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Systems of distributed generation have shown to be a remarkable alternative to a rational use of energy. Nevertheless, the proper
functioning of them still manifests a range of challenges, including both the adequate energy dispatch depending on the variability
of consumption and the interaction between generators. This paper describes the implementation of an adaptive neurofuzzy
system for voltage control, regarding the changes observed in the consumption within the distribution system. The proposed
design employs two neurofuzzy systems, one for the plant dynamics identification and the other for control purposes. This focus
optimizes the controller using the model achieved through the identification of the plant, whose changes are produced by charge
variation; consequently, this process is adaptively performed. The results show the performance of the adaptive neurofuzzy system
via statistical analysis.

1. Introduction

The increasing demands of energy, together with the associ-
ated costs, enhance the necessity of creating new energetic
alternatives covering aspects such as the economic gener-
ation of energy and uninterrupted production. Distributed
Generation (DG) has become an attractive method that
offers electricity to consumers. This focus lowers the costs of
installation of generators and the production of electricity; in
addition, the electrical efficiency can also be improved using
cogeneration [1]. Distributed energy resources have demon-
strated potential advantages for use in energy generation and
distribution [2].

Conventionally, electric energy systems consist of large
interconnections characterized by a centralized high voltage
generation and transmission over long distances. In recent
years, a DG approach is being implemented to reduce energy
losses in transmissions [3]. According to [4], electricity DG
units located in adequate places (near to users) allow reducing

transmission losses and increasing the flexibility to the gener-
ation system using local renewable energy sources. A micro-
grid integrates heterogeneous distributed energy resources
within the distribution system [5]. Microgrids represent a
challenge that requires control techniques, automation, and
computation for generation and distribution [6].

In terms of energy systems, resources of distributed
energy, such as fuel cells,microturbines, wind generation, and
photovoltaic systems, have a wide range of advantages [7, 8].
For instance, demands can be efficientlymitigated, increasing
the reliability against failures in energy systems and improv-
ing the quality of those systems through sophisticated control
schemes. The concept of microgrid has been proposed for
solving common interconnection problems of individual DG
in different energy systems [9]. A microgrid is defined as
an independent grid power of low or medium voltage of
distribution that operates in three differentmodes: connected
to a power grid, isolated (autonomous), and transition mode
[10].
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Generator systems require to operate in the boundaries of
design as complexity increases and doubts arise in terms of
functioning, which also makes necessary more requirements
in control systems [11, 12].

In relation to applied computational intelligence in
energy distribution systems, reference [13] shows the design
of an automatic voltage regulator using machine learning;
this system is tested in distribution systems with 6 and 118
nodes. A related work can be seen in [14], where is proposed
the use of reinforcement learning technique to implement
a decentralized voltage control of the distribution network.
Reinforcement learning is a method used to improve the
agent action through several trials in an unknown environ-
ment.

According to [15], state estimation is fundamental to
energy management in distribution systems; in this way,
the authors develop a state estimation using artificial neural
networks, to observe the system performance. The tests
are made in distribution systems with 33 and 69 nodes
where connection/disconnection of DG and load variation is
considered.

An approach for power flow and voltage regulation
using multiagents is proposed in [16, 17]. The attractive
characteristic of multiagents is the distributive operation;
related to this issue, [18] proposed a tool for agent simulation
for decentralized control strategies in electrical distribution
systems; this tool allows observing the emergent behavior
produced by agents. Additionally, in [19] is presented a
proposal based on consensus protocol for cooperative voltage
control applied to wind farms. Another related work is shown
in [20] where optimal control strategies are proposed for
distributed photovoltaic systems which manage the energy
flow among the energy system in a power grid to charge
electric vehicles.

About other related applications of computational intelli-
gence, [21] proposes the identification of a permanentmagnet
synchronous generator using neuronal networks. Regarding
applications using fuzzy logic, reference [22] shows a fuzzy
predictive control for a gas turbine used for the power
generation process. Authors emphasize the relevance of
advanced control strategies to satisfy the control demands
of energy generation. Meanwhile, in [23] is proposed an
adaptive fuzzy logic system for load frequency control of
multiarea power system. Load frequency control consists of
regulating the distribution system frequency in a specified
value and maintains the interchange power between areas
[23].

According to the above, the DG is a remarkable alter-
native for the generation of electricity; however, advanced
control techniques are required for its operation. In this
way, a proposal of a neurofuzzy adaptive approach for the
regulation of voltage in a distribution system controlling the
power flow is presented in this document. This adaptive
control system allows having a distributed implementation
of controllers such that without direct communication each
controller can assimilate the effects of other controllers aswell
as load variations in the distribution system. In order to have a
frame of reference, a description of the characteristics of the

neurofuzzy adaptive control and the model of a neurofuzzy
controller used are provided below.

1.1. Characteristics of the Neurofuzzy Adaptive Control. From
a biological perspective, adaptability refers to a capacity
present in organisms, which allows them to survive in a par-
ticular environment; once the adaptation occurs, they pros-
per and produce offspring; otherwise, they may disappear
[24]. According to [25] and [26], this principlemay be applied
in both optimization and adaptive intelligent control systems.
Also [25] displays a proposal using bioinspired optimization
algorithms in adaptive control systems. Moreover, in [26]
the author points out that intelligent control represents the
study to achieve automatic control through the emulation of
biologic intelligent systems (biomimetic).

