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1 Introduction

In our recent work ref. [1] we have constructed a large family of solutions of the Heterotic

Superstring effective action to first order in α′. Generically, these solutions describe well-

known systems consisting of intersections of fundamental strings (F1) with momentum

flowing along them (W), solitonic 5-branes (NS or S5) and Kaluza-Klein monopoles (KK).

The 5-dimensional, extremal, 3-charge black holes studied in refs. [2, 3] are simple members

of this family with no KK monopoles and they describe the first-order in α′ corrections of

the heterotic version of the Strominger-Vafa black hole [4]. Our main task in this paper will

be to study the case with KK monopoles. The corresponding solutions are 4-dimensional,
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extremal, 4-charge black holes which will contain the first-order in α′ corrections to the

heterotic version of the black holes whose microscopic entropy was computed and compared

with the supergravity result in refs. [5–7].1

The agreement between the Bekenstein-Hawking (BH) entropy of 4- and 5-dimensional

black holes and the degeneracy of string microstates in the backgrounds mentioned above,

initially obtained at the α′ → 0 level in regimes in which the α′ corrections can be safely

ignored, is one of the triumphs of String Theory. These results have been extended in several

directions to include rotation [11], non-trivial topology of the horizon (black rings) [12] etc.

A very important question to study is whether this agreement between the values of

the BH entropy calculated by macroscopic and microscopic methods still holds when α′

corrections (genuinely stringy effects associated to the finite string size `S =
√
α′) are taken

into account.

In the calculation of the BH entropy by microstate counting the AdS/CFT correspon-

dence tools have proven extraordinarily useful, shedding results that account for all the

contributions in the α′ perturbative expansion in the large charge regime.

The near-horizon geometry of all the black hole solutions we consider is AdS3×S3/Zn×
T4. The AdS3 and S3 factors are standard in the three-charge family of extremal black

holes, and the quotient of the sphere by Zn is related to the presence of a charge-n KK

monopole. Heterotic String Theory on this background was studied in ref. [13], identifying

the central charges of the dual CFT. Then, applying the Cardy formula one obtains the

following expression for the entropy

SCFT = 2π
√
NF1NW (k + 2) , (1.1)

where NF1 is the number of fundamental strings present in the background, NW is the

number of units of momentum flowing along them and k is the total level of affine algebra

ŜL(2) in the right-moving sector. This number, minus two units, was identified in ref. [13]

with the product of the KK monopole charge and S5 charge: k = nQS5 + 2. As we will

see along this paper and in the discussion section, distinguishing correctly between charges

(total charges, evaluated at spatial infinity) and numbers of stringy objects (KK monopoles

and S5-branes in this case) is essential in order to compare this microscopic result with the

macroscopic one.

The macroscopic (“supergravity”) calculation of the α′ corrections to the BH entropy

faces a number of difficulties:

1. Finding the α′-corrected solutions is a very complicated task, owing to the higher-

order in curvature terms present in the equations of motion and the complicated

interactions between them. In the Heterotic Superstring effective action there is

an infinite series of terms related to the supersymmetrization of the Chern-simons

terms present in the NS 3-form that can be introduced in an interative way following

refs. [14, 15] but there are further terms of higher order in the curvature that seem

to be unrelated to them first appearing at O(α′3) [16].

1See also refs. [8, 9] and references therein. The α′ → 0 limits of these solutions are well known and

were first obtained in ref. [10] directly in the heterotic version.
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2. The BH entropy of the α′-corrected solutions is no longer simply given by the area

of the horizon, and one needs to use the Wald formula [17, 18].

In order to circumvent these difficulties one may try to work with the near-horizon

region of the solution only, assuming that it will have the same geometry after the α′ cor-

rections are taken into acount. The entropy function formalism developed by Sen [9, 19]

provides an elegant and powerful strategy to find the near-horizon solutions of extremal

black holes and to compute their entropy, making a comparison with the microscopic result

eq. (1.1) possible. This approach has important drawbacks, though: it is not guaranteed

that a solution interpolating between the near-horizon geometry and Minkowski spacetime

describing an asymptotically-flat black-hole spacetime exists and, if it does, it does not

give any information on how the non-linear interactions introduced by the higher-order

corrections affect the physical properties of the solution, such as the values of the con-

served charges.

The family of solutions constructed in ref. [1] makes unnecessary the restriction to

the near-horizon limit, because they can describe the complete black hole spacetime to

first order in α′, as shown for the 5-dimensional case in ref. [3]. This allows us to take

into account the non-linear interactions and compute explicitly the asymptotic charges. In

the S5 and W cases, these will receive contributions from localized sources signaling the

presence of the corresponding fundamental objects in the String Theory background, and

contributions from the non-linear interactions that arise at first order in α′. Being able to

make this distinction is essential in order to write the BH entropy in terms of the same

variables used in the counting of string microstates.

The non-linear contributions to the total S5 charge are analogous to those of SU(2) in-

stantons over the KK monopole2 with the wrong sign and can be exactly cancelled through

the introduction of heterotic SU(2) gauge fields with the same instanton configuration.3 It

can, then, be argued that certain components of the fields associated to the S5 charge will

not receive any further α′ corrections.

The non-linear contributions to the momentum (W), though, are of a more mysterious

nature. They take the form of the contribution of a generalization of the electric sector

of the dyon of ref. [22] with the standard sign and cannot be cancelled using the same

Green-Schwarz-type mechanism. However, it can still be argued that further α′ corrections

connected to the supersymmetrization of the Chern-Simons terms will vanish or will be

arbitrarily small.

Having the 4-dimensional, extremal, 4-charge black holes with their first-order in α′

corrections under control just leaves us with the calculation of the entropy using Wald’s

formula. This calculation can be conveniently performed directly in 10 dimensions using

2When the charge of the KK monopole is larger than one, the Yang-Mills instantons are somewhat exotic

because the KK monopole contains a conical singularity. However, this singularity is resolved in the full

supergravity metric by a conformal factor and the corresponding instantons are regular in 10-dimensional

spacetime as well. Nevertheless, this deficit in the angle is reflected in terms of a fractional (although

discrete) instanton number.
3These Yang-Mills fields coincide with those of some of the non-Abelian supergravity solutions we have

studied in refs. [2, 20–24].
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the same trick we used in the 5-dimensional case ref. [3] and the result, to first order in α′,

is found to be

SWald = 2π
√
NF1NWnNS5

(
1 +

1

nNS5
+ · · ·

)
. (1.2)

Comparing this macroscopic result with the expansion in the large charge limit of the result

coming from the counting of string microstates eq. (1.1) we see that they agree with each

other upon the identification k = nNS5, where NS5 is the number of S5-branes. This is

the main result of this article.

This article is organized as follows: the Heterotic Superstring effective action at first

order in α′ is described in section 2. In section 3 we review the generic structure of the

10-dimensional fields for the family of solutions studied and discuss some aspects of their

lower-dimensional descendants. In section 4 we present the construction of two families

of spherically symmetric selfdual instantons over KK monopoles, which can be used as

gauge fields in the solution. Additional details about these constructions are contained in

appendix B. Our most important results are described in section 5: the description of the 4-

charge corrected black hole and the identification of the parameters in terms of fundamental

objects in the String Theory background. In section 6 we briefly describe some physical

properties of our solutions from an effective 4-dimensional perspective. We particularize

the discussion for the special example of an extremal Reissner-Nordström solution and

comment on the non-perturbative nature of the small black holes. In section 7 we compute

in detail the Wald entropy. Finally, we discuss our results and compare them with the

previous literature in section 8.

2 The Heterotic Superstring effective action to O(α′)

In this section we review the Heterotic Superstring effective action [15] to O(α′), as already

appearing in [1]. We start by defining the zeroth-order 3-form field strength of the Kalb-

Ramond 2-form B:

H(0) ≡ dB , (2.1)

and constructing with it the zeroth-order torsionful spin connections

Ω
(0)
(±)

a
b = ωab ±

1

2
H(0)
µ

a
bdx

µ , (2.2)

where ωab is the Levi-Civita spin connection 1-form.4 With them we define the zeroth-order

Lorentz curvature 2-form and Chern-Simons 3-forms

R
(0)
(±)

a
b = dΩ

(0)
(±)

a
b − Ω

(0)
(±)

a
c ∧ Ω

(0)
(±)

c
b , (2.3)

ω
L (0)
(±) = dΩ

(0)
(±)

a
b ∧ Ω

(0)
(±)

b
a −

2

3
Ω

(0)
(±)

a
b ∧ Ω

(0)
(±)

b
c ∧ Ω

(0)
(±)

c
a . (2.4)

Next, we introduce the gauge fields. We will only activate a SU(2) × SU(2) subgroup

of the full gauge group of the Heterotic Theory and we will denote by AA1,2 (A1,2 = 1, 2, 3)

4We follow the conventions of ref. [25] for the spin connection and the curvature.
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the components, with the understanding that repeated gauge indices imply summation

over both SU(2) factors. The gauge field strength and the Chern-Simons 3-form of each

SU(2) factor are defined by

FA = dAA +
1

2
εABCAB ∧AC , (2.5)

ωYM = dAA ∧AA +
1

3
εABCAA ∧AB ∧AC . (2.6)

Then, we are ready to define recursively

H(1) = dB +
α′

4

(
ωYM + ω

L (0)
(−)

)
,

Ω
(1)
(±)

a
b = ωab ±

1

2
H(1)
µ

a
bdx

µ ,

R
(1)
(±)

a
b = dΩ

(1)
(±)

a
b − Ω

(1)
(±)

a
c ∧ Ω

(1)
(±)

c
b ,

ω
L (1)
(±) = dΩ

(1)
(±)

a
b ∧ Ω

(1)
(±)

b
a −

2

3
Ω

(1)
(±)

a
b ∧ Ω

(1)
(±)

b
c ∧ Ω

(1)
(±)

c
a .

H(2) = dB +
α′

4

(
ωYM + ω

L (1)
(−)

)
, (2.7)

and so on.

In practice only Ω
(0)
(±), R

(0)
(±), ω

L (0)
(±) , H

(1) will occur to the order we want to work at,

but, often, it is more convenient to work with the higher-order objects ignoring the terms

of higher order in α′ when necessary. Thus we will suppress the (n) upper indices from

now on.

