as absorption, metabolism, accumulation, and toxicity of Hg 73 will depend on its chemical form. Also many factors have been found to affect Hg species 74 concentrations in hair, blood or urine (Laffont et al., 2011; Laffont et al 2012). 75

Several studies have shown an increase in blood MeHg after Hg⁰_v exposition (Cross et al., 1978; 76 Halbach et al., 2008; Ishihara et al., 1977; Suzuki et al., 1976). Recently, it has been demonstrated 77 that Hg_v^0 can be exogenously adsorbed onto hair as Hg(II) (Queipo-Abad et al., 2016). The 78 characteristics of this binding procedure are not well understood yet. Considering the high sulfur 79 content in hair, it is possible that an oxidative adsorption occurs, as it happens with Hg_v^0 onto 80 functionalized activated carbon (Korpiel and Vidic, 1997). The external adsorption does not allow 81 the discrimination between exogenous and endogenous Hg (II) coming from the bloodstream. In 82 urine, THg instead of Hg(II) (Berglund et al., 2005; Vahter et al., 2000), has been commonly 83 measured as it has been reported that less than 10% of MeHg is excreted in urine (Clarkson, 2002; 84 85 Nuttall, 2004). However, several studies showed a correlation between MeHg in blood and Hg(II) in urine, in contrast to the established assumption that Hg(II) in urine comes from Hg (II) in blood 86 (Dock et al., 1994; Rowland et al., 1977; Sherman et al., 2013; Suda and Hirayama, 1992). Thus, 87 88 the determination of different Hg species in the main biomonitors (blood, hair and urine) can be a valuable tool not only for assessing exposure sources, but also to better understand Hg dynamics 89 and bioaccumulation in humans (Suzuki et al., 1993). 90

In 2012, several workers were doing maintenance work in a heat exchanger from a zinc 91 92 manufacturer in Asturias (Spain) and were exposed to high elemental Hg levels (Queipo-Abad et al., 2016). The accident occurred between November 19th and December 3rd, 2012, when some of 93 the workers were taken to hospital with obvious symptoms of acute Hg poisoning. In the following 94 days, it could be concluded that about 50 workers were affected by Hg poisoning according to their 95 high levels of THg in blood. It was concluded that the workers were subjected to elevated gaseous 96 97 mercury concentrations and that the main exposure route was through inhalation. The evidence of the direct adsorption of Hg in hair for these individuals has been previously reported (Queipo-Abad 98 99 et al., 2016). In this work, we have measured the concentrations of Hg(II), MeHg and EtHg in 100 blood, hair and urine three years after the accident. Our objective was to find possible chronical exposure biomarkers in the most common human biomonitors. The determination of the Hg species 101 in blood, urine and hair was carried out applying a recently developed procedure based on multiple 102 103 spiking Isotope Dilution Mass Spectrometry and GC-ICP-MS. This procedure enables the accurate and precise quantification of different Hg compounds while correcting for species interconversions 104 during analysis (Queipo-Abad et al., 2017). We employed this methodology for hair, blood and 105 urine samples of 17 of the intoxicated individuals. This study included also a control group 106 consisting of their closest relatives. The concentrations of the control group were used to assess 107 108 whether the Hg burden present in the intoxicated individuals, was due to a previous occupational exposure or to environmental or lifestyle-related factors. The applied methodology allowed the 109 simultaneous determination of Hg(II), MeHg and EtHg in each biomonitor. Thus, valuable 110 111 information about the distribution of Hg species in the organism could be obtained.

112

113

114 2. EXPERIMENTAL SECTION

115 **2.1 Sample collection**

We analyzed samples from 17 intoxicated individuals involved in the occupational accident and 10 116 117 samples from a control group constituted by the closest relatives of 10 out of 17 intoxicated individuals. The control samples were also collected three years after the accident. For each 118 individual, the three sample matrices, (blood, hair and urine) were collected in the same day. Urine 119 samples were collected in polypropylene tubes and stored at -20°C until analysis. The hair was cut 120 using stainless steel scissors at the scalp level in the occipital area and stored immediately in two 121 plastic (PE-LD) zip-lock bags. Hair samples longer than 10 cm were cut into two sections to obtain 122 samples of 3-5 cm from the root. Before analysis, hair samples were thoroughly cut into small 123 pieces with scissors to facilitate homogenization and digestion. Blood samples were extracted by 124 125 qualified personal, introduced in BD Vacutainer® Tubes (K2-EDTA) and stored at -20°C until 126 analysis.

127

128 **2.2** Quantification of the samples by triple spike isotope dilution analysis.

The samples were weighed in 10 mL microwave glass vessel. A different sample amount was 129 weighed for each matrix: 0.10 g of hair, 0.15 g of blood or 0.50 g of urine. Immediately, all the 130 samples were spiked with a known amount of ²⁰¹Hg-enriched MeHg, ¹⁹⁸Hg-enriched EtHg and 131 ¹⁹⁹Hg-enriched Hg(II). The use of three labelled analogues, each one enriched in a different Hg 132 isotope, allows the correction of species interconversions during the analytical procedure. More 133 details on instrumentation, sample preparation procedure and calculation of concentrations are 134 given in a previous work (Queipo-Abad et al., 2017) and in the Supplementary material. All 135 calculations and statistical analyses were carried out using Microsoft Excel spreadsheet software. 136

137

138

139 3. RESULTS AND DISCUSSION

140 **3.1 Quality control of the measurements**

In each measurement session we analyzed certified reference materials for quality control purposes 141 142 and procedural blanks to assess possible contamination sources. Level 3 of the Standard Reference Material 955c (Caprine Blood) obtained from the National Institute of Standards and Technology 143 (NIST, Gaithersburg, MD, USA) was analyzed for quality control in blood samples. The certified 144 reference material IAEA-086 (Human hair), from the International Atomic Energy Agency (IAEA, 145 Vienna, Austria), was analyzed for quality control of human hair samples. Due to the lack of 146 147 certified reference materials for urine, (Queipo-Abad et al., 2017) the quality control of urine samples was carried out with the analysis of fortified samples. Table S.1 of the Supplementary 148 material shows that the average results from all analytical sessions obtained for the Level 3 of NIST 149 150 955c and for IAEA 086 were in agreement with the certified values.

151 We have carried out an additional validation with the comparison of total Hg levels in blood with those provided by the Laboratory of Medicine of the Central University Hospital of Asturias 152 (HUCA). Five blood samples from exposed individuals were analyzed in both laboratories. More 153 154 details on the accredited procedure applied by the HUCA are given in the Supplementary material. Table S.1 shows that the sum of the concentrations obtained in the samples by our speciation 155 methodology (THg = Hg(II) + MeHg + EtHg) were in general agreement with the THg values 156 provided by the HUCA particularly for high Hg levels. For lower total Hg levels, the results 157 obtained by HUCA were slightly lower than our results probably due to poorer limits of detection in 158 159 the HUCA procedure.

160

161 **3.2 Hg species concentration in blood, hair and urine samples.**

Hg species concentrations in blood, hair and urine of the 17 intoxicated workers were compared with those obtained in the control group. The control group consisted of 10 close relatives of 10 exposed individuals. The level of EtHg in all samples from both groups were below the limit of

quantification of the method (0.26 ng Hg g⁻¹) (Queipo-Abad et al., 2017). This result is consistent 165 with the assumption that the only known source of EtHg is vaccines containing thimerosal as 166 antibacterial preservative (Clarkson, 2002). Table 1 shows the individual MeHg and Hg(II) levels 167 measured in the three matrices for the exposed individuals and the control group. The additional 168 information of the individuals is summarized in Table S.2. The descriptive statistics for the 169 concentration results classified using the information given in Table S.2 are shown in Table 2. The 170 same descriptive statistics are used in Table S.3 to show the percentage of the different species in 171 the samples. 172

173

174 *3.2.1 Hg species concentration in blood*

As can be observed in Table 2 we obtained similar geometric means of Hg(II) concentration in the 175 blood samples of both groups (1.2 and 1.5 ng g⁻¹). However, the MeHg geometric mean of the 176 exposed individuals (8.1 ng Hg g^{-1}) was significantly higher than that obtained in the control group 177 (5.8 ng Hg g⁻¹). Indeed, the percentage of MeHg in blood of the exposed individuals ranges from 46 178 to 98 % (Table S.3). The only blood sample in which MeHg is not the major Hg species 179 180 corresponds to the oldest person of the study (individual 24). Additionally, we obtained surprisingly high concentrations of MeHg in blood in five of the exposed individuals who reported low fish 181 consumption (individuals 4, 5, 7 and 8) or even, no consumption at all (individual 14). Table 2 182 shows that median blood MeHg concentrations increase with fish consumption. However, the 183 geometric mean of MeHg concentration in blood of all individuals (both control and exposed) 184 consuming fish 3 or 4 times per week (6.7 ng Hg g⁻¹) is very similar to that obtained in non-fish 185 consumers (6.3 ng Hg g⁻¹). For example, the MeHg concentration in blood of a non-occupationally 186 exposed individual who eats fish everyday was 9.3 ng Hg g⁻¹, whereas, as observed in Table 1 and 187 Table S.3, other individuals consuming fish 2 times per week presented similar levels (9.1 ng Hg g⁻ 188 ¹). The highest MeHg concentration in blood (21.6 ng Hg g⁻¹) corresponded to an occupationally 189

exposed individual who reported a lack of fish consumption since the accident. Taking into account the reported half-life of MeHg in blood (Díez, 2008; Jo et al., 2015), such a high MeHg concentration may not be due to fish consumption. Previous works showed that certain foodstuffs different from fish also contain significant Hg levels (European Food Safety Authority, 2012), such as poultry (Cabañero et al., 2005; Yin et al., 2017). However, Tables 2 and S.4 do not show any clear correlation of MeHg concentration and MeHg percentage with poultry, beef or pork consumption.

