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Abstract—Forecasting-aided state estimation is a topic of great and Demand Response (DR) have posted crucial questions
research interest for future intelligent power grids. Estimators on power system paradigm. Though Weighted Least Squares
in this class commonly use an exponential smoothing based(WLS) SE is a well-established and mature technique for

forecasting model to providea priori estimates of the states. This t o t d al ff t solft
forecasting capability is advantageous to the system operators in ransmission systéms and aiso oflers some recent soidbons

taking proper actions. In this work, authors propose a periodical three-phase unbalanced distribution systems [4], FASEasp

or event-triggered routine to improve the output of this class of to have certain advantages for the operation, control, and

estimators. This routine will use an efficient optimization scheme protection of future Intelligent Distribution NetworksO(Ns).

to obtain custom smoothing parameters for each of the state \yjje traditional WLS based algorithms, perform the SE

variables in the forecasting model. The authors include a case . . .

study to demonstrate the high quality of thea priori estimates process from a fixed image of the _network obtained at each

obtained with the proposed method. scan of the measurements, FASE includes the effect of past
measurements in its estimation. Importantly, FASE allows a

_ Index Terms—A priori estimates, Forecasting-aided state es- 5 priori estimation of the future state of the system for the

timation, intelligent power grid, linear exponential smoothing. next time steps, which is particularly useful in broadening

the scope of the operators or the Energy Management System

(EMS), because some functions, like economic dispatching

_ and security assessment can be performed in advance.

In the seminal work of Debs and Larson [1], they proposed |y FASE, a prediction stage anticipates future values of the
the very fundamental algorithm for Dynamic State Estinmatiosiate variables assuming a forecasting model of the system.
(DSE). Any serious attempt to model the time behavior of th&ome parameters of this model need to be identified. The
system state was avoided, assuming a simple dynamic Iinﬁﬂrecasting model used to be tedious, costly and full of
model where the parameters are either identity matrices @{certainties. A major progress in FASE comes from the work
zeros. Then, at their pioneering work, Schweppe and Masiedf [5], which provides two dynamic state transition models,
[2] introduced another algorithm for tracking the statefs. hoth capable of following system changes. The dynamic model
proposes a simultaneous estimation of states and parame{gding Linear Exponential Smoothing (LES) [6] to predict the
which failed to identify dynamic patterns properly. It is-im forecasting model parameters, and consequentlyatpgori
portant to note that the term "dynamic” may be ambiguougstimates, was found better for forecasting the statese @nc
as power system dynamics is strongly associated with thgori estimates are available, FASE proceeds with a filtering
stability concept and the oscillatory response of the systestage using techniques such as the Extended Kalman Filter
during transients. Semantic arguments in the State Es'm'mat(EK,:), lterated Kalman filter (IKF), Unscented Kalman Filte
(SE) context have led researchers to coin the term Foregasti\UkF), or Particle Filter. This work, focuses and contrisit
aided State Estimation (FASE) [3], and thus, in this work, {f the improvement o# priori estimations, i.e., the prediction
is described with that denotation. stage. Many of the high-impact FASE related research works,

FASE, which can be seen as an estimated state assisiggh as [3], [71-[9], have used LES to identify the foreazgti
by prediction, has gained significant research intereshas fhodel parameters, and thus, LES is also taken as the basis for
power sector is undergoing a profound change. The emg{e present proposal.
gence of Smart Grid (SG), Distributed Generation (DG), |n this work, the authors propose and implement an efficient

_ _ - optimization routine to tune up customized parameters Efs L
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and Innovation under grant ENE2014-52272-R. ther an event-triggered or periodical basis, allowing arebke