Finally, we define three “T -tensors” associated to the α′ corrections

T (4) ≡ 3α′

4

[
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

]
,

T (2)
µν ≡

α′

4

[
FAµρF

A
ν
ρ +R(−)µρ

a
bR(−) ν

ρ b
a

]
,

T (0) ≡ T (2)µ
µ .

(2.8)

In terms of all these objects, the Heterotic Superstring effective action in the string

frame and to first-order in α′ can be written as

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

{
R− 4(∂φ)2 +

1

2 · 3!
H2 − 1

2
T (0)

}
, (2.9)

where G
(10)
N is the 10-dimensional Newton constant, φ is the dilaton field and the vacuum

expectation value of eφ is the Heterotic Superstring coupling constant gs. R is the Ricci

scalar of the string-frame metric gµν .

The derivation of the complete equations of motion is quite a complicated challenge.

Following ref. [26], we separate the variations with respect to each field into those corre-

sponding to occurrences via Ω(−)
a
b, that we will call implicit, and the rest, that we will
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call explicit :

δS =
δS

δgµν
δgµν +

δS

δBµν
δBµν +

δS

δAAiµ
δAAiµ +

δS

δφ
δφ

=
δS

δgµν

∣∣∣∣
exp.

δgµν +
δS

δBµν

∣∣∣∣
exp.

δBµν +
δS

δAAiµ

∣∣∣∣
exp.

δAAiµ +
δS

δφ
δφ

+
δS

δΩ(−)
a
b

(
δΩ(−)

a
b

δgµν
δgµν +

δΩ(−)
a
b

δBµν
δBµν +

δΩ(−)
a
b

δAAiµ
δAAiµ

)
. (2.10)

We can then apply a lemma proven in ref. [15]: δS/δΩ(−)
a
b is proportional to α′ and

to the zeroth-order equations of motion of gµν , Bµν and φ plus terms of higher order in α′.

The upshot is that, if we consider field configurations which solve the zeroth-order

equations of motion5 up to terms of order α′, the contributions to the equations of motion

associated to the implicit variations are at least of second order in α′ and we can safely

ignore them here.

If we restrict ourselves to this kind of field configurations, the equations of motion

reduce to

Rµν − 2∇µ∂νφ+
1

4
HµρσHν

ρσ − T (2)
µν = 0 , (2.11)

(∂φ)2 − 1

2
∇2φ− 1

4 · 3!
H2 +

1

8
T (0) = 0 , (2.12)

d
(
e−2φ ? H

)
= 0 , (2.13)

α′e2φD(+)

(
e−2φ ? FAi

)
= 0 , (2.14)

where D(+) stands for the exterior derivative covariant with respect to each SU(2) subgroup

and with respect to the torsionful connection Ω(+): suppressing the subindices 1, 2 that

distinguish the two subgroups, it takes the explicit form

e2φd
(
e−2φ ? FA

)
+ εABCAB ∧ ?FC + ?H ∧ FA = 0 . (2.15)

If the ansatz is given in terms of the 3-form field strength, we also need to solve the

Bianchi identity

dH − 1

3
T (4) = 0 , (2.16)

as well.

3 The 10-dimensional solutions and their d = 5, 4 descendents

The 5- and 4-dimensional black holes we are interested in belong to the class of α′-corrected

solutions constructed in ref. [1]. These preserve 1/4 of the 16 supersymmetries of the

5These can be obtained from eqs. (2.11)–(2.14) by setting α′ = 0. This eliminates the Yang-Mills fields,

the T -tensors and the Chern-Simons terms in H.
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heterotic theory and are completely determined by

1. A choice of 4-dimensional hyperKähler metric

dσ2 = hmndx
mdxn , m, n = ], 1, 2, 3 , (3.1)

with self-dual Riemann curvature 2-form with respect to some standard orienta-

tion.6If we are interested in 5-dimensional solutions, which are obtained by compact-

ification on T5, we can use any non-compact 4-dimensional hyperKähler space. If we

are interested in 4-dimensional supersymmetric solutions, though, the hyperKähler

space must admit an additional isometry and we will take it to have a Gibbons-

Hawking metric of the form7

dσ2 = H−1(dη + χ)2 +Hdxxdxx , dH = ?(3)dχ , (3.3)

where ?(3) denotes the Hodge dual in E3.

In the Gibbons-Hawking case (and perhaps in more general hyperKähler spaces) one

can write the Lorentz Chern-Simons 3-form of this 4-dimensional space as

ωLHK = ?(4)dW , (3.4)

Rmn ∧Rnm = dωLHK = d ?(4) dW = −∇2
(4)W |v|d

4x , (3.5)

where |v|d4x is the volume 4-form and W is some function defined on the hyperKähler

space and where the subscript (4) indicates that the operator that carries it is defined

in the 4-dimensional hyperKähler space. For Gibbons-Hawking spaces, which is the

only class for which we have tested this property [1], we get

W = (∂ logH)2 . (3.6)

2. Two SU(2) gauge fields AA1,2 defined on the hyperKähler manifold whose field

strength 2-forms FA1,2 are self-dual there with respect to the same standard ori-

entation (i.e. they are instanton fields)

FA1,2 = + ?(4) F
A1,2 . (3.7)

These are directly the SU(2)×SU(2) heterotic gauge fields of the solution. The most

general solution to this equation in an arbitrary hyperKähler space does not seem to

be available in the literature and we will consider some particular constructions. All

of them, though, have the important property

ωYM
i = − ?(4) dVi , (3.8)

FAi ∧ FAi = dωYM
i = −d ?(4) dVi = ∇2

(4)Vi|v|d
4x , (3.9)

for some functions Vi defined on the hyperKähler space. These functions are com-

puted for several instantons in appendix B.

6We use ε]123 = +1 in an appropriate Vierbein basis vm

hmn = vpmv
p
n . (3.2)

7Here η = x] and we are using the 3-dimensional, curved, indices x, y, z = 1, 2, 3 which should not be

mistaken with coordinates.
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3. Three functions Z0,+,− defined on the hyperKähler space which are explicitly given by

Z+ = Z(0)
+ − α′

2

(
∂mZ(0)

+ ∂mZ(0)
−

Z(0)
0 Z

(0)
−

)
+O(α′2) , (3.10)

Z− = Z(0)
− +O(α′2) , (3.11)

Z0 = Z(0)
0 − α′

4

[
V1 + V2 −

(
∂ logZ(0)

0

)2
−W

]
+O(α′2) , (3.12)

where all the functions with a (0) superscript are harmonic in the hyperKähler space.

Notice that the internal product implied in some of the terms in (3.10) and (3.12) is

performed using the hyperKähler metric.

Using these building blocks, the remaining fields take the form

ds2 =
2

Z−
du

[
dv − 1

2
Z+du

]
−Z0dσ

2 − dyidyi , i, j = 1, 2, 3, 4 , (3.13)

H = dZ−1
− ∧ du ∧ dv + ?(4)dZ0 , (3.14)

e−2φ = e−2φ∞Z−
Z0

, (3.15)

where eφ∞ = gs. The Kalb-Ramond 2-form B satisfies

dB = dZ−1
− ∧ du ∧ dv + ?(4)dZ

(0)
0 . (3.16)

3.1 The 5-dimensional solutions

For our purposes, we only need to know the metric and the two scalar fields of the 5-

dimensional solution (the 5-dimensional dilaton field φ and the Kaluza-Klein scalar that

measures the radius of the 6 → 5 compactification, k). These are obtained from the 10-

dimensional metric and dilaton with the same relations used in absence of α′ corrections, [2],

and read

ds2 = f2dt2 − f−1dσ2 ,

e2φ = e2φ∞ Z0

Z−
, k = k∞

Z1/2
+

Z1/4
0 Z

1/4
−

,
(3.17)

where dσ2 is the 4-dimensional hyperKähler metric in eq. (3.1), φ∞ and k∞ are the asymp-

totic values of φ and k, and the metric function f is given by

f−3 = Z0Z+Z− . (3.18)

The functions Z0,+,− are given in eqs. (3.10)–(3.12).

We should also mention that the SU(2) instanton fields have exactly the same expres-

sion as in 10 dimensions.
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3.2 The 4-dimensional solutions

If the hyperKähler metric dσ2 in eq. (3.17) is a Gibbons-Hawking space eq. (3.3) and the

other fields of the 5-dimensional solution do not depend on the isometric coordinate η, we

can dimensionally reduce all fields along that coordinate, obtaining the metric and scalar

fields. However, before doing so, it is convenient to rescale the coordinate η = RΨ/2,

where the dimensionless coordinate Ψ ∈ [0, 4π) and the length of the circle is 2πR. The,

the Kaluza-Klein scalar of the 5 → 4 compactification, that we will denote by `, has the

asymptotic value `∞ = 1
2R/`s. Taking into account these points we get

ds2
(4) = e2Udt2 − e−2Ud~x 2 ,

e2φ = e2φ∞ Z0

Z−
, k = k∞

Z1/2
+

Z1/4
0 Z

1/4
−

, ` = `∞
Z1/6

0 Z1/6
+ Z1/6

−
H1/2

,
(3.19)

where the metric function e−2U is given by

e−2U =
√
Z0Z+Z−H . (3.20)

The compactification of the Heterotic Superstring we are considering here gives an

extension of the STU model of N = 2, d = 4 Supergravity (plus the α′ corrections related

to Ω(−)).
8 The three scalars above are the imaginary parts of the three complex scalars of

that model.

As for the non-Abelian gauge fields, their reduction follows Kronheimer’s prescrip-

tion [27], slightly modified by the introduction of the parameter R. It gives rise to adjoint

Higgs fields ΦAi and gauge fields ĂAi in E3 related to the components of the gauge field in

the Gibbons-Hawking space by

ΦAi = −HAAi] /(R/2) ĂAix = AAix − χxA
Ai
] . (3.21)

The self-duality of the field strength in the hyperKähler space implies the that ΦAi

and ĂAi are related by the Bogomol’nyi equation in E3 [28]

D̆ΦAi = ?(3)F̆
Ai . (3.22)

As shown in [21], the gauge fields constructed in this way enjoy the 3-dimensional version

of the “Laplacian property”:

ωYM
i = ?(4)d

(
ΦAiΦAi/H

)
, (3.23)

FAi ∧ FAi = dωYM
i = ∇2

(4)

(
ΦAiΦAi/H

)
|v|d4x . (3.24)

This result is reviewed in appendix A.

