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Abstract 

 

Several Spanish ports have grown substantially in recent decades. Ports in Spain are 

heterogeneous in that they differ substantially in terms of complexity, size and traffic mix. We 

measure the productivity of Spanish port authorities and identify the drivers of productivity 

taking into account this heterogeneity in order to provide more meaningful estimates of 

efficiency and productivity change. Using a sample of 26 ports observed over the period 1993-

2016, we classify these ports into two different groups according to their overall size and their 

importance in terms of individual outputs. Segregating the sample into these two distinct groups 

permits us to draw a more precise picture of the consequences for productivity of the changes 

that have occurred in the sector in Spain over the last quarter of a century. Using Data 

Envelopment Analysis techniques, we calculate and decompose Malmquist productivity 

indexes using a metafrontier analysis. We use these indexes to estimate an Arellano-Bond 

Generalised Method Moments model to explain the differences in productivity change. Our 

results show that the group of large and complex port authorities had a considerable 

technological advantage, being closer to the metafrontier on average than the other group. 

Relative size, which can be interpreted as a measure of complexity of the port authority, has a 

strong positive influence on productivity growth. Specialisation in solids, container cargo and 

general bulk also increased productivity growth, but specialisation in liquids has no effect.  

 

 

Keywords:  DEA-Malmquist, Metafrontier, Technology gap ratio, Dynamic panel data method, 

Spanish Port Authorities, Productivity drivers. 
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1. Introduction 

Spain has a long maritime tradition as a country and it is an important player in international 

maritime transport. The 25 most important ports worldwide include five from Spain, namely 

Valencia, Algeciras, Barcelona, Las Palmas and Bilbao, underlying the consolidation of the 

country in the maritime transport market and its strategic location as a stop on many 

international routes. Data on maritime traffic for 2016 confirm this upward trend and the 

importance of the Spanish port system as a logistic hub for cargo and passenger traffic (Medal-

Bartual et al., 2016).  

In a recent paper, Tovar and Wall (2017b) addressed the issue of how Spanish port authorities 

have reacted to a changing competitive environment by analysing the evolution of market 

concentration and the evolution of the output mix within the individual port authorities 

themselves. Ports may handle several outputs, yet still be specialised in one or few of these. 

Specialization in a particular output is one way of reacting to changing competitive conditions, 

and can be thought of as a way of gaining from economies of scale. Also, ports can gain from 

‘specialisation efficiencies’ when specialization leads to greater technical efficiency from, 

among others, the use of specialist skills, learning by doing and product-specific scale 

economies.1  On the other hand, however, Ducruet el al. (2010) argue that commodity 

specialisation can represent a weakness for ports as they may suffer if their main commodity 

cargo is particularly affected by adverse demand conditions. 

An alternative strategy therefore would be to diversify output and take advantage of economies 

of scope by spreading costs over several types of traffic.2 On these lines, De Langen (2002) 

highlights the importance of diversification strategies for smaller ports and Meyler et al. (2011) 

proposed that port authorities implement a “strategy of port activity diversification” to improve 

performance in adverse market conditions. Diversification can be viewed in this context as a 

risk-reduction strategy. The size of the port is key here, as a port authority may exhibit 

diversification across cargoes yet still be able to take advantage of scale economies. In 

particular, if the diversified port authority is large enough it may have sufficient infrastructure 

                                                             
1 The term ‘specialisation efficiencies’ was initially introduced in the agricultural economics literature by Coelli 

and Fleming (2004). 
2 Port activity diversification can be measured by the weight of various traffic categories in overall seaport traffic 

(Huybrechts et al., 2002). 
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to handle large quantities of several cargoes, thereby benefitting from scale economies as well 

as economies of scope.  

Tovar and Wall (2017a) show that Spanish port authorities have acted in different ways in recent 

decades, with some increasing their specialisation in certain outputs and taking advantage of 

scale economies, while others have tried hard to diversify more and reduce their dependence on 

a single output, thereby taking advantage of scope economies. This diversity of responses to 

changing market conditions might be expected given the variety of Spanish ports.3 In a 

relatively recent analysis of Spanish ports, Reina and Villena (2013) concluded that less 

specialized ports were the most vulnerable and argued in favour of greater specialisation in 

order to deal with economic downturns. Moreover, González-Laxe and Novo-Corti (2012) 

argued that the unfavourable economic environment of the recent economic crisis led to a 

concentration of certain types of traffic in particular ports in Spain, leading to greater overall 

concentration and specialization in the system. 

As pointed out by Tovar and Wall (2017b), Spanish ports vary widely in terms of their size and 

specialisation, including small, medium-sized and large ports, ports that act as gateways to their 

hinterland and ports that serve as hubs. Generally speaking, differences in types of 

infrastructure can be conceptualised as differences in technology and this can be reflected in 

different output mix strategies and differences in terms of productive performance.4 The 

possible effects of technology differences on Spanish port productive performance where these 

differences between ports may be due to different degrees of specialisation, complexity and 

size, is the issue addressed in this paper, where our indicator of productive performance is Total 

Factor Productivity (TFP) growth.  

When analysing the efficiency and productivity change of ports, the efficiency and productivity 

change measurements will be misleading in the presence of unobserved heterogeneity. This 

heterogeneity problem can be approached using a metafrontier approach, as has been recently 

shown by Chang and Tovar (2017a) in an analysis of South Pacific terminals. We avail of the 

concept of the metafrontier to account for differences in technology across ports. Using a panel 

                                                             
3 In an analysis of specialisation in Spanish ports, González-Laxe (2012) concludes that they are becoming more 

and more specialised in terms of their traffic as well as in the services they offer. 
4 Technological change has affected port infrastructure, with some types of infrastructure being highly specialised 

whereas others permit a greater degree of flexibility (Tovar and Wall, 2017a). 
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data set of 26 Spanish port authorities observed over the period 1993-2016, we first divide the 

sample into two groups based on a criterion of complexity and size. To measure productivity 

and its components, we calculate Malmquist Productivity Indices with respect to the 

metafrontier and the group-specific frontiers and disaggregate these indices in their component 

parts of technical efficiency and technical change. The frontiers and productivity indices are 

calculated from output-oriented distance functions estimated using Data Envelopment Analysis 

(DEA), a non-parametric method widely used in the frontier literature. Finally, we also evaluate 

the influence of certain specific explanatory variables that may explain productivity differences 

among these port authorities using a dynamic panel estimation of Arellano and Bond (1991). 

The paper proceeds as follows. In the next section we review the concept of metafrontiers and 

how they have been applied in the literature to measure and decompose productivity. Section 3 

discusses the data used. In Section 4, we discuss the criterion used to separate the sample into 

two groups and present the results on total factor productivity, its decomposition and its drivers. 

Section 5 concludes.  

 

2. Measuring productivity using metafrontiers 

The concept of metafrontiers was introduced and refined in a series by papers by Battese and 

Rao (2002), Rao et al. (2004) and O’Donnell et al. (2005, 2008) with the aim of taking into 

account the differences in technology across production entities. The technique consists of 

enveloping the group-specific frontiers (representing the boundaries of group-specific 

technology sets, where the groups should be relatively homogeneous) with a new frontier called 

the metafrontier. The metafrontier can be thought of as the boundary of the metatechnology set 

under the assumption that all producers have potential access to the same technology (Battese 

and Rao, 2002; Battese et al., 2004). O'Donnell et al. (2008) had indicated that the cause of the 

differences among the technologies presented by the metafrontier and the group frontiers could 

be attributed to discrepancies between economic infrastructure and/or other characteristics of 

the production environment.  