Taking into account [27], adaptive control systems are
appropriate for monitoring and controlling systems with
variable and unknown parameters. Besides, considering the
training techniques associated with optimization methods,
evolutionary algorithms have shown to be a useful tool to
approach an optimum global value. However, they require
several executions and a high number of evaluations of the
objective function. Meanwhile, methods based on gradient
calculations manifest a rapid convergence, although they
are highly susceptible to the initial search point and show
convergence towards local minima [28].

According to [25], techniques based on gradient calcu-
lations offer practical and effective methods to undertake
online optimization in order to achieve all parameter adjust-
ments in the control system. The basic approach consists of
adjusting parameters iteratively to minimize the error. How-
ever, local minima are usually presented since, in general, the
objective function that characterizes the error is not convex.
According to [29], the gradient calculation is widely utilized
in algorithms for neuronal systems, particularly the descend-
ing gradient method which is used for the Backpropagation
algorithm for neuronal networks training [30].

Considering the above, an adequate option for improving
the performance of the adaptive control system employing
gradient-based algorithms consists of a suitable preliminary
configuration for both identification of the plant and control;
meanwhile, a fuzzy system allows the establishment of a
preliminary structure and configuration of the system that
is used for identification of the plant and the optimization
of the control. This also allows dealing with the problems
present when setting neuronal networks as well as parameter
initialization [31]. In general, when using neuronal networks,
the initial configuration is random, while a fuzzy system
permits a previously set configuration based on a preliminary
knowledge of the system. The initial configuration of fuzzy
systems can be designed considering the general system
behavior; then, training data is used to adjust themodel of the
plant and the controller. According to [27], when it comes to
highly complex systems with uncertainty and variability, the
adaptive feature is remarkably important.

The proposal made in this paper uses the compact fuzzy
system shown in Section 3which allows establishing an initial
configuration (Figure 12); in this way, the optimization is
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Figure 1: Control using a neurofuzzy system.

made via the gradient-descend method described in Sec-
tion 4. This fuzzy system and optimization process are used
in the control structure.

1.2. General Model of a Neurofuzzy Controller. Two neuro-
fuzzy systems are implemented in this architecture, one for
the controller and the other for the plant model. In such a
scheme, firstly the plant identification is made and later the
training of the controller. Figure 1 displays the neurofuzzy
systems used.

As shown in Figure 1, the plant model has 𝑢[𝑛] as input
and 𝑦[𝑛] as output signal, resulting in a structure given by
(1).

𝑦 [𝑛 + 1] = 𝑓𝑝 (𝑦 [𝑛] , 𝑦 [𝑛 − 1] , . . . , 𝑦 [𝑛 − 𝑁𝑦] , 𝑢 [𝑛] ,

𝑢 [𝑛 − 1] , . . . , 𝑢 [𝑛 − 𝑁𝑢])
(1)

Meanwhile, for the input controller, the error signal is
𝑒[𝑛], the output to action control is 𝑢[𝑛], resulting in a general
equation for the controller as

𝑢 [𝑛 + 1] = 𝑓𝑐 (𝑢 [𝑛] , 𝑢 [𝑛 − 1] , . . . , 𝑢 [𝑛 − 𝑁𝑢] , 𝑒 [𝑛] , . . . ,

𝑒 [𝑛 − 𝑁𝑒] , )
(2)

where𝑁𝑦 represents the number of output delays,𝑁𝑢 the
input delays, and 𝑁𝑒 the error signal delays. Generally, the
number of delays implemented increases with the order of
the plant. Furthermore, the plant identification (distribution
system) is necessary to perform the controller optimization.

The control model shown in Figure 1 is used for the
distribution system, because the plant identification per-
mits acquiring system information such as power flow,
the interaction between generators and load variation. This
characteristic, combined with an adaptive process, allows the
controller adjustment when changes occur in the distribution
system.The following section describes the adaptive process.

2. Description of the Neurofuzzy Adaptive
System for the Generation System

Regarding the above, to implement an adaptive control
system, the structure of the control system and the train-
ing methods must allow the parameter adjustments in the
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Figure 2: Times involved in the adaptation and control process.

required time according to the application. As previously
highlighted, for plant identification and controller optimiza-
tion, evolutionary algorithmsmay be implemented; however,
the number of iterations is higher than a gradient-based
algorithm [28, 32].

Fuzzy systems allow modeling nonlinear processes and
obtaining information from a dataset using training algo-
rithms. Unlike neuronal systems, those based on fuzzy logic
allow an easy use of the knowledge of experts as a direct
initial point for their optimization [33]. Meanwhile, fuzzy
systems based on Boolean relations show a compact scheme,
which facilitates the calculations associatedwith the inference
process, having compact structures for the identification of
the plant as well as the controller [34, 35].