In the current setup, in order to get a 4-dimensional solution we only need to choose

a set of four harmonic functions Z(0)
+,−,0,H and a solution of the Bogomol’nyi equations

8The Yang-Mills fields of the Heterotic Superstring appear as non-Abelian vector multiplets of the 4-

dimensional, gauged, supergravity.
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in E3 (3.22). If the solution is, at zeroth-order in α′, a single (spherically-symmetric),

asymptotically-flat, regular, extremal black hole, the functions Z(0)
+,−,0 are of the form

Z(0)
+,−,0 = 1 +

q+,−,0
r

, (3.25)

and we are bound to choose9

H = 1 +
q

r
, (3.26)

where r = |~x| and q plays the rôle of a U(1) magnetic charge in d = 4. The corresponding

Gibbons-Hawking space is a Kaluza-Klein (KK) monopole (also known as Euclidean Taub-

NUT space) which, for large values of r, asymptotes to E3 × S1. For this reason, the KK

monopole is not used to construct asymptotically-flat 5-dimensional solutions and H = 1/r,

which corresponds to E4
−{0}, is used instead in that case. Since the q/r term dominates

in the r → 0 limit, the 4-dimensional solutions have a 5-dimensional core even though

asymptotically the have only four non-compact dimensions.

As for the solutions of eq. (3.22) (by definition, BPS magnetic monopoles, among which

the ’t Hooft-Polyakov magnetic monopole [29, 30] in the Prasad-Sommerfield limit [31] is

a particular example), we must look for spherically-symmetric field configurations. Fortu-

nately, all of them where found by Protogenov in ref. [32]. Independently of their singular

character in E3, all of them have been used to construct regular, extremal, spherically-

symmetric black holes in d = 4 dimensions and the ’t Hooft-Polyakov BPS monopole has

been used to construct globally regular solutions [20, 33–36].10

Using these BPS monopole solutions and Kronheimer’s prescription we get selfdual

instanton fields in 5 and 10 dimensions and we want them to be regular. For a given BPS

monopole, this property depends critically on the choice of H and, more precisely, on its

singularities and the behavior of the adjoint Higgs field ΦA at those singularities. In ref. [27]

Kronheimer gave the conditions under which the contributions to the instanton number

(action) in a neighborhood of the singularities of H are finite. It is easy to see that all the

monopoles found by Protogenov satisfy them if H is also spherically-symmetric, that is, if

H = a+ b/r for two positive constants ab 6= 0.

Observe that, even if Kronheimer’s conditions are satisfied at r = 0, the instanton

number density FAi ∧ FAi may not fall off fast enough for large values of r to give a finite

integral. For H = 1/r, the choice that leads to asymptotically-flat 5-dimensional solutions,

this problem was shown in ref. [37] to arise for all of Protogenov’s solutions except for the

1-parameter family of “colored” monopoles discussed in refs. [20, 36], which turn out to

correspond to the BPST instanton [38]. These instantons were used in ref. [21] as part of the

solution-generating technique found in ref. [39] to construct black holes with non-Abelian

hair and, in ref. [23] to construct a globally regular instanton solution which corresponds

to the compactification of the 10-dimensional heterotic “gauge 5-brane” of ref. [40].

9Multicenter solutions demand multicenter Z(0)
+,−,0s and multicenter Hs, but this case will be stud-

ied elsewhere.
10E3 is just an auxiliary space. The complete physical solution can be regular even if one uses a monopole

solution which is singular in that auxiliary space. Typically, the singularity of the monopole in E3 is resolved

by the extremal horizon.
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For H = 1 + q/r, all the monopoles found by Protogenov give instantons over the KK

monopole with good asymptotic behavior. We present them in detail in the next section.

Then, in the following sections we study the 4- 5- and 10-dimensional solutions they give

rise to.

4 Ingredients of the 4-dimensional black hole solution

4.1 KK monopole of arbitrary charge

We consider the Gibbons-Hawking metric

dσ2 = H−1(dη + χ)2 +Hdxidxi , where dH = ?(3)dχ . (4.1)

Here η is a compact coordinate of periodicity η ∼ η + 2πR. We choose the following

harmonic function H
H = 1 +

q

r
. (4.2)

It is convenient to use spherical coordinates θ, φ defined by

x1

r
= sin θ cosφ ,

x2

r
= − sin θ sinφ ,

x3

r
= − cos θ , (4.3)

so that, locally, the 1-form χ reads

χ = q cos θdφ . (4.4)

In these coordinates, the metric of the KK monopole takes the form

dσ2 = H−1(dη + q cos θdφ)2 +H
(
dr2 + r2dΩ2

(2)

)
, (4.5)

where

dΩ2
(2) = dθ2 + sin2 θdφ2 , (4.6)

is the metric of the round S2 of unit radius. However, a global description of the solution

requires two patches. The 1-form χ = q cos θdφ contains a Dirac-Misner string at the poles

θ = 0, π, or equivalently, in the line x1 = x2 = 0. This can be easily checked by computing

the norm of χ:

| cos θdφ|2 = q2 cot2 θ

Hr2
, (4.7)

which is divergent at those points. In order to fix this singularity, we work with two

different patches:

χ(+) = q (cos θ − 1) dφ , χ(−) = q (cos θ + 1) dφ . (4.8)

In this way, χ(+) is regular everywhere except at θ = π, and χ(−) is regular everywhere

except at θ = 0. We also have to use different coordinates η(+) and η(−) in every patch,

but in the intersection we must have

dη(+) + χ(+) = dη(−) + χ(−) ⇒ d
(
η(+) − η(−)

)
= 2qdφ . (4.9)
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Hence, we conclude that

η(+) − η(−) = 2qφ . (4.10)

Since φ has period 2π and both η(±) have period 2πR by definition, this relation can only

hold if q satisfies the quantization condition

q =
nR

2
, n = 1, 2, . . . (4.11)

The reason is that η ∼ η + 2πR trivially implies that η ∼ η + 2πnR, and thus the Dirac-

Misner string is avoided for all n = 1, 2 . . . Let us then introduce the angular coordinate

Ψ =
2η

R
⇒ Ψ ∼ Ψ + 4π . (4.12)

Taking into account the quantization of the charge q, we can write then the metric (lo-

cally) as

dσ2 = H−1R
2

4
(dΨ + n cos θdφ)2 +H

(
dr2 + r2dΩ2

(2)

)
. (4.13)

It is important for future purposes to understand the r → 0 and r → ∞ limits of

this space.

• In the r → 0 limit we must use that H ∼ nR
2r , and after performing the change of

coordinates

r =
ρ2

2nR
, (4.14)

we obtain

dσ2(r → 0) ∼ dρ2 +
ρ2

4

[(
dΨ

n
+ cos θdφ

)2

+ dθ2 + sin2 θdφ2

]
. (4.15)

When n = 1, we recognize the factor that ρ2 multiplies as the metric of the round S3.

However, for n > 1 the cyclic coordinate Ψ does not cover the full sphere, but only

a 1/n part of it. This corresponds to the metric of a lens space S3/Zn, and hence

the full space near r = 0 is the orbifold E4/Zn. Although lens spaces are regular,

the full Gibbons-Hawking metric contains a conical singularity at r = 0, because at

this point the periodicity of Ψ is not “the right one” for n > 1. Nevertheless, it is

important to notice that, when one takes into account the full 10-dimensional metric

with non-vanishing q0 there is no conical singularity, see eqs. (3.13) and (3.25).

• In the asymptotic limit r → ∞ we have H → 1 and the metric becomes the direct

product S1 × E3:

dσ2(r →∞) = dη2 + dxidxi . (4.16)

This is better seen by using Cartesian coordinates xi and the two patches introduced

previously. In that case, the 1-forms χ(±) read

χ(±) = q
x1dx2 − x2dx1

r(x3 ± r)
, where r =

√
(x1)2 + (x2)2 + (x3)2 . (4.17)
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We use χ(+) in the upper space x3 ≥ 0 and χ(−) in the lower one x3 ≤ 0. In this way,

it is explicit that χ(±) are regular in their respective regions, and we observe that

limr→∞ χ
(±) = 0, where the limit is again taken in the respective region. Hence, the

metric (4.1) becomes (4.16).

4.2 SU(2) instantons over KK monopoles

The BPS monopoles and the corresponding instantons that we consider can be written in

terms of the functions f(r), h(r) by

ΦA = −x
A

r
(rf) , ĂAx = −εAxz

xz

r
(rh) , (4.18)

AA = H−1x
A

r
(rf)

R

2
(dΨ + n cos θdφ)− εAxzr2h

xz

r
d

(
xx

r

)
. (4.19)

There are two independent families of solutions. One of them corresponds to the

colored monopole, which depends on a parameter λ:

fλ(r) = hλ(r) = − 1

gr2

1

1 + λ2r
. (4.20)

The other family depends on two parameters (µ, s), and it is given by

rfµ,s(r) = − 1

gr
[1− µr coth(µr + s)] , rhµ,s(r) = − 1

gr

[
1− µr

sinh(µr + s)

]
. (4.21)

The parameter µ can always be taken to be positive, while s, which in this context

is known as Protogenov hair parameter, can take any real value. However, we will only

consider s ≥ 0 to avoid singularities.

The s = 0 member of this family is the ’t Hooft-Polyakov magnetic monopole [29, 30]

in the BPS limit [31] with mass parameter µ and it is the only regular monopole in this

family. On the other hand, in the s→∞ limit we get

rfµ,∞(r) =
µ

g
− 1

gr
, rhµ,∞(r) = − 1

gr
, (4.22)

which is a µ-dependent generalization of the Wu-Yang SU(2) monopole [41].

We are going to characterize the instantons over a KK monopole that all these

monopoles give rise to. Observe, first of all, that the norm of the Higgs field is given by

|Φ| = (ΦAΦA)1/2 = |rf | , (4.23)

and that Kronheimer’s conditions are satisfied:

lim
r→0

r|Φλ| =
1

g
, lim

r→0
d(r|Φλ|) = −λ

2

g
dr (4.24)

for the colored monopole, and

lim
r→0

r|Φµ,s| =


1

g
, s 6= 0 ,

0 , s = 0 ,

lim
r→0

d(r|Φµ,s|) =


−µ coth s

g
dr , s 6= 0 ,

0 , s = 0

(4.25)

for the (µ, s) family.
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Except for the (µ, s = 0) case, the vector fields AA in eq. (4.19) are singular at r = 0

in the Gibbons-Hawking space (4.1). The fact that Kronheimer’s conditions are satisfied

ensures that these singularities can be removed by performing an appropriate gauge trans-

formation (in fact, the field strength FA is regular). It is not too difficult to show that

this is the case when n = 1, for all the instantons constructed from the above monopoles.