197

198 *3.2.2 Hg species concentration in urine*

199 In the case of urine, there are several works (Clarkson, 2002; Nuttall, 2004) indicating that most of Hg in urine is present as Hg(II). Our results are in agreement with those previous studies as more 200 than 90% of the Hg found in urine is in the form of Hg(II) (Table S.4). This value is also in 201 agreement with previous data of Hg species concentrations in urine (Nuttall, 2004). The median 202 concentration of Hg(II) in urine was 1.3 ng Hg g⁻¹ and the highest concentration was 5.8 ng Hg g⁻¹ 203 for a non-exposed individual (Table 2). In many cases, the levels of MeHg in urine were practically 204 negligible and below the limit of quantification of the method. The median concentrations of Hg(II) 205 in urine increase with the weekly frequency of fish consumption. However, there was no clear 206 correlation between the levels of Hg(II) in urine with any of the other information showed in Table 207 208 S.3.

209

210 *3.2.3 Hg species concentration in hair*

Similar MeHg levels in hair were found for both groups as the average concentrations for exposed and control individuals were 1.5 and 1.6 μ g Hg g⁻¹, respectively. The levels of Hg(II) were slightly different between both groups (average concentrations of 0.3 and 0.1 μ g g⁻¹ for exposed and control

individuals, respectively). The obtained Hg(II) percentages were below 20% in most samples 214 215 (except for individual 6, which was 53.3%) and consequently the MeHg percentages were above 80%. These results are in agreement with previous publications (Berglund et al., 2005; George et 216 al., 2010). The general assumption that THg levels in hair are equivalent to MeHg concentrations is 217 not valid for our set of samples. As expected, the median concentrations for MeHg of all individuals 218 increased with fish consumption (Table 2) from 0.5 μ g g⁻¹ for non-fish consumers to 2.0 μ g g⁻¹ for 219 individuals consuming fish 3 or more times per week. The concentration of hair MeHg obtained for 220 the person who eats fish every day was also $2.0 \ \mu g \ g^{-1}$. These levels can be influenced by the type 221 of fish consumed but this factor could not be evaluated in our study. The sum of the MeHg and 222 Hg(II) values in hair obtained in our work, are in agreement with the 95th percentile (4.4 μ g g⁻¹) of 223 THg obtained for Spanish women reported in the European human biomonitoring study 224 **DEMOCOPHES** (European Commission, 2012). 225

226

3.3 Additional factors influencing Hg species concentrations in the samples

Table 2 shows that MeHg levels in blood and hair vary depending on the consumption of tobacco. 228 Smokers have a lower MeHg concentration in blood (median of 4.3 ng Hg g⁻¹) than ex-smokers 229 (median of 10.4 ng Hg g⁻¹) and non-smokers (median 9.6 ng Hg g⁻¹). The same observation can be 230 applied to hair samples. However, ex-smokers have a higher blood Hg(II) concentration (median of 231 2.9 ng Hg g⁻¹) than smokers and non-smokers (median of 0.9 and 0.7 ng Hg g⁻¹ respectively). 232 Different studies reporting lower concentrations of MeHg in smokers than in non-smokers (Jain, 233 234 2017; Lye et al., 2013). Jain attributed this observation to a possible interaction of some tobacco constituents with blood, which could favour the excretion or demethylation of MeHg. In addition, it 235 has been reported that the consumption of alcohol may decrease Hg(II) levels in blood due to an 236 inhibition of the activity of catalase by ethanol (Çoban et al., 2008). In our study, the participants 237

were not asked about alcohol consumption, but it could be a source of variability in Hg speciesconcentrations.

Since we have observed a different proportion of Hg species in blood and urine in the oldest person of the study, an influence of age on the Hg species concentration cannot be ruled out. Other studies reported an increase of the MeHg concentration in blood with age (Mortensen et al., 2014; Sirot et al., 2008). However, we checked the correlation between the concentrations of the different mercury species with age but we did not find any significant correlation.

Individuals 5, 7, 26 and 27 reported to have dental amalgams with Hg. These amalgams have a 245 composition of 50% metallic elemental Hg and other metals (Clarkson, 2002). Therefore, Hg⁰ may 246 be released from the amalgam and transformed into Hg (II) in blood (Halbach and Clarkson, 1978). 247 We did not find a correlation between Hg(II) in blood and urine with the number of amalgams, but 248 249 median Hg(II) concentration in urine of people reporting dental amalgams is higher than the median of people without dental fillings (1.7 versus 0.9 ng g⁻¹). Individual 27 from the control group 250 informed that her dental fillings were manipulated a few days before sample collection and her 251 Hg(II) concentration in urine was the highest from both groups (5.8 ng g⁻¹). Several works have 252 studied the decrease of Hg(II) concentration over time after removing a dental amalgam (Björkman 253 et al., 1997; Halbach et al., 2008). 254

255

3.4 Correlation between MeHg in blood with MeHg in hair

The MeHg hair-to-blood ratio was established as 250 by the Joint FAO / WHO Expert Committee on Food Additives (JECFA) in 2004, based on the average value obtained from different studies (JECFA-Joint FAO/WHO Expert Committee on food Additives, 2004). This value was calculated to facilitate the estimation of MeHg concentration in blood from the measured MeHg concentration in hair, which is a less invasive biomonitor. In our study, we have evaluated the hair-to-blood ratio for MeHg in both groups of samples. Figure 1 shows the correlation obtained for both groups. The

correlation coefficient obtained for the control group was $r^2 = 0.8130$ and that for the exposed 263 individuals was $r^2 = 0.8163$. There is a clear difference in the slope of the linear regression between 264 the two groups. In the case of the control group, a slope of 245 ± 42 equivalent to the reference 265 value established by JECFA was obtained. However, the slope obtained for the group of exposed 266 individuals was significantly lower (135 \pm 17). The MeHg hair-to-blood ratios obtained for each 267 individual is given in Figure S.1. As can be observed there are eight intoxicated workers with a 268 MeHg hair-to-blood ratio under 200, indicating that the level of MeHg in blood is significantly 269 higher than their expected level in hair in comparison with the control group and the JECFA 270 reference value. 271

There are some publications reporting Hg hair-to-blood ratios (Berglund et al., 2005; Budtz-272 273 Jørgensen et al., 2004; Liberda et al., 2014; Yaginuma-Sakurai et al., 2012) between 200-370, but it 274 should be mentioned that not all the studies were based on MeHg concentrations. Liberda and coworkers (2014) observed hair-to-blood ratios closer to 250 for fish consumers. This observation was 275 276 also reported by Budtz-Jørgensen and co-workers (2004) for Faroese Children above 14 years old with a high fish consumption and a hair-to-blood ratio closed to 250 (median of 264). These results 277 278 are in agreement with our data for the control group as their main Hg exposure is supposed to be fish consumption. According to this, when fish consumption is the main MeHg exposure, the 279 ingested MeHg is excreted in hair resulting in a concentration ca. 250 times higher in hair than in 280 281 blood.

It is interesting to note that individual 27 from the control group presented the highest MeHg hairto-blood ratio in this study. As commented above, her dental amalgams were manipulated days before the collection of samples. This is consistent with other studies showing increased MeHg concentrations in hair (Sakamoto et al., 2007) and blood (Aitio et al., 1983) due to a recent exposition to Hg^{0}_{v} . Thus, a lower hair-to-blood ratio could indicate that part of MeHg present in blood is not coming directly from fish consumption but from other sources. The biomethylation of Hg(II) deposits in different tissues or the remobilization of MeHg stored in tissues may be an explanation for these results for the intoxicated workers. Human in vivo methylation has never been proved to be responsible of a significant increase of MeHg levels in human biomonitors (Rodríguez Martín-Doimeadios et al., 2017), but it is known that some bacterial activity in mouth, gut or intestinal tract could be able to methylate Hg in a low extent (Leistevuo et al., 2001; Rowland et al., 1977; Rowland, 1995). The high MeHg levels in people exposed to high doses of Hg⁰_v remains unclear.

295

3.5 Correlation of MeHg levels in hair between exposed and non-exposed relatives

297 Figure 2 shows the correlation between MeHg concentration in hair of the exposed individuals with MeHg concentration in hair of their relatives. A correlation coefficient of $r^2 = 0.9355$ was obtained, 298 excluding an outlier corresponding to an exposed individual that lives in a different location than 299 300 his relative (individuals 7 and 22). When comparing MeHg concentrations in blood (Figure S.2) no correlation was found between exposed and control individuals. The correlation shown in Figure 2 301 demonstrates the importance of lifestyle-related factors in the accumulation of MeHg in hair. The 302 303 diet is the predominant source of MeHg incorporation into the body and therefore the main factor regulating MeHg accumulation in hair. The slope of the correlation (0.77 \pm 0.08) indicates that non-304 exposed relatives have a higher concentration of MeHg in hair than exposed individuals probably 305 due to their higher fish consumption levels (Table S.3). It is worth noting that MeHg concentrations 306 in hair of three individuals having the lowest hair-to-blood ratios (individuals 1, 5, 8), correlate very 307 308 well with their relatives.

309

310 **3.6** Correlation between MeHg in hair and blood with Hg (II) in urine

Demethylation of MeHg in the organism has been widely reported (Dock et al., 1994; Suda and Hirayama, 1992) although the nature of this process remains unknown. Measuring the isotopic signature of Hg in blood and hair, Sherman et al. (2013) demonstrated that 70% of Hg(II) in urine comes from MeHg demethylation in people with less than ten dental amalgams consuming fish regularly.

316 Measuring Hg species concentrations, we were able to study the correlation of MeHg concentration in hair with Hg (II) concentration in urine. Figure 3 show such correlation between the exposed 317 318 individuals and the control group. No significant difference was obtained between the slope obtained for the exposed individuals (883 \pm 150) and that obtained for the control group (731 \pm 319 183). The correlation coefficients (r^2) were 0.7119 and 0.6950 for exposed and the control group, 320 321 respectively. It must be taken into account that two outliers were found in these correlation, corresponding to the individuals with the highest Hg(II) levels in urine (individuals 9 and 27). As 322 commented before, individual 27 suffered a possible recent exposure to Hg⁰_v derived from her 323 324 dental amalgams, which, according to Sherman et al. (2013), could significantly modify the correlation of Hg (II) in urine with MeHg demethylation. Also, Halbach et al. (2008) observed an 325 increment in blood MeHg due to the removal of Hg dental fillings. However, in the case of 326 individual 9, we could not find any reason explaining the different behaviour in comparison with 327 the other individuals. 328

The correlation of MeHg in blood with Hg (II) in urine is not as clear as that for MeHg in hair with Hg (II) in urine. Figure S.3 of the Supplementary material shows that we could find a correlation (excluding individual 27) for the control group obtaining a correlation coefficient of $r^2=0.6646$ and a slope of 3.03 ± 0.81 . Some of the exposed individuals fit well in the correlation of non-exposed individuals, but those presenting the lowest MeHg hair-to-blood ratios (individuals 5, 7, 8, 11, 12, 14, 16) are out of this correlation. The ratios of blood MeHg-to-urine Hg (II) for these individuals are much higher than those obtained for the control group. This means that these individuals present a higher concentration of MeHg in blood than that expected from their Hg(II) concentration in urine. These results are in agreement with the possible remobilization of Hg stored in tissues to increase the concentration of MeHg in blood of the exposed group.

