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Abstract—One of the major requirements of Ultra-Reliable 

Low-Latency Communications (URLLC) is a high clock 
synchronization performance between nodes. This is especially 
critical in Industrial Wireless Sensor and Actuator Networks 
(IWSAN), where every sensor and actuator of the network must 
take samples with very precise timing. In this paper, we detail the 
challenges of distributing a global base time in wireless 
communications and address some insights to achieve a very high 
clock synchronization performance. Besides this, Orthogonal 
Frequency-Division Multiplexing (OFDM) has been proposed to 
be used in the next generation of industrial communication 
standards, such as SHARP, due to their robustness in high 
dispersive channels. Based on these considerations, we have built 
an IEEE 802.11a/g modem with hardware timestamping and we 
have evaluated the clock synchronization over several wireless 
channels. The wireless channels have been run in a channel 
emulator and they represent four different scenarios: small 
office, big office, open space, and small factory. The results show 
that clock synchronization is quite affected by channel dispersion 
and channel Doppler speed, but the performance of our system is 
good enough to its use in industrial scenarios and comparable to 
Ethernet-based synchronization at channels with low and 
medium dispersion. 

Keywords—SHARP, clock synchronization, IEEE 1588, PTP, 
industrial communications, IEEE 802.11, WIFI, channel emulator, 
Industrial wireless sensor networks, IWSN  

I. INTRODUCTION 
The use of wireless communications in industrial 

applications, such as sensor and actuator networks, is gaining 
interest due to the advantages of wireless communications over 
wired communications. These main advantages are: cost 
reduction, more flexibility, free movement and scalability. 
However, there are still some issues that must be solved to 
replace wired solutions with wireless solutions. One of these 
issues is the clock synchronization between the network 
elements. The sensors and actuators of the network, which 
measure physical variables or act on them, must perform their 
operations with very precise timing. Furthermore, high clock 
synchronization performance is also a requirement in 
Distributed Control Systems (DCS), where several controllers, 
distributed in a factory floor, need to share the same global 
base time. Finally, high clock synchronization performance is 

not only a requirement for control system operation, but also in 
Ultra-Reliable Low-Latency Communications (URLLC), in 
order to avoid inter-frame interferences and obtain a high 
channel usage. As an example, wireless SHARP URLLC 
solution [1] provides high packet rate and high reliability under 
the assumption that  base time can be distributed with an 
accuracy of few tens of nanoseconds to every element of the 
network. Clock synchronization between elements in a network 
is generally done through two approaches that are described in 
the next paragraphs. 

The first approach is based on retrieve clock time from 
Global Positioning System (GPS). Solutions based on this 
approach can achieve a precision as low as 20 ns [2], but only 
over good climate conditions and Line-Of-Sight (outdoor).  

The second option is to distribute the clock through the 
communication network. To do so, the network has a Grand 
Master Clock (GMC) that owns the network global time and 
distributes it by performing a frame exchange with the network 
nodes to let them calculate the clock offset and the path delay 
between the node and the GMC. The precision of this approach 
can vary from some microseconds to hundred of picoseconds 
and mainly depends on three factors: the protocol, the 
implementation of the protocol, and the channel characteristics. 

Precision Time protocol (PTP), which is described in IEEE 
1588 standard [3], is the most used protocol to distribute clock 
time through an Ethernet-based wired network with high 
precision. The implementation of the protocol is very relevant 
to achieve a high precision. Using software timestamps leads to 
a poor synchronization in the range of some microseconds. On 
the other hand, using hardware timestamps greatly improves 
clock precision to tens of nanoseconds or less. 

The nearly ideal channel in wired communications and its 
high bandwidth allows the clock synchronization protocols to 
achieve a very high precision. However, wireless channels 
response is typically quite far from ideal. Multipath 
propagation is the main cause of the channel non-ideality. The 
transmitted signal is scattered by the elements of the scenario 
and may arrive at the receiver at different times. Besides, the 
channel is continuously varying due to the movement of the 
scatterers. These two effects deteriorate the communication 
quality and hence the clock synchronization performance. 