However, for n > 1, the presence of a conical singularity in the GH space at r = 0 makes

the problem more complicated, and we have not found the gauge in which the vectors

become regular when defined over that space. Nevertheless, we stress that the physical

fields are not defined over the GH space, but over the physical manifold whose metric is

given by eq. (3.13). As explained in the previous section, in the full spacetime the conical

singularity at r = 0 is blown away by the conformal factor in front of the hyperKähler

metric. This mechanism also resolves the original divergences of these vectors, rendering

the instanton fields regular.

The regularity conditions on the SU(2) gauge fields have relevant physical implications.

For example, in the (µ, s) family, the parameter µ is related to the charge of the instanton.

However, from the String Theory point of view, the charge cannot depend on an arbitrary

continuous parameter. As we explain in appendix B, the correct construction of this family

of solutions implies that the parameter µ should actually be quantized [42], according to

eq. (B.32), which we write here for convenience

µ =
2m

Rn
, m = 0, 1, 2, . . . (4.26)

In the case of the λ-family of instanton solutions built from the colored monopoles,

the charge is independent of any continuous parameter, as we show below. Moreover, as

we will see in the following section, the instantons of the λ-family are the most interesting

ones from the point of view of α′ corrections.

The “charge” of these instantons is just their instanton number, which is given by

n = − g2

8π2

∫
Tr
[
F̂ ∧ F̂

]
=

g2

16π2

∫
FA ∧ FA , (4.27)

where the integral is taken over the GH space.11 This integral takes a simple form once we

take into account that FA ∧ FA is the Laplacian of some function V (see appendix A):

FA ∧ FA = −d ?(4) dV . (4.28)

Using that relation, for the cases that we consider V = V (r), we can write

d ?(4) dV = ?(4)
1

|v|
∂r
(
H−1|v|∂rV

)
, (4.29)

and integration yields

n = − g2

16π2

∫
R

2
dΨ ∧ dθ ∧ dφ sin θr2∂rV

∣∣∣r=0

r=∞
= −g

2R

2
r2∂rV

∣∣∣r=0

r=∞
. (4.30)

11More precisely, it is defined over the 4-dimensional space conformal to the GH space, but the integral

is invariant under Weyl transformations.
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For our instantons the function V is given by (see appendix A)

V =
ΦAΦA

H
=
r2f(r)2

H
, (4.31)

and we obtain

nλ =
1

n
, nµ,s =

(m+ 1)2 − δs,0
n

. (4.32)

As we see, the instanton number is quantized although its value is not necessarily an

integer. This is related to the presence of the lens space S3/Zn and it shows that these

instantons, when n > 1, are somewhat exotic in a mathematical sense. Other solutions

with rational but discrete instanton number are known in the literature, see, for instance,

refs. [42, 43].

5 Explicit 4-dimensional black hole solutions and their charges

Having described all the basic building blocks necessary to construct a solution, we just

need to specify our choices for them.

We choose single-pole, spherically symmetric, harmonic functions Z0,+,− of the form

eqs. (3.25) and the GH space of the charge-q KK monopole described in the last section

with harmonic function H given by eq. (3.26). In addition, we are going to include an

arbitrary number Nλ and Nµ,s of instantons of the λ and (µ, s) families, respectively,

which we have described in section 4.2. Introducing this input in eqs. (3.10)–(3.12) and

using the relations eqs. (B.33)–(B.35) for the contribution from the instantons V1, V2, we

obtain the α′-corrected functions

Z+ = 1+
q+

r
−α

′

2

q+q−
r(r+q)(r+q0)(r+q−)

+O(α′2) , (5.1)

Z−= 1+
q−
r

+O(α′2) , (5.2)

Z0 = 1+
q0

r
(5.3)

+
α′

4r(r+q)

{
q2

0

(r+q0)2
+

q2

(r+q)2
−

Nλ∑
i=1

1

(1+λ2
i r)

2
−
Nµ,s∑
i=1

[1−µir coth(µir+si)]
2

}
, (5.4)

H= 1+
q

r
+O(α′2) , (5.5)

where we recall that the charge q is quantized according to eq. (4.11). Note, however,

that these functions are not univocally determined: we are free to add an arbitrary O(α′)

harmonic function to each of them, and the resulting field configuration is still a solution

of the equations of motion at first order in α′. We use this freedom to impose that the 1/r

pole of the Z functions is not changed by the α′ corrections and to ensure that Z → 1 at

infinity. For the functions above this amounts to the changes

Z+ → Z+ +
α′

2rq

q+

q0
, Z0 → Z0 −

α′

4rq

2−Nλ −Nµ,s +

Nµ,s∑
i=1

(
δs,0 + rqµ2

i

) . (5.6)
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There are two reasons why we must eliminate the poles from the α′ corrections:

1. The α′ corrections are associated to the curvatures of the gauge instantons and tor-

sionful spin connection, which are regular. Thus, they should be regular as well. The

poles are spurious and their presence is solely due to the fact that we are using a

singular gauge to write the different connections.

2. We want to associate the residues of the poles with the sources of the solution, and

these should not be modified by the α′ corrections.

From now on we focus the discussion on the gauge fields on the λ-instantons, which

will shortly be proven as the most interesting family. Then, for simplicity reasons, we

will set Nµ,s = 0. Taking into account all these points, the functions that determine the

solution read

Z+ = 1 +
q+

r
+
α′q+

2qq0

r2 + r(q0 + q− + q) + qq0 + qq− + q0q−
(r + q)(r + q0)(r + q−)

+O(α′2) , (5.7)

Z− = 1 +
q−
r

+O(α′2) , (5.8)

Z0 = 1 +
q0

r
+ α′

{
− F (r; q0)− F (r; q) +

Nλ∑
i=1

F (r;λ−2
i )

}
+O(α′2) , (5.9)

H = 1 +
q

r
+O(α′2) , (5.10)

where we have introduced the function

F (r; k) :=
(r + q)(r + 2k) + k2

4q(r + q)(r + k)2
. (5.11)

Expressed in this way, it is obvious that we can eliminate all the α′ corrections to Z0

if we use Nλ = 2 instantons of sizes λ−2
1 = q0, λ−2

2 = q (Nµ,s = 0). We will come back to

this point later.

In the configuration at hand, q0 is related to the number of solitonic (or Neveu-Schwarz,

NS) 5-branes (S5), q− is related to the winding number of a string wrapped along the u

direction (F1) and q+ represents the momentum of a wave (W) along that direction. We

also have a KK monopole of charge n (q = nR/2) and a number Nλ of gauge 5-branes,

sourced by the SU(2) instantons.

The easiest way to determine the number of stringy objects is by looking at the near-

horizon geometry r → 0. In that case, we introduce the coordinate ρ in (4.14) such that dσ2

becomes explicitly E4/Zn. The full 10-dimensional geometry is regular and corresponds to

the spacetime geometry AdS3 × S3/Zn × T4. The Z functions behave in that limit as

Z0 ∼
2nRq0

ρ2
, Z− ∼

2nRq−
ρ2

, Z+ ∼
2nRq+

ρ2
. (5.12)

This near-horizon geometry is the same as the one of the 5-dimensional black holes con-

sidered in refs. [2, 3] up to a Zn quotient, and therefore we can apply the results there in

order to obtain the number of stringy objects from the coefficients of 1/ρ2. There is one
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difference though: here we only have 1/n-th of the sphere, and this means that the field

produced by one of these objects is n times larger than in the case in which we have the

full sphere. Taking into account this effect, we expect the result to be

q0 =
`2s
2R

NS5 , q− =
`2sg

2
s

2R
NF1 , q+ =

g2
s`

4
s

2RR2
u

NW . (5.13)

Indeed, one can check that the values of q0 and q− above agree with the ones computed

by using the relations12

g2
sNS5TS5 =

g2
s

16πG
(10)
N

{∫
S×S2

∞

?e2φH̃ − α′

4

∫ (
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

)}
, (5.15)

TF1NF1 =
g2
s

16πG
(10)
N

∫
S×S2

∞×T4

?e−2φH , (5.16)

obtained by coupling the 10-dimensional Heterotic Superstring effective action to the world-

volume effective actions of NS5 solitonic 5-branes and NF1 fundamental strings [2].

The interpretation of q+ is, however, less transparent. This is related to the fact that

the parameters q0, q− and q+ represent localized sources of solitonic 5-brane, string and

momentum charge respectively. But due to the effect of the α′ corrections, those do not

necessarily amount for the corresponding total charges measured at infinity. For instance,

when r →∞, the functions Z+,0 take the form

Z+ = 1 +
1

r

(
q+ +

α′q+

2qq0

)
+O

(
1

r2

)
, (5.17)

Z0 = 1 +
1

r

[
q0 +

α′

2R

(
− 2

n
+Nλnλ

)]
+O

(
1

r2

)
, (5.18)

where nλ = 1/n is the instanton number, as given in eq. (4.32). Therefore, there are

additional O(α′) contributions to the S5 and W charges at infinity, while the F1 charge

does not receive any contributions at O(α′).

Let us first consider the corrections/contributions to the S5 charge through the func-

tions Z0. Some of these are immediately identified as produced by gauge 5-branes, which

play the rôle of non-localized S5 sources. They are responsible for the appearance of the

instanton number in the above expressions and are well understood.

The rest of the α′ corrections in Z0 are associated to the Ω(−) connection. As we

already remarked some lines above, their net effect is the same as that of Nλ = 2 gauge

5-branes but with a negative sign. This means that we can eliminate all the α′ corrections

in Z0 simply by taking Nλ = 2. This choice is that of the symmetric 5-brane of ref. [44]

adapted to include a KK monopole of charge n.