339

340 3.7 Summary of the correlation between Hg species concentrations

If we summarized all the correlations between species, we can conclude first that the excretion of 341 Hg(II) in urine is correlated with MeHg concentration in hair (Figure 3), both for the control group 342 343 and the exposed individuals. This evidence was first described by Sherman and co-workers (2013) by means of stable isotope analysis of Hg in hair and urine. Also, when comparing the 344 concentrations of MeHg in hair we obtained a correlation between the exposed individuals and their 345 relatives with a slope of 0.77 and a regression coefficient of 0.9355 (Figure 2). However, we found 346 a significant difference between the exposed individuals and the control group, when comparing 347 348 MeHg concentration in blood (Figure S.2). In contrast to the control group, most of the exposed 349 individuals showed MeHg levels in blood higher than those expected according to their Hg (II) concentration in urine (Figure S.3) and their MeHg concentrations in hair (Figure 1). 350

All these observations suggest that for exposed individuals there is a different correlation of MeHg in blood with other factors. However, MeHg levels in hair for the exposed individuals follow the same correlations than the control group. The strong correlation between Hg in contaminated fish and Hg in human hair applying stable isotope analysis has been previously reported (Li et al., 2014). Our results agree with the assumption that MeHg in hair seems to come mainly from the diet, both for the exposed individuals and for the control group.

The lower MeHg hair-to-blood ratios for the exposed individuals indicate that part of the MeHg in blood should come from another source. There are eight intoxicated workers with MeHg hair-to blood lower than 200 and MeHg blood-to-Hg (II) urine ratios higher than the average ratio for the

control group. We postulate here that this excess of MeHg in blood may come from Hg stores in 360 361 different tissues, such as kidney or liver, and that those internal stores are not reflected in an increased MeHg in hair. Indeed, the high correlation of MeHg concentrations in hair between the 362 exposed workers and their relatives suggests that the MeHg ingested by the diet follows the same 363 pathway for both groups. We investigated the possibility of a high uptake of MeHg through diet in 364 the days before sample collection that could be detected in blood but not detected in hair but it was 365 denied by the exposed individuals. Most of the exposed individuals have moderate fish 366 consumption as they were advised after the intoxication to reduce and even avoid fish consumption 367 altogether by medical prescription. Four of them do not consume any fish and the rest do it 368 369 moderately. For example, among the non-fish consumers, individual 14 showed the highest MeHg 370 levels in hair and blood, and a MeHg hair-to-blood ratio of 158.

These results are only consistent with the hypothesis that there are two different MeHg sources in 371 blood. One would correspond to the MeHg ingested through the diet that follows a classical 372 deposition process in hair and a further demethylation process to be excreted through urine as 373 Hg(II). The other source must be the result of a metabolic pathway occurring when a high 374 concentration of Hg is stored in the organism. This could explain the high levels of MeHg in people 375 with a moderate consumption of fish or even non-fish consumers. There are several studies of 376 people highly exposed to Hg_v^0 showing increased organic Hg levels in blood. One hypothesis for 377 this evidence described two binding sites for Hg in the kidney with different affinity (Clarkson and 378 Magos, 1966), which in the case of an excess of Hg_v^0 would cause a redistribution of MeHg. 379 Ishihara et al. (1977) used this hypothesis to explain the increase of the organic Hg levels in blood 380 but not in the hair of women exposed to Hg^{0}_{v} . Suzuki and co-workers (1976) described a weaker 381 interaction of MeHg with tissues than that of Hg (II). In addition, the presence of Hg (II) induces 382 renal metallothionein biosynthesis and gluthathione reduction as mechanisms to reduce Hg toxicity 383 (Cherian and Clarkson, 1976; Halbach et al., 2008). Halbach and co-workers (2008) explained this 384

procedure as an intra-extra cellular exchange of Hg species mediated by GSH (Gluthatione) with a preferential affinity by Hg (II) than MeHg. After Hg(II) detoxification, MeHg could occupy the positions of Hg (II), increasing its concentration in erythrocytes. The different intra and extra cellular mechanisms together with the equilibrium established by the different compartments may be responsible of a redistribution of Hg species in blood and these procedures could be influenced by a high exposition to $Hg^0_{v.}$

391

392 3.8 Comparison with other studies on Hg in different populations.

Average Hg species concentrations obtained in this study do not differ significantly between the 393 exposed individuals and the control group. There are established limits such as NOAEL (No-394 Observed-Adverse-Effect-Level), LOAEL (Lowest-Observed-Adverse-Effect-Level), HBM levels 395 396 (Human Biomonitoring), BAT (Biologischer Arbeitsstoff-Toleranzwert) and, PWTI (Provisional Tolerable Weekly Intake) that regulate Hg intake by fish consumption and occupational exposure to 397 Hg⁰_v. However, large differences between Hg levels of different populations have been reported. 398 399 We have compared the Hg species concentrations obtained in our study with THg levels in blood previously reported in the literature. 400

401 Although speciation methodologies for Hg are scarce in human biomonitoring studies, some of the studies reported MeHg concentrations in blood. Figure 4 shows the comparison of THg and MeHg 402 levels in blood obtained from different works. As can be observed, most of the studies show an 403 average concentration of THg or MeHg in blood below 5 ng (of Hg) g⁻¹. This concentration 404 405 corresponds to the HBM-I level, which indicates the Hg body burden that does not present any risk to health established by the German Human Biomonitoring (HBM) commission (Apel et al., 2017; 406 World Health Organization & UNEP, 2008). The studies reporting low THg levels in blood belong 407 to different European countries (Berglund et al., 2005; Björnberg et al., 2005; Gibb et al., 2011; 408 409 Gundacker et al., 2010; Lindberg et al., 2004; Puklová et al., 2010; Reis et al., 2007; RignellHydbom et al., 2007; Vahter et al., 2000) and large population studies of Canada and U.S. (CDCUS, 2017; Lye et al., 2013; Mortensen et al., 2014). These studies report that the higher values of
THg or MeHg in blood correspond to fish or seafood consumers such as the French coastal
population, fishermen and relatives in Finland (Airaksinen et al., 2010; Sirot et al., 2008) or Faroese
children in which the diet is highly influenced by pilot whale meat (Budtz-Jørgensen et al., 2004).

Only three of the studies present concentrations in blood above 25 ng (of Hg) g⁻¹, which is the THg 415 threshold value defined by BAT ("Biologischer Arbeitsstoff-Toleranz-Wert") as the maximum 416 417 allowable concentration of a substance or its metabolites in body. The studies reporting higher concentrations explain Hg exposure by fish consumption (Carta et al., 2003; Choi et al., 2009) or by 418 living or working in areas of artisanal gold mining activities (Dolbec et al., 2000). Another study 419 420 related to people who follow a high fish consumption behaviour in Sweden (Björnberg et al., 2005) 421 shows that the THg levels are much lower than those found in similar studies conducted in Spain. The same observation was also reflected in the DEMOCOPHES (European Commission, 2012) 422 423 study in hair between Swedish and Spanish women.

424 The average concentration of the individuals in our study is comparable to the concentrations reported for people of the same region, with and without occupational exposure. In addition, there 425 are three studies with concentrations of THg in blood in the same range (Baeuml et al., 2011; Jo et 426 al., 2015; Yaginuma-Sakurai et al., 2012). This data is consistent with our data between the 427 intoxicated individuals and the control group. Surprisingly, people in this region have blood THg 428 429 values comparable to individuals from contaminated regions due to artisanal gold mining (Baeuml et al., 2011). THg levels in blood of shellfish consumers of the French coast (Sirot et al., 2008) are 430 also closed to the average value of THg in blood in our study. In the light of these studies, we want 431 432 to highlight the importance of speciation analysis, which could, for example, differentiate between populations with a high consumption of contaminated fish, or with a high exposure to Hg⁰_v. Studies 433

reporting concentrations of the different Hg species would provide more information aboutcontamination sources than those based only on THg concentrations.

436 4. CONCLUSIONS

This is the first study using a triple spike IDMS methodology reporting the levels of different mercury compounds in the three most commonly used human biomonitors (blood, urine and hair). Only one previous study (Akagi *et al.* 1995) also analyzed blood, urine and hair of the same individuals but determined only total mercury and methylmercury. Also, they did not employ any method to correct for species transformation. So, we present the first case study employing the most advanced analytical procedure for mercury to date.

The Hg species concentrations found in this study are similar to those obtained in previous studies 443 carried out in the same region and in different regions with people highly exposed to MeHg intake 444 by fish consumption. The concentrations obtained in the exposed individuals were not significantly 445 446 different from those obtained in the control group, except for MeHg in blood. High MeHg levels 447 obtained in some intoxicated individuals were surprising as they avoid fish consumption since the accident. A different correlation between MeHg in hair and MeHg in blood was obtained for these 448 449 individuals compared to the control group who showed a hair-to-blood ratio (245) consistent with the reported value for people exposed to Hg via fish consumption (250). 450

We found a correlation of MeHg in hair between the exposed individuals and the control group 451 reflecting that MeHg excretion in hair follows the same pathways in both groups and depends on 452 lifestyle factors such as fish consumption. We obtained also a correlation of MeHg in hair with Hg 453 (II) in urine. The individuals showing lower MeHg hair-to-blood ratios showed higher MeHg blood-454 455 to-urine Hg(II) ratios than the control group. These observations suggest that some of the workers exposed to Hgv⁰ show an increased MeHg level in blood after three years of the accident and that 456 they do not follow the same MeHg excretion mechanisms (deposition in hair and demethylation and 457 excretion through urine). We find very difficult to explain why a person who does not eat fish 458

459 present a MeHg concentration of 21.6 ng (of Hg) g^{-1} in his blood. At this point we can only 460 hypothesize on MeHg remobilization or biomethylation processes to explain those abnormal MeHg 461 levels in blood. Hg species have not been studied in individuals exposed to toxic levels of Hg_v⁰ thus 462 far so the available information on the Hg species distribution in humans is very limited.

