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Abstract. The pari-mutuel model is a betting scheme that has its origins in
horse racing, and that has been applied in a number of contexts, mostly eco-
nomics. In this paper, we consider the set of probability measures compatible
with a pari-mutuel model, characterize its extreme points, and investigate the
properties of the associated lower and upper probabilities. We show that the
pari-mutuel model can be embedded within the theory of probability intervals,
and prove necessary and sufficient conditions for it to be a belief function or a
minitive measure. In addition, we also investigate the combination of different
pari-mutuel models and their definition on product spaces.
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1. Introduction

The pari-mutuel model (PMM) is a betting scheme originated in horse racing,
and since then has often been employed in economics. If we consider a gambler
betting on a event A and let P0(A) be the fair price for a bet that returns 1 if
A happens, the gambler’s gain is IA − P0(A), while the house (a bookmaker, an
insurance, . . . ) gains P0(A) − IA, with IA the indicator function of event A. In
order to assure a positive gain expectation, the house may increase the price of the
bet by 1+ δ, transforming its gain into (1+ δ)P0(A)− IA. This coefficient δ is then
interpreted as some kind of taxation or commission coming from the house. We
refer to [25, 31, 33] for some works on this model and to [14] for a critical study in
the context of life insurance.

Beyond its use in economic problems, the pari-mutuel model has also been ad-
vocated as interesting within imprecise probability theory [37]. In this context, the
discounted value (1+δ)P0(A) can be interpreted as an upper bound of some proba-
bility, and one can consider the associated setM(P0, δ) of dominated probabilities.
This induces a neighbourhood around an initial estimate P0 that may be considered
too precise. Such a probability set (or its associated expectation bounds) can then
be used in different contexts, such as classification [34, 35] or risk analysis [24].

While working with sets of probabilities may be more realistic in a number of
situations where the information is imprecise or ambiguous [2, 13, 15], its use also
increases computational complexity, and the elicitation of the imprecise probability
model is not always immediate. Because of this, it is interesting to consider models
that can cope with scarce information while remaining simple of use. In this paper,
we study the pari-mutuel model and investigate to which extent it satisfies these
requirements.

Indeed, while some theoretically oriented studies for this model already exist [24,
37], many of its more numerical or practical aspects remain unstudied. Rectifying
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this issue is the task we set forth in this paper, where we explore practical aspects
of the PMM as an imprecise probability model defined on a finite space. After
recalling some preliminaries in Section 2, we study the following aspects of the
PMM:

• The extreme points of the set of probability measures associated with a
pari-mutuel model; in particular, we provide in Section 3 bounds on the
number of such points, and characterize in which cases these bounds are
attained. Also, we analyze their structure and we show how to compute
them.

• Next in Section 4 we study the relationship between the PMM and other
imprecise probability models. Although it is immediate to show that a
PMM is always 2-monotone (and in particular coherent in the sense of
Walley [37]), here we show that the PMM can be regarded as a particular
instance of probability intervals. In addition, we also determine in which
cases a PMM is equivalent to a belief and a plausibility function, and under
which conditions it produces a minitive measure.

• Section 5 briefly discusses and illustrates the problem of outer-approximating
a given probability set by a PMM model. This problem actually turns out
to be quite simple and has a known solution, but is of practical importance,
as approximate reasoning often plays a key role in complex applications in-
volving imprecise probabilities [1].

• Finally, in Section 6 we tackle the problem of combining multiple PMMs,
either defined on the same space, in which case the typical task is to merge
these models into a single one, or on different spaces, in which case the aim
is usually to build a joint model in the product space.

The paper concludes with some additional discussion in Section 7.

2. Preliminary concepts

We devote this section to the introduction of basic notions about imprecise prob-
abilities and the PMM.

2.1. Imprecise probabilities. The theory of imprecise probabilities [37] is an
alternative to probability theory that is useful when the information about the
experiment under study does not allow us to elicit a unique probability.

Given a universe X , a lower probability on the power space P(X ) of X is a
functional P : P(X ) → R, where P (A) can be understood as a lower bound for
the unknown value of the probability of A. Any lower probability defines, by
means of conjugacy, an upper probability P : P(X ) → R by means of the formula
P (A) = 1−P (Ac). Following the previous interpretation, P (A) can be interpreted
as the upper bound of the unknown probability of A.

Any lower probability P , and its conjugate upper probability P , defines a con-
vex and closed set of probabilities, usually called credal set, that contains all the
probabilities compatible with the information given by P (and P ):

M(P ) = {P probability | P (A) ≥ P (A) ∀A ⊆ X}.

In this paper we are interested in a particular type of lower (and conjugate upper)
probabilities, those satisfying the consistency requirement of coherence:

P (A) = min{P (A) | P ∈M(P )} ∀A ⊆ X .
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In other words, coherence means that P (resp., P ) is the lower (resp., upper)
envelope of its credal set.

Coherent lower (and upper) probabilities satisfy the following properties (see [37,
Section 2.7.4]):

Consistency of P and P : P (A) ≤ P (A) for every A.
Monotonicity: P (A) ≤ P (B) and P (A) ≤ P (B) for every A ⊆ B.
Sub-additivity of P : P (A ∪B) ≤ P (A) + P (B) for every A,B.
Super-additivity of P : P (A ∪B) ≥ P (A) + P (B) for every A,B.

Since M(P ) is a closed and convex set of probabilities, it is characterized by its
extreme points: a probability P ∈M(P ) is an extreme point if P = αP1+(1−α)P2

for α ∈ (0, 1), P1, P2 ∈M(P ) implies P1 = P2 = P .

2.2. Pari-Mutuel Model. In this paper we shall assume that our possibility space
X is finite: X = {x1, . . . , xn}. Consider a precise probability measure P0 defined
on P(X ). We shall assume throughout that for every i = 1, . . . , n, P0({xi}) > 0;
our results can be extended straightforwardly to the general case1.

Definition 1. Let P0 be a probability measure on P(X ), and take δ > 0. The pari-
mutuel model (PMM) induced by P0, δ, denoted by (P0, δ), is given by the following
lower and upper probabilities:

P (A) = max{(1+ δ)P0(A)− δ, 0} and P (A) = min{(1+ δ)P0(A), 1} ∀A ⊆ X . (1)

Note that the assumption of P0({xi}) > 0 ∀i = 1, . . . , n implies that P (A) ≥
P0(A) > 0 for every A ⊆ X . Moreover, Eq. (1) implies that P , P are conjugate,
meaning that P (A) = 1− P (Ac) ∀A ⊆ X .

It is also important to remark that in some works based on the PMM, the
following definition is considered:

P (A) = (1 + δ)P0(A)− δ and P (A) = (1 + δ)P0(A) ∀A ⊆ X . (2)

However, as discussed by Walley [37, Sec. 2.9.3], for large values of δ this may
produce lower and upper probabilities that are not coherent: specifically, if P0(A) >
1

1+δ we obtain P (A) > 1 and P (Ac) < 0, and as a consequence P , P are not the
upper and lower envelopes of the set of probability measures they bound. Since in
this paper we are investigating the properties of a PMM from the point of view of
imprecise probabilities, we have decided to follow Walley’s suggestion and to work
with the definition given by Eq. (1).

Remark 1. In order to understand the meaning of the parameter δ in a PMM,
note that [37, Sec. 2.9.3] P (A)− P (A) ≤ δ for every A ⊆ X , and that

P (A)− P (A) = δ ⇐⇒ (1 + δ)P0(A)− δ = P (A) and P (A) = (1 + δ)P0(A)

⇐⇒ 1

1 + δ
≥ P0(A) ≥

δ

1 + δ
.

In particular, P (A)−P (A) = δ whenever 0 < P (A) < P (A) < 1. Therefore, δ may
be understood in terms of the imprecision in the definition of P (A). �

1Simply consider that if P0({x}) = 0, then (1+δ)P0({x}) = 0 as well; thus, if P0(A) = 0 we also
obtain P (A) = 0, and this allows to make a one-to-one correspondence between the elements of
M(P0, δ) and those in M(P ′0, δ), where P

′
0 is the restriction of P0 to X ′ := {x ∈ X : P0({x}) > 0}.
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In this paper, we are going to study some properties of the PMM as an imprecise
probability model [2]. Other works in this direction were carried out in [24, 37]. In
particular, in [24] the authors studied the connection between the PMM and risk
measures, the problem of updating a PMM and its extension to lower and upper
expectation functionals, in the sense of Walley.

We begin by noting that, since the lower probability of a PMM can be obtained
as a convex transformation of a probability measure, it follows [10] that P is 2-
monotone, meaning that

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for every A,B ⊆ X . Since P , P in Eq. (1) are conjugate, it follows that P is
2-alternating:

P (A ∪B) + P (A ∩B) ≤ P (A) + P (B) ∀A,B ⊆ X .

As a consequence [37], P , P are coherent lower and upper probabilities, that is, they
are respectively the lower and upper envelopes of the credal set associated with the
PMM, given by

M(P0, δ) = {P probability | P (A) ≤ P (A) ≤ P (A) ∀A ⊆ X}. (3)

Since the coherence of a PMM implies that it is uniquely determined by its (closed
and convex) associated credal set, it becomes interesting to determine the extreme
points of the set M(P0, δ) given by Eq. (3). This is what we set out to do in
the following section, and it is particularly relevant if we want to use the PMM in
some applied contexts, such as credal networks [1, 7]. Later on we shall study the
connection of PMM with probability intervals and belief functions, as well as how
to combine two different PMMs.

3. Extreme points induced by a PMM

In this section we are going to study the set ext(M(P0, δ)) of extreme points of
the credal setM(P0, δ) associated with a PMM.

Since the lower probability of a PMM is 2-monotone, the extreme points of
M(P0, δ) are associated with permutations of X [5], in the following manner: if
Sn denotes the permutations of {1, . . . , n}, then for every σ ∈ Sn we consider the
probability measure Pσ given by

Pσ({xσ(1)}) = P ({xσ(1)}),
Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)}) ∀k = 2, . . . , n. (4)

Then, the extreme points of M(P0, δ) are the probability measures Pσ defined as
above: ext(M(P0, δ)) = {Pσ : σ ∈ Sn}. As a consequence, the number of extreme
points of M(P0, δ) is bounded above by n!, the number of permutations of a n-
element space. In this section, we are going to study if this upper bound can be
lowered for the credal sets associated with a PMM. Some results, for the particular
case where P0 is the uniform probability distribution, can be found in [34, Sect. 5.2]
and [35, Sect. 4.2] 2.