2.1. Adaptive Control Process. For the implementation of the
adaptive control system, the plant is first identified, then
the training of the neurofuzzy controller is performed; this
scheme integrates the model of the plant with the controller.

The time lapses involved during a cycle of the adaptation
process appear in Figure 2, where 𝑇𝑝 corresponds to the time
of the controller operation after a change is present in the
system; 𝑇𝑐 represents the time when the system operates with
the controller adjustment;𝑇𝑚 is the time interval in which the
system presents variation. Finally, 𝑇𝑎 is the time available to
perform the adaptation process to identify the plant and the
optimization of the controller. Moreover, in this specific case
it is necessary to have adequate algorithms for the adaptation
process in this lapse.

A graphical example of the neurofuzzy adaptive control
process is presented using a radial net similar to the one
considered in [36]. Summarizing, the adaptive process is as
follows.

2.1.1. Initial Configuration. Here, based on knowledge of the
system behavior, a general structure of fuzzy controller and
plant model is established. Then, the plant identification
is made, taking the nominal model (open loop) of the
distribution network.Therefore, using the plant fuzzy model,
the controller training is performed. Figures 3 and 4 show
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Figure 3: Plant identification using the grid nominal model.
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Figure 4: Training of the controller with the net nominal model.

a representation of the process; in this way both initial
configurations of the controller and the neurofuzzy model of
the plant are obtained.

2.1.2. Data Acquisition. In this process, input-output data of
the plant are obtained during the functioning of the system.
An example of this step is given in Figure 5.

2.1.3. Plant Adjustment. The acquired data allow a new
training of the neurofuzzy model of the plant in a way that
parameters are adapted to the new data. Figure 6 displays this
process.

2.1.4. Controller Training. With the new adjusted plant
model, the training of the controller (optimization) is per-
formed. Figure 7 shows the process example.

2.1.5. Optimized Controller Operation. During this process,
the new controller (optimized) is activated to correct the
variation in the system. Figure 8 shows an example of this
process.

2.1.6. Repeat Process. The process is repeated from step 2 for
the next time interval in a way that an iterative process for
identification and training of the controller is performed.The
example of this process is displayed in Figure 9.

Regarding the limited amount of data produced during
the charge variation and the system response after the con-
troller optimization, the process of plant identification and

1 2 3 4 5 6 7 8

12 13 14 15

9 10 11

Net model with variation

v

u

y

+
-

Controller
Fuzzy

r

e

y

nTp

PL

nTp

PL

Figure 5: Operation of the control system when load variation
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controller training is iteratively undertaken. It is noticeable
the importance of establishing an initial search point to
identify the plant and to optimize the controller when charge
variation is present this is achieved with the neurofuzzy
systems determined in the first point of the process.

2.2. General Architecture for the Plant Model. According to
[37], an approach to obtain a model system consists of the
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Figure 8: Operation of the system after the respective controller
adjustment.

estimation of a structure working the same function of the
plant. The input and output samples are taken from the plant
to perform the identification using the neurofuzzy system
in a way to perceive these signals as a nonlinear function.
Figure 10 displays the basic scheme to identify the plant.

Considering Figure 10 the model for output 𝑦𝑠[𝑛 + 1] is
𝑦𝑠 [𝑛 + 1] = 𝑓𝑝 (𝑦𝑠 [𝑛] , . . . , 𝑦𝑠 [𝑛 − 𝑁𝑦] , 𝑢 [𝑛] , . . . ,

𝑢 [𝑛 − 𝑁𝑢] ,H𝑝)
(3)

where 𝑁𝑦 is the number of previous output samples, 𝑁𝑢 the
number of previous input samples, andH𝑝 the system vector
parameter to be optimized.

2.3. General Architecture for Controller. Considering 𝑒[𝑛] as
the input of neurofuzzy controller, this can be represented as
shown in Figure 11.

The controller equation with this structure is

𝑢 [𝑛] = 𝑓𝑐 (𝑒 [𝑛] , 𝑒 [𝑛 − 1] , . . . , 𝑒 [𝑛 − 𝑁𝑒] , 𝑢 [𝑛 − 1] , . . . ,

𝑢 [𝑛 − 𝑁𝑢] ,H𝑐)
(4)

where 𝑁𝑒 is the number of previous error samples and H𝑐 is
the vector parameter for neurofuzzy controller.

3. Compact Fuzzy System for
Control and Identification

The proposed compact fuzzy system used for identification
and control is obtainedmodifying a linear system (in discrete

y

n

PL

nTm

1 2 3 4

12 13 14 15

9 10 11

Net model with variation

v

u

y

+
-

Controller
Fuzzy

r

e

PL

Tc Tc

5 6 7 8

Figure 9: Systemoperation after the second controller optimization.

fp( )

u[n]

ys[n + 1]

z−1

−1

−1

z

z

z

z

z−1

−1

−1

Figure 10: Scheme used for the plant identification.

f c( )

e[n]

u[n]

z

z

z

z

z

z

−1

−1

−1

−1

−1

−1

Figure 11: General architecture of the controller.