In this setting of group-specific frontiers and metafrontiers, Malmquist productivity indices can 

be calculated using distance functions estimated using stochastic frontier analysis or Data 

Envelopment Analysis (DEA). We will focus on DEA due to the ease with which it can handle 
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multiple outputs.5 The distance functions can take an input orientation or an output orientation, 

with the choice depending on whether the firm has control over inputs or outputs.6 As we 

consider the ports in our sample closer to being output maximizers than input minimizers (see 

also Cullinane et al., 2004; Cheon et al., 2010; Chang and Tovar, 2017a,b), we will adopt an 

output orientation. 

Formally, let 𝑥𝑡 ∈ ℝ+𝑀 y 𝑦𝑡 ∈ ℝ+𝐿 denote the input and output vectors in time 𝑡, and 𝑡 =

1, 2, … , 𝑇. The production technology is defined as the capability of transforming inputs into 

outputs. Assume there are 𝐾 group-specific technology sets, 𝑆𝑘, with 𝑘 = 1, 2, … , 𝐾, defined 

as: 

𝑆𝑡
𝑘 = {(𝑥𝑡

𝑘 , 𝑦𝑡
𝑘): 𝑥𝑡

𝑘  can produce 𝑦𝑡
𝑘}     (1) 

The group-specific output sets (𝑃𝑘) and output distance functions (𝐷𝑘) represent the 𝐾 group-

specific technologies (O'Donnell et al., 2008):  

𝑃𝑡
𝑘(𝑥𝑡

𝑘) = {𝑦𝑡
𝑘: (𝑥𝑡

𝑘 , 𝑦𝑡
𝑘) ∈ 𝑆𝑡

𝑘}           (2) 

𝐷𝑡
𝑘(𝑥𝑡

𝑘 , 𝑦𝑡
𝑘) = 𝑖𝑛𝑓

𝜃
{𝜃 > 0: (

𝑦𝑡
𝑘

𝜃
) ∈ 𝑃𝑡

𝑘(𝑥𝑡
𝑘)}         (3) 

O'Donnell et al. (2008) refers to the boundaries of the group-specific output sets as group 

frontiers, and an output-oriented measure of technical efficiency with respect to the group-𝑘 

frontier is given by: 

𝑇𝐸𝑡
𝑘(𝑥𝑡

𝑘 , 𝑦𝑡
𝑘) = 𝐷𝑡

𝑘(𝑥𝑡
𝑘 , 𝑦𝑡

𝑘) ≤ 1         (4) 

where an observation (𝑥𝑡
𝑘 , 𝑦𝑡

𝑘) is technically efficient if and only if 𝐷𝑡
𝑘(𝑥𝑡

𝑘 , 𝑦𝑡
𝑘) = 1.  

Following Battese et al. (2004) and O'Donnell et al. (2008), we assume that all of these 𝐾 

technology sets are subsets of a common (unrestricted) output set, 𝑆∗, defined as: 

                                                             
5 Recent studies by Schøyen and Odeck (2013) and Nguyen et al. (2016) that offer comprehensive literature 

reviews highlight that the majority of port efficiency studies have used DEA, due most likely to its flexibility in 

handling multiple inputs and outputs and lack of assumptions about production technology. 
6 Directional distance functions have also been used in several studies of technical efficiency in recent years, 

particularly in environmental economics, though there have been applications to ports (Tovar and Wall, 2015 and 

2017c). 
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𝑆𝑡
∗ = {𝑆𝑡

1 ∪ 𝑆𝑡
2 ∪ … ∪  𝑆𝑡

𝑘}     (5) 

The output set for any input vector 𝑥 is defined as: 

𝑃𝑡
∗(𝑥𝑡) = {𝑦𝑡: (𝑥𝑡, 𝑦𝑡) ∈ 𝑆𝑡

∗}       (6) 

and the boundary of this output set is referred to as the output metafrontier. Analogous to the 

group-specific technologies, the metatechnology can be represented by the output metadistance 

function: 

𝐷𝑡
∗(𝑥𝑡, 𝑦𝑡) = 𝑖𝑛𝑓

𝜃
{𝜃 > 0: (

𝑦𝑡

𝜃
) ∈ 𝑃𝑡

∗(𝑥𝑡)}     (7) 

The corresponding output-oriented measure of technical efficiency with respect to the 

metafrontier is given by: 

𝑇𝐸𝑡
∗(𝑥𝑡, 𝑦𝑡) = 𝐷𝑡

∗(𝑥𝑡, 𝑦𝑡) ≤ 1     (8) 

where an observation (𝑥𝑡, 𝑦𝑡) is technically efficient with respect to the metafrontier if and only 

if 𝐷𝑡
∗(𝑥𝑡, 𝑦𝑡) = 1.  

The fact that the metafrontier envelops the group frontiers implies that: 

𝐷𝑡
∗(𝑥𝑡, 𝑦𝑡) ≤ 𝐷𝑡

𝑘(𝑥𝑡
𝑘 , 𝑦𝑡

𝑘)            (9) 

This in turn implies that technical efficiency with respect to the metafrontier cannot be larger 

than technical efficiency with respect to any group-specific frontier:  

𝑇𝐸𝑡
∗(𝑥𝑡, 𝑦𝑡) ≤ 𝑇𝐸𝑡

𝑘(𝑥𝑡
𝑘, 𝑦𝑡

𝑘)           (10) 

The relation between the output distance functions with respect to the metafrontier and the 

group frontiers allows us to obtain a measure of how close a group-specific frontier is to the 

metafrontier. Thus, the metatechnology ratio (O’Donnell et al., 2008) or technology gap ratio 

(Battese et al., 2004) is defined as: 

𝑇𝐺𝑅𝑡
𝑘(𝑥𝑡

𝑘, 𝑦𝑡
𝑘) =

𝐷𝑡
∗(𝑥𝑡,𝑦𝑡)

𝐷𝑡
𝑘(𝑥𝑡

𝑘,𝑦𝑡
𝑘)

=
𝑇𝐸𝑡

∗(𝑥𝑡,𝑦𝑡)

𝑇𝐸𝑡
𝑘(𝑥𝑡

𝑘,𝑦𝑡
𝑘)

≤ 1         (11) 

As this is simply the ratio of metafrontier technical efficiency to group-𝑘 technical efficiency, 

an increase (decrease) in the technology gap ratio implies a decrease (increase) in the gap 
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between the group-𝑘 frontier and the metafrontier. As noted by O’Donnell et al. (2008), a 

rearrangement of equation (11) provides a convenient decomposition of technical efficiency: 

𝑇𝐸𝑡
∗(𝑥𝑡, 𝑦𝑡) = 𝑇𝐸𝑡

𝑘(𝑥𝑡
𝑘 , 𝑦𝑡

𝑘) × 𝑇𝐺𝑅𝑡
𝑘(𝑥𝑡

𝑘, 𝑦𝑡
𝑘)        (12) 

Thus, technical efficiency measured with respect to the metafrontier can be decomposed into 

the product of technical efficiency measured with respect to the group-𝑘 frontier and the 

technology gap ratio. The first of these captures, among other things, the existing state of 

knowledge and the economic environment characterizing group 𝑘, while the latter measures the 

distance between the group- 𝑘 frontier and the metafrontier. O’Donnell et al. (2008) points out 

that this decomposition is useful because it allows evaluation of policies or programs aimed at 

either efficiency improvement within the firm or at the environment in which the firm operates. 

