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Abstract—Forecasting-aided state estimation is a topic of great
research interest for future intelligent power grids. Estimators
in this class commonly use an exponential smoothing based
forecasting model to providea priori estimates of the states. This
forecasting capability is advantageous to the system operators in
taking proper actions. In this work, authors propose a periodical
or event-triggered routine to improve the output of this class of
estimators. This routine will use an efficient optimization scheme
to obtain custom smoothing parameters for each of the state
variables in the forecasting model. The authors include a case
study to demonstrate the high quality of the a priori estimates
obtained with the proposed method.

Index Terms—A priori estimates, Forecasting-aided state es-
timation, intelligent power grid, linear exponential smoothing.

I. I NTRODUCTION

In the seminal work of Debs and Larson [1], they proposed
the very fundamental algorithm for Dynamic State Estimation
(DSE). Any serious attempt to model the time behavior of the
system state was avoided, assuming a simple dynamic linear
model where the parameters are either identity matrices or
zeros. Then, at their pioneering work, Schweppe and Masiello
[2] introduced another algorithm for tracking the states. It
proposes a simultaneous estimation of states and parameters,
which failed to identify dynamic patterns properly. It is im-
portant to note that the term ”dynamic” may be ambiguous,
as power system dynamics is strongly associated with the
stability concept and the oscillatory response of the system
during transients. Semantic arguments in the State Estimation
(SE) context have led researchers to coin the term Forecasting-
aided State Estimation (FASE) [3], and thus, in this work, it
is described with that denotation.

FASE, which can be seen as an estimated state assisted
by prediction, has gained significant research interest as the
power sector is undergoing a profound change. The emer-
gence of Smart Grid (SG), Distributed Generation (DG),
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and Demand Response (DR) have posted crucial questions
on power system paradigm. Though Weighted Least Squares
(WLS) SE is a well-established and mature technique for
transmission systems and also offers some recent solutionsfor
three-phase unbalanced distribution systems [4], FASE appears
to have certain advantages for the operation, control, and
protection of future Intelligent Distribution Networks (IDNs).
While traditional WLS based algorithms, perform the SE
process from a fixed image of the network obtained at each
scan of the measurements, FASE includes the effect of past
measurements in its estimation. Importantly, FASE allows an
a priori estimation of the future state of the system for the
next time steps, which is particularly useful in broadening
the scope of the operators or the Energy Management System
(EMS), because some functions, like economic dispatching
and security assessment can be performed in advance.

In FASE, a prediction stage anticipates future values of the
state variables assuming a forecasting model of the system.
Some parameters of this model need to be identified. The
forecasting model used to be tedious, costly and full of
uncertainties. A major progress in FASE comes from the work
of [5], which provides two dynamic state transition models,
both capable of following system changes. The dynamic model
using Linear Exponential Smoothing (LES) [6] to predict the
forecasting model parameters, and consequently, thea priori
estimates, was found better for forecasting the states. Once a
priori estimates are available, FASE proceeds with a filtering
stage using techniques such as the Extended Kalman Filter
(EKF), Iterated Kalman filter (IKF), Unscented Kalman Filter
(UKF), or Particle Filter. This work, focuses and contributes
to the improvement ofa priori estimations, i.e., the prediction
stage. Many of the high-impact FASE related research works,
such as [3], [7]–[9], have used LES to identify the forecasting
model parameters, and thus, LES is also taken as the basis for
the present proposal.

In this work, the authors propose and implement an efficient
optimization routine to tune up customized parameters for LES
in a particular power system. The routine can be executed in ei-
ther an event-triggered or periodical basis, allowing a desirable



adaptation of the forecasting parameters to topological changes
or seasonal variations. FASE can benefit from high-quality
a priori estimates in different ways. Firstly, high-qualitya
priori estimates can be useful for event-triggered Distribution
System State Estimation (DSSE) or Multi-Area State Estima-
tion (MASE) techniques, such as [10]. High-qualitya priori
estimates can also be useful for some topology identification
algorithms, such as [11]. Finally, the availability of improved
a priori estimates, reduces the number of iterations needed
during the filtering stage, thus improving the efficiency of
FASE techniques.

For the benefit of the reader, a traditional formulation of the
mathematical model used in FASE, [5], is presented in Section
II. Section III introduces the proposed optimization method,
capable of providing customized exponential smoothing pa-
rameters for each state variable. In Section IV, a case study
is presented to illustrate the benefits of the proposal. Finally,
Section V summarizes the most important results of this study.

II. T HE MATHEMATICAL MODEL

Four parts can be distinguished in FASE: the measurement
model, the dynamic forecasting model, the identification of
forecasting parameters, and the state filtering process [5]. They
are briefly described in this section, with special attention
given to the forecasting stage in which this proposal is focused.