6 Complexity

u[n]
e[n]

P(u)
P(e)

(a)

u[n]
e[n]

N(u)

N(e)

(b)

Figure 12: Membership functions employed.

time) using fuzzy sets to model nonlinear relations. The
neurofuzzy architecture is obtained considering a general
linear discrete-time system whose transfer function is

𝐶 (𝑧) = 𝑈 (𝑧)
𝐸 (𝑧) =

𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑁𝑒𝑧
−𝑁𝑒

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑁𝑢𝑧−𝑁𝑢
(5)

The system equation in discrete time is

𝑢 [𝑛] = 𝑏0𝑒 [𝑛] + 𝑏1𝑒 [𝑛 − 1] + 𝑏2𝑒 [𝑛 − 2] + ⋅ ⋅ ⋅

+ 𝑏𝑗𝑒 [𝑛 − 𝑗] + ⋅ ⋅ ⋅ + 𝑏𝑁𝑒 [𝑛 − 𝑁𝑒] − 𝑎1𝑢 [𝑛 − 1]

− 𝑎2𝑢 [𝑛 − 2] − ⋅ ⋅ ⋅ − 𝑎𝑖𝑢 [𝑛 − 𝑖] − ⋅ ⋅ ⋅

− 𝑎𝑁𝑢𝑢 [𝑛 − 𝑁𝑢]

(6)

where coefficients 𝑎𝑖, 𝑏𝑗 are constant, while for the fuzzy
system these constant values are replaced by nonlinear
relations given by fuzzy membership so that

𝑢 [𝑛] = 𝑓𝑒,0 (𝑒 [𝑛]) + 𝑓𝑒,1 (𝑒 [𝑛 − 1]) + 𝑓𝑒,2 (𝑒 [𝑛 − 2])

+ ⋅ ⋅ ⋅ + 𝑓𝑒,𝑁𝑒 (𝑒 [𝑛 − 𝑁𝑒]) − 𝑓𝑢,1 (𝑢 [𝑛 − 1])

− 𝑓𝑢,2 (𝑢 [𝑛 − 2]) − ⋅ ⋅ ⋅ − 𝑓𝑢,𝑁𝑢 (𝑢 [𝑛 − 𝑁𝑢])
(7)

The fuzzy sets displayed in Figure 12 are considered
to implement the fuzzy system; particularly, Figure 12(a)
presents a sigmoidal fuzzy set for modeling positive values in
the universe of discourse; meanwhile, Figure 12(b) represents
negative values.

Considering the fuzzy sets of Figure 12 and the general
structure given by (7), Figure 13 provides the scheme of the
proposed compact fuzzy system, where 𝑔[𝑛] is the input,𝑓[𝑛]
the output, 𝑝 and 𝑞 the number of output and input samples,
respectively. According to Figures 10 and 11, the controller
is implemented taking 𝑓[𝑛] = 𝑢[𝑛] and 𝑔[𝑛] = 𝑒[𝑛];
meanwhile, the plant model uses the configuration 𝑓[𝑛] =
𝑦[𝑛] and 𝑔[𝑛] = 𝑢[𝑛].

Considering Figure 13 the fuzzy output system can be
calculated as

𝑓 [𝑛] =
𝑝+𝑞

∑
𝑖=1

2

∑
𝑗=1

V𝑖𝑗𝜇𝑖𝑗 (𝑥𝑖) (8)

where 𝑥𝑖 ∈ {𝑓[𝑛 − 1], 𝑓[𝑛 − 2], . . . , 𝑓[𝑛 − 𝑝], 𝑔[𝑛], 𝑔[𝑛 −
1], . . . , 𝑓[𝑛 − 𝑞], }. Each input 𝑥𝑖 has an associated function
𝑓𝑖 given by

𝑓𝑖 =
2

∑
𝑗=1

V𝑖𝑗𝜇𝑖𝑗 (𝑥𝑖) = V𝑖1𝜇𝑖1 (𝑥𝑖) + V𝑖2𝜇𝑖2 (𝑥𝑖) (9)

Meanwhile, the membership function 𝜇𝑖𝑗(𝑥𝑖) is

𝜇𝑖𝑗 (𝑥𝑖) =
1

1 + 𝑒−𝜎𝑖𝑗(𝑥𝑖−𝛾𝑖𝑗) (10)

Thus, the group of parameters corresponds to H ∈
{V𝑖𝑗, 𝛾𝑖𝑗, 𝜎𝑖𝑗}, which are the parameters to be optimized (adap-
tation parameters), being V𝑖𝑗 the virtual actuators, 𝛾𝑖𝑗 the
midpoint value of the sigmoidal function, and 𝜎𝑖𝑗 the curve
steepness. For plant identification H corresponds to H𝑝 and
H𝑐 to controller.

4. Fuzzy Systems Optimization Process

The gradient-descend method is used to implement the
optimization; such process is performed until the desired
value is achieved in the objective function. Consequently,
Figure 14 shows the optimization scheme, by which the
system is first evaluated with the parameters to be optimized.
Then, the objective function is calculated using the system
response. Finally, using gradient calculations, the system
parameters adjustment is developed.