There are several wireless synchronization proposals in the 
literature which are based on PTP. Solutions with software 
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wired communications), this approximation is enough to 
achieve a high clock synchronization. Indeed, this operation 
results in a uniform random error in the timestamps of ±Ts/2, 
being Ts the signal sampling period (inverse of the bandwidth). 
This imprecision is caused due to the unknown relative clock 
phase between the transmitter clock and receiver clock. 

A. Clock synchronization in wireless communications 
There are multiple issues in wireless communications that 

can deteriorate clock synchronization performance, and they 
are mainly related on channel characteristics. Firstly, the 
multipath propagation causes the transmitted signals to be 
received replicated and delayed at different instants, which 
leads to multiple local maximums in the preamble detector. 
Furthermore, the channel varies over time, thus the position of 
each of the maximums also varies, which introduces 
inaccuracies in the timestamps. Errors in the timestamps caused 
by these effects depend on the channel characteristic (delay 
spread and variation speed), and they could be from 50 ns to 
more than 500 ns. Finally, most of the wireless systems have 
low bandwidth, which effectively limits the time precision of 
the output of the correlator (5). As an example, an error in a 
timestamp of an 802.11g modem (20 MHz bandwidth) 
produces a minimum error of ± 50 ns. 

Errors in the clock synchronization may also depend on the 
relation between the channel variation, defined by the 
coherence time ( ), and PTP periods, that are the PTP sync 
period ( )  and the PTP path delay exchange period ( ). 
Channel variation speed can be also defined by a maximum 
Doppler speed. Eq. (7) is commonly used to relation Doppler 
speed and . 

=
9

16
⋅

⋅
, 

 

(7) 

 

where c is the speed of light,  is the Doppler speed, and  is 
the communication frequency. 

Three cases can be distinguished depending on the relation 
between ,   and  (Fig. 2): 

 Case 1: << . In this case, PTP can correctly 
follow the channel delay variations, as the path delay 
refresh rate is higher than the channel variation. 
Achieving this case is usually not possible, as the 

amount of traffic generated by the protocol would be 
higher than the system capacity. 

 Case 2: <  and << . When  is 
smaller but comparable to  and  is much 
smaller than , PTP syncs will follow the path delay 
variation. This effect will introduce some inaccuracies 
due to the path delay is refreshed with a higher period. 

 Case 3: <  or/and  >  . PTP syncs 
are not able to follow channel variation in this case. If 
the timestamps are passed through a filter, the clock 
synchronization should remain near the mean delay 
value, thus the clock synchronization error should be 
lower than case 2.  

The borders between each case depend on the PTP filter, so 
the relations between periods may slightly vary. PTP periods 
and filter should be carefully chosen in order to avoid a poor 
clock synchronization performance. It should be noted that 
Case 2 is easily avoidable and can be converted to Case 3 at 
runtime through discarding PTP sync frames, although this 
approach uses more traffic rate than optimizing  and  
period. 

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION 
The system has been implemented over the Picozed SDR 

platform, which contains a Xilinx Zynq System on Chip (SoC) 
and an AD9361 radio [7] with a frequency range between 
70 MHz and 6 GHz and a bandwidth of 56 MHz. The Zynq 
SoC comprises an FPGA and an ARM double core 
microcontroller in a single integrated circuit.  

There are three elements that have been built in the FPGA: 
the 802.11a/g PHY core, the 802.11 CSMA/CA MAC Access 
Scheme core, and the PTP core that comprises the PTP clock 
and the Tx/Rx hardware timestamping modules. The Rx 
timestamping module uses the timestamps stated in (6). 

Concerning about software, the ARM core is running 
FreeRTOS, a hard-real-time operating system, which is needed 
for high-precision applications with real-time requirements. 
The software over FreeRTOS includes the frame processing, 
and the PTP offset (2) and path delay computation (1) (PTP 
calculation core and PTP MAC layer). The results of the PTP 
computation are sent to the hardware which performs the clock 
correction. The node architecture is shown in Fig. 3. 

