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Abstract. Sensory analysis entails subjective valuations provided by
qualified experts which in most of the cases are given by means of a
real value. However personal valuations usually present an uncertainty in
their meaning which is difficult to capture by using a unique value. In this
work some statistical techniques to deal with such kind of information are
presented. The methodology is illustrated through a case-study, where
some tasters have been proposed to use trapezoidal fuzzy numbers to
express their perceptions regarding the quality of the so-called Gamonedo
blue cheese. In order to establish an agreement between the tasters a
weighted summary measure of the information collected is described.
This will lead to assign a weight to each expert depending on the influence
they have when the weighted mean is computed. An example of the real-
life application is also provided.
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1 Introduction

Sensory analysis (or sensory evaluation) is useful to interprete some reactions of
the people to those features of food which are perceived by the senses of sight,
hear, smell, taste and touch [2]. The aim of this technique is to control the accept-
ability of certain product in the market, taking into account some requirements
regarding hygiene, harmlessness and quality. Sometimes a product requires the
mention of Protected Designation of Origin (PDO) to be commercialized, which
increases the importance of making a sensorial analysis study [8,31].

Likert scales are widely used to measure attributes or attitudes which are
associated with opinions, perceptions, valuations and so on [25]. A Likert scale-
based questionnaire is based on a set of pre-fixed categories which are usually
coded by means of integer numbers from a scale usually ranging from 1 to 5, or
from 1 to 7. This kind of closed format questionnaires have well-known advan-
tages: they are easy to conduct and the meaning of the answers does not need
to be explained in general. Nevertheless, its usefulness presents some drawbacks
as it has been pointed out, for instance, in [1,4,13,18,38].
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Fuzzy set theory was firstly introduced by Zadeh [44] as an extension of the
classical set theory. It is a wide field of study in which different tools have been
developed to deal with several problems during the last 20 years. Concerning
product quality in the food industry, several applications involving fuzzy sets
and fuzzy logic have been studied in some works. Most of them are summarized
in [32].

The application of fuzzy concepts to the sensory evaluation field is quite re-
cent. On one hand, there are some works based on the employment of fuzzy logic
for representing the semantics of human assessment in sensory analysis. For in-
stance, Davidson et al. [6] proposed a linguistic format for the sensory assessment
of food and processing methods for analyzing taste panel opinions by using fuzzy
inference systems. On the other hand, there are other works showing how fuzzy
sets can be used as a way of interpreting sensory data. In this line, Tan et al.
[42] considered sensory scales described as fuzzy sets, sensory attributes as fuzzy
random variables and sensory responses as sample membership grades. Then,
the set of responses is formulated as a fuzzy histogram of response and neural
networks are used to provide an effective tool for modeling sensory responses.
Additionally, a sensory evaluation model that manages evaluation frameworks
applying a fuzzy linguistic approach is developed in [28].

In the literature some authors have suggested to establish a correspondence
between each Likert response category and a fuzzy value chosen from a class of
flexible fuzzy sets previously stated by experts; see, for instance, [23,24]. This is
also the case of the works [6,42] presented above, where it is suggested to identify
each sensory response with a fuzzy subset chosen from a class of operational and
flexible fuzzy sets which has been stated by ‘experts’ either individually or by
consensus.

However, the employment of a value chosen from either a Likert scale or a
previously fixed fuzzy scale to describe each sensorial perception presents some
drawbacks, as the ones described below.

– Sometimes it is difficult for the taster to summarize his/her perception in
a unique value. This summary leads to a loss of information that could
be useful since the subjective perceptions include certain imprecision that
cannot be capture by using a single value.

– The transition from one category to another one is abrupt in general and two
different categories may not be perceived in the same way by two observers.

– Most of the statistical tools cannot be applied directly when Likert scales
are employed and, when it is possible, the interpretability and reliability of
the results obtained is considerably reduced (see, for instance, [41]).

To overcome these problems, it is proposed a natural way for describing each
individual opinion/perception/valuation by means of a fuzzy set capturing the
subjectiveness or imprecision involved in the answer and without taking into
account a pre-fixed enumeration of answers, neither crisp nor fuzzy. That is, in
this case there is not a pre-specified list of possible answers but the proposed
questionnaire has a free-response format.
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This work is focused on presenting different statistical techniques for sensory
analysis based on fuzzy data. The methodology will be illustrated by considering
the case of the quality analysis of the Gamonedo cheese which was made by some
tasters of the ALCE CALIDAD company (http://www.alcecalidad.com/empresa)
in order to preserve the Protected Designation of Origin (PDO). Thus, it should
be remarked that the tools used to carry out the perceptual analysis are qualified
people.