2Although in [35] the authors define a PMM by means Eq. (2) instead of Eq. (1), both these
definitions give rise to the same credal set, and therefore our results about the extreme points are
also applicable in their context.
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3.1. Maximal number of extreme points. We begin by establishing two pre-
liminary but helpful properties of the PMM. As a coherent upper probability, P is
sub-additive, but it is not necessarily additive. Our next result establishes additiv-
ity under some conditions.

Lemma 1. Let P be the upper probability induced by a PMM (P0, δ) by means of
Eq. (1). If P (A) < 1, then

P (A) =
∑
x∈A

P ({x}). (5)

Proof. By Eq. (1), P (A) < 1 implies that P (A) = (1 + δ)P0(A). Furthermore,
monotonicity of P implies that P ({x}) ≤ P (A) < 1 for every x ∈ A, and therefore
P ({x}) = (1 + δ)P ({x}). Hence:

P (A) = (1 + δ)P0(A) = (1 + δ)
∑
x∈A

P0({x}) =
∑
x∈A

P ({x}). �

We deduce that if P (A ∪B) < 1 and A ∩B = ∅, then

P (A ∪B) =
∑

x∈A∪B
P ({x}) =

∑
x∈A

P ({x}) +
∑
x∈B

P ({x}) = P (A) + P (B).

This lemma allows us to give an alternative expression for the setM(P0, δ).

Corollary 1. LetM(P0, δ) denote the credal set associated with a PMM (P0, δ) by
means of Eq. (3). Then, a probability measure P belongs toM(P0, δ) if and only if

P ({x}) ≤ (1 + δ)P0({x}) ∀x ∈ X . (6)

Proof. To see that the condition is necessary, note that every element P ofM(P0, δ)
satisfies:

P ({x}) ≤ P ({x}) = min{(1 + δ)P0({x}), 1} ≤ (1 + δ)P0({x}).
To see that Eq. (6) implies that P (A) ≤ P (A) for every A, we must consider two
cases. On the one hand, if P (A) = 1, then trivially P (A) ≤ P (A). On the other
hand, if P (A) < 1, then from Lemma 1 :

P (A) =
∑
x∈A

P ({x}) =
∑
x∈A

(1 + δ)P0({x}) ≥
∑
x∈A

P ({x}) = P (A),

where the inequality follows from Eq. (6). We conclude that P (A) ≤ P (A) for every
A ⊆ X , and therefore P ∈M(P0, δ). �

Corollary 1 tells us that the setM(P0, δ) is entirely specified by upper bounds
over the singletons of X . Using the additivity property (5) from Lemma 1, we can
prove the second preliminary result, which gives the form of the extreme points of
M(P0, δ) in terms of P and P .

Lemma 2. Let P0 be a probability on X , δ > 0 and P , P be given by Eq. (1). The
extreme point Pσ associated with the permutation σ by Eq. (4) is given by:

P ({xσ(i)}) = P ({xi}) ∀i = σ(1), . . . , σ(j − 1),

P ({xσ(j)}) = P ({xσ(j), . . . , xσ(n)}),
P ({xσ(j+1)}) = . . . = P ({xσ(n)}) = 0,

where j ∈ {1, . . . , n} satisfies P ({xσ(1), . . . , xσ(j−1)}) < P ({xσ(1), . . . , xσ(j)}) = 1.
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Note that if j = 1, the previous expression becomes P ({xσ(1)}) = 1 and P ({xσ(2)}) =
. . . = P ({xσ(n)}) = 0.

Proof. By Lemma 1 and Eq. (4), the extreme point associated with σ is given by:

P ({xσ(1)}) = P ({xσ(1)}).
P ({xσ(2)}) = P ({xσ(1), xσ(2)})− P ({xσ(1)}) = P ({xσ(2)}).

. . .

P ({xσ(j−1)}) = P ({xσ(1), . . . , xσ(j−1)})− P ({xσ(1), . . . , xσ(j−2)}) = P ({xσ(j−1)}).
P ({xσ(j)}) = P ({xσ(1), . . . , xσ(j)})− P ({xσ(1), . . . , xσ(j−1)})

= 1− P ({xσ(1), . . . , xσ(j−1)}) = P ({xσ(j), . . . , xσ(n)}),

where the last equality follows by the conjugacy of P and P ; therefore, Pσ({xσ(k)}) =
0 for k = j + 1, . . . , n. �

The above result is illustrated in the following example:

Example 1. Let X = {x1, x2, x3, x4}, P0 the uniform probability distribution and
δ = 0.5. If we consider the permutation σ = (1, 2, 3, 4), we obtain the extreme point
Pσ given by:

Pσ({x1}) = P ({x1}) = 1.5 · 0.25 = 0.375.
Pσ({x2}) = P ({x2}) = 1.5 · 0.25 = 0.375.
Pσ({x3}) = P ({x3, x4}) = 1.5 · 0.5− 0.5 = 0.25.
Pσ({x4}) = 0.

In fact, it can be proven that the extreme points ofM(P0, δ) are given by

P ({xi}) = P ({xi}) = 0.375,
P ({xj}) = P ({xj}) = 0.375,
P ({xk}) = P ({xk, xl}) = 0.25,
P ({xl}) = 0,

for every possible combination of i, j, k, l in {1, 2, 3, 4}. �

Lemma 2 simplifies the computation of the extreme points of the credal set of a
PMM. In this respect, we begin by determining the number of extreme points in a
specific case:

Proposition 1. Let P0 denote the uniform distribution on {x1, . . . , xn} and con-
sider δ > 0.

(1) If n is even and δ ∈
(
n−2
n+2 , 1

)
, thenM(P0, δ) has

(
n
n
2

)
n

2
different extreme

points.

(2) If n is odd and δ ∈
(
n−1
n+1 ,

n+1
n−1

)
, thenM(P0, δ) has

(
n
n+1
2

)
n+ 1

2
different

extreme points.

Proof. Let us prove the first statement; the proof of the second is analogous.
For δ ∈

(
n−2
n+2 , 1

)
, given A with |A| = n

2 it holds that

P (A) = min{(1 + δ)P (A), 1} = min
{
(1 + δ)

1

2
, 1
}
< 1,
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because δ < 1, while given A with |A| = n
2 + 1 :

P (A) = min{(1 + δ)P (A), 1} = min
{
(1 + δ)

n+ 2

2n
, 1
}
= 1,

because δ > n−2
n+2 . Thus, all the sets with cardinality n

2 or less have an upper
probability lower than 1, and all the sets with cardinality greater than n

2 have
upper probability 1. Moreover, taking a permutation σ and its induced extreme
point Pσ, since (1 + δ)n+2

2n > 1, we deduce that Pσ({xσ(n2 +1)}) 6= Pσ({xσ(n2 )}).
As a consequence, for every two permutations σ1, σ2, it holds that Pσ1

= Pσ2
if

and only if σ1(n2 + 1) = σ2(
n
2 + 1), and {σ1(1), . . . , σ1(n2 )} = {σ2(1), . . . , σ2(

n
2 )}.

There are
(
n
n
2

)
different ways of selecting the first n

2 elements, and for any of

them there are n
2 different extreme points (as many as possibilities for choosing

the element in the n
2 + 1-th position). Therefore, M(P0, δ) has

n

2

(
n
n
2

)
different

extreme points. �

A similar result can be found in [34, Prop. 1 (2)], where the number of ex-
treme points is written in terms of a parameter s: s

(
n
s

)
. Furthermore, taking [34,

Prop. 1 (2)] and Lemma 1 into account, it can be seen that the extreme points of
M(P0, δ) when P0 is the uniform probability measure are given by:

PE({x}) =


1+δ
n if x ∈ E\{x∗},

1−δ
2 if x = x∗,

0 otherwise,

where E = {x∗, xi1 , . . . , xin/2} is every set of n2 + 1 elements, if n is even, and:

PO({x}) =


1+δ
n if x ∈ O\{x∗},

1− (n−1)(1+δ)
2n if x = x∗,

0 otherwise,

where O = {x∗, xi1 , . . . , xi(n−1)/2
} is every set of n−12 + 1 elements, if n is odd.

Next we show that the case depicted in Proposition 1 corresponds to the maximal
number of extreme points associated with a PMM:

Proposition 2. Consider a PMM (P0, δ) on X . The maximal number of extreme
points ofM(P0, δ) is:

(1)
n

2

(
n
n
2

)
, if n is even.

(2)
n+ 1

2

(
n
n+1
2

)
, if n is odd.

Proof. Consider the case of n even; the proof for n odd is similar.
Given a permutation σ, denote j = min{i = 1, . . . , n | P ({σ(1), . . . , σ(i)}) = 1}.

Then, the same extreme point Pσ is generated by (j−1)! ·(n−j)! permutations: all
those with {σ′(1), . . . , σ′(j− 1)} = {σ(1), . . . , σ(j− 1)} and {σ′(j+1), . . . , σ(n)} =
{σ′(j + 1), . . . , σ′(n)}.

This value is lower bounded by

(j − 1)! · (n− j)! ≥
(n
2
− 1
)
! ·
(n
2

)
!



8 IGNACIO MONTES, ENRIQUE MIRANDA, AND SEBASTIEN DESTERCKE

and thus, the number of different extreme points ofM(P0, δ) is bounded above by
n!(

n
2 − 1

)
! ·
(
n
2

)
!
=
n

2

(
n
n
2

)
.

Furthermore, by Proposition 1 this maximum is attained. �

Note that the maximal number of extreme points for n odd can equivalently be
expressed by

(n+1
n+1
2

)
n+1
4 . As we shall see, the above formula of the maximal number

of extreme points of the credal set of a PMM is related to that of probability
intervals [32]. This is no coincidence: it is due to the connection between both
models we shall establish in Section 4.1.

3.2. A bound on the number of extreme points for an arbitrary PMM.
In this section, we shall establish a simple formula that provides an upper bound on
the number of extreme points associated with a PMM. Let (P0, δ) be a pari-mutuel
model, and define

L = {A ⊆ X | P (A) = 1}. (7)
This is a filter of subsets of X , and as a consequence also a poset with respect to
set inclusion.

