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ABSTRACT. We consider the evolution differential inclusion for a nonlocal op-
erator that involves p(x)-Laplacian,

t
ut — Apz)u — /0 gt = 8)Apyu(z,s)ds € F(u) in Qr =Q x (0,7),

where 2 C R™, n > 1, is a bounded domain with Lipschitz-continuous bound-
ary. The exponent p(z) is a given measurable function, p~ < p(z) < pt a.e. in
Q for some bounded constants p~ > max{1, nQ—fQ} and pt < co. It is assumed
that g, ¢’ € L2(0,T), and that the multivalued function F(-) is globally Lips-
chitz, has convex closed values and F(0) # (). We prove that the homogeneous
Dirichlet problem has a local in time weak solution. Also we show that when
p~ > 2 and uF(u) C {v € L*(Q) : v < eu? a.e. in Q} with a sufficiently small
€ > 0 the weak solution possesses the property of finite speed of propagation of
disturbances from the initial data and may exhibit the waiting time property.
Estimates on the evolution of the null-set of the solution are presented.

1. INTRODUCTION

We study the differential inclusion for the p(z)-Laplace equation with the non-
local memory term

¢
Uy — Apzyu — /0 g(t = s)Apyu(z,s)ds € F(u) in Qr =Q x(0,7),
u(z,0) = up(x) in Q, w=0on 90N x [0,T],

where 2 C R" is a bounded domain with Lipschitz-continuous boundary, g(s) is a
given memory kernel. Here A, (,) denotes the p(z)-Laplace operator

Apipyu = div(|VulP D=2 Vu),

where p(-) : 2 — R” is a given measurable function such that

(1.1)

I1<p <p(x)<p" ae inQ

with some bounded constant pT. It is worth noting that the continuity of p(x) is
not required.
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Let H = L*(Q) and B(H) be the set of all bounded nonempty subsets of H. It
will be assumed that the multivalued function F satisfies the following conditions.

(F1) The mapping F : H — B(H) is globally Lipschitz, there exists a constant
L > 0 such that

disty (F(u),F(v)) < L||lu — v||g, u,v € H, (1.2)
where disty (-, ) denotes the Hausdorff distance: given A, B C H,

disty(A, B) = inf [|a — bl|z, sup inf [la — bl|z ).
isty( (A, B) maX{iggblgBHa [, 5up int, [la I}

(F2) F has convex closed values.

An immediate byproduct of condition (F1) is that F(0) # . Two “ad hoc”
examples of functions F satisfying these conditions are furnished by the functions
F1(u) = [0, |u]], where [0, |u]] := {v € L?(Q) : 0 < v(z) < |u(x)]| for a.e. z € Q} and

Fo(u) [eu, —u] ifu <0,
u) =
? [—u,eu] ifu>0

= {v € L*(Q) : eu(z) < v(z) < —u(x)if u(z) < 0,
—u(z) <v(z) <eu(z) if u(z) >0, ae. z € Q}

with € > 0. Notice that for the function Fy(u) and every v € H,

Fo(u) [—u?, eu?] ifu <0,
uFa(u) =
? [—u? eu?] ifu>0 (1.3)

={ve L*Q): —u*(z) <v(z) < eu’(z) ae. in Q}.

The mathematical models with differential inclusions appear in numerous appli-
cations such as the control of forest fires [g], the study of the processes of combustion
in porous media [I9], or conduction of electrical impulses in nerve axons [31},32]. In
climatology, the energy balance models may lead to evolution differential inclusions
which involve the p-Laplacian [12} [I3]. A degenerate parabolic-hyperbolic problem
with a differential inclusion appears in a glaciology model [14].

The partial differential inclusions which involve the p-Laplace operator with con-
stant p were considered by many authors, see, e.g., [25] 26, 27, [30]. The inclusions
for operators with variable nonlinearity, that is, the operators with p(x)-Laplacian,
were considered in [21] 24] 28]. For an insight into the multivalued problems and
differential inclusions we refer [5] [, [33 22] and references therein.

Parabolic equations with nonlocal terms appear in the mathematical description
of the heat propagation in materials with memory where the heat flux may depend
on the past history of the process - see, e.g., [20]. The specific features of problem
(L.1) are the presence of the nonlocal memory term and the operator A,y with
variable exponent p(x), which generalizes the classical p-Laplacian. The PDEs
with variable nonlinearities are gaining ground in the mathematical modelling of
the real life processes. The theory of such equations is developing very rapidly
and already counts with a number of important results - see, e.g., [I, 17, 2] and
the bibliographic review in [2]. However, in the presence of the nonlocal term the
operator on the left-hand side of inclusion is not monotone, which prevents
one from a direct application of known results and methods in the study of problem
. Our approach to problem relies on a fixed point theorem in the form
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[15] and the unique solvability of problem for the nonlocal equation with the
multivalued function F(u) substituted by an arbitrary given f € L(0,T; H).

In Section [2| we introduce the Sobolev spaces with variable exponents the solu-
tions of problem belong to and recall the main properties of these spaces used
in the proofs.

In Section [3] we prove the global in time unique solvability of the homogeneous
Dirichlet problem for the nonlocal equation

t
g — Dp(z)t — /0 g(t = s)Apyu(z,s)ds = f (1.4)

with an arbitrary given f € L?(0,7; H). This result is stated in Theorem [3.6| The
global in time existence is proven under the assumptions

2
p:  — R is measurable, max {1, %} <p <plx)<ph
n

g(t),g'(t) € LX(0,T), [g(0)] < oo, |Vuol'™ € L'(2), [ e L*Qr)

without any restriction on the sign of the kernel g(¢). To prove solvability of the
nonlocal equation we use the method proposed in paper [3], which deals with
the nonlocal equation with constant p. The idea consists in splitting the
nonlocal equation into a system of two equations composed of the evolution p(z)-
Laplace equation with a specially chosen right-hand side and an integral equation
of the Volterra type. Uniqueness of the global in time solution is proven in Theorem
of Section 4| under the weaker condition p~ > 1 and the same assumptions on
the kernel g.

With Theorem Section bl we prove that problem for the differential
inclusion has at least one solution for a sufficiently small T, provided that the data
satisfy the same conditions as in the existence theorem for equation and the
multivalued mapping F meets conditions (F1)-(F2). Following [I5], we base the
proof on the fixed point theorem for multivalued mappings from [34].

In the concluding Section |§| we show that the solutions of problem may
possess the property of finite speed of propagation of disturbances from the data
and may display the waiting time effect. The properties of space localization hold
for the solutions of inclusion with the multivalued function F which satisfies
the condition uF(u) C {v € L*(Q) : v < eu? a.e. in Q} with a sufficiently small
€ > 0, and under the assumptions that p~ > 2 and the oscillation of the exponent
p(z) is sufficiently small, namely, p* < (1 + 2)p~. We show that if ug = 0 in a
ball Bg, then the solution of the inclusion u(zx,t) equals zero in a co-centered
ball B, of a smaller radius p(t) and estimate the rate of change of p(t). In case
that ug is vanishing rapidly near a part of the boundary of its support, then it is
possible that p(t) = R on an interval [0, ¢*]. The moment ¢* is termed the waiting
time.