The Gamonedo cheese is a kind of blue cheese which is produced in Ońıs
and Cangas de Ońıs, councils of Asturias, Spain (see, for instance, [14,37]). The
cheese experiences a smoked process and later on it is let settle in natural caves
or a dry place (see Figure 1).

Fig. 1. Production of the Gamonedo cheese

The difficulties in keeping the quality of the Gamonedo cheese - due to its
sensitivity and complexity - support the necessity of developing a solid tasting
system to determine its quality.

Most of the tasters of the ALCE CALIDAD company are expert people,
although some of them are unexperience tasters. They were proposed to soften
their subjective perceptions about the quality of the Gamonedo cheese by using
a scale of free-response fuzzy sets. In addition, random fuzzy sets (RFSs for
short) in Puri and Ralescu’s sense [34] were introduced to formalize imprecise
experimental data which can be described by means of fuzzy sets.

We will present some descriptive and inferential statistical approaches for
fuzzy data which are applicable to the sensorial analysis of the Gamonedo cheese.
On one hand, we will propose a robust measure of central tendency for fuzzy val-
ues which will be very useful in our experiment since there are some non-expert
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tasters in the tasting process. Later, we will focus the attention on the applica-
tion of different hypothesis testing procedures for the mean and the variance of
fuzzy sets.

The rest of the manuscript is organized as follows. Section 2 gathers some
preliminaries about fuzzy sets. A procedure for computing weights associated
with the opinions of the tasters regarding the quality of different features of the
Gamonedo cheese is included in Section 3. This will lead to construct a weighted
mean to summarize the opinions of the tasters through a robust summary mea-
sure. Hypothesis testing procedures for fuzzy data and their applicability to the
sensory evaluation of the Gamonedo cheese are presented in Section 4. Finally,
some remarks and open problems are shown in Section 5.

2 Preliminary concepts

Formally, the space of fuzzy numbers Fc(R) is the class of functions U : R→ [0, 1]
such that Uα ∈ Kc(R) for all α ∈ (0, 1], where Kc(R) is the family of intervals
of R. The α-levels of U are defined as Uα = {x ∈ R|U(x) ≥ α} if α ∈ (0, 1], and
U0 is the closure of the support of U .

Two of the most usual shapes of fuzzy numbers considered in the literature
are trapezoidal and triangular (see, for instance, [9,16]). A trapezoidal fuzzy
number, from now on denoted by τ(a, b, c, d), fulfils that the interval [a, d] is
the 0-level whereas [b, c] is the 1-level. Mathematically, the expression for the
trapezoidal fuzzy number with vertices in {a, b, c, d} is

τ(a, b, c, d) =

⎧⎪⎪⎨⎪⎪⎩
(x− a)/(b− a) if x ∈ [a, b)
1 ifx ∈ [b, c]
(d− x)/(d− c) if x ∈ (c, d]
0 otherwise

(1)

A description of a trapezoidal fuzzy number and one of its α-cuts (α = 0.4) is
provided in Figure 2. A triangular fuzzy number is a particular case with b = c.

Fig. 2. Representation of a trapezoidal fuzzy set
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The usual arithmetic between fuzzy numbers is based on Zadeh’s extension
principle and it agrees levelwise with the Minkowski addition and the product
by scalars for compact intervals [29].

The space of fuzzy numbers is not linear due to the lack of symmetric ele-
ment with respect to the Minkowski addition. It is very useful then to consider
a distance between fuzzy numbers. The distance Dϕ

θ (U, V ) between the fuzzy
numbers U and V , firstly introduced in [43], is defined by

√∫
(0,1]

((
midUα−midVα

)2
+θ

(
sprUα−sprVα

)2
)
dϕ(α), (2)

where θ > 0 determines the relative weight of the distance between the spread of
the α-cuts, i.e. sprYα = (supUα−inf Uα)/2, with respect to the distance between
the corresponding mid-points midUα = (supUα + inf Uα)/2. In addition, ϕ is
associated with a bounded density measure with support (0,1] which allows us
to weigh the importance given to each α-level of the fuzzy numbers.

Let us consider a probability space (Ω,A, P ). Random fuzzy sets - RFSs, also
called fuzzy random variables - were firstly introduced in [34]. X : Ω → Fc(R) is
a RFS if it is a Borel measurable mapping with respect to Dϕ

θ [34,43]. One of the
most important advantages of considering Borel measurable metric-space-valued
mappings is that concepts such as induced distribution, independence, etc., can
be stated as usual.