I. INTRODUCTION



adaptation of the forecasting parameters to topologicahghs C. ldentification of Forecasting Parameters

or sga;ona! variati(.)ns.. FASE can ben.efit from high—quality|n this step, the parameters of the dynamic forecasting
a priori estimates in different ways. Firstly, high-quality model, F, and Gy, are derived. The quality of this identifi-
priori estimates can be useful for event-triggered DistributiGthtion determines the goodness of the states’ forecastis ES
System State Estimation (DSSE) or Multi-Area State Estimgagitionally used in FASE for this task. From the taxonomy
tion (MASE) techniques, such as [10]. High-qualdypriori  of exponential smoothing methods [6], which consists of 15
estimates can also be useful for some topology identifisatigyodels, those with additive trend and no seasonal component
algorithms, such as [11]. Finally, the availability of inewed  paye peen widely adopted in FASE implementations. In this
a priori estimates, reduces the number of iterations needggd k the Damped Trend Method (DTM) is used, but the
during the f_iltering stage, thus improving the efficiency Oﬁroposed methodology can be applied to other models in a
FASE techniques. N _ straightforward manner. DTM is a damped variant of the pop-
For the benefit of the reader, a traditional formulation & th15; Holt's method which improves its long-term forecagtin
mathematical model used in FASE, [3], is presented in Secligyatyres. The equations for the DTM can be formulated for
ll. Section Il introduces the proposed optimization m&tho o5ch state variablé, and samplek, as,
capable of providing customized exponential smoothing pa- . o o N
rameters for each state variable. In Section 1V, a case study Level: =o'y + (1 —a")(lh_y + ¢'by_1), (4)
is presented to illustrate the benefits of the proposal.lliyina Trend: by =B —li_) + (1 — BY)e'bs_y, (5)

Section V summarizes the most important results of thisystud - o<t T =1+ @b, (6)

Il. THE MATHEMATICAL MODEL wherea?, 3 and¢® are the smoothing parameters and dampen

Four parts can be distinguished in FASE: the measuremegétor, respectivelyl;, andb;, are the level and trend;, is the
model, the dynamic forecasting model, the identification ef posteriori estimate andz: , ; is thea priori estimate. The
forecasting parameters, and the state filtering proces3 gy backcasting method can be used for initialization purposes
are briefly described in this section, with special attemtio Taking the mathematical expectation xf.1 in (3) as the
given to the forecasting stage in which this proposal is$ecu forecast value, the priori estimate can be expressed as

A. The Measurement Model Xie1 = FrXk + Gk. @)

The measurement model is essential for the filtering stage. ... . :
At an instant of time,k, the measurement vectozy, of qgentn‘ymg terms in (7) and (4)—(6) leads to
m actual observations is related with the state veckQr, F/* = o'(1+ ¢'3")

containingn state variables as i i o in~i i i 2 iNvi
J L= (L+ ¢ 81— )T} — '8y + 67 (1 - B0y,
D. State Filtering

where,h is a vector containing nonlinear functions, based on The gbjective of the filtering stage is to find arposteriori
Ohm'’s and Kirchhoff's laws, which transforms the state vect ostimation of the system state. This is done by minimizing
space to the theoretical measurement space. The meastirefpNroot mean square error between theoretical obsersgation
error vectorgy, contains white Gaussian noise with zero meagnhg actual observations, for which different techniqueseha
and a covariance matriRy for weighing inputs with their peen proposed. State filtering is out of the scope of this work
estimated precision. however, it is worth mentioning that the iterated extended

Itis assumed that > n, and there is a set of equations in Kaiman filter [5] was used while conducting the case studies
h which are independent. By linearizing around an operatifg the present proposal.

point x2, (1) can be rewritten as

zc = h(x¢) + &, (1)

Ill. SMOOTHING PARAMETER OPTIMIZATION
z = Hy Xk + Ex, 2

Traditional works on FASE with LES use preassigned
where,zc = z — h(x?), X« = X« — X andH, = 28| _ ,. uniform values as smoothing parameters for the state asiab
Ex is white Gaussian noise with zero mean that represents thg.a®! = 0.6, 8% = 0.4 and ¢! = 0.95. These figures are
combined error of the measurement and linearization psoceselected based on the experience of the user or at most, after
some trial and error. In this section, an efficient process fo
the optimization of these parameters, which provides custo
It is assumed that the state vector complies with the followalues for each state variable, is proposed.