Example 2. Consider a four-element space X = {x1, x2, x3, x4} with probabilities
0.1, 0.1, 0.3 and 0.5, respectively, and let δ = 0.3. The poset (L,⊆) is given by

L = {X , {x2, x3, x4}, {x1, x3, x4}, {x3, x4}}
and pictured, with the whole subset lattice, in Figure 1. �

∅

{x1} {x2} {x3} {x4}

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3,x4}

{x1, x2, x3} {x1, x2, x4} {x1,x3,x4} {x2,x3,x4}

X

Figure 1. Set inclusion lattice and filter L (in bold) from Example 2.

We can use this filter to bound the number of extreme points of a PMM:
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Proposition 3. Consider a PMM (P0, δ), and let L be given by Eq. (7). Then, the
number of extreme points ofM(P0, δ) is bounded above by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . (8)

Proof. For every A ∈ L, define:

MA = {P ∈ ext(M(P0, δ)) | P (A) = 1, P ({x}) > 0 ∀x ∈ A}.

Let us prove that ext(M(P0, δ)) = ∪A∈LMA. On the one hand, it is obvious that
MA ⊆ ext(M(P0, δ)) for every A ∈ L, and therefore ext(M(P0, δ)) ⊇ ∪A∈LMA.
Conversely, given P ∈ ext(M(P0, δ)), if we define A∗ = {x ∈ X : P ({x}) > 0}, it
holds that P (A∗) = 1, and P ∈MA∗ .

Now, if P ∈ MA ∩ MB for two different A,B ∈ L, then P (A) = P (B) =
1 and P ({x}) > 0 for every x ∈ A ∪ B. Therefore, if there exists x ∈ A\B,
P (B ∪{x}) = P (B)+P ({x}) > 1, a contradiction. Therefore, A = B. This means
that {MA : A ∈ L} is a partition of ext(M(P0, δ)), whence

|ext(M(P0, δ))| =
∑
A∈L
|MA|.

We prove next that |MA| ≤
∣∣∣⋂B⊆A,B∈LB∣∣∣. We consider two cases:

Case 1: Assume that
⋂
B⊆A,B∈LB = A. This means that every B ⊂ A

satisfies P (B) < 1, as no strict subset of A is in L. From Lemma 2, for
every P ∈MA there exists xP ∈ A such that:

P ({x}) =


P ({xP } ∪Ac) if x = xP .

P ({x}) if x ∈ A\{xP }.
0 if x ∈ Ac.

(9)

Therefore, |MA| is at most equal to the cardinality of A, so:

|MA| ≤ |A| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ .
Case 2: Assume now that B∗ =

⋂
B⊆A,B∈LB ⊂ A. Again, from Lemma 2

we know that for every P ∈ MA exists xP ∈ A such that Eq. (9) holds.
Let us see that xP should belong to B∗. By contradiction, assume that
xP ∈ A\B∗. This implies that there exists B ∈ L with B ⊂ A such that
xP /∈ B. In particular, we can take B = A\{xP }. Then, the probability P
satisfies:

P (B) =
∑
x∈B

P ({x}) ≥ P (B) = 1,

where the inequality follows from the super-additivity of the coherent upper
probability P . Thus, P (B) = 1, and as a consequence P ({xP }) = 0, a
contradiction with P ∈MA.
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We conclude that xP ∈ B∗. Therefore, the cardinality ofMA is at most
the number of elements in B∗. Equivalently:

|MA| ≤ |B∗| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . �

Example 3. Consider again Example 2. Using Proposition 3, the maximal number
of extreme points ofM(P0, δ) is bounded by Eq. (8). Let us compute this value; for
every A ∈ L, it holds: ∣∣∣∣∣∣

⋂
B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x3, x4}∣∣∣ = 2.

Therefore, the number of extreme points ofM(P0, δ) is bounded by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣ = 2+2+2+2 = 8.

In fact, in this case this formula provides not only an upper bound but the exact
number of extreme points, since

M{x3,x4} = {(0, 0, 0.39, 0.61), (0, 0, 0.35, 0.65)}.
M{x1,x3,x4} = {(0.13, 0, 0.39, 0.48), (0.13, 0, 0.22, 0.65)}.
M{x2,x3,x4} = {(0, 0.13, 0.39, 0.48), (0, 0.13, 0.22, 0.65)}.

MX = {(0.13, 0.13, 0.39, 0.35), (0.13, 0.13, 0.09, 0.65)}.�

Let us also show that the bound given in Proposition 3 is not always tight.

Example 4. Consider X = {x1, x2, x3}, the uniform distribution P0 on X and
δ = 0.5. It holds that:

L = {{x1, x2}, {x1, x3}, {x2, x3},X}.

Using the previous result, the number of extreme points is bounded above by

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x1, x2}∣∣∣+ ∣∣∣{x1, x3}∣∣∣+ ∣∣∣{x2, x3}∣∣∣+ ∣∣∣∅∣∣∣ = 2 + 2 + 2 + 0 = 6.

However, the extreme points are:

M{x1,x2} = {(0.5, 0.5, 0)}, M{x1,x3} = {(0.5, 0, 0.5)}, M{x2,x3} = {(0, 0.5, 0.5)}.

Thus, there are only 3 different extreme points, half of the upper bound given in the
proposition. �

Note that A ∈ L if and only if P0(A) ≥ 1
1+δ . We can characterize the tightness

of the bound given in Eq. (8) by means of the strict inequality in this expression.

Proposition 4. Consider a PMM (P0, δ), and let L be given by Eq. (7). The num-
ber of extreme points of M(P0, δ) coincides with the bound determined by Eq. (8)
if and only if P0(A) >

1
1+δ for every A ∈ L.
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Proof. From the proof of Proposition 3, the bound given by Eq. (8) is tight if and
only if, for every set A ∈ L,

|MA| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . (10)

Consider then A ∈ L, and assume that |A| > 1 (the case of |A| = 1 is trivial). Let
B∗ =

⋂
B⊆A,B∈LB ⊆ A; then the proof of Proposition 3 shows that the elements of

MA are given by Eq. (9), for xP ∈ B∗. Thus, Eq. (10) holds only if these extreme
points are different for every z ∈ B∗. This is equivalent to P ({z} ∪ Ac) 6= P ({z})
for every z ∈ B∗, because in that case P ({xP }) 6= P ({xP }) for every P ∈ MA. If
|B∗| = 1, then trivially |MA| = 1 = |B∗|. On the other hand, if |B∗| > 1, the fact
that {z}, A\{z} /∈ L implies that P ({z}) < 1 and P ({z}∪Ac) = 1−P (A\{z}) > 0.
Applying Eq. (1), we have

P ({z} ∪Ac) = (1 + δ)P0({z} ∪Ac)− δ
and

P ({z}) = (1 + δ)P0({z}).
Thus, P ({z} ∪Ac) 6= P ({z}) if and only if (1+ δ)P0(A

c)− δ 6= 0. By conjugacy,
P (Ac) = 1−P (A) = 0, whence (1+δ)P0(A

c)−δ ≤ 0. Then, P ({z}∪Ac) 6= P ({z})
is equivalent to P0(A

c) < δ
1+δ , or, in other words, to P0(A) >

1
1+δ . �

Indeed, if we go back to Example 4 we see that in that case it holds that P0(A) =
2
3 = 1

1+δ for A = {x1, x2} ∈ L, meaning that the bound in Eq. (8) is not tight.

4. Connection with probability intervals and belief functions

In this section, we study the connection between the PMM and other relevant
imprecise probability models. In particular, we show that PMMs in a finite setting
are particular instances of probability intervals, and study the conditions for a
PMM to induce a belief function and a minitive lower probability, respectively.

4.1. Probability intervals. Given X = {x1, . . . , xn}, a probability interval [9, 32]
on P(X) is a lower probability defined on the singletons and their complements. A
probability interval can thus be represented by a n-tuple of intervals:

I = {[li, ui] : i = 1, . . . , n}, (11)

where it is assumed that li ≤ ui and where [li, ui] means that the unknown or
imprecisely specified probability of xi belongs to the interval [li, ui]. A probability
interval determines a credal set by:

M(I) = {P probability | li ≤ P ({xi}) ≤ ui, i = 1, . . . , n}, (12)

and the lower and upper envelopes of M(I) determine coherent lower and upper
probabilities by:

l(A) = inf
P∈M(I)

P (A) and u(A) = sup
P∈M(I)

P (A) ∀A ⊆ X . (13)

The probability interval I is called proper when its associated credal set M(I) is
non-empty. This holds when:

n∑
i=1

li ≤ 1 ≤
n∑
i=1

ui. (14)
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Furthermore, a probability interval I is called reachable (i.e., coherent in Walley’s
terminology [37], or an atomic model in the sense of [17]) whenever the functionals
l, u determined by Eq. (13) determine the intervals from Eq. (11) when restricted
to singletons, i.e., when l({xi}) = li and u({xi}) = ui for all i = 1, . . . , n. This is
equivalent to the following inequalities:∑

j 6=i

lj + ui ≤ 1 and
∑
j 6=i

uj + li ≥ 1 ∀i = 1, . . . , n. (15)

When I is a reachable probability interval, l(A) and u(A) can be computed by:

l(A) = max

∑
xi∈A

li, 1−
∑
xi /∈A

ui

 and u(A) = min

∑
xi∈A

ui, 1−
∑
xi /∈A

li

 ,

for every A ⊆ X . For a detailed study on probability intervals, we refer to [9]. See
also [3, 16, 29, 30] for other relevant works on this topic.

Our next result shows that the PMM is a particular case of a reachable proba-
bility interval.

Theorem 1. Consider a PMM (P0, δ), and define the probability interval I =
{[li, ui] : i = 1, . . . , n} by:

li = P ({xi}) and ui = P ({xi}),

where P , P are given by Eq. (1). Then, if we denote by M(I) the credal set asso-
ciated with I by means of Eq. (12), it holds that:

(1) The probability interval I = {[li, ui] : i = 1, . . . , n} is reachable.
(2) M(I) = M(P0, δ), or equivalently, P (A) = l(A) and P (A) = u(A) for

every A ⊆ X .