The expected value of X [3] is the unique fuzzy number E(X ) so that for
each α ∈ [0, 1], (E(X ))α = [E(inf Xα), E(supXα)]. To assure the existence of the
last expectation, the integrability condition supx∈X0

‖x‖ ∈ L1(Ω,A, P ) must be
satisfied. Besides, if supx∈X0

‖x‖ ∈ L2(Ω,A, P ) the Fréchet-type variance [12] -
or simply variance, inspired on [22] - is defined as the real value

σ2
X = E

(
Dϕ

θ (X , E(X ))
)2
. (3)

2.1 Collecting the data

The case study addressed in this work was firstly suggested on a project in the
European Centre for Soft Computing (Mieres, Spain), made in collaboration with
the ALCE CALIDAD company. In that project, we were proposed to develop a
method in order to improve the sensory analysis of the Gamonedo blue cheese
produced in Asturias.

So far, the experts of the company provided an ordinal number ranging from
1 to 7 to describe their perceptions about different characteristics of the cheese.
These characteristics included visual parameters (shape, rind and appearance),
texture parameters (hardness and crumbliness), olfactory-gustatory parameters
(smell intensity, smell quality, flavour intensity, flavour quality and aftertaste)
and an overall impression of the cheese.

An example of the categorical opinion of an expert about the appearance of
a specific cheese is shown in Figure 3. It should be remarked that the experts of
the company apply different weights to each one of the features of the cheese,
according to the experience accumulated on the previous tastings.
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Fig. 3. Categorical opinion of an expert about the appearance of a specific cheese

During the project, the tasters were proposed to use trapezoidal fuzzy num-
bers for describing their perceptions. This kind of fuzzy numbers is one of the
most commonly used for fuzzy descriptions and their employment is easy to
understand by the tasters [7,16,17]. It would be also possible to consider other
shapes of fuzzy values.

Thus, the valuation of the different features of each cheese is made over a
graduate scale ranging from 0% (lowest quality) to 100% (highest quality). The
taster designs a trapezoidal fuzzy set, Λ = Tra(inf Λ0, inf Λ1, supΛ1, supΛ0).
The 0-level [inf Λ0, supΛ0] is the set of values that he/she considers to be com-
patible with his/her opinion at some extent (that is, the taster thinks that it is
not possible that the quality is out of this set), and the 1-level [inf Λ1, supΛ1]
is the set of values that he/she considers to be fully compatible with his/her
opinion. These two levels are linearly interpolated to get the trapezoidal fuzzy
set representing his/her personal valuation. An example of this representation is
shown in Figure 4.

Fig. 4. Opinion of a taster given by means of a trapezoidal fuzzy set

The lower intervals of the trapezoidal fuzzy sets employed for describing the
opinion of the tasters about certain feature of the cheese can be interpreted as
a measure determining the consensus that exists between them, while the upper
intervals represents their personal opinion.
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Tastings in the period 2009-2011 have been collected in order to develop
suitable statistical analysis to determine the quality of the Gamonedo cheese.
We would like to remark that the database is not very large since the experts of
the ALCE company developed only a few tastings during this period of time. In
addition, to better check the suitability of our proposal it could be convenient
to compare the results of the study with previous results. Although the previous
(fuzzy) information does not exist until the moment, it is possible to compare
in some sense the results obtained with the categorical information provided by
previous tastings.

3 Construction of the summary measure of the opinions
of the tasters

As it has been shown in Section 2.1, the consensus existing between the experts
involved in the tasting procedure can be analyzed by considering the 0-levels of
the trapezoids provided by those experts. For summarizing such observations, we
suggest to define a robust central location measure. The sample mean, defined
in terms of the natural arithmetic analogously to the classical concept, i.e. X =∑n

i=1Xi/n, is an estimator of the population mean that is usually influenced by
outliers or small departures from the model assumptions. The proposed summary
measure will be useful for analyzing how good are the opinions of one taster with
respect to the others.

Several approaches to robust estimation of the population mean have been
proposed in the literature. For instance, the median, trimmed estimators, Win-
sorised estimators or M-estimators [19,20,27]. Combining robustness and fuzzi-
ness, some methods have been explored in particular problems [10,11,40]. The
complexity of the space of fuzzy sets jointly with the lack of a sound total order
in that space, makes some of the classical robust statistical methods - such the
ones based on M-estimators - quite difficult to be tackled. In [40] a median for
random fuzzy sets is defined. In addition, a robust population central location
measure and a trimming approach have been proposed in [5] in order to reduce
the impact of the outliers in the fuzzy data analysis.

Classical M-estimators have been shown to have a higher breakdown point
and to be more efficient [20] than other alternatives. We propose to consider a
robust estimator of the mean for the infima and suprema of the 0-levels of the
trapezoids as follows. As a first attempt, the well-known Huber M-estimator [20]
is employed, although other M-estimators could be taken into account as, for
instance, the Tuckey, Hampel, Cauchy or Welsch M-estimators.

Let X l be the real random variable “lowest value that the taster is willing
to accept regarding the quality of a specific feature of the cheese”. Suppose that
there are n tasters and that the lowest values of their opinions are

{
X l

1, . . . , X
l
n

}
.