ing dynamic model: The load profile of electric networks shows clear seasgnalit
3) patterns, as is the case of a daily pattern. This fact can be

exploited in order to optimize the smoothing parameters of
whereFy is a non-zerdn x n) diagonal matrixGy is a non- each state variable given a set of daily measurements, so as
zero(n x 1) vector andw is white Gaussian noise with zeroto obtain improved estimates in the future. The algorithm
mean and covariance matr,. proposed in this section can be scheduled periodically or

B. Dynamic Forecasting Model

X1 = FrXe + G + W,



executed on an event-triggered basis in order to obtaintarbef\lgorithm 1 Optimization of smoothing parameters

adjustment of the estimates to long-term seasonality qoatte Input: z < Grid measurements, daily register.

such as monthly pattern, or topology changes. Output: of, 3%, ¢' Il Customized smoothing parameters
The accuracy ofa priori estimates of the state variables 1: Initialization of o, 5%, ¢*

should be assessed by comparing them with the “exact* values while max(|Aa’|, |AS"[, |A¢'|) > € do

of that states. Unfortunately, in real applications thoseatt® 3:  Calculatea posterioriestimates;, using FASE

values are unknown, so they have to be compared with 4 for i =1 to n do // Run through state variables

posteriori estimates. With the goal of error minimization, 5: /I Minimization of RM SE® using PSO
different accuracy indicators have been proposed, such #s Random initialization of particles’ speed and position
Mean Absolute Error (MAE), Mean Squared Error (MSE), 7: for t = 1 to T do // Run through iterations
Root Mean Squared Error (RMSE), Mean Absolute Percentagé for p =1 to P do // Run through particles
Error (MAPE) or Mean Absolute Scaled Error (MASE) [6]. ©: for k= 1to K do// Run through time samples
In this work RMSE is used, which is particularly suitable forto: Calculatea priori estimates;,
exponential smoothing, as proportionally larger weighpug 11 end for 4
in larger errors. RMSE for a specific state varialilecan be 12: CalculateRM SE*
defined as 13: end for

= 14: Update particles’ speed and position

; 1 L 15: end for
RMSE' = \| &= > @ - ) ®) 16 end for
h=1 17:  Updatec’, B¢, ¢

where, K is the total number of time steps considered ins: end while
the calculation (e.g96 for a daily profile with quarter-hourly 19: return of, 3%, ¢*
measurements).
The optimization problem to be solved can be expressed as
the minimization of an aggregate of thaBé/ SE* values. The on a stability argument [6]. Solutions out of these bounds ar
search space for this optimization task grows exponeytiallejected within the PSO algorithm by adding a penalization
with the number of state variables, which can make thHanction.
problem infeasible for medium or large systems. This isedus Within the PSO algorithm [12], a set 6t particles explores
by the fact thatRM SE7 depends not only on’/, 37 and¢’, the domain of solutions. Each of these entitjgsis character-
but also on the‘parameters for the rest of the state variablged by a positiony,, i.e. a set ofx!, 5* and¢’ values, and a
i.e.a’, " and¢® with i # j, through their influence in tha  speedy,, in said domain, where they are randomly located at
posteriori estimates. In order to get rid of this difficulty, theinitialization. At each iterationt, the fitness of each particle is
present proposal makes use of the low weight of this secoagsessed according to the evaluation of the objectiveiimct
factor of influence, which allows a decoupled calculation @b), and the best position for each particjg; , and for the
the smoothing parameters of each state variable, providgHole swarmy,,, are stored. Then, the speed of each particle
thata posterioriestimates are iteratively corrected through ag updated as
external loop (two or three iterations suffice in most cases) 1 . L . - .
With this solution, which is presented ialgorithm 1, the v, = wup, + 11, (Yo, — Yp) + C2r2p (Vo — Yp)s  (10)
optimization process can be run in a time with a line h
dependency on the number of state variables, making it v g
for large networks. Particle Swarm Optimization (PSO) isdus

ere r; and ro are random numbers in the rand@ 1)