The PTP clock also generates a Pulse Per Second (PPS) 
signal based on its time. Due to the system clock rate is 
20 MHz, the PPS signal has a base resolution of 50 ns. This 
limits to 25 ns the resolution of the clock synchronization 
measurements of our system. 

 
Fig. 2. Relation between PTP periods and channel variation speed. In case 1 
there are multiple PTP syncs between each PTP delay request and response. 

Fig. 3. Block diagram of the implemented architecture. 
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2) Modem and PTP Configuration
The PTP configuration used in the measurement setup was:
 Sync packet period: 10 ms
 PTP frame exchange period: 100 ms.
 One-Step PTP.
 Time elapsed 

request: 200 µs.

The hardware configuration was:
 f0: 2.6 GHz.
 Bandwidth: 20 MHz
 802.11g 

with channel
 PPS resolution: 50 ns.

TABLE 

Name 

WLAN Ind 
WLAN A 
WLAN B 
WLAN C 

WLAN E 

WLAN Control 

*Classical fading model
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Modem and PTP Configuration
The PTP configuration used in the measurement setup was:

Sync packet period: 10 ms
PTP frame exchange period: 100 ms.

Step PTP. 
elapsed between PTP sync and PTP delay 

200 µs. 

The hardware configuration was:
: 2.6 GHz. 

Bandwidth: 20 MHz. 
802.11g Modulation and 

channel coding of 
PPS resolution: 50 ns. 
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*Classical fading model
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Modulation and Encoding
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rms Delay 
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NLOS 

NLOS 

NLOS 

- 

Sight (LOS), Non-
*Classical fading model: Rayleigh Fading and Jakes Doppler
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, while the last two speeds could be an 

o respectively.  

The PTP configuration used in the measurement setup was:

PTP frame exchange period: 100 ms. 

between PTP sync and PTP delay 

ncoding Scheme: BPSK 
MCS = 0).  
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It should be noted that the PPS resolution limits the 
measurement capacities of our system. Due to this, the 
measurements have a precision bound of ±25 ns. Furthermore, 
the measurements have been carried out at a center frequency 
of 2.6 GHz, instead of at a channel of the crowded 2.4 GHz 
band, in order to avoid external interferences from other 
communications systems. 

V. RESULTS 
Clock synchronization mean and accuracy results are 

indicated in Table II. The most representative cases are 
represented through histograms in Fig. 6. 

Focusing on clock synchronization accuracy (σ), we have 
found that the clock synchronization performance is 
deteriorated over channels with high delay spread:  a high 
delay spread leads to multiple peaks in the preamble detector 
(6), causing inaccuracies in the timestamping instants. As 
shown in the measurements, this effect is especially critical in 
channels with a high delay spread, such as WLAN E channel. 
On the other hand, if we study the results as a function of 
channel speed we found that the system seems to have a better 
synchronization when the Doppler speed is higher. In fact, this 
effect is perfectly described by Cases 2 and 3 stated in section 
II.A. The speed of 2 km/h corresponds to Case 2, while the rest 
of the speeds correspond to Case 3. When the speed is very 
high (300 km/h) the performance of our modem is very low 
(PER > 10-2), so the synchronization is also deteriorated 
compared with the cases with lower speeds. 

The measurements show that the clock synchronization 
accuracy at speeds of 10, 30 and 100 km/h is very similar in 

WLAN Ind, WLAN A, WLAN B, WLAN C and WLAN E 
channels. This can be also described by Case 3 conditions: the 
channel varies so fast that every PTP calculation is made under 
different channel realizations. If the PTP filter has low 
bandwidth, it is able to filter channel fast variations, thus the 
clock synchronization remains more stable. 

Focusing on the mean (µ) results, they are really close to 
0 ns, the ideal value, although they appear to be erratic between 
the different cases. This is probably due to the PTP calculations 
have a small bias in the estimation of the emulator path delay. 

Finally, maximum clock error is shown in Table III. As 
expected, the maximum error seems to increase at channels 
with higher delay spreads. However, the small number of 
samples taken for each scenario limits the representativeness of 
the clock synchronization maximum error. 