463

464 **5. ACKNOWLEDGEMENTS**

465 Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through

466 Project 16-TQ2015-70366P is acknowledged. SQA also acknowledges MINECO for the provision

467 of a predoctoral grant BES-2013-062959. This work has been performed within the scope of an

468 EMRP Organisation Research Excellence Grant, awarded in accordance with the EURAMET

469 process to complement the JRP "Traceability for mercury measurements" (ENV51 MeTra). The

470 EMRP is jointly funded by the EMRP participating countries within EURAMET and the European

471 Union.

472

473 **5. REFERENCES**

Airaksinen, R., Turunen, A.W., Rantakokko, P., Männistö, S., Vartiainen, T., Verkasalo, P.K.,
2010. Blood concentration of methylmercury in relation to food consumption. Public Health Nutr.
14, 480–489. https://doi.org/10.1017/S1368980010001485

Aitio, A., Valkonen, S., Kivistö, H., Yrjänheikki, E., 1983. Effect of occupational mercury exposure
on plasma lysosomal hydrolases. Int. Arch. Occup. Environ. Health 53, 139–147.

Akagi, H., Malm, O., Branches, F.J.P., Kinjo, Y., Kashima, Y., Guimaraes, J.R.D., Oliveira, R.B.,
Haraguchi, K., Pfeiffer, W.C., Takizawa, Y., Kato, H., 1995. Human exposure to mercury due to
goldmining in the Tabajos River basin, Amazon, Brazil: Speciation of mercury in human hair,
blood and urine. Water Air Soil Pollut 80: 85-94.

Apel, P., Angerer, J., Wilhelm, M., Kolossa-Gehring, M., 2017. New HBM values for emerging
substances, inventory of reference and HBM values in force, and working principles of the German
Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 220, 152–166.
https://doi.org/10.1016/j.ijheh.2016.09.007

Baeuml, J., Bose O'Reilly, S., Matteucci Gothe, R., Lettmeier, B., Roider, G., Drasch, G., Siebert,
U., 2011. Human Biomonitoring Data from Mercury Exposed Miners in Six Artisanal Small-Scale
Gold Mining Areas in Asia and Africa. Minerals 1, 122–143. https://doi.org/10.3390/min1010122

- Barregard, L., Horvat, M., Mazzolai, B., Sällsten, G., Gibicar, D., Fajon, V., diBona, S., Munthe, J.,
 Wängberg, I., Haeger Eugensson, M., 2006. Urinary mercury in people living near point sources of
 mercury emissions. Sci. Total Environ. 368, 326–334.
- 493 https://doi.org/10.1016/j.scitotenv.2005.08.048
- Berglund, M., Lind, B., Björnberg, K.A., Palm, B., Einarsson, Ö., Vahter, M., 2005. Interindividual variations of human mercury exposure biomarkers: a cross-sectional assessment.
 Environ. Heal. A Glob. Access Sci. Source 4, 1–11. https://doi.org/10.1186/Received
- Björkman, L., Sandborgh-Englund, G., Ekstrand, J., 1997. Mercury in Saliva and Feces after
 Removal of Amalgam Fillings 1. Toxicol. Appl. Pharmacol. 144, 156–162.
 https://doi.org/https://doi.org/10.1006/taap.1997.8128
- Björnberg, K.A., Vahter, M., Grawé, K.P., Berglund, M., 2005. Methyl mercury exposure in
 Swedish women with high fish consumption. Sci. Total Environ. 341, 45–52.
 https://doi.org/10.1016/j.scitotenv.2004.09.033
- Bose-O'Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., Maydl,
 A., Maydl, S., Siebert, U., 2010. Health assessment of artisanal gold miners in Indonesia. Sci. Total
- 505 Environ. 408, 713–725. https://doi.org/10.1016/j.scitotenv.2009.10.070
- Budtz-Jørgensen, E., Grandjean, P., Jørgensen, P.J., Weihe, P., Keiding, N., 2004. Association
 between mercury concentrations in blood and hair in methylmercury-exposed subjects at different
 ages. Environ. Res. 95, 385–393. https://doi.org/10.1016/j.envres.2003.11.001
- Cabañero, A.I., Madrid, Y., Cámara, C., 2005. Effect of Animal Feed Enriched with Se and Clays
 on Hg Bioaccumulation in Chickens : In Vivo Experimental Study. J. Agric. Food Chem. 53, 2125–
 2132. https://doi.org/10.1021/jf048267v
- Carta, P., Flore, C., Alinovi, R., Ibba, A., Tocco, M.G., Aru, G., Carta, R., Girei, E., Mutti, A.,
 Lucchini, R., Randaccio, F.S., 2003. Sub-Clinical Neurobehavioral Abnormalities Associated with
 Low Level of Mercury Exposure through Fish Consumption. Neurotoxicology 24, 617–623.
 https://doi.org/10.1016/S0161-813X(03)00080-9
- 516 CDC-US, 2017. Fourth National Report on Human Exposure to Environmental Chemicals. U.S.
 517 Department of Health and Human Services. Centers for Disease Control and Prevention.
 518 https://doi.org/www.cdc.gov/exposurereport/index.html
- Cherian, M.G., Clarkson, T.W., 1976. Biochemical changes in rat kidney on exposure to elemental
 mercury vapor: Effect on biosynthesis of metallothionein. Chem. Biol. Interact. 12, 109–120.
 https://doi.org/10.1016/0009-2797(76)90093-4
- 522 Choi, A.L., Weihe, P., Budtz-Jørgensen, E., Jørgensen, P.J., Salonen, J.T., 2009. Methylmercury
 523 Exposure and Adverse Cardiovascular Effects in Faroese Whaling Men 117, 367–372.
 524 https://doi.org/10.1289/ehp.11608
- 525 Clarkson, T.W., 2002. The Three Modern Faces of Mercury. Environ. Health Perspect. 110, 11–23.
 526 https://doi.org/10.1289/ehp.02110s111
- 527 Clarkson, T.W., Magos, L., 1966. Studies on the binding of mercury in tissue homogenates.
 528 Biochem. J. 99, 62–70. https://doi.org/10.1042/bj0990062
- 529 Çoban, T.A., Beydemir, S., Gülcin, I., Ekinci, D., 2008. The effect of ethanol on erythrocyte 530 carbonic anhydrase isoenzymes activity: An in vitro and in vivo study. J. Enzyme Inhib. Med.

- 531 Chem. 23, 266–270. https://doi.org/10.1080/14756360701474780
- Cross, J.D., Dale, I.M., Goolvard, L., Lenihan, J.M.A., Smith, H., 1978. Methyl mercury in blood of
 dentists. Lancet 312, 312–313. https://doi.org/10.1016/S0140-6736(78)91711-7
- Díez, S., 2008. Human Health Effects of Methylmercury Exposure, in: Reviews of Environmental
 Contamination and Toxicology. pp. 111–132. https://doi.org/10.1007/978-0-387-09647-6_3
- Dock, L., Rissanen, R.-L., Vahter, M., 1994. Demethylation and placental transfer of methyl
 mercury in the pregnant hamster. Toxicology 94, 131–142. https://doi.org/10.1016/0300483X(94)90033-7
- Dolbec, J., Mergler, D., Soussa-Passos, C.J., Soussa de Morais, S., Lebel J., 2000. Methylmercury
 exposure affects motor performance of a riverine population of the Tapajós river, Brazilian
 Amazon. Int. Arch. Occup. Environ. Health 73, 195–203. https://doi.org/10.1007/s004200050027
- Drasch, G., Böse-O'Reilly, S., Beinhoff, C., Roider, G., Maydl, S., 2001. The Mt. Diwata study on
 the Philippines 1999 assessing mercury intoxication of the population by small scale gold mining
 267, 151–168. https://doi.org/10.1016/S0048-9697(00)00806-8
- European Commission, 2012. DEMOCOPHES Human biomonitoring on a European scale.
 https://doi.org/http://www.eu-hbm.info/democophes/
- European Food Safety Authority, 2012. Scientific Opinion on the risk for public health related to
 the presence of mercury and methylmercury in food, EFSA Journal.
 https://doi.org/10.2903/j.efsa.2012.2985.
- Fitzgerald, W.F., Lamborg, C.H., Hammerschmidt, C.R., 2007. Marine Biogeochemical Cycling of
 Mercury. Chem. Rev. 107, 641–662. https://doi.org/10.1021/cr050353m
- George, G.N., Singh, S.P., Myers, G.J., Watson, G.J., Pickering, I.J., 2010. The Chemical Forms of
 Mercury in Human Hair: A Study using X-ray Absorption Spectroscopy. J Biol Inorg Chem. 15, 1–
 14. https://doi.org/10.1007/s00775-010-0638-x.The
- Gibb, H., Haver, C., Kozlov, K., Centeno, J.A., Jurgenson, V., Kolker, A., Conko, K.M., Landa,
 E.R., Xu, H., 2011. Biomarkers of Mercury Exposure in Two Eastern Ukraine Cities. J. Occup.
 Environ. Hyg. 8, 187–193. https://doi.org/10.1080/15459624.2011.556984
- Gundacker, C., Fröhlich, S., Graf-Rohrmeister, K., Eibenberger, B., Jessenig, V., Gicic, D., Prinz, 558 559 S., Wittmann, K.J., Zeisler, H., Vallant, B., Pollak, A., Husslein, P., 2010. Perinatal lead and mercury Total 5744-5749. 560 exposure in Austria. Sci. Environ. 408. https://doi.org/10.1016/j.scitotenv.2010.07.079 561
- Halbach, S., Clarkson, T.W., 1978. Enzymatic oxidation of mercury vapor by erythrocytes.
 Biochim. Biophys. Acta 523, 522–531. https://doi.org/10.1016/0005-2744(78)90055-4
- Halbach, S., Vogt, S., Köhler, W., Felgenhauer, N., Welzl, G., Kremers, L., Zilker, T., Melchart, D., 564 2008. Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: 565 Interaction Hg species erythrocytes. Environ. Res. 107, 69-78. 566 of in 567 https://doi.org/10.1016/j.envres.2007.07.005
- Ishihara, N., Urushiyama, K., Suzuki, T., 1977. Inorganic and Organic Mercury in Blood, Urine
 and Hair in Low Level Mercury Vapour Exposure. Int. Arch. Occup. Environ. Health 40, 249–253.
 https://doi.org/10.1007/BF00381412