In the framework of this work the interest is focused on assigning lower
weights to those opinions which are far from the mean value. A robust estimator
of the mean is considered, based on the Huber M-estimator and taking into
account the following Huber loss function:



8 Ramos-Guajardo et al.

ψ(x) =

{
x if |x| ≤ 1
1 if |x| > 1

(4)

The loss function defined in (4) is illustrated in Figure 5. It describes the
penalty incurred by the mean estimation procedure.

−4 −2 0 2 4

0

2

4

−2−2

−4

Fig. 5. Huber loss function

The robust estimator of the mean, denoted by T l
n, is the one satisfying the

equation
n∑

i=1

ψ

(
X l

i − T l
n

σ̂

)
= 0, (5)

where σ̂ is an estimator of the standard deviation of the population data. The

classical estimator σ̂ =
√∑n

i=1(X
l
i −X l)2/(n− 1) is also generally affected by

extreme observations. Thus, a robust measure of the variability of the data is
also employed. The median absolute deviation (MAD) is based on the median
and it is defined as

MAD = median

(∣∣∣X l
i −median

({X l
1, . . . , X

l
n}

)∣∣∣). (6)

The MAD was firstly promoted in [19]. It can be used as a consistent estimator
of the standard deviation by taking

σ̂ = K ·MAD, (7)

where K is a constant scale factor which depends on the distribution. In general
K = 1.4826 is the most employed number in practice; it is the required value
to make the estimator consistent for the parameter of interest when Gaussian
distributions are considered.

Equation (5) is equivalent to

n∑
i=1

(
Ψ
( Xl

i−T l
n

K·MAD

)
Xl

i−T l
n

K·MAD

)
(X l

i − T l
n) = 0, (8)
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where ψ is the function defined in (4), and so the Huber robust estimator for
the mean is given by

T l
n =

∑n
i=1 w(X

l
i)X

l
i∑n

i=1 w(X
l
i)

, (9)

where

w(X l
i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψ
( Xl

i−T l
n

K·MAD

)
Xl

i−T l
n

K·MAD

if X l
i �= T l

n

Ψ ′(0) if X l
i = T l

n

are the weights associated with each value of the sample. It is straightforward
to show that w(X l

i) ∈ [0, 1], for all i ∈ {1, . . . , n}.
The weights can be gathered in a graphic - as the ones provided in Figures

11-14 - by taking into account the following points:

– If the weight is equal to 1 (which means that the infimum of the lower level of
the trapezoid is “relatively close” to the robust estimate T l

n) we will represent
the weight with a completely shaded rectangle.

– If the weight is lower than 1, its representation will be a proportionally
shaded rectangle (for instance, if the weight is .3 we will shade the 30% of
the rectangle).

– The position of the rectangle will be either left or right depending on the
position of the value of the sample with respect to the robust estimate T l

n.

The proposed methodology could be analogously applied to the variable
Xr ≡“highest value that the taster is willing to accept regarding the quality
of a specific feature of the cheese”, leading to a robust summary measure of the
highest values of the trapezoids drawn by all the tasters. In this case the Huber
estimator is denoted by T r

n and a set of weights {wr
1, . . . , w

r
n} is obtained.

The aim is to compute a general weight on the basis of wl
i and w

r
i to associate

to the opinion of each taster. One possibility entails the consideration of a t-norm,
which is a concept firstly introduced in [39], and defined as an operation in [0, 1]2

satisfying good properties. Two well-known t-norms have been selected to deal
with the problem proposed here. The first one is the product t-norm which is
the ordinary product of real numbers. Thus, if wl

i and w
r
i are the weights for the

taster i, the general weight for this taster will be wP
i = wl

i · wr
i . On the other

hand, the minimum t-norm (also called Gödel t-norm) is considered which has
the expression wM

i = min{wl
i, w

r
i }.

The computed general weights are employed to calculate a weighted mean of
the sample {X1, . . . , Xn}, where each Xi is the opinion of the taster i given by
a trapezoidal fuzzy number.

Let {w1, . . . , wn} be the general Huber robust weights obtained by the pro-
cedure presented before. Without loss of generality, let X l

i be the infimum of the
0-level of the trapezoid described by the taster i (as it was presented previously).
Then, the weighted mean of the sample {X l

i}ni=1 is∑n
i=1 wi ·X l

i∑n
i=1 wi

. (10)
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The same procedure could be applied to the other extremes of the trapezoids.
Figure 6 shows a summary of the procedure followed in this section.