Turning to productivity measures, the Malmquist Productivity Index (MPI), introduced by 

Caves et al. (1982) and extended by Färe et al. (1994), allows productivity change between two 

periods, 𝑡 and 𝑡 + 1, to be defined exclusively in terms of distance functions. Using the 

metafrontier to measure distances, the output-oriented metafrontier MPI (MMPI) defined with 

respect to the technology in period 𝑡 is given by: 

𝑀𝑀𝑃𝐼𝑡
∗ =

𝐷𝑡
∗(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
∗(𝑥𝑡,𝑦𝑡)

               (13) 

and the MMPI defined with respect to period 𝑡 + 1 technology is: 

𝑀𝑀𝑃𝐼𝑡+1
∗ =

𝐷𝑡+1
∗ (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
∗ (𝑥𝑡,𝑦𝑡)

                   (14) 

To avoid having to choose one of the periods 𝑡 and 𝑡 + 1 as the reference period, the MPI is 

defined as the geometric mean of (13) and (14): 

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗ (𝑥𝑡, 𝑦𝑡, 𝑥𝑡+1, 𝑦𝑡+1) = [

𝐷𝑡
∗(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
∗(𝑥𝑡,𝑦𝑡)

×
𝐷𝑡+1

∗ (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
∗ (𝑥𝑡,𝑦𝑡)

]
1/2

               (15) 

Rearranging, this can be decomposed into technical efficiency change and technical change 

(Färe et al., 1994): 

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗ (𝑥𝑡, 𝑦𝑡, 𝑥𝑡+1, 𝑦𝑡+1) =

𝐷𝑡+1
∗ (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
∗(𝑥𝑡,𝑦𝑡)

[
𝐷𝑡

∗(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
∗ (𝑥𝑡+1,𝑦𝑡+1)

×
𝐷𝑡

∗(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
∗ (𝑥𝑡,𝑦𝑡)

]
1/2

       (16) 
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where the first term on the right-hand side is technical efficiency change (𝑇𝐸𝐶𝑡,𝑡+1
∗ ) and the 

second term, inside the brackets, is technical change (𝑇𝐶𝑡,𝑡+1
∗ ), so that: 

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗ (𝑥𝑡, 𝑦𝑡, 𝑥𝑡+1, 𝑦𝑡+1) = 𝑇𝐸𝐶𝑡,𝑡+1

∗ × 𝑇𝐶𝑡,𝑡+1
∗        (17) 

Defining the productivity index with respect to a group-k frontier, the Group-specific 

Malmquist Productivity Index (GMPI) can similarly constructed and decomposed as: 

𝐺𝑀𝑃𝐼𝑡,𝑡+1
𝑘 (𝑥𝑡, 𝑦𝑡, 𝑥𝑡+1, 𝑦𝑡+1) = 𝑇𝐸𝐶𝑡,𝑡+1

𝑘 × 𝑇𝐶𝑡,𝑡+1
𝑘       (18) 

Further decompositions of the MMPI are possible. It can be shown that MMPI can de 

decomposed as: 

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗ = 𝑇𝐸𝐶𝑡,𝑡+1

𝑘 × 𝑇𝐶𝑡,𝑡+1
𝑘 × 𝑇𝐺𝑅𝐶𝑡,𝑡+1

𝑘     (19) 

where 

𝑇𝐺𝑅𝐶𝑡,𝑡+1
𝑘 =

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗

𝐺𝑀𝑃𝐼𝑡,𝑡+1
𝑘 = [

𝑇𝐺𝑅𝑡+1
𝑘 (𝑥𝑡+1,𝑦𝑡+1)

𝑇𝐺𝑅𝑡
𝑘(𝑥𝑡,𝑦𝑡)

×
𝑇𝐺𝑅𝑡

𝑘(𝑥𝑡+1,𝑦𝑡+1)

𝑇𝐺𝑅𝑡+1
𝑘 (𝑥𝑡,𝑦𝑡)

]
1/2

    (20) 

TGRC refers to the change in the technology gap ratio measured as the geometric mean of two 

growth indices of the TGR (see Chen and Yang, 2011, and references therein for details) and 

can be thought of as the inverse of group catch-up (i.e., the extent to which the group frontier 

is catching up to the metafrontier). That is: 

𝑇𝐺𝑅𝐶𝑡,𝑡+1
𝑘 =

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗

𝐺𝑀𝑃𝐼𝑡,𝑡+1
𝑘 = (𝑐𝑎𝑡𝑐ℎ − 𝑢𝑝𝑡,𝑡+1)

−1
    (21) 

Hence, group catch-up can be expressed as: 

𝐶𝑎𝑡𝑐ℎ − 𝑢𝑝𝑡,𝑡+1 =
𝐺𝑀𝑃𝐼𝑡,𝑡+1

𝑘

𝑀𝑀𝑃𝐼𝑡,𝑡+1
∗ = (𝑇𝐺𝑅𝐶𝑡,𝑡+1

𝑘 )
−1

    (22) 

The value of 𝐶𝑎𝑡𝑐ℎ − 𝑢𝑝𝑡,𝑡+1 is greater (less) than unity when the group frontier is moving 

closer to (further away from) the metafrontier. Hence, values greater (less) than unity denote 

positive (negative) catch-up. 

Finally, in order to identify the drivers that explain the productivity change of Spanish port 

authorities we follow Chang and Tovar (2017a) by taking advantage of the panel data structure 
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to specify a dynamic model in a second stage using the Arellano and Bond (1991) 

specifications.  

The general specification of the econometric model is: 

𝑇𝐹𝑃𝑖,𝑡 = ∑ 𝛼𝑠𝑇𝐹𝑃𝑖,𝑡−𝑠
𝑆
𝑠=1 + ∑ 𝛽𝑖𝑋𝑗,𝑖,𝑡

𝐽
𝑗=1 + 𝜖𝑖,𝑡  (23) 

where 𝑇𝐹𝑃𝑖,𝑡 is productivity growth of port authority 𝑖 calculated as 𝐺𝑀𝑃𝐼𝑖,𝑡, − 1 , 𝑇𝐹𝑃𝑖,𝑡−𝑠 are 

the lagged dependent variables, 𝑋𝑗𝑖𝑡 is the set of control variables and 𝜖𝑖𝑡 is the idiosyncratic 

error.  

This dynamic panel data specification has been recommended in the literature because there are 

well-known problems in using the Malmquist TFP index as a dependent variable in econometric 

specifications that can be solved by using appropriate econometric methods.7  

3. Data 

The data we use corresponds to the Spanish port system and our sample contains 624 

observations comprising a panel data set of 26 port authorities observed over the period 1993-

2016.8 The main sources of this information are the Spanish Public State Ports Body (EPPE), 

which publishes accounts and management reports, and the port authorities, which provide 

information in their annual reports and their websites. The port authorities in the sample vary 

widely in terms of size and specialisation, with some managing ports whose activity involves 

cargo and passenger traffic whereas others run ports whose main activity is cargo and passenger 

transport is virtually non-existent. The fact that the ports under consideration are in the same 

country also has the advantage that the accounting data used are uniform and comparable. 

Moreover, these ports face the same regulations and the remaining environmental factors are 

either equal or very similar for all of them. 