The effects of space localization are well-studied for the solutions of parabolic
equations and systems of equations without nonlocal terms - see, e.g., [4, 2] for
equations with constant and variable nonlinearity. To the best of our knowledge, the
phenomenon of space localization in solutions of differential inclusions was studied
only in the paper [IT]. The results of the present work, as well as the results of [I1],
are obtained with the local energy method [4], which happens to be very convenient
in the situations where the principle of comparison is unapplicable or no sub/super
solutions are available for comparison.
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2. FUNCTION SPACES

Let 2 C R™ be a domain with 9Q € Lip. Given a function p : Q — [p~,pT| C
(1,00), p* = const, we define the set

LrO(Q) = {f:Q—R: fis measurable on Q, / [P da < 0o}
Q
The set LP()(Q) equipped with the Luxemburg norm

Il = o> 02 [ 1217 a0 < 1) 1)

becomes a Banach space. Throughout the text we will repeatedly use the following
properties of the spaces LP() ().

e For every f € L"()(Q) and g € L’”'(')(Q), (r" = f5 is the conjugate exponent
of r) the generalized Holder inequality holds

[ 1glds < (= + =) Il allalcrn. (22)
min{(/{z|f|”dx>1/T+,(/Q|f|rdx)1/
< H.f”v"(-),Q (2.3)

< i {( [ 111" dz) / 11 dx)’

e If the domain 2 is bounded and p;(x) > p2(x) a.e. in Q, there is a continuous
inclusion LP*()(Q) ¢ LP*()(Q) and for all u € LP*()(Q),

lullpyy,0 < Cllullp, ()0 (2.4)

with a constant C' = C(|Q|, pi, pi).
Under the foregoing assumptions on the exponent p(z), the variable Sobolev

space V = WO1 P (')(Q) is defined as the closure of the set of C§°(€2) with respect to
the norm
[ollwrrer ) = [0llpe).e + 1VOlpe.0)-
The solution of the differential inclusion ([1.1)) will be sought as an element of
the space
W = L*(0,T; H) N L>®(0,T; V).
We refer the reader to the monograph [16] and also to [2, Ch.1] for further infor-
mation about the variable Lebesgue and Sobolev spaces.

Definition 2.1. A function u(z,t) is called weak solution of problem if
(1) we C(0,T; H)NW, uy € L*(0,T; H), Apmyu € L*(0,T; H), u(x,0) =
uo(z);
(2) there is a function f : [0,T] — H such that f(t) € F(u(t)), t-a.e. in [0,T7];
(3) for every test-function ¢ € W,

/ (ut¢+V¢~ (|Vu|p(””)2Vu+/tg(t—s)Vu(s)|p("”)2Vu(s)ds))dmdt
0

T

= | foduadt.
Qr
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3. EVOLUTION p(z)-LAPLACE EQUATION WITH MEMORY

The proof of the existence of a solution to the evolution nonlocal differential
inclusion (|1.1) relies on the unique solvability of the Dirichlet problem for the
nonlocal equation

t
g — Dppyu = /0 g(t = s)Apyulz,s)ds+ f in Qr =Q x (0,T),
u(z,0) =up(x) in Q, uw=0o0n 00 x [0,T]

(3.1)

with a given function f. We will assume that

9.9 € L*(0,T), feL*Qr), wuoe LX) W, (). (3.2)
Definition 3.1. A weak solution of problem (3.1)) with a given function f(z) is a
function u(z) satisfying items (1) and (3) of Definition

3.1. Auxiliary system. To construct a solution of the nonlocal problem (3.1
we consider the auxiliary problem of finding the pair of functions (u,Y’) with the
conditions

U — Dppyu =Y + f(z,t) in Qr,

u=00n0Q x[0,7], wu(x,0)=uy(z)in Q, (3:3)
V() = — / g(t = )Y (s) ds + F(x,t,u), (3.4)
0
where F' is the nonlocal operator
F(z,t,u(x,t) = u(z,t)g(0) — ug(x)g(t) + / gt —s)u(x,s)ds
0 (3.5)

t
- / g(t —s)f(x,s)ds.
0
Equation ([3.4) is the classical Volterra equation.

Lemma 3.2 ([3| Section 2]). Let g € L?(0,T). For every T > 0 and every
F € L%(Qr) equation (3.4) has a unique solution Y € L*(Qr) which satisfies
the estimates

2
Y130, <4e*I9lz0m | F|3 (3.6)
;QT +IF®O%)  ae in (0,T). (3.7

Galerkin’s approximations. A solution of problem ([3.3))—(3.4)) is obtained as the
limit of the sequences {u,}, {Yin},

2
1Y OlF < 421913 0.y 19z 0.m || F|

m

U = Zcz(t)d)z(a:), Yy, = Zdi(tﬁ/}i(i), m €N,

=1

where {1;} is the system of eigenfunctions of the problem
(. D) g = M. v)w Vo € Hi () (3.8)

with a natural s > 1+nmax{0, 3 — 1%}7 so that H5(Q) — Wol’er (Q) with compact
embedding. The set {1;} is orthogonal in H§(€2) and forms an orthonormal basis
of L?(Q2), {\;} is a nondecreasing sequence of positive numbers. The functions
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v = 3" i(t)p), ¢i(t) € C[0,T], are dense in W. For every finite m the
coefficients ¢;(t) satisfy the system of the nonlinear ordinary differential equations

) =~ /Q IVt P2Vt - Vs di + (Vi )11 + (o) 1

(3.9)
61(0) ( ("L)vwz)Hv 7::1,...,771,
where Y,,, are solutions of the Volterra equations
t
Yo (z,t) = —/ gt —s)Y(z, s ds—i—z (x,t, um,), i) ;. (3.10)
0

Proposition 3.3. For every ug € V = L*(Q) N Wol’p(')(Q) there exists a sequence
{uém)}, such that

(m) Zdzmwi ) = ug inV oas m — oo.

Proof. Tt suffices to show that for each € > 0 there is v(™) € P,,, = span{e1, ..., 9P}
such that ||ug — v"™ ||y, < e. Take an arbitrary ¢ > 0. By the definition of V' there
exists w. € C§°(£2) such that

€
o — welly = 19 o — w0 < 5. (3.11)

Since we € C§°(Q) C HE(Q), it follows that ||we||fq§(m =32 Nilwe, ¥i)%
and it is necessary that

m
w™ = Z Ni(We, )3 — we  in HE(Q) as m — oo.
i=1
There exists k = k(e) € N such that w® € Py and

€
[we = w® [y = [V (we — wEk)”p(Jﬂ < Cllwe — wék)HHg(Q) <3 (3.12)

[\

with the constant C' from the embedding inequality
[vllv < €U PVl 0 < Cllv)m@)-
Combining (3.11)) with (3.12)) we obtain

luo — w® |l < lluo — wellv + [lwe —w® ||y

IN

€ ) €, 8 _
2+C||w€ w, HHS(Q)<2+2—€

(]

By Lemma for every given F € L?*(Qr) and g € L?(0,T) equation (3.10) has
a unique solution Y, € L2(Qr), by the method of construction Y,, € P,,. Let us

denote o(t) = (¢1(t)s- - cm(£))s AE) = (d1(0), ., dun(£)), £(2) = (Fi(E)s- - fn(8))
with f;(t) = (f, %) m, and set

—/ |Vt [P 2V, - V4 daz + (Yo, 003) 1 = Fi(t, c(t), d(2)).
Q
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System (3.9)—(3.10) can be written in the equivalent form

ci(t)zci(())—i—/o fi(s,c(s),d(s))ds—k/o fi(s)ds, i1=1,...,m,

dl(t) = _/ g(t - S)dz(s) ds + (F(xatvum)vwi)H

0
The solutions of system (3.13)) define the transformations

c(t) = N(d(#)), d(t) = M(c(t))

so that c(t) is a fixed point of the transformation £ = N o M. Let us fix some a €
(0,1/2) and consider the space of m-dimensional vectors with Holder-continuous
components