In this process the objective function is

𝐽 = 1
2
𝑁

∑
𝑛=1

[𝑦𝑑 [𝑛] − 𝑦𝑠 [𝑛]]2 (11)

where𝑁 is the number of total data, 𝑦𝑑 is the desired output,
and 𝑦𝑠 is the neurofuzzy system response. For identification
process 𝑦𝑑 corresponds to the plant data, 𝑦𝑠 is the neuro-
fuzzy output, and 󳨀→𝑥 corresponds to the neurofuzzy vector
parameter H𝑝. Meanwhile, for controller optimization 𝑦𝑑
corresponds to the reference 𝑟[𝑛], 𝑦𝑠 is the simulated system
control output, and 󳨀→𝑥 is the controller vector parameterH𝑐.

4.1. Gradient-Descend Method. This algorithm calculates the
gradient of the objective function for a current position in the
search space; then, the gradient of the objective function 𝑓 is

󳨀→𝐺 = 󳨀→∇𝑓(󳨀→𝑥) (12)
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Geometrically, vector 󳨀→𝐺 points to the direction where the
objective function has a bigger descent. If the step is small
enough in the direction of −󳨀→𝐺, then the value of the objective
function in this new point will be smaller. The next position
is calculated through

󳨀→𝑥 𝑘+1 = 󳨀→𝑥 𝑘 − 𝜂󳨀→𝐺 (13)

Here, 𝜂 ∈ R+ is the descent rate. It is also possible to
implement a sequence of values 𝜂𝑘 which diminishes as 𝑘
increases (for convergence). Using a higher learning rate the
algorithm will move farther in a single step, taking the risk of
going above a minimum.

Bold driver is another known variation of the algorithm;
this technique modifies the learning rate while the objective
function is minimized [38]. An implementation of this
algorithm employs the following rule to update 𝜂:

𝜂𝑘+1 =
{
{
{

1.1𝜂𝑘, if ; Δ𝑓 ≤ 0;
0.5𝜂𝑘, if ; Δ𝑓 > 0.

(14)

where Δ𝑓 = 𝑓(󳨀→𝑥 𝑘) − 𝑓(󳨀→𝑥 𝑘−1) represents the change
in the value of the objective function between steps 𝑘 − 1
and 𝑘. If Δ𝑓 > 0, then 󳨀→𝑥 𝑘 = 󳨀→𝑥 𝑘−1 and it is reduced to
half the learning rate, ensuring the algorithm avoids moving
in an ascendant way [38]. In addition, the learning rate is
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Figure 15: Model for the network considered.

continually increasing as the objective function decreases.
Generally, the methods that use gradients as stopping criteria
take a tolerance value 𝜖 ∈ R+ so that

󵄨󵄨󵄨󵄨Δ𝑓
󵄨󵄨󵄨󵄨 ≤ 𝜖 (15)

5. Energy Distribution System

5.1. Distribution Network Operator. Power distribution net-
works are a key constituent in the infrastructure as they
permit carrying electricity to business and homes, offering
a continuous service which is an essential function of the
Distribution Network Operators (DNOs). The incorporation
of Distributed Generation (DG) in the distribution networks
carries out important effects in the distribution systems
operation. The current distribution networks are designed to
be passive, which leaves the transport of electricity with min-
imum surveillance, supervision, and control; likewise, these
networks have been designed without the capacity to manage
generators with lower voltage. Although DG introduces new
challenges to DNOs, it also brings opportunities as economic
benefits derived from more active networks [39].

5.2. Power Flow Calculation. In electrical engineering, the
power flow study is an important tool for numeric analysis
in energy systems [40]. Such studies are implemented to
ensure that energy transfer from generators to consumers
is stable, reliable, and economic. Moreover, flow power
calculations allow determining power and tension values in
a system of energy according to the capacity of regulation
of the generators, condensers, and transformers [41]. The
efficiency of the algorithms to establish the flow of power is
fundamental whenever numerous estimations of this flow are
required. In this regard, the Backward/Forward Sweep BFS is
the most widely used technique for flow power calculation in
radial topology networks.

5.3. Energy Distribution Model. Figure 15 shows the radial
network model considered for the distribution system which
also includes the nodes identification.

The system,which is taken from [42], consists of 33 nodes.
The impedance values for the lines of the distribution system
are shown in Table 1. Meanwhile, power charges are shown in
Table 2. In the case of one generator, this is located in node 18
and the variable charge in node 17. For three generators these
are placed in the nodes 18, 22, and 33. Additionally, variable

loads are held in the nodes 17, 21, and 32. Finally, the node of
reference corresponds to number 1.

6. Methodology for the Analysis of
Statistical Results

Given the stochastic nature of the system, variability of
results may appear when a particular configuration of the
control system is implemented. A test is performed to observe
if a relevant difference in the results obtained is present
(regarding the aspects to be compared); then, a statistical
hypothesis is performed as follows:

(i) 𝐻0Null hypothesis: the results obtained by the control
systems exhibit equal average values.

(ii) 𝐻1 Alternative hypothesis: the results obtained by the
control systems show no equal average values.