Proof. First of all, let us see that I = {[li, ui] : i = 1, . . . , n} satisfies Eq. (15):∑
j 6=i

lj + ui =
∑
j 6=i

P ({xj}) + P ({xi}) ≤ P ({xi}c) + P ({xi}) = 1;

∑
j 6=i

uj + li =
∑
j 6=i

P ({xj}) + P ({xi}) ≥ P ({xi}c) + P ({xi}) = 1,

taking into account that P is super-additive and P is sub-additive.
Let us now see that P (A) = l(A) for every A ⊆ X . On the one hand, assume

that P (A) = 0, whence P (Ac) = 1. Then P ({x}) = 0 for every x ∈ A, and therefore
l({x}) = 0 for every x ∈ A. By definition:

l(A) = max
{∑
x∈A

l({x}), 1−
∑
x/∈A

u({x})
}

= 1−
∑
x/∈A

u({x}) = 1−
∑
x/∈A

P ({x}) ≤ 1− P (Ac) = 0.

On the other hand, if P (A) = (1 + δ)P0(A)− δ > 0, then

l(A) = max
{∑
x∈A

l({x}), 1−
∑
x/∈A

u({x})
}
= max

{∑
x∈A

P ({x}), 1−
∑
x/∈A

P ({x})
}

= max
{∑
x∈A

P ({x}), 1− P (Ac)
}
= max

{∑
x∈A

P ({x}), P (A)
}
= P (A),
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where the third and fifth equalities follow form Lemma 1 and the supper-additivity
of P , respectively.

By conjugacy of P , P and l, u, we can simply see that P (A) = u(A) for every A:

P (A) = 1− P (Ac) = 1− l(Ac) = u(A).

Therefore, l = P and u = P . �

On the other hand, the class of reachable probability intervals is larger than
that of PMM, in the sense that not every reachable probability interval can also be
expressed in terms of a PMM:

Example 5. Consider the four-element space X = {x1, x2, x3, x4} and the proba-
bility interval I = {[li, ui] : i = 1, . . . , 4} given by:

x1 x2 x3 x4
li 0.2 0.1 0.3 0.2
ui 0.4 0.2 0.5 0.4

which can be shown to be reachable using Eq. (15).
To see that I is not representable by a PMM (P0, δ), note that by Remark 1, given

a PMM every set A such that 0 < P (A) < P (A) < 1 satisfies P (A) − P (A) = δ.
However, in this example we obtain:

0 < l({x1}) = l1 = 0.2 < 0.4 = u1 = u({x1}) < 1 and
0 < l({x2}) = l2 = 0.1 < 0.2 = u2 = u({x2}) < 1,

while
u({x1})− l({x1}) = 0.2 and u({x2})− l({x2}) = 0.1;

thus, the difference is not constant, and therefore l, u cannot be represented by means
of a PMM. �

In particular, we deduce from Corollary 1 that a PMM will be a probability
interval where one only specifies the upper probability bounds on the singletons
(the lower bounds following then from (13), for instance). Thus, any property
satisfied by probability intervals is also satisfied by the PMMs. Interestingly, the
maximal number of extreme points for the credal set of a PMM, established in
Theorem 2, coincides with the maximal number of extreme points for a probability
interval, given in [32]3.

4.2. Belief functions. As we mentioned in Section 2, the lower probability of a
PMM is 2-monotone. In this section we consider a stronger notion that extends
2-monotonicity, called complete monotonicity. A lower probability P is completely
monotone if that for every p ∈ N and every sets A1, . . . , Ap ⊆ X ,

P (∪pi=1Ai) ≥
∑

J⊆{1,...,n}

(−1)|J|−1P (∩i∈JAi). (16)

A lower probability satisfying the property of complete monotonicity is also called
a belief function in Dempster-Shafer Theory. Its conjugate upper probability is
called a plausibility function.

3Note that there is a misprint when reporting this number in [9].
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Belief functions [28] are determined by their Möbius inverse m : P(X ) → [0, 1],
that is a mass function on the subsets of X , by means of the formula

P (A) =
∑
B⊆A

m(B).

The sets A ⊆ X such that m(A) > 0 are called the focal elements of P . A lower
probability satisfying Eq. (16) for every p ≤ k is called k-monotone.

Conversely, the Möbius inverse m of a lower probability P is determined by the
formula

m(B) =
∑
A⊆B

(−1)|B\A|P (A), (17)

and P is a belief function if and only if the function m given by Eq. (17) satisfies
m(A) ≥ 0 for every A ⊆ X .

In [3, Thm.3.1], a sufficient condition for a probability interval to be a completely
monotone model was established; see also [9, Sect. 6] and [18]. In this section,
we shall establish necessary and sufficient conditions for the particular types of
probability intervals associated with PMMs. By doing so, we shall also show that
the sufficient condition in [3] is not necessary.

We start with a simple result that implies that the PMM is not 3-monotone in
general.

Proposition 5. Let P be lower probability associated with a PMM (P0, δ), with
|X | ≥ 3. If there are different xi, xj , xk such that P ({xi}), P ({xj}), P ({xk}) > 0,
then P is not 3-monotone.

Proof. Take A1 = {xi, xj}, A2 = {xi, xk} and A3 = {xj , xk}. The monotonicity of
P implies that P (A1), P (A2), P (A3) > 0. On the one hand,

P (A1 ∪A2 ∪A3) = P ({xi, xj , xk}) = (1 + δ)P0({xi, xj , xk})− δ,

while

P (A1)+P (A2)+P (A3)−
(
P (A1∩A2)+P (A1∩A3)+P (A2∩A3)

)
+P (A1∩A2∩A3)

is equal to

P ({xi, xj}) + P ({xi, xk}) + P ({xj , xk})−
(
P ({xi}) + P ({xj}) + P ({xk})

)
+ P (∅)

= (1 + δ)
[
P0({xi, xj}) + P0({xi, xk}) + P0({xj , xk})
− P0({xi})− P0({xj})− P0({xk})

]
= (1 + δ)P0({xi, xj , xk}).

Now, if we compare both expressions, we obtain

(1 + δ)P0({xi, xj , xk})− δ − (1 + δ)P0({xi, xj , xk}) = −δ < 0,

and therefore P is not 3-monotone. �

To see that the hypotheses of this proposition may be satisfied, let P0 be the
uniform distribution on {x1, x2, x3} and take δ = 1

3 : then it follows from Eq. (1)
that P ({x1}) = P ({x2}) = P ({x3}) = 1

9 .
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In the remainder of this section we shall establish necessary and sufficient condi-
tions for the lower probability of a PMM to be completely monotone. For this aim
we define the non-vacuity index of a PMM as

k = min{|A| : P (A) > 0}. (18)

We next give sufficient conditions to ensure completely monotonicity in terms of
this index. Our first two results are quite simple and they correspond to the cases
of k = n or k = n− 1.

Proposition 6. Let (P0, δ) be a PMM, let P be its associated lower probability and
let k be its non-vacuity index, given by Eq.(18). If k = n, then P is a belief function
whose only focal set is X with mass 1.

Proof. If k = n, this means that P (X ) = 1 and P (A) = 0 for every A ⊂ X . This
is the belief function associated with the basic probability assignment m given by
m(A) = 0 for every A ⊂ X and m(X ) = P (X ) = 1. �

In this case, by conjugacy, we obtain that for every non-empty A ⊂ X , P (A) =
1 − P (Ac) = 1. This situation arises when P0(A) < 1 and δ ≥ P0(A)

P0(Ac)
for every

A ⊂ X . It corresponds to the so-called vacuous model.
Next we consider the case of k = n− 1.

Proposition 7. Let (P0, δ) be a PMM, let P be its associated lower probability and
let k be its non-vacuity index, given by Eq.(18). If k = n− 1 and

n∑
i=1

P (X\{xi}) ≤ 1,

then P is a belief function.

Proof. By Eq. (17), we know that m(A) = 0 for every A such that |A| < n − 1.
Now, for every i = 1, . . . , n, m(X\{xi}) = P (X\{xi}). Moreover,

m(X ) = P (X )−
n∑
i=1

P (X\{xi}) = 1−
n∑
i=1

P (X\{xi}) ≥ 0,

because by hypothesis
∑n
i=1 P (X\{xi}) ≤ 1. Therefore, m(A) ≥ 0 for every A,

and as a consequence P is a belief function. �

Finally, we give two sufficient conditions for P to be a belief function when its
non-vacuity index k is smaller than n− 1.

Proposition 8. Let (P0, δ) be PMM and let P be its associated lower probability.
Assume there exists B such that P (A) > 0 if and only if B ⊆ A, and assume that
the non-vacuity index k = |B| satisfies k < n − 1. Then, P is a belief function
whose focal sets are B and B ∪ {x}, for x /∈ B, with respective masses:

m(B) = P (B) = (1 + δ)P0(B)− δ and m(B ∪ {x}) = (1 + δ)P0({x}).

Proof. First of all, use Eq. (17) to compute m(B) and m(B ∪ {x}) for x /∈ B:

m(B) = P (B) = (1 + δ)P0(B)− δ > 0.

m(B ∪ {x}) = P (B ∪ {x})− P (B) = (1 + δ)P0(B ∪ {x})− δ − (1 + δ)P0(B) + δ

= (1 + δ)P0({x}) > 0.
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Let us prove that m(A) = 0 for every set different from B, B ∪ {x}. First of all,
if B 6⊆ A, it follows from Eq. (17) that m(A) = 0. Take now A′ ⊆ Bc such that
|A′| = j > 1, and let us see that m(A′ ∪B) = 0.

m(A′ ∪B) =
∑

C⊆A′∪B

(−1)|A
′∪B\C|P (C) =

∑
C′⊆A′

(−1)|B|+|A
′\C′|P (C ′ ∪B)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C|=i

(−1)j−iP (C ′ ∪B).

Let us compute the value of the last term for every fixed i ∈ {0, . . . , j}. We start
with the case i = 0:

∑
C′⊆A′,|C′|=0

(−1)jP (C ′ ∪B) = (−1)jP (B) = (−1)j ((1 + δ)P0(B)− δ) , (19)

where the first equality follows because the only set C ′ ⊆ A′ with cardinality 0 is
the empty set.