ed to preserve the diversity of the population, anés a

: . T . .constant, callethertia weight that determines the influence of

in this work as an optimization tool, though a determlnlsnﬁ"3 preceding speed value. Finally, the effect on the newdspe

procedure could also be emplloyed for the same PUTPOSE. 1t hoth the best result obtained by each particle and theavhol
T_he embedded PSO. algorithm solves the folloyvmg COdiwarm is determined by constamtsandcs, usually known as

strained objective function for each of the state variables cognitiveandsocial weightsrespectively. From (10), a newly

decoupled way, updated position for each particle is calculated as

minimize RMSEl = f(a', 8", ¢") y;)Jrl _ y;, T ULH' (11)
subject to0 < o* < 2 9)

0< B <dfai—2 IV. CASE STUDY

0<di <1 A well-tested industrial power system previously used in

[12] has been adopted to demonstrate the usefulness of the
The traditional bounds of the smoothing parametersQie. proposal. The said system, depicted in Fig. 1, is a 9-bus
a<1,0<p<a, based on an interpretation as a weightesimplified version of the industrial network of a steel mill i
average of past values, has been superseded by the state gpbacnorth of Spain. The specific data of this network, togethe
approach of LES, in which the limits shown in (9) are basedith the set points of the embedded tapped transformers,



Q respectively. Thus, these standard deviations were alsd us

_ Publicgrid __pcc 1| T W 220kV : lY"“"ge measurement for the error covariance matriR in the FASE algorithm.
Customer grid 471 orermessement By following the method described in Section IIl, opti
. y following the method described in Section Ill, optimum
b values of o, 5* and ¢* were calculated for the 17 state
@ 723 variables of the grid. These values are shown in Table Il. The
3 132kV u good adjustment of these parameters to the optimizatiom dat
t set can be observed in Table Ill. Here, tR&/SFE value is
Main subsiation 13.8 KV 8T 3‘: calculated for the priori estimates in three different cases: (a)
= the ndve case, in which the state of every variable is forecast
using the value of the preceding state, ije, , = ij, (b) a
45 case with non-optimized parameters, taken identicallyalor
30kv Vs m 1.8 km the state variables, and (c) the proposed improvement,hwhic
B uses custom optimized parameters. This last case, clesatg b
0.3 km (a) and (b). In Table IILRM SE was calculated considering
the error between the priori estimates and the “exact” results,
not to leta posterioriestimates hide any estimation errors.
767 !
13.8 kV 7 m TABLE II

OPTIMUM o, B* AND ¢ FOR STATE FORECASTING

1.5 km

ch
Nl
]

\oltage o Bt X Phase o’ Bt o

Fig. 1. 9-bus Industrial distribution grid

Vi 0157 0430 0.000 6 - - -
Vo 0643 0759 0000 6, 0825 23850 0.329
have been summarized in Table |. The implementation of V3 ~ 1.208 1311 035 03 0845 2733 0335

. o . : V4 1206 1317 0360 64 0852 2694 0.332
the algorithms used in this case study was carried out inthe . 17153 1470 0461 6, 0916 2367 0326

MATLAB programming platform and tested in an Intel Core ;s 1.127 1550 0.457 6 0.908 2.407 0.315

i5 - 6400M - CPU 2.70 GHz computer. Vz 1217 1287 0472 6; 0.867 2613 0.298
Vs 1132 1533 0397 #6s 0730 3478 0.330

Vo 1151 1477 0.417 6y 0.782 3.116 0.317

TABLE |
PARAMETERS AND SETUP OF THEDISTRIBUTION GRID
Lines (z) and transformersS(,, Rsc, Xsc, tap) TABLE Il
Line 12 0.025+0.240iQ/km  T23 2x270 MVA 0.90% 12.97% 0.98 RMSE (IN THOUSANDS) FOR A PRIORI ESTIMATES OF STATE VARIABLES
Line 34 0.161+0.151i2/km T45 3x37.5 MVA 0.90% 8.95% 0.99 APPLIED TO THE OPTIMIZATION DATA SET