                                                             
7 Although this index does not suffer from boundary problems, such as those for DEA efficiency scores, its 

estimates are seriously affected by serial correlation (Simar and Wilson, 2007). Indeed, some authors suggest the 

use of the dynamic GMM model to eliminate problems of serial correlation that arise when the TFP measure, as 

estimated by DEA, is used as a dependent variable (Zhengfei and Oude Lansink, 2006). 
8 The port authorities included are A Coruña, Alicante, Avilés, Bahía de Algeciras, Bahía de Cádiz, Baleares, 

Barcelona, Bilbao, Cartagena, Castellón, Ceuta, Ferrol-San Cibrao, Gijón, Huelva, Las Palmas, Málaga, Marín y 

Ría de Pontevedra, Melilla, Pasajes, Santa Cruz de Tenerife, Santander, Sevilla, Tarragona, Valencia, Vigo and 

Vilagarcía. 
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In order to estimate the distance function technology for the ports in our sample, we need 

information on their outputs and inputs. Regarding outputs, port activity is multi-product. Port 

infrastructure service provision may be viewed in terms of the merchandise handled and the 

passengers using the port. The tons of different types of merchandise for each of the sampled 

port authorities are known by type: bulk liquids, bulk solids, general containerised merchandise, 

general merchandise not in containers and passenger numbers. Information is available on the 

following outputs: liquids (y1), solid bulk (y2), containerised merchandise (y3), general non-

container merchandise (y4), and passengers (y5). The inputs used are labour (x1); intermediate 

consumption expenditures (x2); capital assets, including the port authority’s capital assets (x3); 

and the deposit surface area (x4). Descriptive statistics of the data are presented in Table 1. 

 

Table 1. Descriptive statistics of variables 

Variable Description Mean Std. Dev. Min. Max. 

      

Outputs and inputs used to calculate efficiency scores 

      

y1 Liquid bulk cargo (tons) 5,305,818 6,863,994 0 27,344,044 

y2 Solid bulk cargo (tons) 3,203,973 3,420,341 3,425 19,658,167 

y3 Container cargo (tons) 3,976,167 9,715,641 0 60,178,589 

y4 General non-container cargo (tons) 1,823,185 2,162,910 77,496 10,834,853 

y5 Passengers (units) 903,617 1,560,948 0 7,782,400 

x1 Labour (units) 209 110 58 613 

x2 Supplies (€ deflated) 9,859,132 9,350,020 539,709 68,390,000 

x3 Capital assets (mill. € deflated) 326.452 323.493 142.130 1,870.002 

x4 Deposit surface area (m2) 909,268 1,110,653 11,345 5,039,802 

      

Number of observations: 624     
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4. Empirical specification and results 

In order to divide the sample into groups according on the basis of size and complexity, we 

consider that port authorities should be significant players at national level in more than one 

output. For each port authority 𝑖, we calculate the shares of each individual output (𝑦𝑚𝑖) in 

overall system output (𝑦𝑚𝑆𝑌𝑆). We label this measure of the size or importance of the port in a 

certain output as 𝑁𝐴𝑇𝑆𝐻𝐴𝑅𝐸𝑦𝑚𝑖, defined as:  

 

𝑁𝐴𝑇𝑆𝐻𝐴𝑅𝐸𝑦𝑚𝑖 =
𝑦𝑚𝑖

𝑦𝑚𝑆𝑌𝑆
     (24) 

As an additional interpretation of this, Tovar and Wall (2017a) show that that the NATSHARE 

measure of port size in a given output comprises both relative specialization in that output 

compared to other ports as well as the overall relative size of the port. To see this, an index of 

relative specialisation (Bird Index) for each of the outputs for port authority 𝑖 (𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝑚𝑖) 

can be defined as: 

 

𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝑚𝑖 =
𝑦𝑚𝑖

𝑌𝑖
⁄

𝑦𝑚𝑆𝑌𝑆
𝑌𝑆𝑌𝑆

⁄
     (25) 

where 𝑦𝑚𝑖 is the total traffic of output m in port authority i, 𝑌𝑖 is total traffic of port authority i 

𝑌𝑖 = ∑ 𝑦𝑚𝑖𝑚 , 𝑦𝑚𝑆𝑌𝑆 is the total traffic of cargo m in the system (𝑦𝑚𝑆𝑌𝑆 = ∑ 𝑦𝑚𝑖𝑖 ), and 𝑌𝑆𝑌𝑆 is 

the total traffic of the system (𝑌𝑆𝑌𝑆 = ∑ 𝑦𝑚𝑆𝑌𝑆𝑚 ). This index of specialisation or polarization 

indicates the degree of specialisation in a given cargo compared to the degree of specialisation 

in that cargo of the system as a whole. Clearly, values greater (less) than 1 indicate higher 

(lower) relative specialisation of the port authority in that output. On the other hand, a measure 

of the overall relative size of the port (𝑅𝐸𝐿𝑆𝐼𝑍𝐸𝑖), can be defined as the ratio of total port cargo 

output to total system port cargo in a given year: 

 

𝑅𝐸𝐿𝑆𝐼𝑍𝐸𝑖 =
𝑌𝑖

𝑌𝑆𝑌𝑆
       (26) 
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From (24), (25) and (26) it follows that: 

𝑁𝐴𝑇𝑆𝐻𝐴𝑅𝐸𝑦𝑚𝑖 = 𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝑚𝑖 ∗ 𝑅𝐸𝐿𝑆𝐼𝑍𝐸𝑖      (27) 

Large and complex port authorities were then defined as those for which the average value of 

𝑁𝐴𝑇𝑆𝐻𝐴𝑅𝐸𝑦𝑚𝑖 over the whole sample period was greater than the sample average for at least 

two outputs. The average values of 𝑁𝐴𝑇𝑆𝐻𝐴𝑅𝐸𝑦𝑚𝑖 for the sample period are reported in Table 

2. Those greater than the average for the system as a whole are marked in bold, and the final 

column assigns the port authorities to one group or another according to the criterion of whether 

the port has at least two outputs for which its average share of national output over the sample 

period is greater than the national average (Cluster 1) or not (Cluster 2).  

The calculations in Table 2 illustrate the differences in terms of size and complexity across port 

authorities in the sample. Thus, Barcelona has output shares greater than the national average 

for all five outputs, while Santa Cruz de Tenerife, Bilbao and Algeciras have higher than 

national average output shares for four outputs. At the other end of the scale, Alicante, Avilés, 

Cádiz, Málaga, Marín-Pontevedra, Melilla, Sevilla, Vigo and Vilagarcía have no output with a 

national share greater than the average. There is a small group of highly specialized port 

authorities which are relatively large players in one output. For example, Gijón and Ferrol-San 

Cibrao account for 18% and 9% of national solid bulk respectively, Castellón accounts for 5.5% 

of national liquid bulk, and Ceuta has an average national share of passenger traffic of almost 

10%. These port authorities have very low traffic in the remaining outputs, however. As can be 

seen in the last column of the table, Cluster 1, which contains those port authorities with national 

shares greater than the average for at least two outputs over the sample period, comprises 11 

members, with the remaining 15 assigned to Cluster 2. 

Before proceeding with our results for the metafrontier analysis based on the groups we have 

selected, it should be noted that other criteria could have been used to group port authorities 

according to size and complexity.  
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Table 2. Average NATSHARE by port authority and assignment to groups 

 Liquids 

(𝑦1) 

Solid 

(𝑦2) 

Containers 

(𝑦3) 

General 

(𝑦4) 

Passengers 

(𝑦5) 

Cluster 

 

   