Fig. 6. Flow chart of the process

3.1 Application to the case study

In one of the tastings carried out in the ALCE company, a specific cheese of
one of the Gamonedo’s cheese factories has been analyzed by 7 tasters. Eleven
features of the cheese have been considered: its shape, its rind, its appearance,
the intensity and quality of its smell, its hardness, its friability, the intensity
and quality of its taste, its aftertaste, and its overall impression. The tasters
were proposed to express their opinions about the previous features by means
of trapezoidal fuzzy values. We will focus our analysis in four of the features:
the appearance, the quality of the smell, the taste and the overall impression.
The data are gathered in Table 1 as vectors containing the four vertex of the
trapezoids.

Expert Appearance Smell quality Flavour quality Overall impression

1 (40, 46, 50, 57) (34, 40, 50, 60) (40, 46, 50, 57) (30, 35, 45, 50)

2 (49, 52, 56, 61) (50, 53, 56, 61) (47, 50, 53, 60) (60, 63, 67, 72)

3 (70, 75, 84, 90) (65, 80, 87, 90) (60, 68, 74, 80) (70, 75, 85, 90)

4 (60, 70, 76, 80) (65, 70, 74, 80) (60, 70, 80, 84) (65, 75, 85, 85)

5 (50, 50, 55, 65) (50, 50, 65, 75) (49, 50, 62, 75) (50, 50, 63, 75)

6 (40, 44, 50, 57) (40, 46, 55, 56) (30, 40, 46, 50) (40, 44, 50, 55)

7 (50, 55, 56, 56) (47, 51, 54, 55) (49, 54, 57, 61) (49, 52, 54, 56)

Table 1. Perceptions of the tasters concerning four features of the cheese
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The previous trapezoidal fuzzy data are depicted in Figures 7, 8, 9 and 10.

Fig. 7. Opinions about the appearance of the cheese

Fig. 8. Opinions about the smell quality of the cheese

The representation of the Huber weights associated to each taster (wl
i, w

r
i ,

wP
i and wM

i ) in the analysis of the four features of the cheese is provided in
Figures 11, 12, 13 and 14. From them, we can conclude that to the tasters 3
and 4 are assigned, in general, smaller weights than to the other tasters, which
means that their influence in the computation of the weighted mean is lower.
This can be also noticed in Figures 7-10, where the trapezoids drawn by the
tasters 3 and 4 describe significant higher perceptions about the quality than
the other tasters. On the other hand, taster 1 presents a small influence in the
case of his/her opinion about the smell quality and the overall impression (as it
can also be observed in Figures 8 and 10), and the opinion of taster 6 about the
flavour quality of the cheese also affect the computation of the weighted mean
and for this reason its weight is smaller than the others.
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Fig. 9. Opinions about the flavour quality of the cheese

Fig. 10. Opinions about the overall impression of the cheese

Fig. 11. Representation of the Huber weights of the appearance opinions

Fig. 12. Representation of the Huber weights of the smell quality opinions
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Fig. 13. Representation of the Huber weights of the flavour quality opinions

Fig. 14. Representation of the Huber weights of the overall opinions

Finally, the corresponding weighted means (taking into account the minimum
t-norm) for the four features are gathered in Figure 15. It shows that the ap-

Fig. 15. Weighted means of the four features of the cheese

pearance and the quality of this specific cheese is not very high since the 0-levels
of the trapezoids representing the weighted means for each case are between the
values 47 and 63 approximately. The flavour quality and the overall impression
are a little bit higher than the previous ones since the weights of tasters 3 and
4 (whose perceptions about the quality are better than the others in all the
situations) are either 1 or a value closer to 1 in this two situations. In addition,
the overall impression is not out of the interval [53,70] and the interval [57,65]
is fully compatible with the opinions of the tasters.
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4 Hypothesis testing procedures applied to the quality
control of the cheese

Some approaches have been developed in the literature for testing statistical
hypotheses with fuzzy data. Concerning the fuzzy expectation, the one-sample
test has been developed in [21,30,15], and the equality of fuzzy means of k
populations (one-way ANOVA) for general RFSs has been presented in [16]. On
the other hand, concerning the variance of RFSs, one-sample tests for the Fréchet
variance have been analyzed in [26,35]. A procedure for testing the equality of
variances (or homoscedasticity) of k populations based on ANOVA techniques
has been introduced in [36].

Given a probability space (Ω,A, P ), let X1, . . . ,Xk be k independent RFSs

associated with it and let {Xij}nij=1 be a simple random sample drawn from

each RFS Xi, where
∑k

i=1 ni = N is the total sample size. The following sample
moments are defined:

– The sample mean associated with the i− th variable is

Xi· =
ni∑
j=1

Xij/ni.

– The total sample mean is given by

X·· =
k∑

i=1

ni∑
j=1

Xij/N.

– The sample variance of the i− th variable is defined as

σ̂2
Xi

=

∑ni

j=1

(
Dϕ

θ

(Xij ,Xi·
))2

ni
.