A. Towards subnanosecond clock synchronization over 
time-varying and high-dispersive wireless channels 
As stated in section II, the classic timestamping method 

based on the detection of the peak between the correlation of 
the received frame and the preamble is very precise in wired 
communications, as the bandwidth is high and the impulse 
response is nearly ideal. Thus, the largest source of clock 
synchronization error is due to the difference between  and 

. In wireless scenarios, our measurements show that there 
are three main error sources in clock synchronization over 
wireless systems: inaccuracies in the timestamp instants caused 
by multipath propagation, path delay variation, and low 
bandwidth. The measurements also show that the deterioration 
of the clock synchronization is especially visible in channels 
with a high delay spread.  

To address wireless channels issues, we are currently 
working on the design of an improved timestamping method 
that should be immune to dispersive channels and may be very 
robust against time-varying channels. The main idea is to take 
advantage of the channel delay diversity to accurately set the 
timestamp instants and obtain a great improvement in its 
precision.  This timestamping method would soften and 
disperse the errors over every timestamp. If the error in the 

TABLE II. CLOCK SYNCHRONIZATION MEAN (µ) AND ACCURACY (σ) OVER SEVERAL WIRELESS CHANNELS 
Doppler Speed  

[km/h] 
Channel 

0 2 10 30 100 300 
µ [ns] σ [ns] µ [ns] σ [ns] µ [ns] σ [ns] µ [ns] σ [ns] µ [ns] σ [ns] µ [ns] σ [ns] 

WLAN Ind - - 6.3 27.7 -1.38 28.0 -1.47 29.2 0.85 28.8 0.54 29.4 
WLAN A - - 3.70 31.7 11.2 27.8 9.22 28.4 11.3 27.3 -3.97 31.5 
WLAN B - - 8.82 35.1 -0.7 30.9 -1.20 29.9 2.48 30.8 -8.9 34.2 
WLAN C - - 8.96 35.2 8.09 30.6 -4.39 28.4 -5.10 32.1 -18.2 37.4 
WLAN E - - -9.1 66.0 -10.7 44.3 -5.8 43.7 -3.89 49.1 5.53 70.2 
Control 3.7 25.5 - - - - - - - - - - 

 

   
Fig. 6. Clock error in channels A, B and E with a Doppler speed of 30 km/h. 

TABLE III. CLOCK SYNCHRONIZATION MAXIMUM ERROR 

Doppler Speed  
[km/h] 

Channel 
0 2 10 30 100 300 

WLAN Ind - 84 83 105 101 97 
WLAN A - 99 105 88 100 123 
WLAN B - 109 124 97 109 132 
WLAN C - 123 118 71 102 182 
WLAN E - 188 149 153 189 194 
Control 65 - - - - - 

*Values are in ns 



 
 

timestamps is low enough, it may be also possible to achieve 
timestamps as precise as the timestamps proposed in [6], but 
over dispersive channels and OFDM-based communications. If 
these assumptions are correct, it may be possible to achieve 
sub-nanosecond clock synchronization performance over high-
dispersive and time-varying channels. 

VI. CONCLUSIONS 
In this paper, we have addressed the challenges of the clock 

synchronization over wireless channels. The time-varying 
wireless channels character, the non idealities of the channel 
impulse response and the low communication bandwidth are 
the main challenges of clock synchronization over real wireless 
channels. Our measurements show that the wireless medium 
deteriorates the timestamping quality, leading to a worse clock 
synchronization performance, especially in channels with high 
delay spread. However, it continues to meet the clock 
synchronization requirements of most industrial networks 
under real wireless conditions and its performance is very 
similar to that of Ethernet-based systems. 

However, wireless channel variability is still a challenge to 
clock synchronization. Although our implementation has 
robust clock synchronization over time-varying wireless 
channel, maximum clock error bounds cannot be established 
due to channel variation unpredictability in real conditions.  

Finally, it may be still possible to further improve the clock 
synchronization performance in wireless links. In future works 
we will deeply study in both theoretical and experimental 
domains how to take advantage of the channel delay diversity 
to provide sub-nanosecond clock synchronization in real 
wireless scenarios. 
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