Line 56  0.568+0.133i2/km  T67 10 MVA 0.95% 4.76% 1.00
Line 89  0.161+0.112i2/km  T38 3x50 MVA 0.92% 7.95% 0.98

Case Case

Loads (P, Q - daily peak values) Voltage @ ) © Phase @ ®) ©

Bus 3 64.0 MW, 56.8 Mvar Bus 8 42.0 MW, 47.8 Mvar
Bus 5 24.0 MW, 21.9 Mvar Bus 9 5.0 MW, 4.4 Mvar
Sty S Ve SV Vi 0796 0792 068l 6 —

Va 0.828 0.843 0.792 6, 0.106 0.129 0.085
) o Vs 1.859 2265 1457 63 1486 1.661 1.265
A set of measurements, in the minimum number to make v, 1.887 2298 1473 6, 1490 1.665 1.269

the system observable, were taken as true values in order to “;s gggg ggi gigi 25 32‘2‘% gggi i-gg;

allow for the calculation of “exact" results for the statetbé Vi 1879 5998 3430 93 3436 23895 2874
system. Notice, that this is only done with the aim of valiclgt Vi 3553 4.399 2699 603 2590 2.871 2.236

the accuracy of the proposeal priori estimates, i.e., these Vo 3873 4744 2874 6§y 2647 3.003 2.297
results are not used during the optimization process. Thg da

load profile at the different buses of the grid, using quarter However, the applicability of the method is not still demon-
hourly real and reactive power values, is considered. Astial strated until this point, as the optimization process isetas
performance was obtained by making use of the ADRES: past values from amptimization data setTo probe the
CONCEPT database [13]. Table | shows the peak valuesrefl benefit of the proposal,tast data sebf power injections
these load profiles. The state of the system is obtained fravas extracted from the ADRES-CONCEPT database. This set
these data through the Direct Approach power flow algorithia built with data from the same aggregated loads used in the
[14], which is specially suited for radial grids. Gaussiaiise optimization data set, but corresponding to different daye

was added to an augmented set of measurements, whichregle of overfitting is avoided due to clearly diverse profjles
highlighted in Fig. 1, to obtain corrupted values valid t@s can be seen in Fig. 2, where the measurements for real
feed the FASE algorithm is a realistic fashion: 0.1% anand reactive power at bus 8 has been depicted both for the
2.0% of the mean of the normal distribution was selectagptimization and test data sets. The FASE algorithm was run
as the standard deviation of voltages and power injectioragain on this new test data set for the three cases described




above, but using the previously optimizet, 5* and¢’ values 1.03
of case (c). Table IV clearly shows that the daily seasgnalit
of the measurements leads to improwegdriori estimates also Lo
for future values. In order to further illustrate the int&ref the 2
: . ! - 0.99
proposed method, Fig. 3 shows the daily profile for the valtag =
. . —e— Exact state
at node 9 and for the phase angle at node 6. In this figur¢ 970 (@) aprioriest.a=1,9=0 Y ]
the true values of these state variable are depicted tageth Eb;mt* =00 j({;zf”"’
. . . . C) a priori es’ optimized o
with the a priori estimates from cases (a), (b) and (c). The o095 " : :
a posteriori estimates of the different cases are not shown ir -0.015
the figure for the sake of clarity.
-0.030
50 ‘ ‘ g
—e— Optimization data set 5"
= Test data set M\/J\/V\’\,\\\ < -0.045) —— Exact state
S 25 '/ . (a) a prioriest.,, a=1, =0
B ~. e 3 (b) a prioriest., « = 0.6, 3 = 0.4, ¢ = 0.95
[aing '.ij/" —e— (c) a priori est., optimized o, ', ¢
-0.060 : : : : :
0 16 32 48 64 80 9
0 i arterlv
0 Time, quarterly
—— 0pt1m1mt10n data set
) T Fig. 3. A priori estimates for voltage at bus 9 and phase angle at bus 6. Exact
= est data set .. . P
E \/\\’ state, (a) nave case, (b) uniform values, (c) optimized parameters
= 25F
S N
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