Jain, R.B., 2017. Trends in and factors affecting the observed levels of urinary inorganic and total
blood mercury among US children, adolescents, adults, and senior citizens over 2005-2012.
Environ. Toxicol. Pharmacol. 56, 268–281. https://doi.org/10.1016/j.etap.2017.09.003

JECFA-Joint FAO/WHO Expert Committee on food Additives, 2004. Evaluation of Certain Food
 Additives and Contaminants. 61th report, WHO Technical Report Series 922; WHO: Geneva.
 https://doi.org/www.who.int/foodsafety/publications/jecfa-reports/en/

Jo, S., Woo, H.D., Kwon, H.-J., Oh, S.-Y., Park, J.-D., Hong, Y.-S., Pyo, H., Park, K.S., Ha, M.,
Kim, H., Sohn, S.-J., Kim, Y.-M., Lim, J.-A., Lee, S.-A., Eom, S.-Y., Kim, B.-G., Lee, K.-M., Lee,
J.-H., Hwang, M.S., Kim, J., 2015. Estimation of the Biological Half-Life of Methylmercury Using
a Population Toxicokinetic Model. Int. J. Environ. Res. Public Health 12, 9054–9067.
https://doi.org/10.3390/ijerph120809054

Korpiel, J.A., Vidic, R.D., 1997. Effect of Sulfur Impregnation Method on Activated Carbon
Uptake of Gas-Phase Mercury. Environ. Sci. Technol. 31, 2319–2325.
https://doi.org/10.1021/es9609260

Laffont, L., Maurice, L., Amouroux, D., Navarro, P., Monperrus, M., Sonke, J.E., Behra, P., 2012.
Mercury speciation analysis in human hair by species-specific isotope-dilution using GC-ICP-MS.
Anal. Bioanal. Chem. 405, 3001–10. https://doi.org/10.1007/s00216-012-6116-2

Laffont, L., Sonke, J.E., Maurice, L., Monrroy, S.L., Chincheros, J., Amouroux, D., Behra, P., 588 2011. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and 589 590 occupational exposure to mercury. Environ. Sci. Technol. 45. 9910-9916. https://doi.org/10.1021/es202353m 591

Leistevuo, J., Leistevuo, T., Helenius, H., Pyy, L., Österblad, M., Huovinen, P., Tenovuo, J., 2001.
Dental Amalgam Fillings and the Amount of Organic Mercury in Human Saliva. Caries Res. 35, 163–166. https://doi.org/10.1159/000047450

Li, M., Sherman, L.S., Blum, J.D., Grandjean, P., Mikkelsen, B., Weihe, P., Sunderland, E.M.,
Shine, J.P., 2014. Assessing Sources of Human Methylmercury Exposure Using Stable Mercury
Isotopes. Environ. Sci. Technol. 48, 8800–8806. https://doi.org/10.1021/es500340r

- Liberda, E.N., Tsuji, L.J.S., Martin, I.D., Ayotte, P., Dewailly, E., Nieboer, E., 2014. The
 complexity of hair/blood mercury concentration ratios and its implications. Environ. Res. 134, 286–
 294. https://doi.org/10.1016/j.envres.2014.08.007
- Lindberg, A., Björnberg, K.A., Vahter, M., Berglund, M., 2004. Exposure to methylmercury in nonfish-eating people in Sweden. Environ. Res. 96, 28–33.
 https://doi.org/10.1016/j.envres.2003.09.005
- Lye, E., Legrand, M., Clarke, J., Probert, A., 2013. Blood Total Mercury Concentrations in the
 Canadian Population: Canadian Health Measures Survey Cycle 1, 2007-2009. Quant. Res. 104,
 246–251. https://doi.org/10.17269/cjph.104.3772
- Mason, R.P., Reinfelder, J.R., Morel, F.M.M., 1995. Bioaccumulation of mercury and
 methylmercury. Water, Air, Soil Pollut. 80, 915–921. https://doi.org/10.1007/BF01189744
- Mortensen, M.E., Caudill, S.P., Caldwell, K.L., Ward, C.D., Jones, R.L., 2014. Total and methyl
 mercury in whole blood measured for the first time in the U.S. population: NHANES 2011 2012.
 Environ. Res. 134, 257–264. https://doi.org/10.1016/j.envres.2014.07.019

- Nuttall, K.L., 2004. Review : Interpreting Mercury in Blood and Urine of Individual Patients. Ann.
 Clin. Lab. Sci. 34, 235–250. https://doi.org/0091-7370/04/0300-0235
- Puklová, V., Krsková, A., Cerná, M., Cejchanová, M., Rehurková, I., Ruprich, J., Kratzer, K.,
 Kubínová, R., Zimová, M., 2010. The mercury burden of the Czech population: An integrated
 approach. Int. J. Hyg. Environ. Health 213, 243–251. https://doi.org/10.1016/j.ijheh.2010.02.002
- Queipo-Abad, S., Rodríguez-González, P., Davis, W.C., García Alonso, J.I., 2017. Development of 617 a Common Procedure for the Determination of Methylmercury, Ethylmercury, and Inorganic 618 Mercury in Human Whole Blood, Hair, and Urine by Triple Spike Species-Specific Isotope 619 Dilution Mass Spectrometry. Anal. Chem. 89. 6731-6739. 620 https://doi.org/10.1021/acs.analchem.7b00966 621
- Queipo-Abad, S., Rodríguez-González, P., García Alonso, J.I., 2016. Evidence of the direct
 adsorption of mercury in human hair during occupational exposure to mercury vapour. J. Trace
 Elem. Med. Biol. 36, 16–21. https://doi.org/10.1016/j.jtemb.2016.03.012
- Reis, M.F., Sampaio, C., Brantes, A., Aniceto, P., Melim, M., Cardoso, L., Gabriel, C., Simao, F.,
 Pereira-Miguel, J., 2007. Human exposure to heavy metals in the vicinity of Portuguese solid waste
 incinerators Part 3: Biomonitoring of Pb in blood of children under the age of 6 years. Int. J. Hyg.
 Environ. Health 210, 455–459. https://doi.org/10.1016/j.ijheh.2007.01.021
- Rignell-Hydbom, A., Axmon, A., Lundh, T., Jönsson, B.A., Tiido, T., Spano, M., 2007. Dietary
 exposure to methyl mercury and PCB and the associations with semen parameters among Swedish
 fishermen. Environ. Heal. 6, 14. https://doi.org/10.1186/1476-069X-6-14
- Rodríguez Martín-Doimeadios, R.C., Mateo, R., Jiménez-Moreno, M., 2017. Is gastrointestinal
 microbiota relevant for endogenous mercury methylation in terrestrial animals? Environ. Res. 152,
 454–461. https://doi.org/10.1016/j.envres.2016.06.018
- Rowland, I., Davies, M., Grasso, P., 1977. Biosynthesis of Methylmercury Compounds by the
 Intestinal Flora of the Rat. Arch. Environ. Health 32, 24–28.
 https://doi.org/10.1080/00039896.1977.10667248
- Rowland, I.R., 1995. The interaction of the gut flora with metal compounds, in: Role of GutBacteria in Human Toxicology and Pharmacology. p. 300.
- Sakamoto, M., Feng, X., Li, P., Qiu, G., Jiang, H., Yoshida, M., Iwata, T., Liu, X.-J., Murata, K.,
 2007. High Exposure of Chinese Mercury Mine Workers to Elemental Mercury Vapor and
 Increased Methylmercury Levels in Their Hair. Environ. Health Prev. Med. 12, 66–70.
 https://doi.org/10.1007/BF02839815
- Selin, N.E., 2009. Global Biogeochemical Cycling of Mercury: A Review. Annu. Rev. Environ.
 Resour. 34, 43–63. https://doi.org/10.1146/annurev.environ.051308.084314
- Sherman, L.S., Blum, J.D., Franzblau, A., Basu, N., 2013. New Insight into Biomarkers of Human
 Mercury Exposure Using Naturally Occurring Mercury Stable Isotopes. Environ. Sci. Technol. 47,
 3403–3409. https://doi.org/10.1021/es305250z
- Sirot, V., Guérin, T., Mauras, Y., Garraud, H., Volatier, J.-L., Leblanc, J.-C., 2008. Methylmercury
 exposure assessment using dietary and biomarker data among frequent seafood consumers in France
 CALIPSO study. Environ. Res. 107, 30–38. https://doi.org/10.1016/j.envres.2007.12.005
- 652 Suda, I., Hirayama, K., 1992. Degradation of methyl and ethyl mercury into inorganic mercury by