A Coruña 0.056 0.043 0.000 0.015 0.003 1 

Alicante 0.001 0.016 0.010 0.008 0.011 2 

Avilés 0.005 0.031 0.000 0.028 0.000 2 

Algeciras 0.149 0.026 0.314 0.089 0.195 1 

Cádiz 0.002 0.021 0.010 0.032 0.013 2 

Baleares 0.017 0.020 0.017 0.127 0.191 1 

Barcelona 0.073 0.050 0.160 0.130 0.104 1 

Bilbao 0.121 0.057 0.054 0.075 0.007 1 

Cartagena 0.115 0.044 0.005 0.005 0.002 1 

Castellón 0.055 0.028 0.009 0.009 0.000 2 

Ceuta 0.012 0.001 0.001 0.017 0.097 2 

Ferrol-San Cibrao 0.010 0.095 0.000 0.012 0.001 2 

Gijón 0.009 0.182 0.002 0.012 0.001 2 

Huelva 0.099 0.065 0.000 0.013 0.003 1 

Las Palmas 0.032 0.012 0.086 0.067 0.060 1 

Málaga 0.018 0.016 0.008 0.010 0.025 2 

Marín-Pontevedra 0.000 0.010 0.003 0.012 0.001 2 

Melilla 0.001 0.001 0.002 0.012 0.022 2 

Pasajes 0.001 0.027 0.000 0.040 0.000 2 

S.C. de Tenerife 0.059 0.013 0.034 0.065 0.200 1 

Santander 0.003 0.041 0.001 0.026 0.015 2 

Sevilla 0.002 0.029 0.008 0.019 0.000 2 

Tarragona 0.137 0.113 0.008 0.017 0.000 1 

Valencia 0.021 0.049 0.250 0.127 0.018 1 

Vigo 0.001 0.006 0.018 0.030 0.028 2 

Vilagarcía 0.002 0.005 0.000 0.004 0.000 2 

       

 

 

One possible classification criterion could be dedication to container traffic, due to the highly 

specialized infrastructure it requires and the increasing capacity needed to service larger 
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vessels.9 In principle, this would appear to fit well with the objective of classifying port 

authorities according to size and, to a lesser extent perhaps, complexity.  It turns out that our 

criterion captures the relevance of the port authorities in terms of container traffic as Cluster 1 

includes all six port authorities with container traffic above the national average: Algeciras, 

Baleares, Barcelona, Bilbao, Las Palmas, Santa Cruz de Tenerife and Valencia. Moreover, these 

ports are by far the most important container ports, and accounted for an average of around 90% 

of Spanish container traffic over the sample period. Apart from this, there may be other 

interesting sources of heterogeneity apart from differences in technology such as, for example, 

differences that may exist between port authorities located on the Atlantic and Mediterranean 

seaboards due to their relation to different international maritime routes. While such a criterion 

may be relevant for identifying possible differences between ports in terms of their location, it 

clearly would not serve to classify ports according to differences in technology in terms of size 

and complexity, which is our objective.10  

Tables 3 and 4 show the technological gap ratios and their components for both clusters. For 

the full sample period (1993-2016), we can see from Table 3 that the large and complex port 

group (Cluster 1) had a TGR of 0.965 whereas that for the remaining group had a TGR of 0.812. 

The conditions under which Cluster 1 port authorities operate therefore permit these ports to 

produce much more output from a given set of inputs: the maximum output that is feasible for 

Cluster 1 ports with their technology (and inputs) is about 97% of that which could be achieved 

using the metatechnology, whereas Cluster 2 ports can only produce a maximum of 81% of the 

output achievable with the metatechnology. Looking at the components of the TGR, it can be 

seen that Cluster 1 ports are more technically efficient with respect to the metafrontier, with 

average technical efficiency (TE) scores of 0.904 compared to 0.729 for Cluster 2, reflecting 

their technological advantage. Moreover, they are also more efficient with respect to their group 

frontier, with average TE scores of 0.935 compared to 0.894 for Cluster 2. Overall, these results 

                                                             
9 Another interesting possibility, suggested by a referee, is the ratio of cargo to deposit surface area. However, we 

found that this criterion grouped small specialised port authorities together with large complex ones. When we 

divided the sample into two clusters based on the average size of the cargo/deposit area ratio, one of the groups 

included small ports such as, for example, Ceuta, Melilla and Málaga with large and complex ones such as 

Algeciras and Tenerife. Similarly, the other group included small specialised ports such as Pasajes and Avilés with 

the large, complex ports of Barcelona and Valencia. 
10 Indeed, the application of this criterion would lead to a classification where small Atlantic ports such as Pasajes 

and Aviles are grouped with the large, complex port of Bilbao, while the Mediterranean seaboard includes small 

ports such as Malaga and Melilla with large one such as Barcelona and Valencia.  
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imply that large and more complex ports have not only a technological advantage over other 

ports but that they are better able to exploit their technology in terms of productive efficiency.  

 

Table 3. Technological gap ratios by group: 1993-2016 

 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 

    

Cluster1 0.904 0.935 0.965 

Cluster2 0.729 0.894 0.812 

    

 

To check how the TGR has evolved for the two clusters of ports over the 24-year sample period, 

we divide the sample into two sub-periods. A natural division would be to divide the sample 

into two subsamples of equal size, which would be achieved by dividing the overall sample into 

the 12-year sub-periods 1993-2004 and 2005-2016. However, instead of this division, we note 

that the 2007 was the beginning of the recent global economic crisis, which caused severe 

disruption to several sector, including port traffic. Hence, we divide the sample into ‘pre-crisis’ 

and ‘crisis’ periods, corresponding to 1993-2006 and 2007-2016 respectively.   

Table 4 presents the TGR and its components for the periods 1993-2006 and 2007-2016. As 

can be seen, the TGR has increased for both groups from the first period to the second, although 

the increase for Cluster 2 is quite small. The technical efficiency scores with respect to both the 

metafrontier and the group frontiers also evolved positively for each group.  

 

Table 4. Technological gap ratio by cluster: sub-periods 1993-2006 and 2002-2016 

 1993-2006 2007-2016 

 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 

       

Cluster1 0.888 0.931 0.951 0.926 0.941 0.984 

Cluster2 0.716 0.885 0.811 0.748 0.906 0.814 
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The calculations for the individual port authorities for the full sample period and for the two 

sub-periods are presented in Table 5. For the overall sample period (1993-2016), the port 

authorities of Algeciras from Cluster 1 and Ceuta and Ferrol from Cluster 2 form part of the 

metafrontier, with TE indices with respect to the metafrontier equal to 1 for each sub-period. A 

number of ports are efficient with respect to their group-specific frontier: Algeciras, Baleares, 

Tenerife and Tarragona for Cluster 1, and Castellón, Ceuta, Ferrol and Melilla for Cluster 2.  

Looking at the sub-periods, we can identify some port authorities which were not completely 

technically efficient with respect to their group frontier in the pre-crisis period that become 

completely efficient in the second period. These port authorities, which have learned to take 

full advantage of their group technological possibilities in the second period, are A Coruña, 

Cartagena and Valencia from Cluster 1, and Gijón and Pasajes from Cluster 2. On the whole, 

the port authorities from Cluster 1 were relatively more efficient in the period 1993-2006, and 

the port authorities in Cluster 2 made more notable progress in group-efficiency in the second 

period.  

Finally, this table illustrates the importance of measuring each port authority’s efficiency with 

respect to its group technological frontier as well as the metafrontier in order to get a truer 

picture of their productive efficiency performance. If this is not done, the port authorities’ 

measured technical inefficiency would be exaggerated, greatly in some cases. Thus, in Cluster 

1, A Coruña appears quite inefficient with respect to the metafrontier, with a TE score of 0.864 

for the overall sample period, but turns out to be relatively highly efficient within its group with 

a TE score with respect to its group-specific frontier of almost 0.97. There are far more glaring 

cases in Cluster 2, with Alicante and Vigo scoring quite poorly in efficiency terms with respect 

to the metafrontier (with TE scores below 0.50) but having TE scores of over 0.90 with respect 

to their group frontier (as high as 0.97 in the case of Vigo). These port authorities are inefficient 

relative to port authorities operating with the metatechnology, but use their group technology 

quite efficiently.  