When formulating this hypothesis, there exists the possi-
bility of making mistakes as shown in Table 3 in which error
type I occurswhen the null hypothesis is rejected even though
it is true; meanwhile, for type II error the null hypothesis is
accepted even though it is false [43].

Usually, the hypothesis test is performed considering
a level of significance referred to as 𝑝-value which is the
probability of making a type I error. Under this orientation,
the null hypothesis is rejected if the statistical 𝑝-value test is
equal to or less than an established significance level, which
is in general 5% [43].

6.1. Statistical Tests. The statistical test can be classified as
parametric or nonparametric in terms of their application.
Parametric tests are robust but based on normality and
data equality variance. On the other hand, suppositions
are not required in nonparametric tests but information is
missed in their process as the comparison is made with the
representation of data on an ordinal scale [43].

Figure 16 shows the suggested methodology for the
hypothesis test as follows:

(i) Kolmogorov-Smirnov: this test is applied to deter-
mine the data normality. Besides, other alternative
tests are the Shapiro-Wilk and the Anderson-Darling.

(ii) Levene: through this test the variance equality
(homoscedasticity) is established; another alternative
is the Bartlett test.
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Table 1: Network impedances.

Line Input bus Output bus Resistance Reactance
1 1 2 0.0922 0.0470
2 2 3 0.4930 0.2511
3 3 4 0.3660 0.1864
4 4 5 0.3811 0.1941
5 5 6 0.8190 0.7070
6 6 7 0.1872 0.6188
7 7 8 0.7114 0.2351
8 8 9 1.0300 0.7400
9 9 10 1.0440 0.7400
10 10 11 0.1966 0.0650
11 11 12 0.3744 0.1238
12 12 13 1.4680 1.1550
13 13 14 0.5416 0.7129
14 14 15 0.5910 0.5260
15 15 16 0.7463 0.5450
16 16 17 1.2890 1.7210
17 17 18 0.7320 0.5740
18 2 19 0.1640 0.1565
19 19 20 1.5042 1.3554
20 20 21 0.4095 0.4784
21 21 22 0.7089 0.9373
22 3 23 0.4512 0.3083
23 23 24 0.8980 0.7091
24 24 25 0.8960 0.7011
25 6 26 0.2030 0.1034
26 26 27 0.2842 0.1447
27 27 28 1.0590 0.9337
28 28 29 0.8042 0.7006
29 29 30 0.5075 0.2585
30 30 31 0.9744 0.9630
31 31 32 0.3105 0.3619
32 32 33 0.3410 0.5302

(iii) Welch: this test is used to compare several distribu-
tions. It is an extension of the T-student; this test
requires data normality.

(iv) ANOVA: this test compares several distributions and
requires normality and homoscedasticity.

(v) Kruskal-Wallis: it is a nonparametric test to compare
several distributions; this test requires no previous
suppositions.

Multiple tests of comparison are performed when having
significant differences in experimental groups to determine
such differences [44].

As in Figure 16, the same methodology is applied when
assumptions of normality and homoscedasticity are fulfilled;
here,Duncan andNewman-Keuls, Bonferroni, Scheff orHSD
of Tukey contrasts can be used [43, 44]. Meanwhile, when
these assumptions are not fulfilled, nonparametric contrasts
of Nemenyi, Holm, and Bonferroni-Dunn are used [45–47].

The outcome of comparing the groups corresponds to
“comparison intervals” which allow determining the differ-
ence between groups. A way to show such a result consists
of graphically displaying the average ranking in each group
and an equivalent interval; thus, with this representation, two
groups are considered as different if their intervals are not
overlapped [48].

7. Experimental Results

These results are directed to show the ability of adaptation of
the neurofuzzy system proposed; whereby, the comparison is
made with the fuzzy controller without adaptation.

According to [26], there are different alternatives to
control, from the formal and traditional ones to those
based on flexible computation and bioinspired systems. In
addition, [27] this approach consists of showing the ability
of adaptation present in these systems.
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Figure 16: Methodology to determine the hypothesis test.

Table 2: Grid power charges.

Bus Real Reactive
1 0 0
2 100 60
3 90 40
4 120 80
5 60 30
6 60 20
7 200 100
8 200 100
9 60 20
10 60 20
11 45 30
12 60 35
13 60 35
14 120 80
15 60 10
16 60 20
17 60 20
18 90 40
19 90 40
20 90 40
21 90 40
22 90 40
23 90 50
24 420 200
25 420 200
26 60 25
27 60 25
28 60 20
29 120 70
30 200 600
31 150 70
32 210 100
33 60 40

The performance value used for comparison is the mean
square error (MSE) which is also used as objective function
for the controller optimization; the MSE value can be deter-
mined as

Table 3: Type I and II errors.