Sima = {v(t) = (vi(t),...,vm(t)) : v; € C*[0,T]}.
Set

[v(®)ls0m.a Z [villcepo,z7s

v (t) — v (T
lvillcago,r) = sup |vs(t)] + sup M
(0,T) t,7€(0,T), t£T |t — 7]

Using the Hoélder inequality (2.2]) and (2.3 we obtain
[V P2V, Vi) |

g/ |V, [P |V | dae

Q

< C|||Vum|p(w)71”p’(~ 2lV¥illpe) .0

< O|| Vil (.o max /|Vu ) ) /\vu P ar) L,

By the choice of the basis, for i =1,...,m,
IVillpey.0 < C(n, p*, 1) IVillp+ 0 < C'N[Yill g = C'VAi < C'V A,

m m 2
o gy = 3N () < cAm(Z es)]) < CVAullells,o.os
/ Vi [P dp < max{HVume()Q, ||Vum|\g;m}
< Cmax{(/ |Vum|p+ dx)z%, / |Vum|p+ dx}
= Cmax {|[Vunl?, o, IVumlll o}

<" HlaX{”UmeHg(Q)’ HumHi{g(Q)}'

Gathering these estimates we find that
© -1 -1
|/ Vit [P =2V, - V) dz| < Cmax{”um”%b @)’ ||um||%g(ﬂ)}||wi||Hg(Q)

< \/Tnc(nct e, -+ e ()Ilf’sfn;l)
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with a constant C' = C(m,n,p*, |Q|). It is straightforward to check that
|(F(z,t,um), i) u| < Cr(lle(®)ls,,.. +1)

with a constant C depending on m, n, T, ||g||2,(0,7) and [|g’||2,0,7y. For every given
c € S« the Volterra equations for d; have solutions d; € LQ(O,T) - see,
e.g., [10, Ch.3]. For every d € (L?(0,T))™ the right-hand sides of the equations for
¢ in define an operator that maps ¢ € Sy, with a € (0,1/2) into S, 1 /9.
Using the estimates on F;(s, c(s),d(s)), it is straightforward to check that £ maps
the closed ball B = {c(t) : [c(t) — c(0)|s,,.. < 1} into the set {c(t) : |lc(t) —
c(0)lls,,,. < R}, where R — 0 as T — 0. Since the embedding S,,.1/2 C Sm.a
is compact, and the function F(z,t,r) is continuous with respect to r, it follows
from the Schauder fixed point theorem that for a sufficiently small T = T,, the
operator £ has at least one fixed point ¢* € B. Once c*(t) is found, the function

Y =Y ik, di(t);(x) is recovered from the equations for d; in ([3.13).

3.2. A priori estimates. For the sake of simplicity of notation, throughout this

subsection we omit the subindex m and denote
m

U = U, Y = Yma F(xvtvu) = Z(F(x,taum)vwl)sz

i=1

Lemma 3.4. If conditions (3.2)) are fulfilled, then for every T < oo and t € [0,T],

t
|m@m%+/ WMW”MEHWN%+@+ﬂ@”/\U@W%%+Q@WM@»BJQ
Q¢ 0

where the functions a(t), B(t) tend to zero as t — 0F. The functions «, 3 depend
on ||gll2,0,1), 19l 0,7), 19(0)|, but are independent of u and m.

Proof. Multiplying the equations for ¢;(¢) in (3.13) by ¢;(¢), i = 1,2,...,m, sum-
ming up and integrating the result over the interval (0,¢) we arrive at the energy
relations

1 1
f||u(t)||§{+/ |7 dz:f||u0||fq+/ Yudz+/ Fuds
2 Q. 2 Q. Q.

(3.15)

1
SLu%HQWW@+Wﬁ@+W@M~
t

Multiplication of equations for d;(t) by d;(t), i = 1,2,...,m, gives

t
YOl = (Y. [ o= 9¥(©ds) +Fetw Y@ (310
Using and the definition of F' we find that
IY13,0, < 4™l | FI3 g,
< 8e?" 1l (1g(0)2 [l @, + Ilgl3 o, ol

+Tllg' 13, 0.1 1ull3 @, + Tlgll3, 0.1 f %,Qt)'

Substituting this inequality into (3.15)) and dropping the nonnegative term on the
left-hand side we arrive at the following inequality for the function y(t) = |Ju(t)||%:

1 t
§y(t) < K/O y(s)ds + M + ¢(t) (3.17)
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with the constants

K = 1481900 (9(0)2 + Tlg'I 0.1

1 2
M = (5 + 810200 |lg|13 o 7)ol

and the function

1 >
o) = (5 + 8191007 g3 0. 1f 113,

It follows that
¢ t t
/ y(s)ds < eKt/ e Ko ds—|—eKt/ B(s)e K5 ds
0 0 0

< %(elﬁ -1) (3.18)

=

1 1 2 t
= (K1) (5 + 8B 0 T g o 1)) / 1£(s)13 ds.

Gathering (3.15)), (3.17)), (3-18) we obtain the estimate for ||u(t)||%:

) s < ol + [ R ds 2" = 1) (a1

1 t
+ (38T on gl o)) [ 11 ds).
0

|
Lemma 3.5. If conditions (3.2) are fulfilled, then for every T < oo,
B, + esssupgyry [ [Vult)P) da
: (3.19)

<O(IfBa, + [ 1900 do + uolly +1).

The constant C' depends on n, T, |Q|, p*, but is independent of m.

Proof. The second energy equality follows after multiplication of the equations for
ci(t) by ci(t):

d, 1
%+ — (—— )P dx) = Jy + J. 3.20
)+ 5o [ IVOP®) d) =+ 1 (3.20)
with J; = (Y, us) g, J2 = (f,us)g. Taking into account (3.7]) and (3.6]), we estimate
1
|J1+ o < Q\lut(t)llfrf + (1Y + 1 £11), (3:21)
where
Y IE < CUFOIE +1F13.0,) < Clullf + lul3.q, + lluoll + 11f13.4,)
by Lemma To obtain (3.19) we rewrite (3.20)) in the form
1 d 1
Sl + % (oo [ 1vuope ds)

< C(IIUII?{ +lull3 g, + lluollE + /13,0, + 1F B)IIF),
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integrate (3.22)) in ¢ and apply (3.18) to estimate [lul|3 ;, on the right-hand side of
the resulting inequality. O

The derived uniform estimates allow one to continue the sequences {uy, }, {Yim}
to an arbitrary time interval (0,7).

3.3. Existence of weak solutions.

Theorem 3.6. If f € L?>(Qr) and
2
weV. g.g €L0.7). g0 <oo. p>max{l") (323)

then problem (3.1) has at least one global solution in the sense of Definition .
This solution satisfies estimates (3.14)), (3.19).