Consider now i = 1, . . . , j:

∑
C′⊆A′,|C′|=i

(−1)j−iP (C ′ ∪B) =
∑

C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B ∪ C ′)− δ)

=
∑

C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B)− δ) +
∑

C′⊆A′,|C′|=i

(−1)j−i(1 + δ)P0(C
′)

= (−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) +

∑
C′⊆A′,|C′|=i

(−1)j−i(1 + δ)P0(C
′). (20)

In the last equality we have taken into account that in the first sum, the term
(−1)j−i((1 + δ)P0(B)− δ) does not depend on the sets C ′, so we sum this element
as many times as sets C ′ of cardinality i are included in A′, that is, the binomial
coefficient

(
j
i

)
.

With respect to the second term, every element x ∈ A′ can be included in
(
j−1
i−1
)

different sets C ′ ⊆ A′ of cardinality i. Therefore, Eq. (20) becomes:

(−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) + (−1)j−i(1 + δ)

(
j − 1

i− 1

) ∑
x∈A′

P0({x})

= (−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) + (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′). (21)



PARI-MUTUEL PROBABILITIES AS AN UNCERTAINTY MODEL 17

Using Eqs. (19) and (21) we obtain the value of m(A′ ∪B). It holds that:

(−1)|B|m(A′ ∪B) =

j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP (C ′ ∪B)

= (−1)j ((1 + δ)P0(B)− δ) +
j∑
i=1

(
(−1)j−i

(
j

i

)
((1 + δ)P0(B)− δ)

+ (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)
)

=

j∑
i=0

(−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) +

j∑
i=1

(−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)

= ((1 + δ)P0(B)− δ)
j∑
i=0

(−1)j−i
(
j

i

)
+ P0(A

′)(1 + δ)

j∑
i=1

(−1)j−i
(
j − 1

i− 1

)

= ((1 + δ)P0(B)− δ)
j∑
i=0

(−1)j−i
(
j

i

)
+ P0(A

′)(1 + δ)

j−1∑
i=0

(−1)j−i−1
(
j − 1

i

)
= 0,

where the last equality follows from the well known property of binomial coefficients:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk, (22)

by taking y = 1, x = −1, k = i, n = j and y = 1, x = −1, k = i, n = j − 1,
respectively.

We conclude that m(A) ≥ 0 for every A, whence P is a belief function; its focal
sets are B and B ∪ {x} for every x /∈ B. �

Proposition 9. Let (P0, δ) be PMM and P be the lower probability it induces by
Eq. (1). Assume there is B such that P (A) > 0 if and only if B ⊂ A and that
δ = P0(B)

1−P0(B) , and assume that the non-vacuity index k = |B|+1 satisfies k < n−1.
Then, P is a belief function whose focal sets are B ∪ {x} for every x /∈ B with
masses:

m(B ∪ {x}) = P0({x})
1− P0(B)

.

Proof. First of all, let us compute m(B) and m(B ∪ {x}) for x /∈ B:

m(B) = P (B) = (1 + δ)P0(B)− δ = 0.

m(B ∪ {x}) = P (B ∪ {x})− P (B) = (1 + δ)P0(B ∪ {x})− δ = (1 + δ)P0({x})

= P0({x})
(
1 +

P0(B)

1− P0(B)

)
= P0({x})

1− P0(B) + P0(B)

1− P0(B)

=
P0({x})
1− P0(B)

.
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Note that:

∑
x/∈B

m(B ∪ {x}) =
∑
x/∈B

P0({x})
1− P0(B)

=
1

1− P0(B)

∑
x/∈B

P0({x})

=
P0(B

c)

1− P0(B)
=

1− P0(B)

1− P0(B)
= 1.

Let us see that m(A) = 0 for every set different from B, B ∪ {x}. First of all,
if B 6⊆ A, it follows from Eq. (17) that m(B) = 0. Take now A′ ⊆ Bc with
|A′| = j > 1, and let us see that m(A ∪B) = 0.

m(A′ ∪B) =
∑

C⊆A′∪B

(−1)|A
′∪B\C|P (C) =

∑
C′⊆A′

(−1)|B|+|A\C
′|P (C ′ ∪B)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP (C ′ ∪B).

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B ∪ C ′)− δ)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B)− δ)

+ (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ),

where last equality follows because (1 + δ)P0(B)− δ = 0. Let us now analyze last
expression for every i = 0, . . . , j. First of all, for i = 0, it holds that:

∑
C′⊆A,|C′|=0

(−1)jP0(C
′)(1 + δ) = P0(∅)(1 + δ) = 0.

For every i = 1, . . . , j, we proceed as in the previous proof. Every x ∈ A′ can be
included in exactly

(
j−1
i−1
)
different sets C ′ ⊆ A′ of cardinality i, whence

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ) = (−1)j−i(1 + δ)

(
j − 1

i− 1

) ∑
x∈A′

P0({x})

= (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′).
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We deduce that:

m(A′ ∪B) = (−1)|B|
j∑
i=1

(−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)

= (−1)|B|(1 + δ)P0(A
′)

j∑
i=1

(−1)j−i
(
j − 1

i− 1

)

= (−1)|B|(1 + δ)P0(A
′)

j−1∑
i=0

(−1)j−i−1
(
j − 1

i

)
= 0,

where the last inequality follows again from the property of binomial coefficients
described in Eq. (22) using y = −1, x = 1, k = i, n = j − 1.

We conclude that m(A) ≥ 0 for every set A, whence P is a belief function. In
addition, we have proven that the focal sets are B ∪ {x} for every x /∈ B. �

We have established four sufficient conditions for the lower probability associated
with a pari-mutuel model to be completely monotone. Next we show that these
conditions are also necessary.

Theorem 2. Consider a PMM (P0, δ), and let P be its associated lower probability.
P is a belief function if and only if one of the following conditions is satisfied:
(B1) k = n.
(B2) k = n− 1 and

∑n
i=1 P (X\{xi}) ≤ 1.

(B3) k < n − 1, there exists a unique B with |B| = k and P (B) > 0, and
P (A) > 0 if and only if B ⊆ A.

(B4) k < n− 1, there exists a unique B with |B| = k − 1 and δ = P0(B)
1−P0(B) , and

P (A) > 0 if and only if B ⊂ A.

Proof. Sufficiency of these four conditions has been proven in Propositions 6–9.
Conversely, let us see that if P is a belief function, one of the conditions must be
satisfied.

First of all, if k = n, then P (A) = 0 for every A ⊂ X and P (X ) = 1. Therefore,
m(X ) = 1 and m(A) = 0 for every A ⊂ X , and as a consequence we are in case
(B1).

Secondly, if k = n−1, this means that P (A) = 0 for every A such that |A| < n−1.
Furthermore, m(X\{x}) = P (X\{x}). Since the sum of all the masses must be 1,

1 =
∑
A⊆X

m(A) =
∑
x∈X

m(X\{x}) +m(X ),

whence
∑
x∈X m(X\{x}) ≤ 1, so we are in case (B2).

In order to simplify the notation in the remainder of the proof, we shall assume
without loss of generality that the elements in X are ordered so that

P0({x1}) ≥ P0({x2}) ≥ . . . ≥ P0({xn}), (23)

and denote pi = P0({xi}) for every i = 1, . . . , n.
Assume that k < n − 1 and that there is only one set B of cardinality k with

P (B) > 0. From Eq. (23), B = {x1, . . . , xk}. By definition of P , we obtain that:
• m(B) = P (B) = (1 + δ)(p1 + · · ·+ pk)− δ.
• ∀j = k + 1, . . . , n, m(B ∪ {xj}) = P (B ∪ {xj})− P (B) = (1 + δ)pj .
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As a consequence,

m(B)+

n∑
j=k+1

m(B∪{xj}) = (1+δ)(p1+· · ·+pk)−δ+
n∑

j=k+1

(1+δ)pj = (1+δ)−δ = 1.

Since m(A) ≥ 0 because P is a belief function, we deduce that the only focal
elements of P are the sets B,B ∪ {xj}, j = k + 1, . . . , n. As a consequence, we are
in case (B3).

Finally, consider that k < n − 1 and there are two different sets A1, A2 of
cardinality k such that P (A1), P (A2) > 0. By Eq. (23), we can assume that A1 =
{x1, . . . , xk−1, xk} and A2 = {x1, . . . , xk−1, xk+1}.

Denote C = {x1, . . . , xk+2} = A1 ∪ A2 ∪ {xk+2}. Taking into account that P is
a belief function and using Eq. (17),

0 ≤ m(C\{xi}) = P (C\{xi})−
∑

j 6=i∈{1,...,k+2}

P (C\{xi, xj}) ∀i = 1, . . . , k−1. (24)

On the other hand, we also have that

0 ≤ m(C) =P (C)−
k+2∑
i=1

P (C \ {xi}) +
∑

i6=j∈{1,...,k+2}

P (C\{xi, xj})

=P (C)− P (C \ {xk+2})− P (C \ {xk+1})− P (C \ {xk})
+ P ({x1, . . . , xk−1, xk}) + P ({x1, . . . , xk−1, xk+1})

−
k−1∑
i=1

P (C\{xi}) +
∑
I

P (C\{xi, xj}),

where I = {(i, j) : i < j, i, j ∈ {1, . . . , k + 2}}\{(k + 1, k + 2), (k, k + 2)}.
Applying the definition of P , this is equal to

− (1 + δ)pk+2 −
k−1∑
i=1

P (C\{xi}) +
∑
I

P (C \ {xi, xj})

= −(1 + δ)pk+2 −
k−1∑
i=1

P (C \ {xi})−∑
j 6=i

P (C \ {xi, xj})

+ P (C \ {xk, xk+1})

≤ −(1 + δ)pk+2 + P (C \ {xk, xk+1}),

where the inequality follows from Eq. (24).
From this we deduce that P (C \ {xk, xk+1}) > 0, whence

0 ≤ −(1 + δ)pk+2 + P (C \ {xk, xk+1}) = (1 + δ)(p1 + · · ·+ pk−1)− δ.