Decision \ Real condition 𝐻0 true 𝐻0 false
Reject𝐻0 Type I error Right
Accept𝐻0 Right Type II error

𝑀𝑆𝐸 = 1
𝑁
𝑁

∑
𝑛=1

(𝑟 [𝑛] − 𝑦 [𝑛])2 (16)

7.1. Experiments Configuration. Three aspects are considered
to carry out the experimental design to observe the charac-
teristics of the adaptive control system. A first comparison
consists of regarding the controller performance with and
without the adaptive process. Secondly, the configuration
used for the control system considers the number of input
and output delays (Figures 10 and 11). Considering the data of
charge variation for each hour and using a scale of minutes,
then, 𝑇𝑚 = 60𝑚𝑖𝑛 and 𝑇𝑝 = 𝑇𝑐 = 20𝑚𝑖𝑛 are taken.
On the other hand, the controller and the model of the
plant have different configurations depending on the inputs
and feedback. Table 4 shows the experimental configurations
considered for both adaptive and nonadaptive cases.

Considering the stochastic characteristics of the system,
each configuration must be executed several times to be
statistically valid; thus, the analysis described in Section 6 can
be performed [43].

A 10 times simulation of 10 hours is performed to
determine the experimental data for each configuration;
thereby, each simulation obtained consists of 600 minutes
and 10 load changes. Likewise, data of charge are randomly
generated with data distributed (uniformly) in values from 0
to 1000𝐾𝑊.

7.2. Results Using One Generator. In this case, the generator
is located at node 18 and the charge (variable) at node
17. After carrying out the respective executions for each
configuration, MSE is calculated. The results summary is
shown in Table 5, including minimum and maximum values,
standard deviation STD, and average value.

The respective tests are performed using the acquired
data from the experiments. Table 6 shows both the results
of the normality test in each experimental group and the
accomplishment of the normality requirement.
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Table 4: Experimental configurations.

Inputs Feedbacks Nonadaptive Adaptive
1 2 CS1AD0 CS1AD1
2 2 CS2AD0 CS1AD1
1 3 CS3AD0 CS1AD1
2 3 CS4AD0 CS1AD1

Table 5: Summary of statistical values in the obtained results.

Configuration Minimum Maximum STD Mean
CS1AD0 0.0007138 0.0013849 0.0001969 0.00095738
CS2AD0 0.0007061 0.0013707 0.00019503 0.00094726
CS3AD0 0.00071098 0.0013793 0.00019609 0.00095358
CS4AD0 0.00070439 0.0013672 0.00019449 0.00094491
CS1AD1 7.3672 × 10−5 0.00014293 2.0351 × 10−5 9.8719 × 10−5

CS2AD1 7.3218 × 10−5 0.00014205 2.024 × 10−5 9.8079 × 10−5

CS3AD1 7.3305 × 10−5 0.00014222 2.0249 × 10−5 9.825 × 10−5

CS4AD1 7.2702 × 10−5 0.00014104 2.0086 × 10−5 9.7411 × 10−5

Table 6: Summary of normality test.

Configuration 𝑝-value
CS1AD0 0.6230
CS2AD0 0.6223
CS3AD0 0.6231
CS4AD0 0.6225
CS1AD1 0.6258
CS2AD1 0.6241
CS3AD1 0.6262
CS4AD1 0.6247

The homoscedasticity test produces a 𝑝-value of 8.3068 ×
10−6 which indicates that the equality variance requirement is
not accomplished. Considering the results of homoscedastic-
ity and normality test, a Kruskal-Wallis test is undertaken to
determine if there exists a representative difference between
the experimental groups. Then a 𝑝-value of 1.9486 × 10−10 is
obtained, which indicates the presence of differences between
groups. In this way, Figure 17 shows the nonparametric test of
Bonferroni performed for multiple comparisons; the level of
significance considered is 0.05.

If the intervals of two groups in Figure 17 are overlapped,
then there is no statistical difference between them. These
results show a better controller response when the process of
adaptation is used.

7.2.1. Simulation Results. The configuration CS2AD1 is taken
to qualitatively show the behavior of the control system.
Figure 18 graphically displays the system response with the
conventional controller and the adaptive system also shows
that the controller adjusts the value of the systemoutput to the
reference value after a charge variation. Figure 18(a) shows the
voltage regulation and Figure 18(b) displays the control signal
corresponding to the amount of power to be delivered.

0 20 40 60 80

CS4AD1

CS3AD1

CS2AD1

CS1AD1

CS4AD0

CS3AD0

CS2AD0

CS1AD0

Ranking MSE

Figure 17: Multiple comparisons results.

Figure 19 shows the detailed adjustments made by the
adaptive system. In the simulation, it is noticeable the time
when the progressive adjustments of the controller are made
to correct the change present when the charge has variance.

7.3. Results for Three Generators. A key aspect in the dis-
tributed generation systems is the capacity to plug and unplug
several generators in the distribution network showing no
major alterations among voltage values in the nodes. In order
to observe the performance in the neuroadaptive control,
different generators are included in the distribution network
as shown in Figure 15. Consequently, three generators located
in the following nodes are considered:

(i) Generator 1: Node 18.
(ii) Generator 2: Node 25.
(iii) Generator 3: Node 33.
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Figure 18: Control system response with and without adaptation process.
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Figure 19: Detailed system response of the adaptive control system.