  



  17 

Table 5. Technological gap ratio by port authority 

 1993-2016 1993-2006 2007-2012 

    

 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 𝑇𝐸∗ 𝑇𝐸𝑘 𝑇𝐺𝑅 

          

Cluster 1          

A Coruña 0.864 0.968 0.914 0.805 0.946 0.854 0.998 1.000 0.998 

Algeciras 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Baleares 0.999 1.000 0.999 0.998 1.000 0.998 1.000 1.000 1.000 

Barcelona 0.686 0.738 0.924 0.591 0.659 0.896 0.819 0.850 0.962 

Bilbao 0.860 0.923 0.931 0.842 0.924 0.911 0.886 0.920 0.961 

Cartagena 0.972 0.995 0.976 0.951 0.991 0.958 1.000 1.000 1.000 

Huelva 0.984 0.997 0.987 0.981 1.000 0.981 0.989 0.994 0.995 

Las Palmas 0.697 0.702 0.994 0.777 0.781 0.993 0.586 0.590 0.995 

S.C. de Tenerife 0.996 1.000 0.996 0.993 1.000 0.993 1.000 1.000 1.000 

Tarragona 0.924 1.000 0.924 0.933 1.000 0.933 0.911 1.000 0.911 

Valencia 0.938 0.963 0.970 0.895 0.937 0.949 0.999 1.000 0.999 

          

Cluster 2          

Alicante 0.493 0.938 0.541 0.355 0.972 0.377 0.686 0.890 0.771 

Avilés 0.919 0.991 0.927 0.934 1.000 0.934 0.898 0.979 0.916 

Cádiz 0.591 0.877 0.668 0.697 0.993 0.702 0.443 0.714 0.621 

Castellón 0.966 1.000 0.966 0.996 1.000 0.996 0.924 1.000 0.925 

Ceuta 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Ferrol-San Cibrao 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Gijón 0.812 0.839 0.958 0.683 0.725 0.933 0.992 1.000 0.992 

Málaga 0.709 0.845 0.827 0.726 0.827 0.861 0.685 0.869 0.781 

Marín-Pontevedra 0.699 0.909 0.777 0.641 0.878 0.749 0.780 0.953 0.817 

Melilla 0.977 1.000 0.977 0.960 1.000 0.960 1.000 1.000 1.000 

Pasajes 0.845 0.906 0.935 0.769 0.839 0.923 0.951 1.000 0.951 

Santander 0.494 0.662 0.751 0.444 0.598 0.747 0.565 0.753 0.757 

Sevilla 0.455 0.871 0.518 0.421 0.819 0.507 0.503 0.943 0.533 

Vigo 0.498 0.973 0.512 0.574 0.998 0.575 0.392 0.937 0.423 

Vilagarcía 0.483 0.594 0.823 0.543 0.619 0.901 0.398 0.559 0.716 
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The Malmquist Metafrontier Productivity Indices (MMPI) for each port authority, both for the 

full sample period and also for the two sub-periods (1993-2006 and 2007-2016) are presented 

in Table 6, where the MMPI is disaggregated into technical efficiency change (TEC) and 

technical change (TC). Looking at the average figures for each group, it is clear that the larger 

and complex port authorities in Cluster 1 outperform the other group in productivity terms over 

the sample period, reporting average annual productivity growth of 1.2% compared to a slight 

negative annual average productivity growth (-0.8%) for the group of smaller, less complex 

port authorities. Average annual productivity was positive for Cluster 1 and negative for Cluster 

2 in the first period, while in the second (crisis) period it was negative for both clusters. In terms 

of the components of the MMPI, technical efficiency change was positive for the whole sample 

period for both groups. It was positive for both clusters in the first period and negative for both 

clusters in the second. Cluster 1 experienced positive average annual technical change for the 

whole sample period and for both sub-periods, whereas Cluster 2 had negative annual average 

technical change over the whole sample period and for both sub-periods.  

Looking at individual port authorities, the effects of negative technical change attributable to 

the economic downturn in the second sub-period were particularly noticeable in Santa Cruz de 

Tenerife (Cluster 1) and Ceuta, Ferrol and Vilagarcía (Cluster 2). For example, Santa Cruz de 

Tenerife showed strong average annual productivity growth in the period 1993-2006 (3.3%) 

but its negative technical change in 2007-2016 had the effect that its average annual 

productivity for this period and for the full sample period was negative. A Coruña (Cluster 1) 

and Vilagarcía (Cluster 2) suffered similar effects, with positive annual average productivity 

growth on the period 1993-2006 turning negative in 2007-2016, with average productivity for 

the whole sample period also being negative as a consequence. Generally, port authorities 

performed worse in terms in productivity in the second sub-period although the results are quite 

different between the two groups. Thus, in Cluster 1, only one port authority, Algeciras, 

performed better in the second sub-period, while in Cluster 2 eight of the fifteen port authorities 

performed better. Finally, the best performing ports in terms of average annual productivity 

growth in Cluster 1 were Valencia (6.8%), Barcelona (6.3%) and Bilbao (3.1%), and in Cluster 

2 were Santander (3.7%), Gijón (3.5%), Alicante (2.7%) and Sevilla (2.6%).  
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Table 6. MMPI, TEC and TC by port authority 

 1993-2016 1993-2006 2007-2016 

 TEC* TC* MMPI TEC* TC* MMPI TEC* TC* MMPI 

Cluster 1          

A Coruña 1.004 0.986 0.989 1.008 0.997 1.005 0.998 0.972 0.972 

Algeciras 1.000 0.969 0.969 1.000 0.938 0.938 1.000 1.011 0.976 

Baleares 1.001 1.001 1.003 1.002 1.013 1.015 1.000 0.987 1.000 

Barcelona 1.023 1.039 1.063 1.068 1.042 1.113 0.967 1.035 1.035 

Bilbao 1.005 1.026 1.031 1.034 1.035 1.070 0.968 1.015 1.003 

Cartagena 1.000 1.000 1.000 1.000 1.007 1.007 1.000 0.992 0.986 

Huelva 0.998 0.987 0.984 1.000 0.991 0.991 0.994 0.981 0.972 

Las Palmas 0.996 1.020 1.016 1.049 1.024 1.075 0.931 1.014 0.946 

S.C. de Tenerife 1.005 0.994 0.999 1.008 1.025 1.033 1.000 0.955 0.979 

Tarragona 0.990 1.024 1.014 0.997 1.029 1.026 0.980 1.018 1.000 

Valencia 1.030 1.038 1.068 1.054 1.041 1.097 0.999 1.034 1.035 

Mean Cluster 1 1.005 1.008 1.012 1.020 1.013 1.034 0.985 1.001 0.991 

Cluster 2          

Alicante 1.048 0.980 1.027 1.055 0.957 1.009 1.039 1.011 1.050 

Avilés 0.991 0.990 0.981 1.000 0.983 0.983 0.980 0.999 0.985 

Cádiz 0.978 0.982 0.960 0.997 0.984 0.981 0.953 0.980 0.950 

Castellón 1.000 0.984 0.984 0.997 0.972 0.969 1.004 1.001 1.010 

Ceuta 1.000 0.935 0.935 1.000 0.908 0.908 1.000 0.971 0.944 

Ferrol-San Cibrao 1.000 0.960 0.960 1.000 0.951 0.951 1.000 0.972 0.946 

Gijón 1.035 1.001 1.035 1.062 1.008 1.070 1.000 0.991 0.987 

Málaga 0.968 0.945 0.915 1.000 0.907 0.907 0.929 0.997 0.952 

Marín-Pontevedra 1.029 0.987 1.015 1.030 0.992 1.023 1.026 0.980 1.002 

Melilla 1.000 1.007 1.007 1.000 0.989 0.989 1.000 1.030 1.060 

Pasajes 1.030 0.994 1.024 1.056 1.002 1.058 0.998 0.985 0.992 

Santander 1.023 1.014 1.037 1.014 1.013 1.028 1.035 1.014 1.042 

Sevilla 1.022 1.004 1.026 1.096 0.999 1.094 0.933 1.011 0.968 

Vigo 0.977 0.998 0.975 0.992 0.978 0.970 0.958 1.025 0.990 

Vilagarcía 1.029 0.971 0.999 1.062 0.977 1.037 0.988 0.963 0.954 

Mean Cluster 2 1.009 0.983 0.992 1.024 0.975 0.998 0.990 0.995 0.989 
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Tables 7 and 8 show the Group Malmquist Productivity Indices (GMPI) and the degree of catch-

up for the full sample period and the two sub-periods respectively. For the full sample, we can 

see from Table 7 that average annual GMPI was higher for Cluster 2 (2.4%) than Cluster 1 