Since on the other hand P ({x1, . . . , xk−1}) = 0 implies that (1−δ)(p1+· · ·+pk−1)−
δ ≤ 0, we conclude that (1− δ)(p1 + · · ·+ pk−1)− δ = 0, or, in other words,

δ =
p1 + · · ·+ pk−1

1− p1 − · · · − pk−1
. (25)

Now, for every i = k, . . . , n, we have that

0 ≤ m({x1, . . . , xk−1, xi}) = P ({x1, . . . , xk−1, xi})
= (1 + δ)(p1 + · · ·+ pk−1 + pi)− δ = (1 + δ)pi,
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and as a consequence
n∑
i=k

m({x1, . . . , xk−1, xi}) =
n∑
i=k

(1 + δ)pi =

n∑
i=k

pi + δ

n∑
i=k

pi =

n∑
i=k

pi +

k−1∑
j=1

pj = 1,

taking into account the value of δ from Eq. (25). From this we deduce that the
only focal elements of P are the sets {x1, . . . , xk−1, xi} for i = k, . . . , n, and as a
consequence we are in case (B4). �

We have already mentioned that in [3, Thm. 1], a sufficient condition for a
probability interval to induce a completely monotone function is given. Since from
Theorem 1 any PMM is in particular a probability interval, we now investigate the
connection between [3, Thm. 1] and the characterization we have established in
Theorem 2.

Theorem 3. [3, Thm. 1] Consider a universe X = {x1, . . . , xn} with n ≥ 3, and
consider the probability interval I = {[li, ui] : i = 1, . . . , n}. Denote by l and u the
lower and upper probabilities induced from I by using Eq. (13). If∣∣∣∣∣∣

{
i : ui +

∑
j 6=i

lj < 1
}∣∣∣∣∣∣ ≤ 2 (26)

then l and u are a belief and a plausibility function.

Let us now show that this sufficient condition is not necessary in our framework.
First of all, note that if we are in case (B1), the probability interval associated with
a PMM trivially satisfies Eq. (26) because li = P ({xi}) = 0 and ui = P ({xi}) = 1
for every i = 1, . . . , n. In the other three cases, we are going to see that the sufficient
condition is not necessary.

Example 6. Consider the four-element universe X = {x1, x2, x3, x4} and the ini-
tial probability P0 =(0.1,0.1,0.2,0.6). In the next table we summarize the values of
P , P for δ = 1 and δ = 1.5:

δ = 1 δ = 1.5
A P (A) P (A) m(A) P (A) P (A) m(A)

{x1} 0 0.2 0 0 0.25 0
{x2} 0 0.2 0 0 0.25 0
{x3} 0 0.4 0 0 0.5 0
{x4} 0.2 1 0.2 0 1 0

{x1, x2} 0 0.4 0 0 0.5 0
{x1, x3} 0 0.6 0 0 0.75 0
{x1, x4} 0.4 1 0.2 0.25 1 0.25
{x2, x3} 0 0.6 0 0 0.75 0
{x2, x4} 0.4 1 0.2 0.25 1 0.25
{x3, x4} 0.6 1 0.4 0.5 1 0.5

{x1, x2, x3} 0 0.8 0 0 1 0
{x1, x2, x4} 0.6 1 0 0.5 1 0
{x1, x3, x4} 0.8 1 0 0.75 1 0
{x2, x3, x4} 0.8 1 0 0.75 1 0

X 1 1 0 1 1 0
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We see that for δ = 1, we are in case (B3) and for δ = 1.5 we are in case (B4) of
Theorem 2, so P is a belief function. However, in none of these cases the probability
interval associated with the PMM satisfies Eq. (26), as |{i : ui +

∑
j 6=i lj < 1}| = 3

in both cases.
On the other hand, take n = 3, the initial probability P0 = (0.2, 0.4, 0.4) and

δ = 1. We are in case (B2) of Theorem 2, so P is a belief function; its focal
sets are {x1, x2}, {x1, x3} and {x2, x3} with masses 0.2, 0.2 and 0.6, respectively.
However, Eq. (26) is not satisfied, because every xi satisfies 0 = li < ui < 1, and
therefore |{i : ui +

∑
j 6=i lj < 1}| = 3. �

Therefore, the sufficient condition in terms of probability intervals given in The-
orem 3 is only necessary for the PMM in the very particular case of (B1). On the
other hand, Example 6 also shows that conditions (B2), (B3), (B4) may indeed be
fulfilled by a PMM; to see that (B1) may also be satisfied, it suffices to consider
P0 =

(
1
3 ,

1
3 ,

1
3

)
and δ > 2, taking into account the comments after Proposition 6.

4.3. Minitive functions. One particular family of belief functions is that of mini-
tive functions. A function P : P(X ) → [0, 1] is called minitive if P (A ∩ B) =
min{P (A), P (B)} for every A,B ⊆ X . Any minitive function is in particular a
belief function, and it corresponds to the particular case of nested focal elements.
This means that they can be totally ordered by means of set inclusion.

Taking Theorem 2 into account, we can characterize the PMMs that induce a
minitive function.

Corollary 2. Let (P0, δ) be PMM and P be the lower probability it induces by
Eq. (1). P is a minitive function if and only if one of the following conditions is
satisfied:
(B1) k = n.

(B2*) k = n− 1 and there exists only one x ∈ X such that m(X\{x}) > 0.

Proof. First of all, if condition (B1) is satisfied, from Theorem 2 we know that P is
a belief function whose only focal set is X . Therefore, P is in particular minitive.

If (B2*) is satisfied, in particular condition (B2) is satisfied in Theorem 2, so
P is a belief function with only two focal sets: X and X\{x}, which are nested.
Therefore P is not only a belief function but also minitive.

Let us now see that if P is minitive, no other situation is possible. Since any
minitive function is a belief function, from Theorem 2 it must satisfy one of (B1),
(B2), (B3) or (B4). If (B3) or (B4) are satisfied, this means that there is a set B
with cardinality smaller than n − 1 such that B ∪ {x} is focal for every x /∈ B.
Therefore, there are x1, x2 ∈ Bc (x1 6= x2) such that B ∪ {x1} and B ∪ {x2} are
focal. But these two sets are not nested, and therefore P is not a minitive function.

Similarly, if (B2) holds, then
∑n
i=1 P (X\{xi}) ≤ 1 and the focal sets are X and

X\{xi} for every i = 1, . . . , n. Therefore, since the focal sets must be nested, there
can only be one x ∈ X such that P (X\{x}) > 0, so (B2*) must be satisfied. �

4.4. Extreme points of completely monotone PMM. Our previous results
allow us to compute the maximum number of extreme points for the credal set
associated with a completely monotone PMM:

Proposition 10. Let (P0, δ) be a completely monotone PMM, and consider its
associated credal setM(P0, δ). Then the number of extreme points ofM(P0, δ) is:



PARI-MUTUEL PROBABILITIES AS AN UNCERTAINTY MODEL 23

(a) n when (P0, δ) satisfies condition (B1) in Theorem 2.
(b) At most

(
n
2

)
when (P0, δ) satisfies condition (B2).

(c) At most k2n−k when (P0, δ) satisfies condition (B3).
(d) At most (k − 1)2n−k+1 − (k − 2) when (P0, δ) satisfies condition (B4).

Proof. (a) If we are in case (B1), thenM(P0, δ) is the set of all probability mea-
sures. This set has n different extreme points: the degenerate probability
measures.

(b) If we are in case (B2), we deduce from Proposition 7 that the focal elements
of the belief function P are sets of the type {xi}c for every i = 1, . . . , n
together with X . Therefore, given a permutation σ, the extreme point Pσ
it induces by Eq. (4) assigns positive mass to at most xσ(1) and xσ(2). Since
there are at most

(
n
2

)
different pairs, we have at most

(
n
2

)
different extreme

points.
(c) If we are in case (B3), we deduce from Proposition 8 that the focal elements

of the belief function P are the sets B,B ∪ {x} for every x /∈ B. Thus,
given a permutation σ, if i is the smallest index in {1, . . . , n} such that
xσ(i) ∈ B, then the associated extreme point Pσ gives positive mass to the
elements xσ(1), . . . , xσ(i). Moreover, for every other permutation σ′ such
that σ(i) = σ′(i), {σ(1), . . . , σ(i − 1)} = {σ′(1), . . . , σ′(i − 1)}, it follows
that Pσ = Pσ′ . Thus, the number of different extreme points results from
combining the element of B that comes first (and there are k possibilities
for that) with the groups of 0, 1, 2, ..., n− k elements of Bc, for which there
are (

n− k
0

)
+

(
n− k
1

)
+ · · ·+

(
n− k
n− k

)
= 2n−k.

Thus, we have k2n−k different extreme points.
(d) Finally, if we are in case (B4), we deduce from Proposition 9 that the focal

elements of the belief function P are the sets B ∪ {x} for every x /∈ B for
some given B. If B = ∅ (k=1), we obtain that the focal elements are the
singletons, and then P is a probability measure, meaning that there is only
one extreme point. Assume next that k > 1. Then, given a permutation σ,
if i is the smallest index in {1, . . . , n} such that xσ(i) ∈ B, then the associ-
ated extreme point Pσ gives positive mass to the elements xσ(1), . . . , xσ(i),
when i < n− k + 2, and to xσ(1), . . . , xσ(i−1), when i = n− k + 2 (that is,
when all the n− k + 1 elements of Bc go first).

When i < n−k+2, for every other permutation σ′ such that σ′(i) = σ(i)
and {σ′(1), . . . , σ′(i − 1)} = {σ(1), . . . , σ(i − 1)} it holds that Pσ′ = Pσ.
On the other hand, if i = n + k + 2, every other permutation σ′ with
{σ′(1), . . . , σ′(i − 1)} = {σ(1), . . . , σ(i − 1)} satisfies Pσ′ = Pσ. Thus, the
number of extreme points is

(k − 1)

(
n− k + 1

0

)
+ (k − 1)

(
n− k + 1

1

)
+ · · ·+ (k − 1)

(
n− k + 1

n− k

)
+

(
n− k + 1

n− k + 1

)
= (k − 1)2n−k+1 − (k − 2). �

Thus, the maximum number of extreme points ofM(P0, δ) is 2n−1 when n ≥ 3,
and it corresponds to k = 1, 2 in case (B3), and to k = 2 in case (B4). This number
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is significantly lower than the bound we have established in Theorem 2 for general
PMM, and also that for the number of extreme points for the credal set of a belief
function, known to be n!.

The number of extreme points is even lower for PMM inducing a minitive func-
tion: taking into account Corollary 2, we are either in case (B1), and then we have
n different extreme points, or in case (B2*), where there two focal elements X \{x}
and X . In this second case there are two possibilities:

• If xσ(1) 6= x, then Pσ({xσ(1)}) = 1, Pσ({xσ(i)}) = 0 ∀i = 2, . . . , n. This
determines n− 1 different extreme points.