Proof. By Lemma [3.4]

(1) wy, are uniformly bounded in L*°(0,T; V)N L>(0,T; H),

(2) (um)¢ are uniformly bounded in L?(0,T; H).
Since V = Wol’p(')(Q) C Wol’f (Q) and p~ > max{l, anz , it follows from [23]
Sec. 9, Cor. 6] that the sequence {u,} is relatively compact in L4(Qr) with some

1 < ¢ < co. Thus, there exist u € L2(Qr), Y € L2(Qr) and A € (LP' @) (Qr))"
such that

Um — w ace. in Qr and L2(Qr),  Ume — ug in L2(Q7r),

, (3.24)
[V |P® 2V, — Ain (LPO(Qr)", Y, — Y in L2(Qr).
By the construction of wu,,, for every ¢ € Py with N < m,
/ (Ut + V¢ - |V [P 2V, — (Y + f)p) dzdr =0 (3.25)
Qr
and, in particular,
/ (Uit + |Vt [P = (Y + )iy ]dz dr = 0. (3.26)
T
Letting in (3.25) m — oo, for every ¢ € Py
/ [utd +Vo-A— (Y + f)d]dedr =0. (3.27)

T

Since the set {¢n}n>1 is dense in W(Qr), the previous equality is true for every
¢ € W(Qr) and, in particular, for ¢ = u:

/ [ugu + Vu - A— (Y + flujdedr =0. (3.28)

T

Now we need to prove that for every admissible test-function ¢,

Vo - |V P 2Vu,, dtde — | V- |Vu|P@2Vudt de.
Qr Qr
By monotonicity, for every smooth function ¢

Vit = (|9t [P 2V, — [9CPE2VC) - V(1 €)
+ VPP 72VC - V(g — €) + [Vt PP 2V, - VC (3.29)
> [VEPO2VE -V (um — €) + [V POV, - V¢
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Subtracting (3.26) from (3.28)) we obtain

3
/ (=Vu- A+ |Vu [P dodr =Y Lim (3.30)

T =1

with
L= —/ (Ut — wpu) dz,  Igm = —/ (Yu — Y, um) dz,
Qr Qr

I3, = — (u — up,) dz.
Qr

The integrals Iy ,,, I2.m, I3,m tend to zero as m — oo because Uy Umt, Ymlm,
fum, are the products of weakly and strongly converging sequences. Due to the

monotonicity condition (3.29), equality (3.30) yields

/ (|vg|p<m>*2v< SV (tum — ) 4 |Vt PP 2V, - VC = Vu - A) dx dr
Qr

w

S Ii,m~
1

i
Letting m — oo we obtain

/ (IV¢p@=2v¢ — A) “V(u—¢)dxdr <0

T

with an arbitrary test-function { € W(Qr). Let ( = u £ Jn with a positive
parameter 6 > 0 and an arbitrary n € W(Qr). Simplifying the resulting inequality
and letting 6 — 0 we arrive at the inequalities

:t/ (|[Vu|P@=2Vu — A) - Vi dedr >0 Yne W(Qr),

which is impossible unless A = |Vu|P®®)=2Vy a.e. in Q7. Reverting to (3.27) we
conclude that

/ [urd + Ve - |[Vu|P@ 2Ty — (Y + f)¢] dzdr = 0. (3.31)
Qr

It follows that Ap,u = —u;+Y +f € L*(Q7) and equation (3.3)) is fulfilled a.e. in Q7.
Moreover, the inclusions u, u; € L*(Qr) yield the inclusion u € C([0,T]; L*(12)).
Applying the derived convergence properties of the sequence {u,,} and (3.24) it

is easy to see that for all x € Wol’p(')(Q),

/ F(z,t,um)x(x)de — / F(z,t,u)xdx asm — o0
Q Q
and that the limit function Y satisfies

/QY(:L‘,t)X(I)dmif/ x(@)g(t — )Y (z,s) dsder/F(x,t,u)X(z) dx (3.32)

t Q
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for every t € (0,T). To identify Y we test (3.31) in the cylinder Q; with ¢(x,s) =
x(@)g(t—s), x(x) € C§°(2), and compare the result with (3.32)): for a.e. t € (0,7),

~ [ @) [ att =95 0uts) dsa

/Qgi)(x)/o gt —5)Y dsdx—i—/gb / (t — s)f(x, s)ds dz

— [ ¢(2) tg(t—S)us(x, s) ds dx (3.33)
Q 0

Q
:—/d)(m Y(x,t)dx.
Q

Since t € (0,T) is arbitrary, it follows that

= [ ¢(x) /0 g(t —s)Y(s)dsdx + /Q o(x)F(x,t,u) dx

¢
Y (x,t) :/0 gt — 8)Apyu(r,s)ds a.e. in Qr. (3.34)
O

Remark 3.7. The energy estimates (3.14) and (3.19) remain true for the solution
of the auxiliary problem (3.3).

4. UNIQUENESS OF WEAK SOLUTIONS

Lemma 4.1. The nonlocal problem (3.1) is equivalent to system (3.3])-(3.4]).

Proof. Let us first check that every weak solution of problem generates a
solution of system 7 with F' defined by . Let u be a weak solution of
problem (3.1]). Since the equation is fulfilled a.e. in Qr, for every ¥(z) € C5°(Q)
and a.e. t € (0,7) multiplication of equation by ¥ (x)g(t — 7) and integration
over the cylinder Q x (0,t) gives

e[ o= 8paputrrar+ [ ate =0 [ otr = 98y0y005)d5) dra
= [ @090 ~ uog(t) da

R / (¢ = 7)u(r) — gt — ), 7)) di dr
- [ v@r@ ) a.

It follows that the function Y = fo —5)A, (z)u( s) ds is a solution of the Volterra
equation . On the other hand, 1t is shown in the proof of Theorem - (see
(13-34) that if the pair (u,Y") is a solution of system ((3.3] ., then u(x,t) is a
solution of the nonlocal equation. ([

Theorem 4.2. Let us assume that 1 < p < oo, ¢’ € L?(0,T), |g(0)| < co. Then
problem (3.1) has at most one weak solution in the sense of Definition .
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Proof. Let uy, ug be two different solutions of problem (3.1]) and (u1, Y1), (uz, Y2) be

the corresponding solutions of system (3.3)—(3.4]). Set v =u; —ug and Y =Y; —Ya.
Subtracting relations (3.31]) for u; with the test-function ¢ = u we find that

1
§||u()||H //Vu (|[Vur [P@ =2V uy — [Vug|P®~2Vuy) da dr

. (4.1)
= / / Yudzdr.
0 Ja
On the other hand,
t
Y(z,t) = / g(t —s)Y (x,8)ds + F(x,t) ae. in Qr (4.2)
0

with \
F(z,t) = u(z,t)g(0) — /0 g (t — s)u(x, s) ds.

There is a constant C' = C(L,|g(0)|, ||¢||2,(0,7)) such that
IFOI < il + [ Tuts)l a5

P, = [ IF 63 as <o) [ uto)lh as
whence, by Lemma
t
nnm@smwwﬁscwwm@+4nwﬂ&w}

Applying the last estimate and Young’s inequality we obtain

[ [ yudear) < [ iy o) ds

= O/Ot [u(s)ll e [HU(S)H?{ + /08 ||U(T)||§{d7':| 12

<0 [ [t + [ et ar] s,

with a constant C' depending on |g(0)], . Plugging these inequalities
into (4.1) and using the monotonicity of the second term on the left-hand side we
arrive at the inequality

ey =€ [ [luel + [ luar]ds < e [ ueds. @3

By Gronwall’s inequality ||u(t)||% = 0 for all ¢ € (0, 7). O

5. EXISTENCE OF SOLUTION FOR INCLUSION (|1.1)

Theorem 5.1. Assume that conditions (3.23)) are fulfilled and F satisfies conditions
(F1) — (F2). Given a bounded set By C V, there exists Ty > 0 such that for each
ug € By there exists at least one weak solution u of problem (1.1)) defined on [0, Tp).