The case of S5 charge is paradigmatic, because we can explicitly identify and compute

the different types of sources; the pole in Z0 at r = 0 gives the number of solitonic 5-branes,

12Here the tensions read

TS5 =
1

(2π`s)5`sg2s
, TF1 =

1

2πα′
, (5.14)

and the NSNS 7-form field strength H̃ is defined as H̃ = ?e−2φH.
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while the remaining regular functions account for delocalized sources of non-Abelian nature

coming from α′-corrections. Furthermore, these corrections can be completely cancelled by

an adequate choice of Yang-Mills fields eliminating any possible ambiguity in the identifi-

cation of the number of S5-branes that source the solution.

Now we turn back our attention to the W charge and the interpretation of q+. At this

stage and after the preceding discussion, the direct identification of q+ in terms of NW

units of momentum charge carried by the string proposed in eq. (5.13) is rather natural;

the pole in Z+ should correspond to a localized source of momentum, while the remaining

regular contribution to the function represents delocalized sources of momentum arising

from higher-order interactions. The additional contributions to NW at infinity coming from

the α′ corrections have positive sign. We do not know how to cancel them by introducing

some delocalized gauge brane. The contribution of a SU(2) dyonic gauge field, like that of

ref. [22], would only add up to it. This is an α′ correction that we have to live with and

which has important physical consequences.

Performing a T-duality transformation along the u coordinate using the α′-corrected

rules [45] amounts to the following changes in the functions [1, 3]

Z− → Z ′− = 1 +
1

r

(
q+ +

α′q+

2qq0

)
,

Z+ → Z ′+ = 1 +
1

r

(
q− −

α′q−
2qq0

)
+
α′q−
2qq0

r2 + r(q0 + q+ + q) + qq0 + qq+ + q0q+

(r + q)(r + q0)(r + q+)
.

(5.19)

As we see, T-duality interchanges the total (asymptotic) string and momentum charges.13

However, since the total momentum charge receives contributions from delocalized sources

while the total string charge does not, the microscopic T-duality rules interchanging NW

and NF1 have to be modified as

q′− =

(
q+ +

α′q+

2qq0

)
−→ N ′F1 = NW

(
1 +

2

nNS5

)
, (5.20)

q′+ =

(
q− −

α′q−
2qq0

)
−→ N ′W = NF1

(
1− 2

nNS5

)
. (5.21)

We emphasize that the identification of the parameters of the solution in terms of fun-

damental String Theory objects and their relation with the asymptotic charges is affected

by the global aspects of the solution when α′ corrections are present. Therefore, the use

of merely near-horizon geometries for this purpose, which, as we have discussed in the

Introduction, has been a common strategy in the literature, can introduce errors in the

determination of the sources. We shall come back to this issue in the discussion section.

To close this section, we note that when one or both of q, q0 vanish, a qualitatively

different family of solutions, known as “small” black holes, is obtained. In order to avoid

difficulties in the limits q, q0 → 0 in Z0 given by eq. (5.9) it is convenient to work with

the symmetric solution with Nλ = 2 gauge 5-branes that kills the α′ corrections. On the

13On the other hand, the near-horizon geometry and entropy are preserved at O(α′). Moreover, tem-

perature and entropy of the BTZ black hole in a simplified model remain invariant under the α′-corrected

T-duality transformation, [46].
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other hand, this limit is singular in the expression of Z+ given in eq. (5.7), but the reason

is that the subtraction made in eq. (5.6) is not pertinent in this case. Hence, we should

use eq. (5.1). For example, in the q0 → 0 limit, we get

Z+ = 1 +
q+

r
− α′q+q−

2r2(r + q)(r + q−)
+O(α′2) , (5.22)

Z− = 1 +
q−
r

+O(α′2) , (5.23)

Z0 = 1 , (5.24)

H = 1 +
q

r
+O(α′2) . (5.25)

An analogous solution is obtained if instead we set q = 0, q0 6= 0, just by interchanging

H with Z0 and q0 with q in Z+. These solutions are characterized by the anomalous degree

of divergence of Z+ at r → 0, which now is ∼ 1/r2, instead of the usual ∼ 1/r. If both q

and q0 vanish, the divergence is ∼ 1/r3. As we discuss in the next section, this behavior

potentially could stretch the horizon of these small black holes to yield a non-vanishing

area. However, we will see in section 6.2 that these solutions are non-perturbative and

therefore the functions given in eqs. (5.22)–(5.25) cannot give a good description of the

small black holes near the horizon.

6 α′ corrections to d = 4 black holes

From the solutions constructed in the previous section and the compactification given by

eq. (3.19), we obtain a family of 4-dimensional black holes with α′ corrections. Let us

determine the main properties of these solutions.

6.1 4-charge black holes

Let us first consider the case in which all charges are non-vanishing, qq0q+q− 6= 0. We

write here the metric of these black holes for convenience,

ds2 = e2Udt2 − e−2Ud~x 2 , where e−2U =
√
Z0Z+Z−H . (6.1)

First, defining the mass M from the asymptotic behavior

e−2U = 1 +
2G

(4)
N M

r
+O

(
1

r2

)
, (6.2)

and using eqs. (5.3)–(5.5), we obtain

M =
1

4G
(4)
N

[
q0 +

α′(Nλ − 2)

4q
+ q− + q+

(
1 +

α′

2qq0

)
+ q

]
. (6.3)

This expression takes a more meaningful form in terms of the stringy objects that

form the black hole. The charges are characterized by the integer numbers NS5, NF1, NW
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and n according to eqs. (5.13) and (4.11). On the other hand, the 4-dimensional Newton’s

constant is obtained from the 10-dimensional one as

G
(4)
N =

G
(10)
N

(2πR)(2πRu)(2π`s)4
=

g2
s`

4
s

8RRu
, (6.4)

where we used the value of the 10-dimensional Newton’s constant G
(10)
N = 8π6`8sg

2
s . Plug-

ging this into eq. (6.3), we get

M =
Ru
g2
s`

2
s

(
NS5 +

Nλ − 2

n

)
+
Ru
`2s
NF1 +

NW

Ru

(
1 +

2

nNS5

)
+ n

R2Ru
g2
s`

4
s

. (6.5)

We see that every SU(2) instanton contributes to the mass as one S5-brane times

the instanton number.14 If we do not include SU(2) fields, the α′ corrections induce a

negative mass term that looks as that of certain kind of anti S5-brane. Hence, in order to

avoid negative mass contributions the most natural choice corresponds to Nλ = 2, and in

particular to the choice of two instantons that cancel all the α′ corrections in the function

sourced by the 5-branes Z0. Then, the S5-branes are symmetric.

An intriguing observation in the symmetric case is the following. As we see, the mass

is the sum of four terms, that actually correspond to the asymptotic charges as should

happen in a BPS state. Let us write it as M = Q1 +Q2 +Q2 +Q4. Then, if we consider

instead the quantity

16πG
(4)
N

√
Q1Q2Q3Q4 = 2π

√
NF1NW (nNS5 + 2) , (6.6)

we are going to see that it coincides with the exact result for the entropy computed counting

string microstates. At the very least, this relation suggests that in the symmetric case we

do not expect to have further corrections to the mass, and hence the resulting eq. (6.5)

with Nλ = 2 would be exact. Going further, this also supports the conjecture, based

on the form of the T -tensors that account for all the α′ corrections associated to the

supersymmetrization of the Chern-Simons terms, that the symmetric solution could be

actually exact at all orders in α′.15

On the other hand, the near-horizon geometry r → 0 is that of AdS2 × S2 and it does

not receive any explicit α′ correction:

ds2
nh = (q0q+q−q)

−1/2r2dt2 + (q0q+q−q)
1/2

(
dr2

r2
+ dΩ2

(2)

)
, (6.7)

and the area of the horizon area is

A = 4π
√
q0q+q−q . (6.8)

14In our previous works (refs. [1–3, 23, 47]) we have used, following ref. [40], a (wrong) normalization

that differs from the one used in this paper by a factor of 8 for the α′ corrections in the action, so in that

references every instanton contributes as 8 S5 branes. Here we have eliminated this factor, in agreement

with ref. [48]. We thank Prof. M.J. Duff for sharing this information with us.
15The reasons that support this conjecture are the exactly the same that support it in the 5-dimensional

case treated in ref. [3]. Unfortunately, the α′ corrections which are unrelated to the supersymmetrization

of the Chern-Simons terms are not well known and there is no much that can be said about them that

supports or contradicts the conjecture.
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However, due to the terms of hiher order in the curvature present in the Heterotic Super-

string effective action, the entropy is not simply given by A/(4G
(4)
N ). We will compute its

value in the next section by applying Wald’s formula [17, 18].

Bonus example: corrections to Reissner-Nordstrom black hole. The Reissner-

Nordström black hole corresponds to the zeroth-order in α′ solution with q+ = q− = q0 = q.

This choice of charges gives constant scalars eφ = eφ∞ , k = k∞ and ` = `∞ at this order.

However, taking into account the constituents of the black hole, we can only take those

charges equal at given points in moduli space

gs = eφ∞ =

√
NS5

NF1
, Rz/`s = k∞ =

√
NW

NF1
, R/`s = 2`∞ =

√
NS5

n
, (6.9)

which fixes the asymptotic values of the scalars to their attractor values.