A. The Measurement Model

The measurement model is essential for the filtering stage.
At an instant of time,k, the measurement vector,zk , of
m actual observations is related with the state vector,xk ,
containingn state variables as

zk = h(xk) + ek , (1)

where,h is a vector containing nonlinear functions, based on
Ohm’s and Kirchhoff’s laws, which transforms the state vector
space to the theoretical measurement space. The measurement
error vector,ek , contains white Gaussian noise with zero mean
and a covariance matrixRk for weighing inputs with their
estimated precision.

It is assumed thatm > n, and there is a set ofn equations in
h which are independent. By linearizing around an operating
point x0k , (1) can be rewritten as

zk = Hk xk + Ek , (2)

where,zk = zk − h(x0k), xk = xk − x0k and Hk = ∂h
∂x

∣∣
x = x0k

.
Ek is white Gaussian noise with zero mean that represents the
combined error of the measurement and linearization process.

B. Dynamic Forecasting Model

It is assumed that the state vector complies with the follow-
ing dynamic model:

xk+1 = Fkxk + Gk + wk , (3)

whereFk is a non-zero(n×n) diagonal matrix,Gk is a non-
zero(n× 1) vector andwk is white Gaussian noise with zero
mean and covariance matrixQk .

C. Identification of Forecasting Parameters

In this step, the parameters of the dynamic forecasting
model, Fk and Gk , are derived. The quality of this identifi-
cation determines the goodness of the states’ forecast. LESis
traditionally used in FASE for this task. From the taxonomy
of exponential smoothing methods [6], which consists of 15
models, those with additive trend and no seasonal component
have been widely adopted in FASE implementations. In this
work the Damped Trend Method (DTM) is used, but the
proposed methodology can be applied to other models in a
straightforward manner. DTM is a damped variant of the pop-
ular Holt’s method which improves its long-term forecasting
features. The equations for the DTM can be formulated for
each state variable,i, and sample,k, as,

Level: lik = αix̂i
k + (1− αi)(lik−1 + φibik−1), (4)

Trend: bik = βi(lik − lik−1) + (1− βi)φibik−1, (5)

Forecast: x̃i
k+1 = lik + φibik, (6)

whereαi, βi andφi are the smoothing parameters and dampen
factor, respectively.lik andbik are the level and trend,̂xi

k is the
a posteriori estimate and̃xi

k+1 is the a priori estimate. The
backcasting method can be used for initialization purposes.

Taking the mathematical expectation ofxk+1 in (3) as the
forecast value, thea priori estimate can be expressed as

x̃k+1 = Fk x̂k + Gk . (7)

Identifying terms in (7) and (4)–(6) leads to

F ii
k = αi(1 + φiβi)

Gi
k = (1 + φiβi)(1− αi)x̃i

k − φiβilik−1 + φi2(1− βi)bik−1.

D. State Filtering

The objective of the filtering stage is to find ana posteriori
estimation of the system state. This is done by minimizing
the root mean square error between theoretical observations
and actual observations, for which different techniques have
been proposed. State filtering is out of the scope of this work,
however, it is worth mentioning that the iterated extended
Kalman filter [5] was used while conducting the case studies
for the present proposal.

III. SMOOTHING PARAMETER OPTIMIZATION

Traditional works on FASE with LES use preassigned
uniform values as smoothing parameters for the state variables,
e.g.αall = 0.6, βall = 0.4 andφall = 0.95. These figures are
selected based on the experience of the user or at most, after
some trial and error. In this section, an efficient process for
the optimization of these parameters, which provides custom
values for each state variable, is proposed.

The load profile of electric networks shows clear seasonality
patterns, as is the case of a daily pattern. This fact can be
exploited in order to optimize the smoothing parameters of
each state variable given a set of daily measurements, so as
to obtain improved estimates in the future. The algorithm
proposed in this section can be scheduled periodically or



executed on an event-triggered basis in order to obtain a better
adjustment of the estimates to long-term seasonality patterns,
such as monthly pattern, or topology changes.

The accuracy ofa priori estimates of the state variables
should be assessed by comparing them with the “exact“ values
of that states. Unfortunately, in real applications those “exact“
values are unknown, so they have to be compared witha
posteriori estimates. With the goal of error minimization,
different accuracy indicators have been proposed, such as
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE) or Mean Absolute Scaled Error (MASE) [6].
In this work RMSE is used, which is particularly suitable for
exponential smoothing, as proportionally larger weight isput
in larger errors. RMSE for a specific state variable,i, can be
defined as

RMSEi =

√√√√ 1

K

K∑

k=1

(x̃i
k − x̂i

k)
2, (8)

where, K is the total number of time steps considered in
the calculation (e.g.96 for a daily profile with quarter-hourly
measurements).