For the proof of Theorem we will rely on the following abstract results.
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Definition 5.2. Let M be a Lebesgue measurable subset of RY, ¢ > 1. A selection
of E: M — 2" is a function f : M — H such that f(y) € E(y) for a.e. y € M. We
denote

SelE ={f| f: M — H is a measurable selection of E}.

Definition 5.3. Let U/ be a topological space and E : i — 2. E is called weakly
upper semicontinuous if for each u € U E(u) is nonempty, closed, and convex, and
for each weakly closed subset C in U the set

EYNC)={uclU:E(u)nC # 0}
is closed in U.

Theorem 5.4 ([I5, Theorem 3.5]). Let K be a nonempty and weakly compact subset
in a real Banach space X and let E : K — 2K\ () be such that for each u € K,
E(u) is closed and convex. If the graph of E is weakly x weakly sequentially closed,
then E has at least one fized point, i.e., there exists at least one element u € K
such that u € E(u).

Theorem 5.5 ([I5, Theorem 3.3]). Let D be a nonempty, bounded and Lebesgue
measurable subset of RP, p > 1, U a topological space, and X a real Banach space.
If E:U — 2% is weakly upper semicontinuous and u,, : D — U, f, € Sel E(uy,) for
n € N satisfy f, — f weakly in L' (D; X) and u,, — u a.e. in D, then f € Sel E(u).

5.1. Auxiliary results.

Lemma 5.6. Assume conditions (3.23) and let K C L*(0,T;H) be a nonempty
weakly compact set. Then for every initial datum uy € V the set of solutions of

problem (3.1)),
M(K):={uy: fe K}
is relatively compact in L*(0,T; H).
Proof. A weakly compact set K C L?(0,T; H) is bounded in the L?(0,T; H) norm.
According to Theorem the solution of problem ({3.1)) satisfies the estimates

lluell 22 0,7; 1) + ess Sup(o,7) / |Vu|P(x) de < C (5.1)
Q

with a constant C' depending on the data, but independent of u. By Young’s
inequality

/|Vu|ff do < |Q|+/ VP da,
Q Q

Combining this inequality with ([5.1)) we conclude that for f € K the corresponding
solutions of (3.1 satisfy the uniform estimates

Hvuf”L‘X‘(O,T;LY’_ Q) S C and ||at’LLf||L2(07T;H) S C

For p~ > max{1, n2—f2} the embedding W, ** () C H is compact and by [23, Th.5]
the set M (K) is relatively compact in L?(0,T; H). O

Lemma 5.7. If f, — f in L*(0,T; H) and u, = uy, — @ in L*(0,T; H) for some
€ L*(0,T; H), then u = uy.
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Proof. Let {u,} be the sequence of solutions of problems (3.1) with the right-
hand sides {f,}. Since the sequence {f,} converges weakly in L?(0,T; H) to some
f € L?(0,T;H), it is uniformly bounded in L2(0,7; H), which means that the
corresponding solutions of problem Uy, satisfy the uniform estimates ,
(3-19) (see Remark . These estimates allow one to extract a subsequence (for
which we shall use the same name) that possesses the convergence properties :
there exist functions u* € L2(0,T; H) and A € (L? () (Qr))™ such that

Up — u* ae. in Qr and L*(Qr), uns — uj in L*(Qr),
[Vu,|P® 2V, — Ain (P (Qr))", Y, — Y* in L*(Qr).

Let ¢ be an arbitrary smooth function. Using (5.2) we may pass to the limit in
every term of the identities

/ (PO, + |Vun PP 2V, - Vo — (Vi + f1)¢) dz = 0,
QT

(5.2)

t
/ (Y, + / gt — s)Y,(s)ds — F(z,t,un))pdz =0
. 0
and arrive at the equality

[ (oar 44560 4 oz =0

T
To identify the limits A and Y we argue in exactly the same way as in the proof
of Theorem Thus, the sequence {u,} converges to the unique solution u* of
problem (3.1). Since u,, — @ in L%(0,T; H) by assumption, it is necessary that
w = u* a.e. in Q7 and that @ is the solution of problem (3.1)). O
5.2. Proof of Theorem Let us take ug € By. Fix a number m > 0 such that
luollg +1 < m.

The proof of Theorem consists in checking the fulfillment of the conditions of
Theorem and is split into several auxiliary steps.

Proposition 5.8. There exists v > 0 such that if |w|| g < m, then ||z||lg < r for
all z € F(w).

Proof. Recall that F(0) # () by assumptions (F1) and (F2). Take zy € F(0) and let
w € H be such that |w||gr < m. Then for each z € F(w)

2z = llz—20+20llm < |lz—20llm + |20llr < Lllw|lm+llz0llz < Lm+|l20]lm =: 7

O

Without loss of generality we may assume that » > 1. By Remark the
solutions of problem ([3.1)) satisfy the estimate

T
lu@®1F < lluoll% +2/0 1 ()13 ds + M(T),

being M (T) a positive constant which tends to zero as T — 0T. The exact form
of the constant M is given in inequality (3.14)). Let us take 7 so small that
2Tyr? + M(Tp) < 1 and consider the set

K :={f e L*0,Ty;H) : | f 1l oo 0,700y < 7} (5.3)



16 S. ANTONTSEV, S. SHMAREV, J. SIMSEN, M. STEFANELLO SIMSEN EJDE-2019/26

The set K C L2(0,Ty; H) is weakly compact and nonempty. Let us define the
mapping
Pr, : K — C([0,To; H), Pr,(f) =u,

where u is the unique solution of problem (3.1) on the interval [0, Tp].
Proposition 5.9. ||u(t)|lg < m for all t € [0,To].
Proof. By (3.14), for all ¢ € [0, Ty],

To
a7 < lluollf + 2/0 1£ ()17 ds + M (To)
< (m—1)2 4+ 2Tor* + M(Tp) < m? — 2m + 2 < m?
because m > 1. It follows that ||u(t)||g < m for all ¢ € [0, Tp]. O

We want to apply the fixed point theorem (Theorem to the operator ¢ :
K — 2K defined by f +— ¢(f) = SelF(u), where u = Pr,(f). Let us check that
¢ is well-defined. According to [I5, Theorem 3.2] SelF(u) # (). Moreover, by
Proposition for f € K and u = Pr,(f) we have

lu@lg <m, Vte0.T,
whence, by Proposition for all ¢t € [0, Tp],
lzllg <7, Vz e F(u(t)).
In particular, for all f € Sel F(u) we have || f(t)||g < r, Vt € [0,Tp]. It follows that
£l 2o 0, 70500) < 7
which means that Sel F(u) C K, i.e., ¢(f) € 2¥.
Proposition 5.10. ¢ has closed values.

Proof. Take f € K and consider a sequence {f,} C #(f) = SelF(u) with u =
Pr,(f). Let f, — f in L?(0,To; H). Then f is measurable and there exists a
subsequence {f,,} of {f.} such that f,, (t) — f(¢) for a.e. ¢t € [0,Tp]. It follows
that

f(t) € F(u(t)) = F(u(t)) for a.e. t € [0,Tp] and f € Sel F(u).

Proposition 5.11. ¢ has convez values.