- hydroxyl radical produced from rat liver microsomes. Arch. Toxicol. 66, 398–402.
 https://doi.org/10.1007/BF02035129
- Suzuki, T., Hongo, T., Yoshinaga, J., Imai, H., Nakazawa, M., Matsuo, N., Akagi, H., 1993. The
 Hair-Organ Relationship in Mercury Concentration in Contemporary Japanese. Arch. Environ.
 Health 48, 221–229. https://doi.org/10.1080/00039896.1993.9940363
- Suzuki, T., Shishido, S., Ishihara, N., 1976. Interaction of Inorganic to Organic Mercury in Their 658 Metabolism in Human Body. Int. Arch. Occup. Environ. Health 38. 103–113. 659 https://doi.org/10.1007/BF00378620 660
- Takeuchi, T., Morikawa, N., Matsumoto, H., Shiraishi, Y., 1962. A Pathological Study of Minamata
 Disease in Japan. Acta Neuropathol. 2, 40–57. https://doi.org/10.1007/BF00685743
- Tsuji, J.S., Williams, P.R.D., Edwards, M.R., Allamneni, K.P., Kelsh, M. a., Paustenbach, D.J.,
 Sheehan, P.J., 2003. Evaluation of mercury in urine as an indicator of exposure to low levels of
 mercury vapor. Environ. Health Perspect. 111, 623–630. https://doi.org/10.1289/ehp.5717
- Vahter, M., Akesson, A., Lind, B., Björs, U., Schütz, A., Berglund, M., 2000. Longitudinal study of
 methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well
 as in umbilical cord blood. Environ. Res. 84, 186–94. https://doi.org/10.1006/enrs.2000.4098
- Wilhelm, M., Müller, F., Idel, H., 1996. Biological monitoring of mercury vapour exposure by scalp 669 hair in comparison blood and urine. Toxicol. Lett. analysis to 88. 221-226. 670 https://doi.org/10.1016/0378-4274(96)03741-1 671
- World Health Organization, 2015. Human biomonitoring: facts and figures.
 https://doi.org/http://www.euro.who.int/en/media-centre/events/events/2015/04/ehp-mid-termreview/publications/human-biomonitoring-facts-and-figures
- World Health Organization & UNEP, 2008. GUIDANCE FOR IDENTIFYING POPULATIONS
 AT RISK FROM MERCURY EXPOSURE.
 https://doi.org/www.who.int/foodsafety/publications/risk-mercury-exposure/en/
- Yaginuma-Sakurai, K., Murata, K., Iwai-Shimada, M., Nakai, K., Kurokawa, N., Tatsuta, N., Satoh,
 H., 2012. Hair-to-blood ratio and biological half-life of mercury: experimental study of
 methylmercury exposure through fish consumption in humans. J. Toxicol. Sci. 37, 123–130.
 https://doi.org/10.2131/jts.37.123
- Yin, R., Zhang, W., Sun, G., Feng, Z., Hurley, J.P., Yang, L., Shang, L., Feng, X., 2017. Mercury
 risk in poultry in the Wanshan Mercury Mine, China. Environ. Pollut. 230, 810–816.
 https://doi.org/10.1016/j.envpol.2017.07.027
- 685

Figures and tables

Figure 1. MeHg concentration in hair samples (ng Hg g^{-1}) versus MeHg concentration in blood samples (ng Hg g^{-1}) of the exposed individuals and the control group.

Figure 2. MeHg concentrations in hair samples of exposed individuals (μ g Hg g⁻¹) versus MeHg concentration in hair samples of their corresponding relatives (μ g Hg g⁻¹). The numbers in brackets indicate the identification of the exposed individual and his relative.

27

Figure 3. MeHg concentrations in hair samples (ng Hg g⁻¹) versus Hg (II) concentrations in urine
samples (ng Hg g⁻¹) of exposed and non-exposed individuals.

28

- **Figure 4.** Comparison of THg and MeHg concentrations in blood obtained in this work with those obtained in other studies (ng mL⁻¹). The
- vertical dot-lines represent the threshold values (HBM-I, HBM-II, BAT) for risk assessment on mercury concentrations.

		Urine ((ng Hg g ⁻¹)	Blood (ng Hg g ⁻¹)	Hair (µg Hg g ⁻¹)			
	Sample	Hg(II)	MeHg	Hg(II)	MeHg	Hg(II)	MeHg		
	1	0.41	0.01	0.67	3.94	0.04	0.46		
	2	0.37	0.00	0.29	1.25	0.05	0.40		
	3	1.17	0.01	0.67	3.88	0.07	1.10		
	4	1.56	0.01	0.71	13.48	0.31	2.80		
	5	1.30	0.05	4.12	13.33	0.13	1.99		
	6	1.44	0.04	0.97	5.11	1.84	1.59		
	7	1.85	0.08	0.35	15.62	0.27	2.73		
Errogad	8	2.02	0.05	0.31	16.99	0.23	2.24		
Exposed Individuals	9	5.28	0.20	1.61	2.22	0.13	0.58		
	10	0.92	0.06	1.82	3.34	0.10	1.66		
	11	0.71	0.05	1.80	5.60	0.06	0.81		
	12	0.74	0.04	3.61	5.26	0.08	0.74		
	13	0.57	0.04	0.47	2.25	0.10	0.45		
	14	3.90	0.11	0.84	21.64	0.24	3.41		
	15	1.29	0.05	1.17	3.53	0.09	1.12		
	16	0.82	0.06	0.54	10.06	0.12	1.44		
	17	0.58	0.06	0.49	6.80	0.29	1.69		
	18	0.73	0.03	0.94	2.48	0.03	0.64		
	19	2.45	0.06	0.82	9.26	0.40	1.96		
	20	0.39	0.02	1.51	4.58	0.09	1.23		
	21	0.19	0.02	0.51	2.41	0.05	0.52		
Control Group	22	1.15	0.06	0.74	4.24	0.09	1.50		
	23	2.71	0.09	0.81	9.59	0.16	2.65		
	24	0.66	0.08	2.61	2.28	0.11	0.75		
	25	1.75	0.06	0.67	4.76	0.09	1.37		
	26	1.57	0.06	4.26	10.55	0.15	2.52		
	27	5.80	0.11	2.20	7.42	0.11	2.88		

Table 1. Individual concentrations of Hg(II) and MeHg obtained in urine, blood and hair of theexposed individuals and the control group.

Table 2. Descriptive statistics (geometric means (GM), medians (50th percentile), 95th percentiles and minimum (Min) and maximum (Max)
 values) for MeHg and Hg(II) concentrations in blood, hair and urine for all the individuals divided into classified groups.