(1.7%) and that this was due to greater relative improvements in technical efficiency with 

respect to the group frontier. With respect to their group frontiers, Valencia, Barcelona and Las 

Palmas have experienced large improvements in technical efficiency relative to the Cluster 1 

frontier. For Cluster 2, Vilagarcía made huge improvements in efficiency followed by Marín-

Pontevedra, Gijón, Pasajes, Sevilla and Santander, all of which made significant improvements. 

The frontier for Cluster 2 also moved relatively closer to the metafrontier over the sample 

period, showing larger positive average annual catch-up. 

Looking at GMPI and catch-up by sub-period, in Table 8 we can see that the Cluster 1 port 

authorities group experienced strong productivity growth in terms of its own frontiers in the 

first period but negative average annual productivity growth in the second period. Cluster 2 port 

authorities, on the other hand, experienced increases in average annual productivity growth in 

both sub-periods. In the second period, the highest and lowest productivity scores were 

represented by Valencia and Tenerife respectively for Cluster 1, whereas for Cluster 2, Alicante 

and Santander performed particular strongly, with the latter’s performance due mainly to large 

improvements in technical efficiency. With regard to catch-up, both clusters’ frontiers moved 

closer to the metafrontier in the period 1993-2006, though catch-up was relatively larger for 

Cluster 2. In the second period, average catch-up was zero for Cluster 1, whereas the Cluster 2 

group frontier moved closer to the metafrontier over the same period.  

As a final empirical exercise, we try to identify variables that determine or drive productivity 

growth. To do so, we follow the strategy of Chang and Tovar (2017a), who analysed 

productivity in Chilean and Peruvian port terminals, and use the econometric method of 

dynamic GMM originally proposed by Arellano and Bond (1991) to identify terminal port 

productivity drivers. Chang and Tovar (2017a) included indexes of specialisation in container 

cargo and bulk cargo in their model, finding that a greater degree of containerisation was 

positively related to TFP growth and that greater specialisation in bulk cargo reduced TFP 

growth. They also included a public/private ownership variable in their model, but this is not 

relevant in our case as the Spanish port authorities all follow the landlord model.  
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Table 7. MMPI, GMPI and catch-up by port authority: 1993-2016 

 

𝑇𝐸𝐶𝑘 𝑇𝐶𝑘 𝐺𝑀𝑃𝐼𝑘 𝑀𝑀𝑃𝐼 Catch-up 

(
𝐺𝑀𝑃𝐼𝑘

𝑀𝑀𝑃𝐼
) 

Cluster 1 

A Coruña 1.004 0.987 0.990 0.989 1.001 

Algeciras 1.000 0.975 0.975 0.969 1.006 

Baleares 1.000 1.014 1.014 1.003 1.011 

Barcelona 1.022 1.038 1.060 1.063 0.997 

Bilbao 1.000 1.028 1.028 1.031 0.997 

Cartagena 1.001 1.015 1.016 1.000 1.016 

Huelva 0.998 1.000 0.998 0.984 1.014 

Las Palmas 1.019 1.022 1.042 1.016 1.025 

S.C. de Tenerife 1.000 1.002 1.002 0.999 1.003 

Tarragona 1.000 1.005 1.005 1.014 0.992 

Valencia 1.026 1.035 1.062 1.068 0.995 

Mean Cluster 1 1.006 1.011 1.017 1.012 1.005 

Cluster 2 

Alicante 1.017 1.073 1.091 1.027 1.063 

Avilés 1.000 1.004 1.004 0.981 1.023 

Cádiz 0.981 1.008 0.989 0.96 1.030 

Castellón 1.000 0.996 0.996 0.984 1.012 

Ceuta 1.000 0.941 0.941 0.935 1.007 

Ferrol-San Cibrao 1.000 0.975 0.975 0.96 1.015 

Gijón 1.042 1.016 1.059 1.035 1.023 

Málaga 1.006 0.976 0.982 0.915 1.073 

Marín-Pontevedra 1.047 1.011 1.059 1.015 1.043 

Melilla 1.000 1.013 1.013 1.007 1.006 

Pasajes 1.036 1.006 1.042 1.024 1.018 

Santander 1.029 1.030 1.060 1.037 1.022 

Sevilla 1.031 1.036 1.068 1.026 1.041 

Vigo 0.998 1.032 1.030 0.975 1.056 

Vilagarcía 1.092 0.966 1.055 0.999 1.056 

Mean Cluster 2 1.019 1.006 1.024 0.992 1.034 

      