Proof. Let f € K. Take f1, fo € ¢(f) = Sel F(u), v = Pr,(f) and a € (0,1). Then
af1 + (1 —a) fo is measurable and af1 () + (1 — «) f2(t) € F(u(t)) for a.e. t € [0, Tp],
whence afi + (1 — a)fo € ¢(f) = Sel F(u) O

Proposition 5.12. The graph of ¢ is weaklyx weakly sequentially closed in K.
Proof. Identifying the operator ¢ with its graph we write

¢={(f.f): f€Kandfeo(f)}
Let {(fn, fn)} be a sequence in ¢ such that f, — f weakly in L?(0,To; H) and
fn — f weakly in L2(0,Typ; H). We have to prove that (f, f) € ¢. Since K is weakly
compact, then f € K and it follows that there exists a unique u € C(]0,Ty); H)
such that w = Pr,(f). Let us prove that f € ¢(f), that is, f € SelF(u) where

u:PTo(f)'
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Since (fn, fn) € ¢, for each n € N there exists u,, € C([0,Tp]; H) such that
un = Pr,(fn) and f, € Sel F(u,). By Theorem to guarantee that f € Sel F'(u)
it suffices to prove that u, — u = Pr,(f) a.e. in [0, 7] (up to a subsequence). By
Lemmathe set {un} = {uy,} is relatively compact in L?(0, Tp; H). Thus, there
exist 4 € L%(0,Tp; H) and a subsequence {uy,, } such that u,, — @ in L?(0,Ty; H)
as k — 0o. By Lemma [5.7| we have & = u = Pr,(f). It follows from Theorem [5.5
that f € Sel F(u), that is, f € ¢(f), which completes the proof. O

We are now in a position to complete the proof of Theorem [5.1} by Theorem
there exists f € K such that f € ¢(f), thence u = Pr,(f) is a solution of problem

(). O

Remark 5.13. In the special case g = 0 the operator in equation is maximal
monotone, which allows one to use different techniques in the study of this problem
- see, e.g., [24], 29] and references therein. We refer the reader to the monographs
[34, [7, @] for an insight into the theory of maximal monotone operators.

Remark 5.14. In this work, we do not discuss the challenging issue of uniqueness
of the solution to problem . We refer the reader to papers [I8] 19, [15] 13| 2]
for further references and results on the uniqueness of solutions for the semilinear
and quasilinear heat equations with discontinuous sources.

6. FINITE SPEED OF PROPAGATION AND WAITING TIME

6.1. Energy functions and energy relation. Let us fix a point zg € (2, a number
0 < po < dist(xg, 9€2) and use the notation
By(xo) ={x € R" : |z —xo| < p}, S, =0B,(x0),
Qp.t = Bplzo) X (0,1), Sy = Sp(xo) x (0,1).
We are interested in the property of finite speed of propagation of disturbances from
the initial data. This property is local and depends only on the nonlinear structure

of the parabolic operator, for this reason we study the local weak solutions u € W
of problem (1.1]). Let us denote

W(QPO,T) = LQ(QPO,T) n ) (07 T Wl’p(') (BPO (:EO)))

and make the agreement to use, wherever it does not cause a confusion, the short-
hand B, = B,(xo).

Definition 6.1. We say that a function u € C([0,T); L?(B,,)) N W(Q,,,7) with
us € L2(Qpy.1) is a local solution of problem (L.1) if

(1) there is a function f : [0,7] — L?(B,,) such that f(t) € F(u(t)), t-a.e. in
[0, 71,

(2) for every test-function ¢ € W(Q,, r) such that ¢ =0 on S,, x (0,T),
t
/ (wg+ Vo - (|VulP>Vu + / g(t — 8)|Vu(s)|P"2Vu(s) ds)) dz
Qpo.T 0
ro: (6.1)
= / fodz.
Q

ro,T
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It is clear that every weak solution of problem (1.1)) constructed in Theorem
is a local weak solution. Given a local weak solution of problem (1.1]), we introduce

the energy functions
t
z// |Vu|p(m)dz,
0o JB,

b(p.t) = [uC-,t)l3.5,. blp,t) = esssup,< Ju(-,7)|I3 5, -
By the Lebesgue differentiation theorem

t
Epz// |VulP@ dzdt € L0, po),
0o /s,

E; = / |VulP@® dz e LY(0,T),

P
bp(pt) = [[u(-, )13 5, € L' (0, po)-
We will consider the local weak solutions with finite energy in Q,,,7:
b(po, T) + E(po, T) = esssupq 7 [[u(-, t)||§73p0 +/ \VulP@dedt <L (6.2)
T

PO

with a finite constant L.

Lemma 6.2. Let u € W(Q,,1) N L®(0,T; L*(B,,). Assume that u satisfies con-
dition (6.2)) in o cylinder Qp, . If

supg, p(r)  pt 2
—_— BPO = pi < 1 + —y (63)
infp, p(xr) p n

then for every cylinder Q,+ C Qpy, 1,
lellpey.,. <C: € =C(L,p* 0, T, po) (6.4)

Proof. Let us assume first that p™ < 2. In this case

@, <]

lullpey.@,. < 2lullz.,. 111 - 2 5ar ),QMHUHLw(o,T),L?(BPO)

by (2.2] . If p™ > 2 wee use the interpolation inequality [4]: for a.e. t € (0,7T)

+(1-6
lull2s 5 < CUIVull.5, + lulle,5,)? Ol 57,
1 _ L .
0<6= T np < ZF <1.
2 np-

Since fpT < p~ by assumption (6.3]), we may integrate this inequality in ¢ and
apply Holder’s inequality, @ ) and ([2.3)):
+ +
lullys g, < C)(|Vul 2 Q. T [l o Lz(Bp))HullLoo(o’i L2(B,))
< ', 0. T (VU g, + 175 ) 100

Scu(pimo,T)(max{L‘g,Lp }+L )L(l 0) 2"

By (2.4), N
Wiz g, < COE po DIl o,
and (6.4]) follows. O
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Remark 6.3. The oscillation condition (6.3)) is surely fulfilled if p(z) € C°(B,,)
and pg is sufficiently small - see [2, Lemma 1.32].

Lemma 6.4. Let B, (z9) C Q and T < 1. Assume that condition (6.3)) is fulfilled
and

up(x) =0 in By, geL¥ (0,T). (6.5)
If a local weak solution u(z) of problem (l.1)) satisfies condition (6.2)), then the
following energy equality holds: for a.e. p € (0,pp), t € (0,T),

1 t
ib(p,t)-i-E(p,t)—/ / fudz =1, + Is + I3, (6.6)
0o JB,
where

t
]1:// u|Vu|p(””)_2Vu-VdeT,
0 Js,
t T
b= [ [ Vuw) [ gr -9Vl 2 Tuls) dsda
o JB, 0

t T
13:/ / u() / 9(7 = 9)|Vu(s) " 7> Vu(s) - v dsdSdr,
0 JS, 0

and v denotes the unit outer normal to S,.