		MeHg in blood (ng (of Hg) g^{-1})		Hg(II) in	Hg(II) in blood (ng (of Hg) g^{-1})		MeHg in hair (μ g (of Hg) g ⁻¹)		Hg(II) in hair (μ g (of Hg) g ⁻¹)		MeHg in urine (ng (of Hg) g ⁻¹)			Hg(II) in urine (ng (of Hg) g ⁻¹)					
	Ν	GM	50th -95th Percentile	Min-Max	GM	50th -95th Percentile	Min-Max	GM	50th -95th Percentile	Min-Max	GM	50th -95th Percentile	Min-Max	GM	50th -95th Percentile	Min-Max	GM	50th -95th Percentile	Min-Max
Total of individuals	27	7.1 ± 5.4	5.1 - 16.7	1.3 - 21.6	1.3 ± 1.2	0.8 - 4.0	0.3 - 4.3	1.5 ± 0.9	1.4 - 2.9	0.4 - 3.4	0.2 ± 0.4	0.1 - 0.4	0.0 - 1.8	0.1 ± 0.0	0.0 - 0.1	0.0 - 0.2	1.6 ± 1.5	1.3 - 5.0	0.2 - 5.8
Men (exposed workers)	17	8.1 ± 6.4	5.3 - 18.4	1.3 -21.6	1.2 ± 1.2	0.7 - 3.8	0.3 - 4.1	1.5 ± 1.0	1.1 - 3.0	0.4 - 3.4	0.3 ± 0.4	0.1 - 0.8	0.0 - 1.8	0.1 ± 0.0	0.0 - 0.1	0.0 - 0.2	1.5 ± 1.4	1.3 - 4.3	0.4 - 5.3
Women (control group)	10	5.8 ± 3.2	4.7 - 10.1	2.3 - 10.5	1.5 ± 1.2	0.9 - 3.5	0.5 - 4.3	1.6 ± 0.9	1.4 - 2.8	0.5 - 2.9	0.1 ± 0.1	0.1 - 0.3	0.0 - 0.4	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.1	1.7 ± 1.7	1.4 - 4.4	0.2 - 5.8
Smokers	12	4.3 ± 2.2	4.3 - 7.9	1.3 - 9.3	1.0 ± 0.5	0.9 - 1.7	0.3 - 1.8	1.0 ± 0.5	1.0 - 1.8	0.4 - 2.0	0.3 ± 0.5	0.1 - 1.0	0.0 - 1.8	0.1 ± 0.1	0.0 - 0.1	0.0 - 0.2	1.3 ± 1.4	0.7 - 3.7	0.4 - 5.3
Ex -Smokers	4	10.8 ± 5.4	10.4 - 16.4	5.3 - 17.0	2.6 ± 1.7	2.9 - 4.0	0.3 - 4.1	2.0 ± 0.9	2.1 - 2.8	0.7 - 2.9	0.1 ± 0.1	0.1 - 0.2	0.1 - 0.2	0.1 ± 0.0	0.0 - 0.1	0.0 - 0.1	2.5 ± 2.3	1.7 - 5.2	0.7 - 5.8
Non- Smokers	9	9.3 ± 6.7	9.6 - 19.2	2.3 - 21.6	1.3 ± 1.3	0.7 - 3.6	0.3 - 4.3	2.0 ± 1.0	2.5 - 3.2	0.5 - 3.4	0.2 ± 0.1	0.1 - 0.3	0.0 - 0.3	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.1	1.6 ± 1.1	1.6 - 3.4	0.2 - 3.9
Fish consumption																			
No consumption	5	6.3 ± 8.6	2.5 - 18.1	1.3 - 21.6	0.6 ± 0.3	0.7 - 0.9	0.3 - 0.9	1.1 ± 1.3	0.5 - 2.9	0.4 - 3.4	0.1 ± 0.1	0.0 - 0.2	0.0 - 0.0	0.0 ± 0.1	0.0 - 0.1	0.0 - 0.1	1.2 ± 1.5	0.6 - 3.3	0.4 - 3.9
1 time per week	4	4.0 ± 1.3	4.2 - 5.2	2.3 - 5.3	2.1 ± 1.3	2.1 - 3.5	0.7 - 3.6	1.0 ± 0.2	0.9 - 1.2	0.7 - 1.2	0.1 ± 0.0	0.1 - 0.1	0.1 - 0.1	0.0 ± 0.0	0.0 - 0.1	0.0 - 0.1	0.7 ± 0.3	0.7 - 1.1	0.4 - 1.2
2 times per week	9	9.1 ± 5.8	6.8 - 16.4	2.2 – 17.0	1.2 ± 1.2	0.7 – 3.2	0.3 – 4.1	1.7 ± 0.9	1.7 – 2.8	0.5 – 2.8	0.4 ± 0.6	0.2 – 1.2	0.0 - 1.8	0.1 ± 0.1	0.0 - 0.2	0.0 - 0.2	1.7 ± 1.5	1.4 - 4.0	0.2 – 5.3
3-4 times per week	6	6.7 ± 2.9	6.1 - 10.3	3.5 - 10.5	1.6 ± 1.4	1.0 - 3.7	0.7 – 4.3	2.0 ± 0.8	2.0 - 2.8	1.1 – 2.9	0.1 ± 0.0	0.1-0.2	0.1 - 0.2	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.1	2.4 ± 1.8	1.7 – 5.0	1.2 – 5.8
Everyday	1	9.3	9.3	9.3	0.8	0.8	0.8	2.0	2.0	2.0	0.4	0.4	0.4	0.1	0.1	0.1	2.4	2.4	2.4
Poultry consumption																			
No consumption	4	8.5 ± 5.3	7.2 - 14.7	3.9 - 15.6	0.7 ± 0.3	0.7 - 0.9	0.3 - 1.0	1.7 ± 0.9	1.8 - 2.6	0.5 - 2.7	0.6 ± 0.8	0.3 - 1.6	0.0 - 1.8	0.0 ± 0.0	0.0 - 0.0	0.0 - 0.0	1.5 ± 0.9	1.6 - 2.4	0.4 - 2.4
1 time per week	3	3.7 ± 1.3	4.2 - 4.5	2.2 - 4.6	0.9 ± 0.5	0.7 - 1.4	0.5 - 1.5	1.1 ± 0.5	1.2 - 1.5	0.5 - 1.5	0.1 ± 0.0	0.1 - 0.1	0.1 - 0.1	0.0 ± 0.0	0.0 - 0.1	0.0 - 0.1	0.7 ± 0.4	0.6 - 1.1	0.4 - 1.2
2 times per week	17	7.7 ± 5.8	5.6 - 17.9	1.3 - 21.6	1.6 ± 1.3	0.8 - 4.1	0.3 - 4.3	1.6 ± 1.0	1.4 - 3.0	0.4 - 3.4	0.1 ± 0.1	0.1 - 0.3	0.0 - 0.3	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.2	1.9 ± 1.7	1.3 - 5.4	0.2 - 5.8
> 2 times per week	1	2.5	2.5	2.5	0.9	0.9	0.9	0.6	0.6	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.7	0.7
Beef consumption								· · · · ·											
1 time per week	8	7.7 ± 5.3	6.5 - 15.7	2.2 - 17.0	1.8 ± 1.2	1.7 - 3.6	0.3 - 4.1	1.7 ± 0.9	1.7 - 2.8	0.6 - 2.9	0.1 ± 0.0	0.1 - 0.2	0.1 - 0.2	0.1 ± 0.1	0.1 - 0.2	0.0 - 0.2	2.5 ± 2.0	1.7 - 5.6	0.7 - 5.8
2 times per week	17	6.9 ± 5.6	4.8 - 16.8	1.3 - 21.6	1.1 ± 1.1	0.7 - 3.7	0.3 - 4.3	1.5 ± 0.9	1.2 - 2.9	0.4 - 3.4	0.2 ± 0.4	0.1 - 0.7	0.0 - 1.8	0.0 ± 0.0	0.0 - 0.1	0.0 - 0.1	1.2 ± 0.9	1.2 - 2.7	0.2 - 3.9
Pork consumption								ļ											
No consumption	1	9.3	9.3	9.3	0.8	0.8	0.8	2.0	2.0	2.0	0.4	0.4	0.4	0.1	0.1	0.1	2.4	2.4	2.4
1 time per week	6	5.5 ± 2.9	4.6 - 9.6	2.5 - 10.5	1.8 ± 1.7	0.8 - 4.1	0.5 - 4.3	1.2 ± 0.8	0.9 - 2.3	0.5 - 2.5	0.1 ± 0.1	0.1 - 0.3	0.0 - 0.3	0.0 ± 0.0	0.0 - 0.1	0.0 - 0.1	0.9 ± 0.4	0.7 - 1.5	0.4 - 1.6
2 times per week	17	7.8 ± 6.2	5.1 - 17.9	1.3 - 21.6	1.2 ± 1.0	0.8 - 2.9	0.3 - 4.1	1.6 ± 1.0	1.5 - 3.0	0.4 - 3.4	0.2 ± 0.4	0.1 - 0.6	0.0 - 1.8	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.2	1.9 ± 1.7	1.4 - 5.4	0.2 - 5.8
> 2 times per week	1	3.5	3.5	3.5	1.2	1.2	1.2	1.1	1.1	1.1	0.1	0.1	0.1	0.0	0.0	0.0	1.3	1.3	1.3
Age		45.00		25 56	4 4 4 9 5		07.40	4.2.4.0.2	42.45	00.45	0.1 + 0.0		0.1 0.1					4 2 4 7	07.47
30-39 yr	4	4.5 ± 0.9	4.5 - 5.5	3.5 - 5.6	1.1 ± 0.5	1.0 - 1.7	0.7 - 1.8	1.2 ± 0.3	1.2 - 1.5	0.8 - 1.5	0.1 ± 0.0	0.1 - 0.1	0.1 - 0.1	0.1 ± 0.0	0.1 - 0.1	0.0 - 0,1	1.2 ± 0.4	1.2 - 1.7	0.7 - 1.7
40-49 yr	11	9.2±6.5	9.6 - 18.6	1.3 - 21.6	1.3 ± 1.5	0.7 - 4.2	0.3 - 4.3	1.9 ± 1.1	2.0 - 3.1	0.4 - 3.4	0.2 ± 0.1	0.1 - 0.3	0.0 - 0.2	0.1 ± 0.1	0.1-0.2	0.0 - 0.2	1.9 ± 1.6	1.6 - 4.6	0.2 - 5.3
50-59 yr	ð	0.5±4.9	4.8 - 14.3 2 0 E 1	2.2 - 17.0	1.0 ± 0.6	0.9 - 2.0	0.3 - 2.2	1.4 ± 0.9	1.4 - 2.7	0.5 - 2.9	0.4 ± 0.6	0.1 - 1.3	0.0 - 1.8	0.0 ± 0.0	0.0 - 0.1	0.0 - 0.1	1.7 ± 1.8	1.1 - 4.6	0.4 - 5.8
≥o∪ yi Dental amalgams		3.8 I 2.1	3.8 - 3.1	2.3 - 3.3	5.1 ± 0.7	3.1 - 3.0	2.0 - 3.0	0.7 ± 0.0	0.7 - 0.8	0.7 - 0.8	0.1 ± 0.0	0.1 - 0.1	0.1 - 0.1	0.1 ± 0.0	0.1 - 0.1	0.0 - 0.1	0.7 ± 0.1	0.7 - 0.7	0.7 - 0.7
Yes	4	117+35	11 9 - 15 3	74-156	27+18	32-42	03-43	25+04	26-29	20-29	02+01	01-03	01-03	01+00	01+01	00-01	26+21	17-52	13-58
No	21	6.3 ± 5.1	4.6 - 16 6	1.3 - 21 6	1.1 ± 0.8	0.8 - 2.5	0.3 - 3.6	1.3 ± 0.9	1.1 - 2.8	0.4 - 3 4	0.2 ± 0.1	0.1 - 0.4	0.0 - 1 8	0.1 ± 0.0	0.0 - 0.1	0.0 - 0.2	1.4 ± 1.2	0.9 - 3.8	0.2 - 5.3