Meanwhile, there are nodes considered for charge varia-
tion:

(i) Variable charge 1: Node 17.
(ii) Variable charge 2: Node 24.
(iii) Variable charge 3: Node 32.
Data for charge variation are evenly generated at random

with values between 0𝐾𝑊 and 1000𝐾𝑊. The experimental
groups are taken in the same way as in the implementation
for one generator. Considering that each generator has an
associated value of mean square error (MSE), then the
performance index used for the statistical analysis is the sum
of MSE for three generators:

𝑀𝑆𝐸𝑇 = 𝑀𝑆𝐸𝐺1 +𝑀𝑆𝐸𝐺2 +𝑀𝑆𝐸𝐺3 (17)

Table 7 shows the minimum and maximum values, stan-
dard deviation STD, and average results for the 10 executions
of each configuration.

With the data obtained the statistical tests can be made.
The normality test results are shown in Table 8 in which the
normality requirement is accomplished.

The 𝑝-value obtained for the homoscedasticity test is
8.3068 × 10−6; this indicates that equality of variance is not
met. Regarding the results in the normality and homoscedas-
ticity tests, the Kruskal-Wallis test is performed; as a result,
the outcome value is 1.9486×10−10.This shows the difference
between experimental groups. The Bonferroni nonparamet-
ric test ofmultiple comparisons is then performed to establish
differences between groups, using a significance level of
0.05. The results are displayed in Figure 20, where the
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Table 7: Summary of statistical values of the results.

Configuration Minimum Maximum STD Mean
CS1AD0 0.0015202 0.0030316 0.00051718 0.0022923
CS2AD0 0.0015496 0.0030854 0.00052539 0.0023342
CS3AD0 0.001546 0.0030808 0.00052423 0.00233
CS4AD0 0.0015356 0.0030595 0.00052081 0.0023144
CS1AD1 8.3829 × 10−5 0.00016181 2.6401 × 10−5 0.00012498
CS2AD1 8.5712 × 10−5 0.00016511 2.713 × 10−5 0.00012664
CS3AD1 8.4852 × 10−5 0.00016398 2.6979 × 10−5 0.00012559
CS4AD1 8.4648 × 10−5 0.00016333 2.687 × 10−5 0.00012521

Table 8: Summary of normality test.

Configuration 𝑝-value
CS1AD0 0.6230
CS2AD0 0.6223
CS3AD0 0.6231
CS4AD0 0.6225
CS1AD1 0.6258
CS2AD1 0.6241
CS3AD1 0.6262
CS4AD1 0.6247

statistical results show that the adaptive system has a better
performance. No overlapping is present for the comparison
intervals of adaptive and nonadaptive configurations. The
configurations for the adaptive cases obtain lower values of
MSE.

7.3.1. Simulation Results. The CS2AD1 configuration is used
to show the control system simulation. Figure 21 shows the
system response for three generators using adaptive control.
Figures 21(a) and 21(b) show the voltage regulation and the
control signals, respectively.

Meanwhile, Figure 22 presents the simulation when
nonadaptive process is performed. It is worth noting that in
Figure 21 the adaptive controller makes adjustments of the
output system once the charge variation has occurred.

Figure 23 shows the adjustments made for the adaptive
system when charge variation is present. It highlights that
several adjustments are required to adjust the output. Fig-
ure 23(a) shows the voltage regulation detail and Figure 23(b)
displays the respective control signals detail.

8. Discussion

This article is focused on showing the capabilities of the
adaptive control system proposed to manage the flow of
energy in a distribution system. It is seen that the proposed
system is a good alternative to manage the power flow in the
distribution network. However, there are several aspects of
the distribution system which should be studied in subse-
quent works.

Taking into account the above, in this work the profile of
the voltages throughout the network is not considered. Only
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Figure 20: Results of multiple comparisons.

the voltages on the points are consideredwhere the generators
are located. This type of application might be studied in
greater detail in future developments.

The charge and the generation power are considered only
with the real component; therefore, for future works it is
possible to include a complex power for load and generators.

Additionally, the generators connection in the grid is
considered where the greatest voltage drop occurs. However,
a further study can contemplate different locations of these,
including their dynamic connection and disconnection.

9. Conclusions

The scheme of the neurofuzzy system was proposed consid-
ering the general structure of a discrete-time system. It is
also noteworthy that the considered plant presents parameter
variations as well as generators interaction.

The proposed neurofuzzy scheme allows the adjustment
of the controller after a charge variation. The system works
satisfactorily in three generators, which is important in
systems of distributed generation.

The statistical analysis reflects a better performance when
the adaptation process is made; it is also observed that there
are no differences in the configuration sets considered (input-
output delays) in the neurofuzzy system. For the simulation
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Figure 21: The response of the control system with adaptation process.
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Figure 22: The response of the control system without the adaptation process.

case, when three generators are used, the several adjustments
made after a load variation are worth highlighting.

The plant identification is highly relevant for the proper
functioning of the adaptive control system; therefore, the
progressive adjustment is made to identify the plant and
controller optimization.

The strategy proposed allows handling the low amount of
data available to identify the plant when the variation of the

charge is present. For that reason, it is also important to make
iterative controller adjustments.

Data Availability

The data of this study are included within the supplementary
information files.
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Figure 23: Detail of the adaptive control system response.
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