• If xσ(1) = x, then Pσ({xσ(1)}) = m(X ), Pσ({xσ(2)}) = 1 − m(X ) and
Pσ({xσ(i)}) = 0 ∀i = 3, . . . , n. This determines n − 1 different extreme
points.

Thus, the maximum number of extreme points of a minitive PMM is 2(n − 1),
much lower that the maximum number of extreme points of the credal set associated
with a minitive function, known to be 2n−1 [19].

5. Approximation by PMM

As we said in the introduction, one of the main reasons to study the proper-
ties of simple probability sets is that they can be instrumental to approximate
more complex models, therefore reducing the computational burden of inferences
in exchange for being less-committal. Such approximations are commonly used in
graphical models [1, 8] or in risk analysis [4].

In the case of a PMM, the question is to know whether an initial credal setM
can be easily outer approximated by a PMM, so thatM ⊆M(P0, δ) and, among
the outer-approximating PMMs, if there is a minimal one with this property, in
the sense that there is no other PMM (P ′0, δ) with M ⊆ M(P ′0, δ) ( M(P0, δ).
For other imprecise probability models such an outer-approximation is not unique,
but in the case of PMMs it turns out that there is a unique such outer approxima-
tion [21], that is moreover straightforward to compute.

Proposition 11. [21, Sec. 4.1.] Let M be a convex set of probabilities and P be
its upper probability. The PMM (P0, δ) such that

δ =

n∑
i=1

P ({xi})− 1, P0({xi}) =
P ({xi})∑n
i=1 P ({xi})

∀i = 1, . . . , n

is the unique minimal PMM model that outer approximatesM.

This property means that approximating a given probability set with a PMM is
actually quite easy. In practice, such approximations may make the model much
easier to handle, as our next examples show.

Example 7. Consider an experiment with four possible outcomes, and where their
respective probabilities have been estimated to be equal to 0.1, 0.2, 0.3 and 0.4,
but where there has been some problems in the transmission so that we cannot
tell which probability corresponds to which value (frequencies were communicated,
but not which one corresponded to which element). If we denote the possibility
space X = {x1, x2, x3, x4}, this means that the available information is given by
the probability measure associated with the mass function (0.1, 0.2, 0.3, 0.4) and its
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permutations. We obtain then a set M of 24 probability measures, whose lower
envelope is the belief function given by

Bel(A) =


0.1 if |A| = 1

0.3 if |A| = 2

0.6 if |A| = 3

1 if |A| = 4.

Working with a belief function on a space of cardinality four entails specifying its
Möbius inverse, for which we must specify the basic probability assignment on the
24 = 16 subsets of X , or considering the 4! = 24 different extreme points of its
associated credal set M(P ). One alternative is then to consider a PMM that is as
close as possible to the belief function while not introducing any additional infor-
mation. Using the results in [21] and recalled by Proposition 11, it can be verified
that the closest PMM to Bel is given by P0 = (0.25, 0.25, 0.25, 0.25) and δ = 0.6,
that produces

P δ(A) =


0 if |A| = 1

0.2 if |A| = 2

0.6 if |A| = 3

1 if |A| = 4.

The uniformity of P0 models the fact that we have symmetric information about
the different values in X , while the distortion factor δ measures the imprecision
introduced by the lack of information about the correct order.

The lower probability P δ is determined by five values only: the probability mass
function P0 and the distortion factor δ. Moreover, its associated credal set M(P )
has 12 extreme points: the probability measures associated with (0, 0.2, 0.2, 0.4) and
its permutations. Thus, the representation in terms of extreme points is also simpler
(the initialM(P ) having 24 of them).

Finally, for any function f : X → R it follows that the difference between its Cho-
quet integral with respect to the original belief function and its outer approximation
is bounded above by:∣∣∣∣(C)∫ fdBel − (C)

∫
fdP δ

∣∣∣∣ ≤ max
A⊆X

|Bel(A)− Pδ(A)| sup |f | = 0.1 sup |f |,

meaning that the loss of information entailed by the PMM is not too large. �

Example 8. Consider an expert that must provide some conditional probability
bounds in a credal network [26], with the space X = {x1, x2, x3} of interest counting
three elements (these could be categories that a given object can take, such as kind
of movies in recommender systems, allele in genetic codes, . . . ). The expert has
some knowledge about probabilities, so is confident enough to provide numbers, but
prefers to give the following intervals:

p(x1) ∈ [0.1, 0.24], p(x2) ∈ [0.45, 0.6], p(x3) ∈ [0.2, 0.36]

that correspond to a probability interval I. It can be checked that this model has
the maximal number of extreme points a probability interval can have, i.e., six in
our case. Using Proposition 11, the outer-approximating PMM of I is given by
P0 = (0.2, 0.5, 0.3) and δ = 0.2, that has only three extreme points. Figure 2
pictures the two models, in term of probability sets over the simplex. This example
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also illustrates the fact that, while probability intervals and PMMs have potentially
the same maximal number of extreme points, it can be the case that a probability
interval reaching this number can be approximated by a PMM with a much lower
number. �

p(x1)

p(x2)

p(x3)

Figure 2. Example of aproximation.

6. Combining multiple PMMs

In this section, we study what happens when we consider multiple PMMs, first
characterizing our uncertainty of a common variable (they could be two precise
assessments provided by experts with different types of expertise), and then char-
acterizing our uncertainty over multiple variables (they could be two assessments
coming from the same expert about different variables). For simplicity, we focus
on binary cases where either two sources communicate their uncertainty or two
variables are concerned. Most of the conclusions extend straightforwardly to the
multivariate case.

6.1. Information fusion of PMMs. When two sets M(P 1
0 , δ1) and M(P 2

0 , δ2)
are provided to describe our uncertainty over X , one often needs to combine them
into a single model [11]. Three classical ways to achieve such a combination are
to consider the conjunction (intersection), the disjunction (union) or the average
(convex mixture) of the models. Using the commutativity and (quasi-)associativity
of these operators, extensions to an arbitrary number of sources is straightforward.

Before starting our study of such models, recall that from Corollary 1M(P0, δ)
is the set of probability measures satisfying the constraints in Eq. (6): every prob-
ability P ∈ M(P0, δ) must satisfy (1 + δ)P0({x}) ≥ P ({x}) ∀x ∈ X . As already
indicated in Section 4, this corresponds to a probability interval where only upper
bounds are provided (since the lower bounds can be derived from them).
Conjunction. Let us denote by

M(P∩0 , δ
∩) :=M(P 1

0 , δ1) ∩M(P 2
0 , δ2)

the probability set obtained by conjunctively combiningM(P 1
0 , δ1) andM(P 2

0 , δ2).
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Proposition 12. The setM(P∩0 , δ
∩) is non-empty if and only if∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1. (27)

In that case, it is induced by the PMM (P∩0 , δ
∩) such that

δ∩ =

(∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1 (28)

P∩0 ({x}) =
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∩

. (29)

Proof. Given the two sets of constraints given by Eq. (6) applied to (P 1
0 , δ1) and

(P 2
0 , δ2), their intersection is the set of probability measures satisfying

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

This corresponds to a specific probability interval where

li = 0, ui = min
{
(1 + δ1)P

1
0 ({xi}), (1 + δ2)P

2
0 ({xi}), 1

}
∀i;

by Eq. (14), the associated credal set is non-empty if and only if∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1.

Assume now that this intersection is non-empty, and let us prove that in that
case it can be induced by the PMM (P δ0 , δ

∩). Taking into account Corollary 1, if
M(I) =M(P∩0 , δ

∩), then for every probability measure P it should hold that

P ({xi}) ≤ ui ⇐⇒ P ({xi}) ≤ (1 + δ∩)P∩0 ({xi}) ∀xi ∈ X . (30)

If we make ui = (1 + δ∩)P∩0 ({xi}) and take into account that∑
x∈X

(1 + δ∩)P∩0 ({x}) =
∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
= 1 + δ∩,

we obtain that Eq. (30) is satisfied for the values of P∩0 and δ∩ given in Eqs. (28) and
(29), and that moreover with those definitions P∩0 ({x}) ∈ [0, 1] for every x ∈ X . �

In the particular case where P 1
0 = P 2

0 , Eq. (27) is always satisfied because:∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
=
∑
x∈X

min
{
(1 + min{δ1, δ2})P0({x}), 1

}
≥
∑
x∈X

P0({x}) = 1,

and the values of δ∩ and P∩0 given in Eqs. (28) and (29) become:

δ∩ = min{δ1, δ2} and P∩0 = P0.

Indeed, if P 1
0 = P 2

0 and δ1 ≤ δ2, we haveM(P 1
0 , δ1) ⊆M(P 2

0 , δ2), henceM(P 1
0 , δ1)∩

M(P 2
0 , δ2) =M(P 1

0 , δ1). In the more general case, Proposition 12 provides us with
a simple procedure to verify the non-emptiness of M(P∩0 , δ

∩), as well as efficient
formulae to compute the conjunction of two (or more) PMMs.
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Example 9. Consider the space X = {x1, x2, x3} and the two following models

P 1
0 = (0.3, 0.3, 0.4), δ1 = 0.3,

P 2
0 = (0.4, 0.3, 0.3), δ2 = 0.3,

that are such thatM(P 1
0 , δ1) ∩M(P 2

0 , δ2) 6= ∅. Their conjunction is given by

P∩0 = (1/3, 1/3, 1/3), δ∩ = 0.17.

The result is illustrated on Figure 3, where the initial two PMMs are in light gray,
and the resulting conjunction is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∩0

M(P1
0 , δ1) ∩M(P2

0 , δ2)

Figure 3. Example of conjunction.

Disjunction. When the intersection of two credal sets is empty (they are con-
flicting), an alternative is to consider their union, that is to considerM(P 1

0 , δ1) ∪
M(P 2

0 , δ2) or its convex hull, since M(P 1
0 , δ1) ∪M(P 2

0 , δ2) will not be convex in
general.