Applying the general result to this particular case is straightforward. Taking the

symmetric case, we find that the corrected metric function e−2U and the scalars take

the form

e−2U =
(

1 +
q

r

)2
+
α′

4q

[r2 + 3rq + 3q2]

r(r + q)2
+O(α′2) , (6.10)

e2φ = e2φ∞ , (6.11)

k = k∞ +
α′k∞

4q

r[r2 + 3rq + 3q2]

(r + q)4
+O(α′2) , (6.12)

` = `∞ +
α′`∞
12q

r[r2 + 3rq + 3q2]

(r + q)4
+O(α′2) , (6.13)

with

q =
`s
2

√
nNS5 . (6.14)

We also have to take into account that the 4-dimensional Newton constant given in

eq. (6.4) now has the value

G
(4)
N =

`2s
8

√
nNS5

NWNF1
. (6.15)

Then, if we do not want G
(4)
N to change with q, we must set NWNF1 = ℵ2NS5n for some

positive dimensionless constant ℵ so that

G
(4)
N =

`2s
8ℵ

. (6.16)

Staying at weak coupling (so the loop corrections can be safely ignored) and away of

the self-dual radii at which new massless degrees of freedom arise, demands the follow-

ing hierarchy

NW > NF1 > NS5 > n , ⇒ ℵ � 1 . (6.17)

At this point in moduli space, the mass of the black hole will be given by

M =
4

`s

√
NWNF1

(
1 +

1

2nNS5

)
, or 2G

(4)
N M = `s

(√
nNS5 +

1

2
√
nNS5

)
, (6.18)
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while the area of the horizon takes the value

A = 4πq2 = π`2snNS5 , (6.19)

and the leading contribution to the entropy will be

A

4G
(4)
N

= 2π
√
nNS5NWNF1 = 2πℵnNS5 . (6.20)

6.2 Small black holes

It has been known for some time that, in the String Theory context and at lowest order

in α′, four charges are needed in order to obtain a 4-dimensional extremal black hole with

a regular horizon. When one or more of the charges vanish, the horizon (still located at

r = 0) has zero area and becomes singular. Usually, the small black holes considered in

the literature only contain q− and q+ charges (corresponding to strings and waves). There

is a curvature singularity at r = 0 and the scalars behave there as

e2φ → 0 , k ∼ 1

r1/4
, ` ∼ 1

r1/3
. (6.21)

Although at zeroth-order in α′ the area and entropy vanish, the exact entropy of such

black holes computed by counting string microstates is finite (see e.g. ref. [9]). Hence, from

the Supergravity perspective, it was expected that the singularity at the would-be horizon

of these solutions could be fixed somehow. Since the string coupling vanishes at r = 0,

quantum corrections cannot be of help here, but α′ corrections can be relevant because the

curvature is very large (divergent) there.

Let us consider the α′-corrected solution in the case q0 = 0, allowing q to be arbitrary,

so that the solution still contains 3 independent charges. This solution is determined by

the functions in eqs. (5.22)–(5.25). Let us recall that we are choosing a symmetric KK

monopole in this case, so that Z0 = 1. This solution is qualitatively different from the

4-charge black hole. For example, the limit q0 → 0 in the mass formula eq. (6.3) would be

divergent, but we find instead

M =
1

4G
(4)
N

[q− + q+ + q] . (6.22)

On the other hand, in the limit r → 0 the functions H and Z− diverge with the usual

1/r behavior, but the α′ corrections produce another divergence in Z+ that dominates in

this limit:

Z+ ∼ −
α′q+

2qr2
. (6.23)

Thus, assuming that q+q− < 0, the metric becomes again AdS2 × S2 and the area of the

horizon is

A = 4π
√
−α′q+q−/2 . (6.24)

Interestingly, only two charges contribute to this area even if the solution contains

three of them. It is immediate to check that the previous formula also holds if we set q = 0
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(because then Z+ ∼ −α′q+
2r3

) or if we set instead q0 6= 0, q = 0. Summarizing all the cases,

if q0q = 0 it seems that the higher curvature corrections pump the area of the horizon up

from zero to the value in eq. (6.24).

However, it is possible to see that this analysis is not rigorous enough. Our solution

generating technique, summarized in section 3, assumes that the solution admits a pertur-

bative expansion. In particular, to obtain the corrections to the function Z+ as given in

eq. (3.10) we implicitly assume that the dominant contribution to ∂nZ+ is given by ∂nZ(0)
+

everywhere, allowing a perturbative construction. This is true in the 4-charge family of

solutions, but when q0q = 0 we immediately see from eq. (6.23) that ∂nZ(0)
+ is subdominant

in the near-horizon region. This is a contradiction which signals that our method to build

solutions is not valid in this case and that small black holes are non perturbative, so the

solution eqs. (5.22)–(5.25) should not be trusted at this stage. They will be studied in

more detail in a forthcoming paper ref. [49].

Let us close this section by mentioning that α′ corrections also introduce very curious

properties in 4-charge solutions when two of the charges are negative. At zeroth order

in α′ such solutions represent naked singularities, but it was shown in ref. [50] that the

first-order corrections turn them into globally regular black holes whose horizon does not

contain any singularity. These solutions suffer from the same issue as the one mentioned

for small black holes, hence a thorough analysis of the higher-order corrections is necessary

to determine if these appealing regular black holes can be trusted.

7 Black hole entropy

In this section we will compute the Wald entropy of the black holes we have obtained, up to

terms of O(α′). Following refs. [17, 18], the Wald entropy formula for a D+ 1-dimensional

theory is

S = −2π

∫
Σ
dD−1x

√
|h|EabcdR εabεcd , (7.1)

where Σ is a cross section of the horizon, h is the determinant of the metric induced on

Σ, εab is the binormal to Σ with normalization εabε
ab = −2, and EabcdR is the equation of

motion one would obtain for the Riemann tensor Rabcd treating it as an independent field

of the theory,

EabcdR =
1√
|g|
δS(D+1)

δRabcd
, (7.2)

where S(D+1) is the action of the theory.

Then it seems that, in order to compute the entropy of the lower dimensional solu-

tions one needs to know the α′ corrections to the Lagrangians of the dimensionally reduced

theories. The determination of such correction terms starting from the 10-dimensional

theory would require a long and intricate calculation, but luckily it turns out to be un-

necessary since, as we will now show following the discussion in ref. [3], the entropy of

the 4- and 5-dimensional solutions can be re-expressed entirely in terms of integrals of

10-dimensional quantities.
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It is convenient to work in frames adapted to the dimensional reduction. To this end,

we start by rewriting the 10- and 5-dimensional line elements eqs. (3.13) and (3.17) in the

following form:

ds2
(10) = eφ−φ∞

[
(k/k∞)−2/3ds2

(5) − (k/k∞)2

(
du− dt

Z+

)2
]
− dyidyi , (7.3)

ds2
(5) = R/(2`) ds2

(4) − `
2 (dΨ + χ)2 , (7.4)

where the 4-dimensional line element ds2
(4), the dilaton φ and the Kaluza-Klein scalars k

and ` are given by (3.19), which we report here for convenience:

ds2
(4) = e2Udt2 − e−2Ud~x 2 ,

e2φ = e2φ∞ Z0

Z−
, k = k∞

Z1/2
+

Z1/4
0 Z

1/4
−

, ` = `∞
Z1/6

0 Z1/6
+ Z1/6

−
H1/2

,
(7.5)

with eφ∞ = gs and

e−2U =
√
Z0Z+Z−H . (7.6)

We are also going to need the metric function of the 5-dimensional black holes f , which is

given in eq. (3.18) and which we also quote here for convenience:

f−3 = Z0Z+Z− . (7.7)

We define the following Vielbein bases in 4, 5 and 10 dimensions, respectively:

v0 = eUdt , v1 = e−Udr , v2 = e−Urdθ , v3 = e−Ur sinθdφ. (7.8)

V 0,...,3 = (R/(2`))1/2 v0,...,3 , V 4 = `(dΨ+cosθdφ) , (7.9)

W 0,...,4 = e
φ−φ∞

2

(
k

k∞

)− 1
3

V 0,...,4 , W 5 = e
φ−φ∞

2
k

k∞

(
du− dt

Z+

)
, W 6,...,9 = dy6,...,9 ,

(7.10)

where (r, θ, φ) are spherical coordinates on E3.

As we can see, the Vielbein 1-form bases we have introduced in 4,5 and 10 dimensions

are related by multiplication by a common factor, and consequently the components of the

Riemann tensors in these frames are related by

R(10)abcd = e−(φ−φ∞)(
k

k∞
)2/3R(5)abcd + . . . , (7.11)

for a, b, c, d = 0, . . . , 4 and

R(5)abcd =
2`

R
R(4)abcd + . . . ⇒ R(10)abcd =

2`

R
e−(φ−φ∞)(

k

k∞
)2/3R(4)abcd + . . . , (7.12)

for a, b, c, d = 0, . . . , 3, so that

δS(10)

δR(5)abcd
= e−(φ−φ∞)(k/k∞)2/3

∫
δS(10)

δR(10)abcd
, (7.13)
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and

δS(10)

δR(4)abcd
=

2`

R
e−(φ−φ∞)(k/k∞)2/3

∫
δS(10)

δR(10)abcd
, (7.14)

where the integrations are on the appropriate compact coordinates. The action is, of course,

the same in any dimension, and, therefore,

δS(5)

δR(5)abcd
=

δS(10)

δR(5)abcd
,

δS(4)

δR(4)abcd
=

δS(10)

δR(4)abcd
. (7.15)

In the solutions we are interested in, the horizon Σ is located at r = 0, where the

timelike Killing vector becomes null. Then we have

|g(5)| = fH|h(5)| , |g(4)| = |h(4)| , (7.16)

on Σ, and the components of the binormal εab when expressed in the frames defined above

are the same in any dimension, ε01 = 1.

All this allows us to write the Wald entropy for the 4 and 5-dimensional solutions in

10-dimensional language, the explicit expressions being

S(5) = −2π

∫
Σ3

d3x

√∣∣∣∣h(5)

g(5)

∣∣∣∣ δS(5)

δR(5)abcd
εabεcd (7.17)

= −2π

∫
Σ3×S1×T4

d8x(fH)−1/2e−(φ−φ∞)(k/k∞)2/3 δS(10)

δR(10)abcd
εabεcd , (7.18)

and

S(4) = −2π

∫
Σ2

d2x

√∣∣∣∣h(4)

g(4)

∣∣∣∣ δS(4)

δR(4)abcd
εabεcd (7.19)

= −2π

∫
Σ2×S1×S1×T4

d8x
2`

R
e−(φ−φ∞)(k/k∞)2/3 δS(10)

δR(10)abcd
εabεcd . (7.20)

Observe that, taking into account the expression for ` in eq. (7.5), if Σ3 = Σ2 × S1,

then S(5) = S(4).

The action S(10) is given in eq. (2.9). At leading order it depends on the Riemann

tensor only through the Einstein-Hilbert term, while at first order in α′ there are additional

contributions from terms depending on the curvature of the torsionful spin connection

Ω(−), denoted by R(−). Since we are only interested in the first order corrections and R(−)

already appears at first order in the Lagrangian, it is enough to consider the leading order

dependence of R(−) on the Riemann tensor,

R(−)abcd = R(10)abcd + . . . . (7.21)
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Since at this order no derivatives of the Riemann tensor appear in the Lagrangian, one has

on Σ

1√
|g(10)|

δS(10)

δR(10)abcd
εabεcd =

e−2(φ−φ∞)

16πG
(10)
N

∂

∂R(10)abcd

(
R+

1

2 · 3!
H2 − α′

8
R(−)

a
bR(−)

b
a

)
εabεcd

=
e−2(φ−φ∞)

16πG
(10)
N

[
ηacηbd +

Hefg

3!