Proof. Let us denote r = |x — x¢| and introduce the functions

0 if r > p,
G(r)y={k(p—r) ifrelp—1/kp], keN.
1 if r <p—1/k,

Choosing ¢ = u(x(r) for the test-function in (6.1) we obtain the equality

1 2
3 /Q (u)¢Cr(r) dz

ro,T

-

QpO,T
T

_ / / u(t) (|9 () P> u(t)
0 p<|lz—z0|<pt+E

+ /0 g(t — 8)|Vu(s)[P®~2Vu(s) ds) cvdz + /Q fu(t)Ce(r) d=.

ro.T

Cr(r) (|Vu(t)|p + Vu(t)/o gt — s)|Vu(s)|p(x)_2Vu(s) ds) dz
(6.7)

By the dominated convergence theorem every term on the left-hand side and the
last term on the right-hand of has a limit as k — oco. Let us denote

T
Ji(z) = / ()] [ V() PO d,

T t
Taw) = [ 19Ol [ lott = )|[Vuts) P ds) .
0 0
Taking into account (6.4)), (6.2]) and applying the Holder inequality (2.2) and (2.3

we have

/B Ji(z) dx

P
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< 2Hu||p('))Qp,T || ‘vu|p71 ”p’(w),Qp,T

1—-L -1
< 2[ullp),Q,.r max{(/ [Vul? dz) v (/ [Vul? dz) »T } < 00.
Q Qp,T

By Hélder’s inequality, for every z € B,, C Q and ¢t € (0,7) C (0,1),

¢ 1/p(z)
(] tate= o2 a) ™ < Lo 00

e
<t " |gllp+,0,1)

o, T

(6.8)

< lgllp+ 0.1) =0

Then
5 Jo(z) dz
< (1+U)P%</B (/OT |vu<t)|dt)(/0T|Vu(s)|pd5)p;1dI)

p—1

g(lw)#/B ((/0T|vu(t)|Pdt)1/PT1—é(/OTvu(s)v’ds) "V dz

P

< (1+0)P%(1+T)1_f#/ |Vul|P dz < 0.
Qp,T

It follows from the Lebesgue differentiation theorem that for a.e. p € (0, pg) there
exists

T
lim k / / u(t)(\vu(t)v’*?vu(t)
k—o0 0 p<lz—z0|<p+%
t
—l—/ g(t — 8)|Vu(s)|[P~?Vu(s) ds) cvdedt =1 + Is.
0

Letting in (6.7) k& — oo we obtain with ¢ = T'. The arguments remain valid if
we substitute T' by any ¢ € (0,T). O

6.2. Finite speed of propagation.

Theorem 6.5. Let u(z) be a local weak solution of problem (1.1) in the sense of
Deﬁnition in a cylinder Q,, v, satisfying condition (6.2)). Assume that

(1) P0§1,T§1;L§1’
(i) g € L¥"(0,T), 2 < p~ < p(x), (6.9)
(iii) sf(s) < es? for all f € Sel(F), every s € R and some 0 < € < 7.

Let ug =0 in B,,. If p(x) satisfies in B,, the oscillation condition

pt 2 1 .
Dol (- n) pt=swp), pT= i), (610

B
PO PO
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then there exists t* € (0,T) such that u(z) possesses the property of finite speed of
propagation on the interval t € (0,t*): u(z) = 0 in B,y (zo) with 0 <t < t*, where
the variable radius p(t) of the null set is given by

p T (t) = max{0, pit — Ct*L' P} (6.11)
with a positive constant C and the exponents o, 3, v defined in formulas (6.22)).

Remark 6.6. (i) For small ¢ the function p(t) defined by is strictly positive
and the set B, (2o) is nonempty.

(ii) The oscillation condition is stronger than condition (6.3).

(iii) If we know that the energy is finite in some cylinder Qg g, the restriction
L <1 is fulfilled for the sufficiently small parameters pg < R and T < 6.

(iv) The proofs of the existence of a weak solution of problem and the
property of finite speed of propagation are practically independent. To prove the
latter we only deal with selections, for this reason the assumptions on the multi-
valued function F are formulated as the uniform estimate (iii) on uf(u) for
all possible selections f € Sel(F). An example of a multivalued function F that
satisfies this condition is furnished by the function Fy defined in the introduction.

Proof of Theorem[6.5. Let us transform the energy equality into a nonlinear
differential inequality for the energy function E + b. Applying Hoélder’s inequality

(2.2) and (2.3) we have

(L1 (p, )] < 2/ [ValP@ = | dSdt < 2/[[VulP s, Nlpe).s, .
Spe(a0) (6.12)

-4 1--L
< C'max {E, "L E, " Hlullp+, Spe0
with the constant

1-Ep n—1,1—2¢
2”1H pt = 2max{1, |Sp,t| rt } = 2(|Wn71|p t) rt

PFp(y St

1-2_ y
< 2|wn—1‘ = 5

being |w,—1]| the surface of the unit ball in R™. By Holder’s inequality

La(p,t)] < / t ( /B Vu(r)| / ol = IVl ds da)dr

t t p(z)—1
- / ( / Vu(r)| dr( / Vu(s)|P®) ds) 55 dr ) da
B, \Jo 0

1 ¢ 1p(z) [t 1
o [ o7 ([ 19up@ an) [ 9P ds) 7 do
B, 0 0

t
cr/ tlfﬁ/ \VulP® dr d.
B 0

P

with the constant o from . Since t € (0, 1] by assumption, the estimate on Io
takes the form

IA

IN

_1
L(p, )] < ot "7 E(p,1).
The estimate on I3 is obtained in a similar way:

1—p(x)

t t 1/p(z) t -
|13] S/ / |u(7‘)\(/ lg(t — 5)|P®) ds) ’ (/ |Vu(s)|P®) ds) " dSdr
0 /s, 0 0
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t 1_%
<o [ ([ 1vutopeas) T asur
Sp.t 0

t 1—_1

p(x)

< 20|ullp(y,5,., 100y (5,00 © = ( / [Vu(s) =) ds) "
Since

t
/ / Vu(r)P® dSdr < tE,(p.t)
Sp,f, 0

and ¢t € (0,1]. We continue the estimate on I3 as follows:

[I3] < QUHUHP(-),SP,t max{(t/s |Vu|p(z) deS)l—ﬁ7 (t /SM _._>17F}

1

pit

_ 1— 11—
§2c7||u||p(.)75p)tt1 »- max{Ep " E, ”+}

1-L 1-0= 1l-3¥
<40C'||ullp+ 5, ,t 7 max{E, " ,E, "}
with the constant C’ from (6.12). Substitution of the estimates on I, j = 1,2, 3,
into leads to the inequality
1

1 1— , kﬁ 177)%
ib(p, t)+ E(p,t) < (1+40t »)C'max {Ep , Ep }”“”p*,sp,t

+at1_v%E(p,t) —|—/ fudz.
Qp,t

1

1--L
Let us choose t, € (0,1] so small that 20t, * <1 and recall that by assumption
(6.9) (iii)) we have f(x,t)u(z,t) € u(x,t)F(u(x,t)) for a.e. t € (0,T) and = € Q,
and

u(z, t) f(u(x,t) < eu’(x,t).
Then for a.e. t € (0,t.],

1—-21- 1-L _
b(p:t) + E(p,t) < Cmax{E, ", B, " }ully+s,, +2etb(p, ).