– The sample quasi-variance of the i− th variable is equal to

Ŝ2
Xi

= niσ̂
2
Xi
/(ni − 1).

– The total sample variance is given by

σ̂2 =

∑k
i=1 niσ̂

2
Xi

N
.

The one-sample and multi-sample tests for the mean and the variance of
RFSs are recalled in the following lines.

One-sample tests
Given A ∈ Fc(R) and σ0 ∈ R, the following hypotheses are to be tested:

H1
0 : E(X ) = A vs. H1

1 : E(X ) �= A, (11)
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H2
0 : σ2

X = σ2
0 vs. H

2
1 : σ2

X �= σ2
0 . (12)

To solve Test (11), the following statistic has been considered in [21]:

T 1
n =

n[Dϕ
θ (Xn, A)]

2

Ŝ2
X

, (13)

which converges in law to ‖Z‖2 as n tends to∞ - Z being a Gaussian variable in
L2({−1, 1} × (0, 1]) with null expected value and the same covariance operator

than sX , provided that E
(
‖sX ‖2θ,ϕ

)
<∞ (where ‖·‖θ,ϕ is a norm on the Hilbert

space L2({−1, 1} × (0, 1])).
Lubiano et al. [26] have analyzed the problem of solving Test (12) for simple

FRVs, i.e. those taking on a finite number of different values, in a particular
class. These studies were extended in [35] to a wider class of non-necessarily
simple FRVs leading to the following statistic:

T 2
n =

√
n
(
Ŝ2
X − σ2

0

)
σ̂2

(Dϕ
θ (X ,Xn))

2

. (14)

where σ̂2

(Dϕ
θ (X ,Xn))

2 =
1

n

n∑
i=1

( (
Dϕ

θ

(Xi,Xn

))2 − 1

n

n∑
i=1

(
Dϕ

θ

(Xi,Xn

))2 )2

.

It has also been shown that T 2
n converges to a standard normal variable

N (0, 1) as n tends to∞ whenever E
(
‖sX ‖4θ,ϕ

)
<∞ (see [35]). The correspond-

ing one-sided tests for the variance of an RFS can be analogously developed.
The difficulties in handling the limit distribution of the statistic T 1

n and
the slow approximation to the sample distribution of T 2

n using the asymptotic
approach support the necessity of developing bootstrap testing methods. Some
bootstrap procedures are provided in [15,35] which have been shown to be useful
for moderate sample sizes.

Multi-sample tests
Given k independent RFSs X1, . . . ,Xk, the ANOVA and homoscedasticity tests
for RFSs are stated as follows. The hypotheses to be tested are

H3
0 : E(X1) = . . . = E(Xk) vs. H

3
1 : ∃ i, j ∈ {1, . . . , k} s.t. E(Xi) �= E(Xj), (15)

H4
0 : σ2

X1
= . . . = σ2

Xk
vs. H4

1 : ∃ i, j ∈ {1, . . . , k} s.t σ2
Xi

�= σ2
Xj

. (16)

In order to solve Test (15) for general RFSs the following test statistic has
been proposed in [16]:

T 3
(n1,...,nk)

=

k∑
i=1

ni
(
Dϕ

θ

(Xi·.X··
))2

. (17)
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In [16] it is shown that T 3
(n1,...,nk)

converges in law to

k∑
i=1

(∥∥∥∥∥Zi −
k∑

l=1

βliZl

∥∥∥∥∥
ϕ

θ

)2

,

whenever ni → ∞ and ni/N → pi > 0 as N → ∞ for i ∈ {1, . . . , k}. The
definition of the Gaussian variables Z1, . . . , Zk and the coefficients βli are also
established in [16].

On the other hand, the homoscedasticity test for RFSs (16) has been intro-
duced in [36] on the basis of the Levene’s classical test for real variables. The
test statistic considered in this case is

T 4
(n1,...,nk)

=

k∑
i=1

ni
(
σ̂2
Xi
− σ̂2

)2
k∑

i=1

σ̂2
(Dϕ

θ (Xi,Xi·))2

, (18)

which converges in law to

k∑
i=1

(
Z̃i −

k∑
l=1

√
piplZ̃l

)2
/ k∑

i=1

σ2
(Dϕ

θ (Xi,E(Xi)))2
,

whenever E
(
‖sXi‖4θ,ϕ

)
< ∞, and ni/N → pi ∈ (0, 1) when ni → ∞ for all

i ∈ {1, . . . , k}, and Z̃1, . . . , Z̃k have the expressions specified in [36].
Again, bootstrap techniques have been applied and they have been shown to

be useful for small and moderate sample sizes (see [16] and [36] for details).