δHefg

δR(10)abcd

]
εabεcd

=
e−2(φ−φ∞)

16πG
(10)
N

[
ηacηbd − α′

8
HabgΩ(−)g

cd

]
εabεcd

= −e
−2(φ−φ∞)

8πG
(10)
N

[
1 +

α′

4
H01gΩ(−)g

01

]
. (7.22)

The term quadratic in R(−) does not contribute because R(−) vanishes on Σ.16 The

relevant components of the Kalb-Ramond field strength H and of the torsionful spin con-

nection Ω(−) can be obtained straightforwardly,

H01g = −δ5
g(Z0H)−1/2∂r logZ− , (7.23)

Ω(−)501 =
1

2
(Z0H)−1/2∂r log (Z−Z+) , (7.24)

H01gΩ(−)g
01 = H015Ω(−)5

01 =
1

2

∂r log (Z−Z+)∂r logZ−
Z0H

. (7.25)

The last missing piece is the determinant of the 10-dimensional metric, which reads√
|g(10)| = e3(φ−φ∞)f−1R

2
r2H sin θ(k/k∞)−2/3 . (7.26)

Putting everything together we get to

S(4) =
R

8G
(10)
N

∫
dθdφdΨdzd4yr2 sin θ

√
Z0Z+Z−H

(
1 +

α′

8

∂r log (Z−Z+)∂r logZ−
Z0H

)
.

(7.27)

Once we substitute the explicit form of the functions Z0,± given in eqs. (3.25) and

H given in eq. (3.26) and integrate on the compact coordinates and on Σ we arrive at

the result

S(4) =
π

G
(4)
N

√
q0 q+q−q

(
1 +

α′

4q0q

)
, (7.28)

with the 4-dimensional Newton constant given by

G
(4)
N =

G
(10)
N

(2πR)(2πRu)(2π`s)4
. (7.29)

Finally, with the identifications eqs. (5.13) and (4.11)

q0 =
α′

2R
NS5 , q+ =

α′2g2
s

2RR2
u

NW , q− =
α′g2

s

2R
NF1 , q =

nR

2
, (7.30)

16See [3, 51].
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and

G
(10)
N = 8π6α′4g2

s , (7.31)

the entropy can be finally rewritten as

S(4) = 2π
√
NF1NWnNS5

(
1 +

1

nNS5

)
. (7.32)

8 Discussion

The preceding result (7.32) coincides with the next to leading order approximation to

S(4) = 2π
√
NF1NW (nNS5 + 2) , (8.1)

in a nNS5 � 1 expansion, which is the exact entropy formula computed previously in the

literature using the entropy function formalism in ref. [51] — see also [52] — once the global

effects of higher-curvature corrections on the charges are properly taken into account, as

we are going to explain below. Since the near-horizon solution preserves the symmetries of

AdS3× S3, at the horizon one has R(−)
a
b = 0. Therefore all corrections to the area law in

the Wald entropy arise from the variation of the Kalb-Ramond field strength with respect

to the Riemann tensor, which suggests that it might be possible to compute them explicitly.

Direct comparison of (8.1) with the expression displayed in the previous literature

seems to yield an apparent mismatch; previous studies based on near-horizon solutions

obtain a correction factor of value +4, instead of +2, inside the square root. The obvious

question is: why?

Before answering that question, let us notice that we can rewrite the expression eq. (8.1)

substituting the number of solitonic 5-branes NS5 by the total, asymptotic solitonic 5-brane

charge QS5 = NS5 + Nλ−2
n . In doing so, we get

S = 2π
√
NF1NW (nQS5 + 4−Nλ) , (8.2)

where, we recall, Nλ is the number of instantons in the solution. To get here we have used

the formula for the shift in the charges that we obtained at first order in α′. However,

this expression is actually exact, as explained in [53]. Then, equation (8.2) is also exact.

Since previous studies do not include non-trivial gauge fields, we see that setting Nλ = 0

we reproduce the aforementioned correction factor when the entropy is mostly expressed in

terms of asymptotic charges instead of fundamental constituents, except for the momentum

carried by the string. As we are going to argue, this is no coincidence.

In the entropy function formalism, the S5 charge is carried by an auxiliary Abelian

4-dimensional vector whose Bianchi identity is uncorrected, i.e. its field strength is a closed

2-form. This means that the charges carried by this auxiliary field is the same everywhere,

asymptotically and at the horizon. In most of the preceding literature this charge was

identified with NS5, the number of S5-branes. On the other hand, it was observed in

ref. [52] that the charge carried by this auxiliary field is actually the asymptotic S5 charge,

QS5, carried magnetically by the Kalb-Ramond field strength.

– 27 –



J
H
E
P
0
2
(
2
0
1
9
)
1
9
2

This identification is in direct contradiction with the identification of total charges

and sources which we have explained in full detail in the preceding sections. As we have

argued repeatedly, the NS5 S5-branes are responsible of the local S5 charge measured at the

horizon, while the asymptotic charge results from adding to these the delocalized sources

introduced by the higher curvature corrections. Observe that, if the asymptotic charge were

NS5, then the charge at the horizon would be given by (NS5 + 2/n), with the shift caused

by the higher curvature corrections. It seems hard to justify how this would be possible,

specially taking into consideration that the curvature R(−)
a
b vanishes at the horizon.

Finally, we observe that, in order to reproduce the standard formula for the entropy we

have preserved the near-horizon momentum charge NW . This can be justified as follows.

While in ref. [51] the Chern-Simons terms that carry the delocalized S5 charge are carefully

taken into account, the term T (0) is not included in the action. This term is responsible

for the appearance of delocalized momentum charge, as becomes manifest in the Einstein

equation of motion (2.11). It is for this reason that we should not take the shift of this

charge into account to perform this comparison.

For all these reasons we claim that the correct expression for the entropy expressed

in terms of the number of fundamental constituents of the solution is eq. (8.1). This

identification also matches the microscopic result eq. (1.1) (k = nQS5 + 2 = nNS5).17

Notice that if we set n = 1 the value of the entropy coincides with that of the three-

charge, five-dimensional black holes we described in ref. [3]. From our perspective this

seems completely natural, since after setting n = 1 the event horizon of the black hole we

get is identical to that of ref. [3], so both Wald entropies should match. Once again, this

result would be in contradiction with the standard expression found in the literature, where

the correction factor is +3 instead of +2. Yet again, in this case, we find the origin of the

discrepancy might be on the identification of the charges. Notice that in the 5-dimensional

black holes the hyperKähler space is simply R4, and the contribution to the asymptotic S5

charge coming from
∫
R(−)

a
b ∧ R(−)

b
a is just −1. Hence, substituting NS5 − 1 = QS5 in

eq. (8.1) we reproduce the standard correction factor found in the literature.18

Therefore, in light of our results it seems that the appearance of a factor different from

+2 is caused by a misidentification of the number of fundamental objects of the heterotic

superstring and their relation with the asymptotic charges of the solution.
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A Instanton number density as a Laplacian

Consider an arbitrary Gibbons-Hawking space, with metric

dσ2 = H−1(dη + χ)2 +Hdxxdxx , dH = L ?(3) dχ , (A.1)

and define on it an SU(2) field of the form

AA = −H−1ΦA(dη + χ) + ĂA , (A.2)

where ΦA and ĂA are, respectively, a function and a 1-form defined on E3. Then the

requirement of self-duality for the field strength

FA = dAA +
1

2
εABCAB ∧AC (A.3)

is equivalent to the Bogomol’nyi equation

FA = + ?(4) F
A , ⇐⇒ D̆ΦA = ?3F̆

A , (A.4)

and one has

FA = −D̆
(
H−1ΦA

)
∧ (dη + χ)−H−1ΦAdχ+ F̆A

= −D̆
(
H−1ΦA

)
∧ (dη + χ) + ?3D̆

(
H−1ΦA

)
. (A.5)

The instanton number density is, then.

FA ∧ FA = −2D̆(H−1ΦA) ∧ ?3D̆(H−1ΦA) ∧ (dη + χ)

= −H−1
[
2D̆(H−1ΦA) ∧ ?3D̆ΦA − 2H−1ΦAD̆(H−1ΦA) ∧ ?3D̆H

+ 2H−1ΦAD̆ ?3 D̆ΦA −H−2ΦAΦAd ?3 dH
]
∧ (dη + χ)

= −H−1D̆ ?3 D̆
(
H−1ΦAΦA

)
∧ (dη + χ) = H−1∂x∂x

(
H−1ΦAΦA

)
|v|d4x

= ∇2
(4)

(
ΦAΦA/H

)
|v|d4x , (A.6)

where we made use of the fact that H is harmonic, d ?3 dH = 0, and that D̆ ?3 D̆ΦA =

D̆F̆A = 0.

B Regular instantons over Kaluza-Klein monopoles

Let us consider the monopoles introduced in section 4.2. We are going to see that, over the

KK monopole of unit charge (n = 1), all these monopoles give rise to regular instantons,

giving an explicit construction of the instanton bundles. These instantons over a KK
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monopole with unit charge were first described in ref. [43]. Moreover, for higher KK

monopole charge, n > 1, the corresponding instantons are also regular in the full spacetime

metric provided the black hole horizon has non-vanishing area. From now on we consider

the n = 1 case in detail for the sake of simplicity. The regularity condition for the n > 1

case is treated in section B.3.

WE are going to use the following convenient way of writing the gauge fields AA in

eq. (4.19) in the case n = 1

AA = −h(r)r2vAR +
xA

r
(dΨ + dφ cos θ)

(
R

2H
rf(r)− h(r)r2

)
, (B.1)

where vAR are the right-invariant Maurer-Cartan forms
v1
R = sinφdθ − sin θ cos ΨdΨ ,

v2
R = cosφdθ + sin θ sinφdΨ ,

v3
R = dφ+ cos θdΨ ,

dvAR +
1

2
εABCv

B
R ∧ vCR = 0 . (B.2)

B.1 Near-origin limit

When r → 0, H ∼ (R/2)/r, and after the change of variables r = ρ2

2R , we can rewrite the

metric as

dσ2 = dρ2 + ρ2dΩ2
(3) , (B.3)

where

dΩ2
(3) =

1

4

[
(dΨ + dφ cos θ)2 + dΩ2

(2)

]
, (B.4)

is the metric of the round S3 of unit radius, so the space is locally E4.