The convex hull conv(M(P1
0, δ1)∪M(P2

0, δ2)) will not be induced by a PMM in
general, either. However, we can easily provide a best outer-approximating PMM
(P∪0 , δ

∪) using the fact that any outer-approximation of M(P 1
0 , δ1) ∪ M(P 2

0 , δ2)
must satisfy the constraint

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

Indeed, using the same arguments as in the proof of Proposition 12, we can define

δ∪ =

(∑
x∈X

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1 (31)

and

P∪0 ({x}) =
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∪

(32)
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so thatM(P∪0 , δ
∪) ⊇M(P 1

0 , δ1)∪M(P 2
0 , δ2). To see that this inclusion holds, note

that for every event A, we have

∑
x∈A

max
{
P

1
({x}), P 2

({x})
}
≥ max

{∑
x∈A

P
1
({x}),

∑
x∈A

P
2
({x})

}

where P
1
, P

2
are the upper probabilities induced by (P 1

0 , δ1) and (P 2
0 , δ2), respec-

tively.

Example 10. Consider the space X = {x1, x2, x3} and the two following models

P 1
0 = (0.3, 0.4, 0.3), δ1 = 0.2,

P 2
0 = (0.2, 0.2, 0.6), δ2 = 0.3,

that satisfyM(P 1
0 , δ1) ∩M(P 2

0 , δ2) = ∅. Their outer-approximation is given by

P∪0 = (0.222, 0.297, 0.481), δ∪ = 0.62.

The result is illustrated on Figure 4, where the initial two PMMs are in light gray,
and the resulting outer-approximation of the disjunction is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∪0

M(P∪0 , δ
∪)

Figure 4. Example of approximated disjunction.

Mixture. The mixture of two PMMs, that is, the computation of

M(P ε0 , δε) := εM(P 1
0 , δ1) + (1− ε)M(P 2

0 , δ2)

for a given ε ∈ (0, 1) is straightforward when applying results [22] established for
probability intervals. In particular, the model M(P ε0 , δε) is described by the con-
straints

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x}) ≥ P ({x}) ∀x ∈ X
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on a probability measure P . From this, we deduce that

1 + δε =
∑
x∈X

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

= ε(1 + δ1)
∑
x∈X

P 1
0 ({x}) + (1− ε)(1 + δ2)

∑
x∈X

P 2
0 ({x})

= ε(1 + δ1) + (1− ε)(1 + δ2),

and

P ε0 ({x}) =
ε(1 + δ1)P

1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

1 + δε
.

Example 11. Consider the initial models of Example 10 with ε = 0.5 to have an
arithmetic average, we obtain the model

pε0 = (0.248, 0.296, 0.456), δε = 0.25.

The result is illustrated on Figure 5, where the initial two PMMs are in light gray,
and the resulting average is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P ε0

εM(P1
0 , δ1) + (1− ε)M(P2

0 , δ2)

Figure 5. Example of PMM mixture.

Other, more elaborate combinations can be derived from these basic ones (see
for instance [22, 36]). While we will not discuss them in details in this paper, the
next example provides an illustrative practical case where they would be useful.

Example 12. Let us consider three different classifiers, each producing output
estimates in the form of probabilities over four classes X = {x1, x2, x3, x4} (to
be interpreted as P0), and a reliability index of their estimates in addition (to be
interpreted as δ). Let us now consider the three following outputs:

P 1
0 = (0.7, 0.1, 0.1, 0.1), δ1 = 0.4;

P 2
0 = (0.4, 0.2, 0.2, 0.2), δ2 = 0.5;

P 3
0 = (0.25, 0.25, 0.25, 0.25), δ3 = 0.8.
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In this scenario, the first two classifiers would choose class x1, with the second
being more uncertain (in every way) than the first, and the last classifier would
consider all classes equally likely, but with a very low reliability level (maybe due to
lack of data). Using Proposition 12, it is straightforward to check thatM(P 1

0 , δ
1)∩

M(P 2
0 , δ

2) andM(P 3
0 , δ

3) ∩M(P 2
0 , δ

2) are non-empty, but that on the other hand
M(P 1

0 , δ
1)∩M(P 2

0 , δ
2)∩M(P 3

0 , δ
3) = ∅. In this scenario, full conjunction is impos-

sible, and disjunction would provide a very imprecise result, losing the information
that x1 is likely to be the most probable class. One alternative solution is to combine
conjunction and disjunctions, by taking the conjunction of every maximal subset of
sources for which it is non-empty, and then considering the disjunction between
them. In our case, this would come down to take(

M(P 1
0 , δ

1) ∩M(P 2
0 , δ

2)
)
∪
(
M(P 3

0 , δ
3) ∩M(P 2

0 , δ
2)
)

or the best PMM approximating it, obtained using Equations (31)-(32). This gives
the PMM

P
(1∩2)∪(2∩3)
0 = (0.4, 0.2, 0.2, 0.2), δ(1∩2)∪(2∩3) = 0.5,

which still encodes the fact that x1 is highly likely compared to other classes. �

6.2. Marginal and joint PMM. A second related problem would be the study
of PMM on product spaces, as an uncertainty model about two different variables
X,Y taking respective values on X = {x1, . . . , xn} and Y = {y1, . . . , ym}. These
can arise as a combination of two marginal PMMs into a joint one, or we may
instead be interested in deriving the marginal models from a given joint PMM. We
discuss the two possibilities in this section.
From marginals to joint. Assuming we have a discounting factor δ and two
probabilities PX0 and PY0 given on X and Y, respectively, it seems reasonable to
wonder whether we should first:

• combine PX0 and PY0 into a joint probability PX,Y0 over X ×Y and consider
the discounted setM(PX,Y0 , δ) or;
• compute the discounted sets intoM(PX0 , δ) andM(PY0 , δ) and then com-

bine the two resulting sets into a joint setMX,Y .
Under an assumption of independence, the first approach has the advantage that
PX,Y0 has a unique formal definition corresponding to stochastic independence,
while the jointMXY will strongly depend on the chosen extension of the classical
notion of probabilistic independence, since many of them exist [6]. To facilitate the
discussion, we will only consider the set MXY resulting from the assumption of
strong independence, that corresponds to the convex hull of all stochastic products
of probabilities withinM(PX0 , δ) andM(PY0 , δ). One question that arises is what
is the relation between the set M(PX,Y0 , δ) resulting from the first approach and
the setMXY resulting from the second approach. To ease the notation, let P

1
and

P
2
denote their respective upper probabilities over X × Y. An immediate remark

is that the two joint sets will not be equal in general: we have

P
1
(A×B) = (1+δ)PX0 (A)PY0 (B) ≤ (1+δ)PX0 (A)(1+δ)PY0 (A) = P

2
(A×B) (33)

whenever P
2
(A × B) < 1. The second value is obtained from the fact that under

the strong independence assumption [6], we have the factorisation property

P
2
(A×B) = P

X
(A)P

Y
(B), (34)
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where P
X
, P

Y
are the marginal upper probabilities of P . Note that the inequality

in (33) is strict as soon as δ, PX0 (A) and PY0 (B) are all strictly positive. From (33),
a natural question is whetherM(PX,Y0 , δ) ⊆MXY . The next example shows that
it will not be the case in general.

Example 13. Consider the spaces X = {x1, x2} and Y = {y1, y2} with the two
probabilities PX0 , PY0 given by

PX0 (x1) = 0.3, PX0 (x2) = 0.7, PY0 (y1) = 0.5, PY0 (y2) = 0.5,

and let δ = 0.1. Given the event E = {(x2, y2)}c, we obtain

P
1
(E) = 1− P 1({(x2, y2)}) = 1− 0.285 = 0.715

> P
2
(E) = 1− P 2({(x2, y2)}) = 1− 0.67 · 0.45 = 1− 0.3015 = 0.6985,

and therefore it cannot beM(PX,Y0 , δ) ⊆MXY . �

Most other independence notions (including epistemic independence and random
set independence, for instance) used within imprecise probability theory [6] also
satisfy Eq. (34), hence the inequality concerning events of the kind A×B remains
true for them. As this factorisation property is also true for lower probabilities,
Example 13 also applies to them. This may be an important issue when having to
choose whether one should first combine then discount, or discount then combine.
We can nevertheless notice that there is essentially one way to apply the first option
(using stochastic independence), and many to apply the second (as one has to choose
an adequate notion of independence).
From joint to marginals. Let us now start from a PMM (PX,Y0 , δ) on a product
space X × Y. Its associated credal set is the set of probability measures satisfying

(1 + δ)P0({xi, yj}) ≥ P ({xi, yj}) ∀(xi, yj) ∈ X × Y.
The question is then to know, if we want to marginalize all probabilities contained
inM(PX,Y0 , δ) over X or Y, what is the shape of the resulting credal setsMX and
MY ? The answer is pretty straightforward as soon as we realize that the marginal
model on X is described by the constraints

P ({xi}) =
∑
yj∈Y

P ({xi, yj}) ≤
∑
yj∈Y

(1 + δ)P0({xi, yj}) ≤ (1 + δ)P0({xi})

∀xi ∈ X , which correspond to the set M(PX0 , δ) where PX0 is the marginal of P0

over X . The same holds forMY .

7. Conclusions

Our results show that the pari-mutuel model is a computationally simple model
within imprecise probability theory that at the same time keeps enough generality
to be useful in a number of practical situations. On the one hand, we have proven
that it can be embedded within the theory of probability intervals, and as such can
be used quite easily within graphical models. In this respect, it is interesting to
note that, even if not all probability intervals can be represented as a pari-mutuel
model, the tightest bound on the number of extreme points of their associated set
of probabilities is the same for both of them.

In addition, we have also determined in which cases a pari-mutuel model is equiv-
alent to a pair of conjugate belief and plausibility functions. Such a representation
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is interesting because it allows for instance to use pari-mutuel models in the con-
text of random sets [23]. Belief functions and 2-monotone lower probabilities have
also been considered in some of the extensions of the expected utility paradigm
that deal with imprecise information [12, 27]. In this respect, now that we have
clarified the connection between the pari-mutuel model and other models within
imprecise probability theory, it would be interesting to study the preferences that
can be modelled by means of pari-mutuel probabilities. Nevertheless, we should
stress that our necessary and sufficient conditions for the pari-mutuel model to be
embedded in the theory of belief and plausibility functions, that improve upon ear-
lier results from the literature, show that the inclusion within the theory of belief
functions only holds in quite restrictive scenarios. This phenomenon is even more
acute if we consider the particular case of minitive measures.

With respect to the processes of combination we have considered in Section 6,
we have shown that this model is closed under conjunction, marginalization and
average, while it is not under disjunction or when building a joint model from
marginal ones. Most of our observations extend directly to the case of more than
two models, due to the associativity and commutativity of the operations involved.
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