4.1 Application to the case study

As a first study, to determine if the Gamonedo cheese deserves to keep its Pro-
tected Designation of Origin (PDO for short) it could be interesting to analyze
if the quality conditions of the cheese are also kept. For this purpose, some
hypothesis tests for the expected value and the variability of the opinions of
three different experts (that we call Expert 1, Expert 2 and Expert 3) concern-
ing their overall impression about the cheese are carried out. Due to the lack
of previous fuzzy information to compare with, some summarizing information
drawn from the categorical answers obtained in previous tastings are taken into
account. Specifically, the categorical mean values are empirically associated with
trapezoidal fuzzy sets. In this context, three trapezoidal RFSs are considered,
namely Xi ≡‘perception of Expert i about the overall impression of the cheese’,
for i ∈ {1, 2, 3}.

Suppose that we know from previous studies that the expected value of the
overall impression of the cheese in past tastings was A = Tra(60, 65, 70, 75)
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and that the variance was approximately equal to 200. Then, in our study it
could be interesting to check if the new conditions are at least as good as the
previous ones. For that we will test if the corresponding expected values do not
differ significantly from A and if the variabilities of those variables are reduced.
Therefore, the aim is to analyze the following hypotheses:

(a) H1,1
0 :E(X1) =A, H1,2

0 :E(X2) =A, H1,3
0 :E(X3) =A,

(b) H2,1
0 : σ2

X1
≤ 200, H2,2

0 : σ2
X2
≤ 200, H2,3

0 : σ2
X3
≤ 200.

The different opinions of the three experts about the overall impression of
the Gamonedo cheese are gathered in Table 2.

Firstly, the null hypotheses provided in (a) are analyzed. The sample means
of the data gathered in Table 2 are

X1 = Tra(57.65, 63.18, 69.18, 73.48), X2 = Tra(47.34, 51.21, 59.86, 66.84) and

X3 = Tra(57.24, 62.38, 67.95, 73.52).

The distance has been chosen to be Dλ
10 (where λ denotes the Lebesgue

measure in (0, 1]) since the difference between the mids is in the order of 10
times larger than the one corresponding to the spreads. Thus, if we apply the
bootstrap approach introduced in [15], we obtain the p-values p(1,1) = .323,
p(1,2) = 0 and p(1,3) = .156. In light of these results, we can conclude that

the hypotheses H1,1
0 and H1,3

0 are not rejected at the usual significance levels,
whereas the null hypothesis H1,2

0 is rejected at the usual levels. However, if we
consider as trapezoid of reference A = Tra(50, 50, 60, 70) for the Expert 2, we
obtain a p-value of p2 = .299, leading to a non-rejection decision of H1,2

0 at the
usual significance levels.

At a second stage, we are going to test the hypotheses H2,1
0 , H2,2

0 and H2,3
0

in (b). The corresponding sample quasi-variances are Ŝ2
X1

= 185.6401, Ŝ2
X2

=

170.8639 and Ŝ2
X3

= 142.964. By applying the bootstrap procedure proposed
in [35], the following p-values have been obtained: p(2,1) = .596, p(2,2) = .699

and p(2,3) = .953. Therefore, the null hypotheses H2,1
0 , H2,2

0 and H2,3
0 are not

rejected at the usual significance levels.

Other aspect to be considered in order to keep the PDO of the Gamonedo
cheese is related to the agreement between several experts with respect the qual-
ity of the characteristics of the cheese. Thus, to analyze the coherence between
the different tasters it is necessary to test the equality of variances and the equal-
ity of means of such opinions. We have taken into account again variables X1,
X2 and X3 defined as above as well as the opinions given by Experts 1, 2 and 3
which are provided in Table 2.

First, the equality of variances of the opinions of the three experts is analyzed.
Then, the aim now is to test the following hypothesis:

(c) H3
0 : σ2

X1
= σ2

X2
= σ2

X3
.
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Table 2. Sample of the opinions of Expert 1, 2 and 3 concerning the overall impression
of the Gamonedo cheese

Opinion number Expert 1 Expert 2 Expert 3

1 (65, 75, 85, 85) (50, 50, 63, 75) (60, 63, 67, 72)

2 (35, 37, 44, 50) (39, 47, 52, 60) (53, 58, 63, 68)

3 (66, 70, 75, 80) (60, 70, 85, 90) (43, 47, 54, 58)

4 (70, 74, 80, 84) (50, 56, 64, 74) (70, 76, 83, 86)

5 (65, 70, 75, 80) (39, 45, 53, 57) (54, 60, 65, 70)

6 (45, 50, 57, 65) (55, 60, 70, 76) (76, 80, 83, 86)

7 (60, 66, 70, 75) (50, 50, 57, 67) (65, 68, 73, 80)

8 (65, 65, 70, 76) (65, 67, 80, 87) (77, 80, 86, 90)

9 (60, 65, 75, 80) (50, 50, 65, 75) (76, 80, 85, 90)