Table 8. MMPI, GMPI and catch-up by port authority: 1993-2006 & 2007-2016 

 1993-2006 2007-2016 

 𝑇𝐸𝐶𝑘 𝑇𝐶𝑘 𝐺𝑀𝑃𝐼 𝑀𝑀𝑃𝐼 Catch-up 𝑇𝐸𝐶𝑘 𝑇𝐶𝑘 𝐺𝑀𝑃𝐼 𝑀𝑀𝑃𝐼 Catch-up 

Cluster 1           

A Coruña 1.006 0.999 1.006 1.005 1.001 1.000 0.970 0.970 0.972 0.998 

Algeciras 1.000 0.945 0.945 0.938 1.008 1.000 1.013 1.013 0.976 1.038 

Baleares 1.000 1.029 1.029 1.015 1.013 1.000 0.995 0.995 1.000 0.995 

Barcelona 1.054 1.046 1.102 1.113 0.990 0.980 1.027 1.006 1.035 0.972 

Bilbao 1.020 1.039 1.060 1.070 0.990 0.974 1.013 0.987 1.003 0.984 

Cartagena 1.001 1.022 1.024 1.007 1.017 1.000 1.005 1.005 0.986 1.019 

Huelva 1.000 1.023 1.023 0.991 1.033 0.995 0.969 0.965 0.972 0.993 

Las Palmas 1.063 1.026 1.090 1.075 1.014 0.962 1.018 0.979 0.946 1.034 

S.C. de Tenerife 1.000 1.034 1.034 1.033 1.001 1.000 0.961 0.961 0.979 0.982 

Tarragona 1.000 1.013 1.013 1.026 0.988 1.000 0.995 0.995 1.000 0.995 

Valencia 1.046 1.043 1.091 1.097 0.994 1.000 1.026 1.026 1.035 0.991 

Mean Cluster 1 1.017 1.020 1.038 1.034 1.004 0.992 0.999 0.991 0.991 1.000 

Cluster 2           

Alicante 0.980 1.083 1.062 1.009 1.053 1.064 1.060 1.129 1.050 1.075 

Avilés 1.000 1.015 1.015 0.983 1.033 1.000 0.989 0.989 0.985 1.004 

Cádiz 1.001 1.014 1.015 0.981 1.035 0.955 1.001 0.956 0.950 1.006 

Castellón 1.000 0.974 0.974 0.969 1.005 1.000 1.025 1.025 1.010 1.014 

Ceuta 1.000 0.913 0.913 0.908 1.005 1.000 0.978 0.978 0.944 1.036 

Ferrol-San Cibrao 1.000 0.970 0.970 0.951 1.020 1.000 0.981 0.981 0.946 1.037 

Gijón 1.074 1.024 1.100 1.070 1.028 1.000 1.007 1.007 0.987 1.020 

Málaga 1.036 0.973 1.008 0.907 1.111 0.966 0.982 0.948 0.952 0.996 

Marín-Pontevedra 1.064 1.011 1.076 1.023 1.052 1.025 1.010 1.036 1.002 1.034 

Melilla 1.000 0.999 0.999 0.989 1.010 1.000 1.030 1.030 1.060 0.972 

Pasajes 1.063 1.013 1.077 1.058 1.018 1.000 0.998 0.998 0.992 1.006 

Santander 1.014 1.039 1.053 1.028 1.025 1.048 1.019 1.068 1.042 1.025 

Sevilla 1.061 1.044 1.108 1.094 1.013 0.992 1.026 1.017 0.968 1.051 

Vigo 0.998 1.052 1.050 0.970 1.083 0.997 1.007 1.004 0.990 1.014 

Vilagarcía 1.120 0.954 1.068 1.037 1.030 1.056 0.982 1.037 0.954 1.087 

Mean Cluster 2 1.027 1.005 1.033 0.998 1.035 1.007 1.006 1.013 0.989 1.025 



 

In our model we wish to test whether size and specialisation influence productivity growth. In 

line with Chang and Tovar (2017a), we use control variables that capture the relative 

importance of different types of cargo for each port authority, and a one-period lag of 

productivity growth. In particular, we used the variable 𝑅𝐸𝐿𝑆𝐼𝑍𝐸𝑖 to capture the size of the port 

authority and the specialization variables 𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝑚 for each cargo.  

 

When using the whole sample, the model did not function well in that the validity of the 

instruments was rejected. As the period from 2007 was one of severe economic crisis and hence 

may be considered as not representative of port authority performance since the early 1990s, 

we estimated the model using the subsample 1993-2006 corresponding to the pre-crisis period 

and the model performed well, with the instruments proving valid and the hypothesis of zero 

autocorrelation of the first-differenced errors not rejected. As the years 2008-2011 were the 

most disruptive for port traffic, we re-estimated the model dropping these four years, and again 

the model performed well. This is our chosen model, and the results are presented in Table 9, 

where a time trend has also been included. As can be seen, TFP growth in this model is found 

to depend on previous values, as we would expect, with the lag being significant at the 10% 

level. The size of the port authority, which captures its complexity, is also found to positively 

influence productivity growth. Of the variables capturing the degree of specialization in each 

cargo, we find that port authorities that are relatively specialized in solid bulk, containerized 

cargo and general merchandise have higher productivity growth, whereas being specialised in 

liquid bulk has no effect on productivity. A conclusion of our results would appear to be that 

large port authorities have the best of both worlds as they can take advantage of both 

diversification and specialization insofar as the can handle large quantities of several types of 

traffic.  
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Table 9. Determinants of productivity growth –GMM estimation 

Variables Coefficient Std. Error p-value 

    

𝑇𝐹𝑃𝑖,𝑡−1 -0.0869 0.0445 0.051 

𝑅𝐸𝐿𝑆𝐼𝑍𝐸 15.5819 2.8956 0.000 

𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝑆𝑂𝐿 0.1708 0.0601 0.005 

𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝐿𝐼𝑄 -0.1128 0.0937 0.229 

𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝐶𝑂𝑁𝑇 0.1154 0.0456 0.011 

𝑅𝐸𝐿𝑆𝑃𝐸𝐶𝑦𝐺𝑀 0.1310 0.0421 0.002 

𝑡 0.0017 0.0026 0.512 

Constant -0.9961 0.2778 0.000 

    Sargan test of overidentifying restrictions: 𝜒2(125) = 132.78.  Prob > 𝜒2 = 0.300 

    Arellano-Bond test for zero autocorrelation in first-differenced errors: Prob > z = 0.760 

 

 

5. Conclusions 

In this paper we have analysed the productive performance of Spanish port authorities over the 

period 1993-2016. This was carried out while recognising that differences in technology may 

exist among port authorities due to differences in infrastructures and complexity. These 

differences may in turn affect port authority productivity, and this is the issue we have addressed 

in our work. 

To capture differences between technologies, we divided the 26 Spanish port authorities in our 

dataset into two groups based on a criterion of size and complexity. The group containing large 

and complex port authorities comprised 11 members, with the remaining 15 in the group of 

smaller and less complex port authorities.  

Our results show that the group of large and complex port authorities had a considerable 

technological advantage, being closer to the metafrontier on average than the other group. 

Within their groups, the larger and more complex port authorities were also more technically 
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efficient, thereby showing greater capacity to take advantage of their (superior) technology than 

the other group was of exploiting theirs. When looking at sub-periods, we find that both groups 

increased their technical efficiency in 2007-2016 compared to the pre-crisis period 1993-2006. 

The degree of catch-up (i.e., the extent to which the group frontier moves closer to the 

metafrontier) was higher for the less complex port authorities over the whole sample period and 

for each sub-period.  

Total factor productivity was also higher for the group of large and complex port authorities, 

who had an average annual productivity growth of 1.2% over the whole period compared to an 

average annual reduction of -0.8% for the smaller and less complex entities. Average annual 

productivity growth for the large and complex port authorities was positive in the first sub-

period and negative in the second, whereas it was negative in both sub-periods for the smaller 

and less complex port authorities.  

We finished our analysis by investigating the extent to which the overall size of the port 

authorities and their specialisation in different cargoes may affect total productivity growth. We 

did this by using the total factor productivity growth estimates as the dependent variables in a 

GMM regression. We find that relative size, which can be interpreted as a measure of 

complexity of the port authority, has a strong positive influence on productivity growth. 

Specialisation in solids, container cargo and general bulk also increased productivity growth, 

but specialisation in liquids has no effect. We can conclude that large and complex port 

authorities, which are large enough to be specialized in several outputs, have a comparative 

advantage in that they are able to benefit from self-reinforcing scale and scope economies. 

We conclude by drawing attention to some of the implications of our results for regulatory and 

policy purposes. Recall that one of the advantages of metafrontier analysis is that it allows 

evaluation of policies or programs aimed at either efficiency improvement within the firm or at 

the environment in which the firm operates. From a regulatory perspective, the importance of 

‘comparing like with like’ is highlighted by our results: several port authorities, especially 

(though not exclusively) those in the group of smaller, less complex entities, appear highly 

inefficient if they are compared to the (overall) metafrontier but when they are compared with 

port authorities with the same technology they appear highly efficient. Notable examples here 
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are Alicante, Cádiz and Vigo, while in the group of large and complex port authorities A Coruña 

stands out.  

We find that the smaller, less complex port authorities have been catching up to the larger ones, 

especially in the second half of the sample period where they showed greater growth in technical 

efficiency and greater movement of their technology towards the metafrontier. While some of 

these smaller, less complex port authorities are relatively efficient in terms of their group, this 

group is relatively more inefficient on average with respect to its frontier compared to the larger 

port authorities. This suggests that they have plenty of scope for improving their productivity 

without making large investments to increase their size or complexity, i.e., efficiency gains are 

possible without ‘adopting’ another technology. While making investments to increase their 

size and complexity, thereby taking advantage of economies of scope and scale, would in 

principle permit them to increase their productivity, it would appear sensible to take advantage 

of their existing technological possibilities by increasing their efficiency before contemplating 

large and risky investments.  
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