No consumption 1 time per week 2 times per week 3-4 times per week Everyday Poultry consumption 1 time per week 2 times per week 2 times per week Beef consumption 1 time per week 2 times per week 2 times per week Pork consumption 1 time per week 2 times per week 30-39 yr 40-49 yr 50-59 yr ≥ 60 yr Dental amalgams Yes No	5 4 9 6 1 4 3 17 1 8 17 1 6 7 1 1 6 7 7 1 4 11 8 2 4 21	$\begin{array}{c} 6.3 \pm 8.6 \\ 4.0 \pm 1.3 \\ 9.1 \pm 5.8 \\ 6.7 \pm 2.9 \\ 9.3 \\ \end{array}$ $\begin{array}{c} 8.5 \pm 5.3 \\ 3.7 \pm 1.3 \\ 7.7 \pm 5.8 \\ 2.5 \\ \end{array}$ $\begin{array}{c} 7.7 \pm 5.3 \\ 6.9 \pm 5.6 \\ 9.3 \\ 5.5 \pm 2.9 \\ 7.8 \pm 6.2 \\ 3.5 \\ \end{array}$ $\begin{array}{c} 4.5 \pm 0.9 \\ 9.2 \pm 6.5 \\ 6.5 \pm 4.9 \\ 3.8 \pm 2.1 \\ \end{array}$ $\begin{array}{c} 11.7 \pm 3.5 \\ 6.3 \pm 5.1 \\ \end{array}$	$\begin{array}{c} 2.5 - 18.1 \\ 4.2 - 5.2 \\ 6.8 - 16.4 \\ 6.1 - 10.3 \\ 9.3 \\ \hline \end{array}$ $\begin{array}{c} 7.2 - 14.7 \\ 4.2 - 4.5 \\ 5.6 - 17.9 \\ 2.5 \\ \hline \end{array}$ $\begin{array}{c} 6.5 - 15.7 \\ 4.8 - 16.8 \\ \hline 9.3 \\ 4.6 - 9.6 \\ 5.1 - 17.9 \\ 3.5 \\ \hline \end{array}$ $\begin{array}{c} 4.5 - 5.5 \\ 9.6 - 18.6 \\ 4.8 - 14.3 \\ 3.8 - 5.1 \\ \hline 11.9 - 15.3 \\ 4.6 - 16.6 \\ \hline \end{array}$	$\begin{array}{c} 1.3 - 21.6\\ 2.3 - 5.3\\ 2.2 - 17.0\\ 3.5 - 10.5\\ 9.3\\ \hline \\ 3.9 - 15.6\\ 2.2 - 4.6\\ 1.3 - 21.6\\ \hline \\ 2.5\\ \hline \\ 2.2 - 17.0\\ 1.3 - 21.6\\ \hline \\ 3.5\\ \hline \\ 3.5 - 5.6\\ 1.3 - 21.6\\ \hline \\ 3.5\\ \hline \\ 3.5 - 5.6\\ 1.3 - 21.6\\ \hline \\ 2.2 - 17.0\\ \hline \\ 2.3 - 5.3\\ \hline \\ 7.4 - 15.6\\ 1.3 - 21.6\\ \hline \\ 1.3 - 21.6\\ \hline \\ 1.3 - 21.6\\ \hline \end{array}$	$\begin{array}{c} 0.6\pm0.3\\ 2.1\pm1.3\\ 1.2\pm1.2\\ 1.6\pm1.4\\ 0.8\\ 0.7\pm0.3\\ 0.9\pm0.5\\ 1.6\pm1.3\\ 0.9\\ 1.8\pm1.2\\ 1.1\pm1.1\\ 0.8\\ 1.8\pm1.2\\ 1.1\pm1.1\\ 1.2\\ 1.1\pm1.1\\ 1.2\\ 1.1\pm0.5\\ 1.3\pm1.5\\ 1.0\pm0.6\\ 3.1\pm0.7\\ 2.7\pm1.8\\ 1.1\pm0.8\\ \end{array}$	$\begin{array}{c} 0.7 - 0.9 \\ 2.1 - 3.5 \\ 0.7 - 3.2 \\ 1.0 - 3.7 \\ 0.8 \\ \end{array}$ $\begin{array}{c} 0.7 - 0.9 \\ 0.7 - 1.4 \\ 0.8 - 4.1 \\ 0.9 \\ \end{array}$ $\begin{array}{c} 1.7 - 3.6 \\ 0.7 - 3.7 \\ \end{array}$ $\begin{array}{c} 0.8 \\ 0.8 - 4.1 \\ 0.8 - 2.9 \\ 1.2 \\ \end{array}$ $\begin{array}{c} 1.0 - 1.7 \\ 0.7 - 4.2 \\ 0.9 - 2.0 \\ 3.1 - 3.6 \\ \end{array}$ $\begin{array}{c} 3.2 - 4.2 \\ 0.8 - 2.5 \\ \end{array}$	$\begin{array}{c} 0.3 - 0.9 \\ 0.7 - 3.6 \\ 0.3 - 4.1 \\ 0.7 - 4.3 \\ 0.8 \\ \hline \\ 0.3 - 1.0 \\ 0.5 - 1.5 \\ 0.3 - 4.3 \\ \hline \\ 0.9 \\ \hline \\ 0.3 - 4.1 \\ 0.3 - 4.3 \\ \hline \\ 0.3 - 4.1 \\ 1.2 \\ \hline \\ 0.7 - 1.8 \\ 0.3 - 4.3 \\ 0.3 - 4.3 \\ \hline \\ 0.3 - 4.3 \\ 0.3 - 3.6 \\ \hline \end{array}$	$\begin{array}{c} 1.1 \pm 1.3 \\ 1.0 \pm 0.2 \\ 1.7 \pm 0.9 \\ 2.0 \pm 0.8 \\ \hline 2.0 \\ 1.7 \pm 0.9 \\ 1.1 \pm 0.5 \\ 1.6 \pm 1.0 \\ \hline 0.6 \\ \hline 1.7 \pm 0.9 \\ 1.5 \pm 0.9 \\ \hline 1.2 \pm 0.8 \\ 1.6 \pm 1.0 \\ 1.2 \pm 0.8 \\ 1.6 \pm 1.0 \\ 1.1 \\ 1.2 \pm 0.3 \\ 1.9 \pm 1.1 \\ 1.4 \pm 0.9 \\ \hline 0.7 \pm 0.0 \\ 2.5 \pm 0.4 \\ 1.3 \pm 0.9 \end{array}$	$\begin{array}{c} 0.5 - 2.9\\ 0.9 - 1.2\\ 1.7 - 2.8\\ 2.0 - 2.8\\ 2.0\\ \end{array}$ $\begin{array}{c} 1.8 - 2.6\\ 1.2 - 1.5\\ 1.4 - 3.0\\ 0.6\\ \end{array}$ $\begin{array}{c} 0.6\\ 1.7 - 2.8\\ 1.2 - 2.9\\ \end{array}$ $\begin{array}{c} 2.0\\ 0.9 - 2.3\\ 1.5 - 3.0\\ 1.1\\ \end{array}$ $\begin{array}{c} 1.2 - 1.5\\ 2.0 - 3.1\\ 1.4 - 2.7\\ 0.7 - 0.8\\ \end{array}$ $\begin{array}{c} 2.6 - 2.9\\ 1.1 - 2.8\\ \end{array}$	$\begin{array}{c} 0.4 - 3.4 \\ 0.7 - 1.2 \\ 0.5 - 2.8 \\ 1.1 - 2.9 \\ 2.0 \\ \hline \end{array}$ $\begin{array}{c} 0.5 - 2.7 \\ 0.5 - 1.5 \\ 0.4 - 3.4 \\ \hline \end{array}$ $\begin{array}{c} 0.6 - 2.9 \\ 0.4 - 3.4 \\ \hline \end{array}$ $\begin{array}{c} 0.6 - 2.9 \\ 0.4 - 3.4 \\ \hline \end{array}$ $\begin{array}{c} 0.8 - 1.5 \\ 0.4 - 3.4 \\ \hline \end{array}$ $\begin{array}{c} 0.8 - 1.5 \\ 0.4 - 3.4 \\ \hline \end{array}$ $\begin{array}{c} 0.7 - 0.8 \\ \hline \end{array}$ $\begin{array}{c} 2.0 - 2.9 \\ 0.7 - 0.8 \\ \hline \end{array}$	$\begin{array}{c} 0.1 \pm 0.1 \\ 0.1 \pm 0.0 \\ 0.4 \pm 0.6 \\ 0.1 \pm 0.0 \\ 0.4 \\ 0.6 \pm 0.8 \\ 0.1 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.1 \pm 0.1 \\ 0.0 \\ 0.1 \pm 0.0 \\ 0.2 \pm 0.4 \\ 0.1 \\ 0.1 \pm 0.0 \\ 0.1 \pm 0.0 \\ 0.1 \pm 0.0 \\ 0.2 \pm 0.1 \\ 0.4 \pm 0.6 \\ 0.1 \pm 0.0 \\ 0.2 \pm 0.1 \\ 0.2 \pm 0.4 \\$	$\begin{array}{c} 0.0 - 0.2 \\ 0.1 - 0.1 \\ 0.2 - 1.2 \\ 0.1 - 0.2 \\ 0.4 \\ \end{array}$ $\begin{array}{c} 0.3 - 1.6 \\ 0.1 - 0.1 \\ 0.1 - 0.3 \\ 0.0 \\ \end{array}$ $\begin{array}{c} 0.1 - 0.2 \\ 0.1 - 0.7 \\ \end{array}$ $\begin{array}{c} 0.4 \\ 0.1 - 0.3 \\ 0.1 - 0.6 \\ 0.1 \\ \end{array}$ $\begin{array}{c} 0.1 - 0.1 \\ 0.1 - 0.3 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.1 \\ 0.1 - 0.3 \\ 0.1 - 0.4 \\ \end{array}$	$\begin{array}{c} 0.0 - 0.0\\ 0.1 - 0.1\\ 0.0 - 1.8\\ 0.1 - 0.2\\ 0.4\\ \end{array}$ $\begin{array}{c} 0.0 - 1.8\\ 0.1 - 0.1\\ 0.0 - 0.3\\ \hline 0.0\\ \hline 0.1 - 0.2\\ 0.0 - 1.8\\ \hline 0.4\\ 0.0 - 0.3\\ 0.0\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.1\\ 0.0 - 0.2\\ 0.0 - 1.8\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.3\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.3\\ \hline 0.1 - 0.3\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.3\\ \hline 0.0 - 1.8\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.3\\ \hline 0.0 - 1.8\\ \hline 0.1 - 0.1\\ \hline 0.1 - 0.3\\ \hline 0.0 - 1.8\\ \hline 0.1 - 0.3\\ $	$\begin{array}{c} 0.0 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.1 \pm 0.0 \\ 0.1 \pm 0.0 \\ 0.0 \pm 0.0 \\ 0.0 \pm 0.0 \\ 0.1 \pm 0.0 \\$	$\begin{array}{c} 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.1 - 0.1 \\ 0.1 \\ \end{array}$	$\begin{array}{c} 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 - 0.2 \\ 0.1 \\ 0.1 \\ 0.0 - 0.2 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 \\ 0.0 - 0.2 \\ 0.0 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 - 0.1 \\ 0.0 - 0.2 \\ 0.0 \\$	1.2 ± 1.5 0.7 ± 0.3 1.7 ± 1.5 2.4 ± 1.8 2.4 1.5 ± 0.9 0.7 ± 0.4 1.9 ± 1.7 0.7 2.5 ± 2.0 1.2 ± 0.9 2.4 0.9 ± 0.4 1.9 ± 1.7 1.3 1.2 ± 0.4 1.9 ± 1.6 1.7 ± 1.8 0.7 ± 0.1 2.6 ± 2.1 1.4 ± 1.2	$\begin{array}{c} 0.6 - 3.3 \\ 0.7 - 1.1 \\ 1.4 - 4.0 \\ 1.7 - 5.0 \\ 2.4 \\ \hline \\ 1.6 - 2.4 \\ 0.6 - 1.1 \\ 1.3 - 5.4 \\ 0.7 \\ \hline \\ 1.7 - 5.6 \\ 1.2 - 2.7 \\ \hline \\ 2.4 \\ 0.7 - 1.5 \\ 1.4 - 5.4 \\ \hline \\ 1.3 \\ \hline \\ 1.2 - 1.7 \\ 1.6 - 4.6 \\ 1.1 - 4.6 \\ 0.7 - 0.7 \\ \hline \\ 1.7 - 5.2 \\ 0.9 - 3.8 \\ \hline \end{array}$	$\begin{array}{c} 0.4 - 3\\ 0.4 - 1\\ 0.2 - 5\\ 1.2 - 5\\ 2.4\\ \end{array}$ $\begin{array}{c} 0.4 - 2\\ 0.4 - 1\\ 0.2 - 5\\ 0.7 - 5\\ 0.2 - 3\\ \end{array}$ $\begin{array}{c} 0.7 - 5\\ 0.2 - 5\\ 0.4 - 5\\ 0.7 - 0\\ \end{array}$ $\begin{array}{c} 0.7 - 1\\ 0.2 - 5\\ 0.4 - 5\\ 0.7 - 0\\ \end{array}$