10 (55, 60, 66, 70) (50, 55, 64, 70) (70, 76, 80, 85)

11 (60, 65, 70, 74) (39, 46, 53, 56) (50, 51, 55, 64)

12 (30, 46, 44, 54) (19, 29, 41, 50) (43, 47, 51, 58)

13 (60, 65, 75, 75) (40, 47, 52, 56) (50, 55, 60, 64)

14 (70, 75, 85, 85) (54, 55, 65, 76) (65, 67, 73, 80)

15 (44, 45, 50, 56) (59, 65, 75, 85) (65, 70, 75, 80)

16 (51, 56, 64, 70) (50, 52, 57, 60) (50, 55, 60, 65)

17 (40, 46, 54, 60) (60, 60, 70, 80) (65, 70, 75, 80)

18 (55, 60, 65, 70) (50, 54, 61, 67) (74, 80, 85, 90)

19 (80, 85, 90, 94) (40, 46, 50, 50) (46, 50, 55, 60)

20 (80, 84, 90, 90) (44, 50, 56, 66) (50, 57, 64, 70)

21 (65, 70, 76, 80) (60, 64, 75, 85) (65, 74, 80, 84)

22 (75, 80, 86, 90) (54, 56, 64, 75) (55, 58, 64, 70)

23 (65, 70, 73, 80) (50, 50, 60, 66) (65, 73, 80, 85)

24 (70, 80, 84, 84) (44, 46, 55, 57) (54, 57, 62, 70)

25 (55, 64, 70, 70) (59, 63, 74, 80) (73, 80, 85, 90)

26 (64, 73, 80, 84) (49, 50, 54, 58) (54, 60, 65, 70)

27 (50, 56, 64, 70) (55, 60, 70, 75) (50, 55, 60, 64)

28 (55, 55, 60, 70) (44, 47, 53, 60) (65, 74, 80, 84)

29 (60, 70, 75, 80) (19, 20, 30, 41) (40, 47, 53, 60)

30 (64, 71, 80, 80) (40, 44, 50, 60) (46, 50, 57, 64)

31 (50, 50, 55, 65) (50, 50, 59, 66) (55, 60, 65, 74)

32 (50, 54, 60, 65) (50, 53, 60, 66) (50, 57, 63, 70)

33 (65, 75, 80, 86) (50, 52, 58, 61) (40, 47, 53, 60)

34 (50, 55, 60, 66) (60, 65, 72, 80) (65, 70, 76, 80)

35 (40, 44, 50, 50) (50, 50, 55, 60) (55, 60, 65, 70)

36 (70, 76, 85, 85) (30, 34, 43, 47) (70, 74, 83, 90)

37 (44, 50, 53, 60) (19, 25, 36, 46) (60, 66, 74, 81)

38 (34, 40, 46, 46) (53, 63, 74, 80) (64, 70, 75, 80)

39 (40, 45, 51, 60) (40, 44, 51, 56)

40 (84, 90, 95, 95) (35, 40, 46, 50)

41 (35, 44, 50, 55)

42 (66, 70, 75, 85)
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The bootstrap procedure presented in [36] has been applied, leading to a p
value of p(3) = .557. Therefore, the null hypothesis H3

0 is not rejected at the
usual significance levels. Thus, we can conclude that there exists coherence in
terms of variability between the three experts.

Since the homoscedasticity hypothesis is not rejected, the ANOVA test will
be carried out to check the equality of means of the three RFSs X1, X2 and
X3 by using the test proposed in [16]. Then, taking into account once again the
distance Dλ

10, the hypothesis to check is:

(d) H4
0 : E(X1) = E(X2) = E(X3).

By applying the bootstrap approach introduced in [16], it has been obtained
a p value of p(4) = 0. This could be due to the inclusion of Expert 2 to our
study, since the sample mean corresponding to the opinions of that expert differs
significantly from the ones corresponding to Experts 1 and 3. If we test the
equality of means between Experts 1 and 3 by using the same procedure, we
obtain a p-value of .868 which supports the agreement between those two experts.

5 Conclusions and open problems

The results provided in this work have shown that fuzzy sets and the different
statistical methodologies to deal with this kind of data are a powerful tool to
be employed in the field of quality control of several products. On one hand,
fuzzy data are able to capture the imprecision inherent to personal valuations
about features of different products. On the other hand, some classical statistical
techniques could be easily adapted to the fuzzy sets framework.

As future work, further statistical studies involving fuzzy information could
be carried out in the quality control field as, for instance, clustering, discrimi-
nant analysis and other classification methods, regression models, and so on. In
addition, other robust procedures could be applied and compared in order to
deal with anomalous or irregular data.
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crobiological and physicochemical characteristics of gamonedo blue cheese during
ripening. International Dairy Journal, 2 (2), 121–135 (1992)
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