The right-hand side of this inequality is a nondecreasing function of ¢, for this
reason the inequality remains true if the left-hand side is substituted by %(b +E).
If 4T < 1, the resulting inequality reduces to

1 - -4 1L
i(b-l-E)SCmaX{Ep By 7 Hullpr s, (6.13)

with an absolute constant C'.
Let us use the trace-interpolation inequality, (see, e.g., [4, p. 298]):

5 0 -0
lellps 5, < CUTul,- 5, + 0 lulla,s,)° Nl 33, (6.14)
with the exponents

_p~ n(pt—-2)+2

P~ n(p™ —2) +2p~
ptn(p™ —2)+2p~

€(0,1), 6= o

>1
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and an independent of u constant C. Applying (6.14) we find that

t
_ pT
A

pt pt(1-6
< 0 [[19ulys, + ™ ks, O S

+1-0

X
. N YA
gcmax{Lp*P*é@}/ (Ivul” ,, +0=) " 8 = ar (6.15)

T

p_

_p,t1=6 _ 6
< Cp PR / (kup 5, 45T 1b> "t

i

<O+ L)5F P oo %/ (Ivul” , +5)" dt,

where L is the constant from (6.2). The oscillation condition (6.10]) yields the
inequality Op™ < p~. Applying Holder’s inequality from (6.15)) we obtain

Hu”p‘*',S,,,t
bopy -t ¢ 10
<O+ E ([l 408
b . 1 . ) (6.16)
<C(l+L)=? T_Pi‘p"w(HVUHZ,’QM+tb>" b

6

2] 1—
-k T+T

<CO+LD)T Y1+t P IVl ) ﬁb)

Noting that
1—2_ 1—2_
s g, < max {1, Q| 7} < lwnal 7,

p(-)—p~ T

and using Holder’s inequality (2.2) and ([2.3)), we have
/ |VulP dx dt
pst

< : r -
<20 g, MVl a0 g,

< 2|1 O max{/
” HP 1;7 ,prt Q

< C(n,p*) max{E, B}

+

yu

|Vu[P® dz dt, (/Q |VuP®) dxdt)i}

Pyt Pyt

Pl
< C(n,p*)ErT.
It follows from (6.16]) that

6

lullp+,s,, < CteF » ;f‘”(Ez+ +3 = bP*) =+
< C’tﬁ_%p—f”(bﬁ + 5)%(%#%9).
Substituting the result into (6.13]), we arrive at the inequality

— / -4 1-L -
i(b+E)§O¢1/A (pymax{E, ", E, " }E+0b)* (6.17)
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with
’ 1 _ 0 1 B ]. — 0 0
YN (5 t) = t5F 5 o ,:&(7 7) 0,1 6.18
¢ (pst) I s 2+p_€(’) (6.18)
and an absolute constant C. Applying to the right-hand side Young’s inequality
and simplifying, we reduce (6.17) to the inequality

E<E+b<E+b<0¢(p,t)max {EY/" | BY/r ) (6.19)
with N )
+ p
= 1— = 2
W= e (%), (6:20)

which can be written in the form

P (C'¢)y ' Br" i E, <1,
P= (¢l ErT i E, > 1.

Since pg and T are already chosen so small that £+ b < 1 in, the last inequality
yields

E, > min{(C'¢) ™", (C"¢) ™" }EM
> C"tiu_(ﬁip%)pwuiEﬂi (6.21)
— C/ItfochE,B
with the exponents
P 1-6 0 p-

—y=1- 2+ = 1
B=p =( p+( 5 +p,))p,71€(0, )
p~ —Op*
a=8(——2—)>0, 6.22
( p— ) (6.22)
_1 P -2, p”
v= 5661+ p= )p__1>0.

Integrating (6.21) with respect to p over the interval (p, pg) where E remains
positive we obtain

1-p
Elfﬁ t <Elfﬂ ) — O 1+v  14v
(pv )— (P07 ) c 1—|—l/(p0 p )
< Ll—ﬁ _ O/lt—aﬂ(p(l)-h/ _ pl"rl/).

1+v
The right-hand side of this inequality becomes negative if p < p(t), where p(¢) is
defined by the equality

1+v _ 14v
cri—p) "
Since E(p,t) is nonnegative by definition, this means that necessarily E(p,t) = 0
for p < p(t). The assumption ug = 0 in B, yields the equality u(z) = 0 a.e. in the
cylinder B,y x (0,1). O

Remark 6.7. We do not claim optimality of condition (iii) on the growth of
the selection f(u(t)). Our aim is to prove that the finite speed of propagation takes
place for the solutions whose existence is guaranteed by Theorem It is worth
noting that the assertion of Theorem [6.5] remains true for any f, provided that the
energy E satisfies the nonlinear differential inequality of the type (6.21)) - see, e.g.,

P (t) = pgTr — LA —t*C L.
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[4, Ch.3] for the examples of local parabolic equations with constant nonlinearities
r [I1] for the solutions of differential inclusions.

6.3. Waiting time property. Let us consider the following situation: there exist
R > 0 and py € (0, R) such that for some point z¢ €

BrCQ, wuy=0in B, C Bg. (6.23)

The support of ug is contained in Q\ B,,. We will assume that wuq is sufficiently
“flat” near the boundary of its support: there exist ¢ > 0 such that

1

luoll3,5, < €(p—po)i™" ¥p € (po, R) (6.24)
with the exponent
(1 =y~
po1- M= 1D) gy (6.25)
I

and p* from condition (6.20)).

Theorem 6.8. Let the conditions of Theorem[6.5 be fulfilled, assume that ug satisfy
condition with a constant €. If a local weak solution u(z) of problem
satisfy condition with a constant L < 1 and € is sufficiently small, there exists
t. € (0,T), which depends on L, ¢ and ||gl|,+ 0,1, such that u(z) = 0 a.e. in
By, % (0,t).

Proof. Following the proof of Lemmal[6.4 we derive the equality: for a.e. p € (po, R),
te(0,7)
1 t
S8(6.1) + Elp,1) —/ / wfdedt =TI + I + Iy + I, (6.26)
0o JB,

where I, I5, I3 are defined in Lemma[6.4] and
1

1 € i
I, = §||U0||§,B,, < §(P - PO)i .

Following the proof of Theorem we derive the nonhomogeneous counterpart of
the differential inequality (6.19)),

_ _ 1
E+b<E+b<Co¢(p,t)max {Ell,/“+, E;/“ b+ Celp—po) i (6.27)

with the exponents p® from (6.20)). Inequality (6.27) can be written in the equiv-

alent form
1

+
S(p, VEY" +elp—po) 7 if By > 1,
— 1
S0 OVE)" +e(p—po) 7 B, <1
Raising both parts to the power u® we can rewrite the last inequality into the form

EF < (E+b)* < (b+E)"

E+b<E+b<C

< Cmax{¢" , ¢“+}Ep + C'max { (E(P - PO)Jlriu )lﬁ’ (e(p N po)f” )#7 }
(6.28)

Since the data satisfy conditions , inequality (6.28]) yields the ordinary differ-
ential inequality

E* < (E+b* <C. (taE,, et (- po)f/(lfu))’
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p p >

PR 0.

0<b+E<Lforpe(py,R), a=

Let us fix ¢, > 0, €, > 0 and consider the problem
_ + .
W =C (2w, + e (o= po) /), pe (oo, ),
w(pg) =0, w(R)=1L

with the constant L from condition (6.2)). It is straightforward to check that this
problem admits a solution
1

o
w(p) =A(p—po);" , A=L(R—py) -+, A=positive constant,

provided that ¢, is the solution of the equation

- A
A =, (tf
1—p

This equation has a solution for the sufficiently small A and e, > 0. It is proven

in [, p. 129] that € € (0, €*] the function w(p) majorates E(p,t.) on the interval
[007 R]

Since E(p,t) is monotone increasing in p and ¢, and E(p,t) < w(p) on (po, R), it

is necessary that E(p,t) = 0 for p € (0, po] and t € (0,¢,]. It follows that u = const

in Qp,, 17, whence u = 0 therein because ug = 0 in B,, by assumption. (]

+ et ). (6.29)

Remark 6.9. Condition (6.29)) connects the three characteristic parameters of the
problem: the total energy L, the waiting time ¢, and the threshold value of the
source intensity e,. For this reason, given an arbitrary intensity 0 < e, < oo, the

effect of waiting time of the solution can be provided by an appropriate choice of
t. and L.
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