On the other hand, at the origin r = ρ = 0, the gauge fields of the different instantons

take the values

lim
r→0

Aµ,s =


1

g
vR , s 6= 0 ,

0 , s = 0 ,

lim
r→0

Aλ =
1

g
vR (B.5)

where A = AATA and vR = vARTA and {TA} is the basis of the su(2) algebra

TA = − i
2
σA , [TA, TB] = +εABCTC . (B.6)

Hence, except in the case (µ, s = 0), these vectors are singular at the origin, something

which can be made explicit if we write A(r = 0) in terms of the Vielbein basis. However,

A(r = 0) is pure gauge and the field strength F is finite at the origin for s 6= 0. Furthermore,

Kronheimer’s conditions are met there. This indicates the existence, for s 6= 0, of another

gauge in which the gauge field is regular at the origin.

An arbitrary gauge transformation of the vector reads

Â = V AV −1 − 1

g
dV V −1 , (B.7)
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where V ∈ SU(2). If we choose V = U where

U ≡ e−T 3Ψe−T
2θe−T

1φ , (B.8)

is the generic SU(2) group element parametrized in terms of the Euler angles Ψ, θ, φ, and

we take into account the properties of the Maurer-Cartan forms19

vR = UvLU
−1 , (B.10)

we get the following transformed gauge field:20

gÂ = −(1 + gh(r)r2)vL − g
(
R

2H
rf(r)− h(r)r2

)
(dΨ + cos θdφ)T3 . (B.12)

If we apply this transformation to the λ and (µ, s > 0)-cases, we get, respectively:

gÂλ = − λ2r

1 + λ2r

(
v1
LT1 + v2

LT2

)
−
r
(
1 + λ2(r +R/2)

)
(R/2 + r)(1 + λ2r)

v3
LT3 , (B.13)

gÂµ,s>0 = − µr

sinh(µr + s)

(
v1
LT1 + v2

LT2

)
− r [1 + µR/2 coth(µr + s)]

R/2 + r
v3
LT3 . (B.14)

Now, near the origin the vectors behave as Â ∼ ρ2vL and we conclude that the gauge

fields are regular at r = 0 for all values of λ and s > 0. In the case s = 0 the vector is

already regular and we do not need to perform any gauge transformation. In that case, it

reads

gÂµ,s=0 =

(
1− µr

sinhµr

)
vR (B.15)

+
xA

r
TA(dΨ + dφ cos θ)

r

r +R/2

{
1− µ [r +R/2(1− coshµr)]

sinhµr

}
. (B.16)

B.2 Asymptotic limit

In order to study the asymptotic limit, it is convenient to recall the global structure of the

solution and to use cartesian coordinates x1, x2, x3. In these coordinates, the two 1-forms

χ(±) read21

χ(±) =
x1dx2 − x2dx1

r(x3 ± r)
, where r ≡

√
(x1)2 + (x2)2 + (x3)2 . (B.17)

19These properties follow from their definition in terms of U :

vL ≡ −U−1dU , vR ≡ −dUU−1 . (B.9)

20The left-invariant MC forms read
v1L = − sin Ψdθ + sin θ cos Ψdφ

v2L = cos Ψdθ + sin θ sin Ψdφ

v3L = dΨ + cos θdφ

dvAL −
1

2
εABCv

B
L ∧ vCL = 0 . (B.11)

21For convenience, in this section χ is defined locally as χ = dφ cos θ, without the factor of q that appears

in (4.4).
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We use χ(+) in the upper space x3 ≥ 0 and χ(−) in the lower one x3 ≤ 0 so that χ(±) are

regular in their respective regions. Moreover, we observe that

lim
r→∞

χ(±) = 0 , (B.18)

where the limit is again taken in the respective region. In this limit we also have H ∼ 1,

and hence the space becomes the direct product E3 × S1. The metric takes the form

dσ2 =
R2

4
dΨ2 + dxidxi . (B.19)

Let us now explore the asymptotic behavior of the gauge fields.

In the case of Âλ we obtain

lim
r→∞

Âλ = lim
r→∞

−1

g
vL = −1

g
T3dΨ . (B.20)

The first equality is obtained by using the explicit dependence in r in eq. (B.13), while

in the second equality we use the implicit dependence contained in the angular 1-forms

inside the MC forms.22 The vector at infinity is pure gauge, so that there is an element

V ∈ SU(2) such that

Âλ∞ = −1

g
dV V −1 . (B.21)

This element is

V = eΨT3 =

(
e−iΨ/2 0

0 eiΨ/2

)
, (B.22)

which defines a map from the equator of the sphere to the subgroup U(1) ⊂ SU(2). Hence,

V is an homomorphism from the circle in itself which belongs to the first homotopy class.

This case is very simple because the asymptotic value of the vector does not depend

on free parameters. The family (µ, s) is more interesting in this sense. In the case s > 0,

we obtain from eq. (B.14)

lim
r→∞

Âµ,s = lim
r→∞

−(µR/2 + 1)

g
(dΨ + χ)T3 = −(µR/2 + 1)

g
T3dΨ , (B.23)

where we used that v3
L = (dΨ +χ) and eq. (B.18). Therefore, the vector at infinity is pure

gauge, and the corresponding gauge transformation reads

V = e(µR/2+1)ΨT3 =

(
e−i(µR/2+1)Ψ/2 0

0 ei(µR/2+1)Ψ/2

)
. (B.24)

However, we must demand that V is a single-valued map V : S1 ⊂ S3 → U(1) ⊂ SU(2).

Since Ψ has period 4π we see that the following quantization condition must hold so that

V (Ψ + 4π) = V (Ψ):
µR

2
+ 1 ∈ Z . (B.25)

22For example, limr→∞ dθ = 0, which is clear if we take into account that the norm of dθ vanishes:

|dθ|2 = r−2 when r → ∞. On the other hand, the norm of dΨ remains finite because it is a compact

dimension: |dΨ|2 → 4/R2.
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The case s = 0 can be reduced to the previous one after we apply the gauge transfor-

mation U−1 in (B.8) to the asymptotic value of eq. (B.15). Since we demand that µ ≥ 0,

we can write

µ =
2m

R
, m = 0, 1, 2, . . . (B.26)

B.3 Higher KK monopole charge with a horizon

When the charge of the KK monopole is bigger than one, the 4-dimensional manifold it

describes contains an conical singularity at the origin due to a deficit in the angle covered

by the coordinate Ψ. This property also affects the instanton field; see, e.g., the appearance

of n in eq. (4.19). Because of this factor, we have not been able to mimic the steps of the

previous sections and find a gauge transformation rendering the fields zero at the origin,

which seem to remain singular at this location of this GH space.

That the instantons are singular can be seen from the fact that the angular coordinates

are ill-defined at r = 0, while in this basis some of the angular components of corresponding

vectors 1-form are non-vanishing. However this problem is immediately solved in the

black hole solutions that we consider if the event horizon has non-vanishing area. There,

the angular coordinates are perfectly valid at r = 0 and the gauge fields are already

regular in the original gauge (at this location the coordinate r is not well defined, but the

corresponding component of the 1-forms of all the instantons considered is zero).

Having said that, it is easy to check that the instantons of the λ-family are globally

regular, since they vanish asymptotically. On the other hand, for the µ, s-family we obtain

the following asymptotic behavior

lim
r→∞

gAµ,s =
µR

2
(dΨ + n cos θdφ)

xA

r
TA , (B.27)

with χ = q cos θdφ. Written in this manner, we see that the gauge field contains a string

singularity at θ = 0, π that extends to infinity, while remaining regular elsewhere. The

local expression around these locations reduces to

lim
r→∞
θ→0,π

gAµ,s = ∓µR
2

(dΨ± ndφ)T3 , (B.28)

for the upper and lower plane respectively.

We now perform a local gauge transformation (B.7) in a small open set around these

two points with

V (±) = e∓µnRφT3/2 =

(
e±iµnRφ/4 0

0 e∓iµnRφ/4

)
, (B.29)

and get

lim
r→∞

gÂµ,s = ∓
(
µR

2
dΨ

)
T3 , (B.30)

which have no string singularity whatsoever. As shown in ref. [42], the local gauge trans-

formations eq. (B.29) can be extended through the sphere (except the poles) by replacing
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T3 → xATA/r. Then, in the intersections Â(+) and Â(−) are related by the gauge transfor-

mation

V (±) = e∓µnRφ(xA/r)TA , (B.31)

which is single valued in the coordinate φ if and only if µnR/2 is an integer number. There-

fore, we get a generalization of the quantization condition eq. (B.26) for the n > 1 case,

µ =
2m

Rn
, m = 0, 1, 2, . . . (B.32)

B.4 Contribution to the solution

These instantons contribute to the solution through the function Z0. Using the general

result eq. (3.12), their contributions read

∆Z0

∣∣∣
λ

= − 2α′

r(r + q)(λ2r + 1)2
, (B.33)

∆Z0

∣∣∣
µ,s>0

= −2α′
[1− µr coth (µr + s)]2

r(r + q)
, (B.34)

∆Z0

∣∣∣
µ,s=0

= −2α′
[1− µr cothµr]2

r(r + q)
, (B.35)

where q = nR/2 and we set the gauge coupling constant in the Heterotic Superstring

to g = 1.

Now the pole and asymptotic constant can be removed by adding an appropriate

harmonic function a+ c/r. After this transformation, the contributions read

∆Z0

∣∣∣
λ

= 2α′
(r + q)λ2(λ2r + 2) + 1

q(r + q)(λ2r + 1)2
, (B.36)

∆Z0

∣∣∣
µ,s>0

= 2α′

{
µ2 +

q−1

r
− [1− µr coth (µr + s)]2

r(r + q)

}
, (B.37)

∆Z0

∣∣∣
µ,s=0

= 2α′

{
µ2 − [1− µr cothµr]2

r(r + q)

}
. (B.38)
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