The optimization problem to be solved can be expressed as
the minimization of an aggregate of thoseRMSEi values. The
search space for this optimization task grows exponentially
with the number of state variables, which can make the
problem infeasible for medium or large systems. This is caused
by the fact thatRMSEj depends not only onαj , βj andφj ,
but also on the parameters for the rest of the state variables,
i.e. αi, βi andφi with i 6= j, through their influence in thea
posteriori estimates. In order to get rid of this difficulty, the
present proposal makes use of the low weight of this second
factor of influence, which allows a decoupled calculation of
the smoothing parameters of each state variable, provided
that a posterioriestimates are iteratively corrected through an
external loop (two or three iterations suffice in most cases).
With this solution, which is presented inAlgorithm 1 , the
optimization process can be run in a time with a linear
dependency on the number of state variables, making it valid
for large networks. Particle Swarm Optimization (PSO) is used
in this work as an optimization tool, though a deterministic
procedure could also be employed for the same purpose.

The embedded PSO algorithm solves the following con-
strained objective function for each of the state variablesin a
decoupled way,

minimize RMSEi = f(αi, βi, φi)

subject to0 < αi < 2 (9)

0 < βi < 4/αi − 2

0 < φi < 1,

The traditional bounds of the smoothing parameters, i.e.0 <
α < 1 , 0 < β < α, based on an interpretation as a weighted
average of past values, has been superseded by the state space
approach of LES, in which the limits shown in (9) are based

Algorithm 1 Optimization of smoothing parameters
Input: z k ← Grid measurements, daily register.
Output: αi, βi, φi // Customized smoothing parameters

1: Initialization of αi, βi, φi

2: while max(|∆αi|, |∆βi|, |∆φi|) > ǫ do
3: Calculatea posterioriestimates,̂xk, using FASE
4: for i = 1 to n do // Run through state variables
5: // Minimization of RMSEi using PSO
6: Random initialization of particles’ speed and position
7: for t = 1 to T do // Run through iterations
8: for p = 1 to P do // Run through particles
9: for k = 1 to K do // Run through time samples

10: Calculatea priori estimates,̃xk

11: end for
12: CalculateRMSEi

13: end for
14: Update particles’ speed and position
15: end for
16: end for
17: Updateαi, βi, φi

18: end while
19: return αi, βi, φi

on a stability argument [6]. Solutions out of these bounds are
rejected within the PSO algorithm by adding a penalization
function.

Within the PSO algorithm [12], a set ofP particles explores
the domain of solutions. Each of these entities,p, is character-
ized by a position,yp, i.e. a set ofαi, βi andφi values, and a
speed,vp, in said domain, where they are randomly located at
initialization. At each iteration,t, the fitness of each particle is
assessed according to the evaluation of the objective function
(9), and the best position for each particle,yb

t
p, and for the

whole swarm,yswt, are stored. Then, the speed of each particle
is updated as

vt+1
p = ωvtp + c1r1

t
p(yb

t
p − ytp) + c2r2

t
p(y

t
sw − ytp), (10)

where r1 and r2 are random numbers in the range[0, 1)
used to preserve the diversity of the population, andω is a
constant, calledinertia weight, that determines the influence of
the preceding speed value. Finally, the effect on the new speed
of both the best result obtained by each particle and the whole
swarm is determined by constantsc1 andc2, usually known as
cognitiveandsocial weights, respectively. From (10), a newly
updated position for each particle is calculated as

yt+1
p = ytp + vt+1

p . (11)

IV. CASE STUDY

A well-tested industrial power system previously used in
[12] has been adopted to demonstrate the usefulness of the
proposal. The said system, depicted in Fig. 1, is a 9-bus
simplified version of the industrial network of a steel mill in
the north of Spain. The specific data of this network, together
with the set points of the embedded tapped transformers,
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Fig. 1. 9-bus Industrial distribution grid

have been summarized in Table I. The implementation of
the algorithms used in this case study was carried out in the
MATLAB programming platform and tested in an Intel Core
i5 - 6400M - CPU 2.70 GHz computer.

TABLE I
PARAMETERS AND SETUP OF THEDISTRIBUTION GRID

Lines (z) and transformers (Sn, Rsc, Xsc, tap)

Line 12 0.025+0.240iΩ/km T23 2×270 MVA 0.90% 12.97% 0.98
Line 34 0.161+0.151iΩ/km T45 3×37.5 MVA 0.90% 8.95% 0.99
Line 56 0.568+0.133iΩ/km T67 10 MVA 0.95% 4.76% 1.00
Line 89 0.161+0.112iΩ/km T38 3×50 MVA 0.92% 7.95% 0.98

Loads (P, Q - daily peak values)

Bus 3 64.0 MW, 56.8 Mvar Bus 8 42.0 MW, 47.8 Mvar
Bus 5 24.0 MW, 21.9 Mvar Bus 9 5.0 MW, 4.4 Mvar
Bus 7 7.0 MW, 6.2 Mvar

A set of measurements, in the minimum number to make
the system observable, were taken as true values in order to
allow for the calculation of “exact“ results for the state ofthe
system. Notice, that this is only done with the aim of validating
the accuracy of the proposeda priori estimates, i.e., these
results are not used during the optimization process. The daily
load profile at the different buses of the grid, using quarter-
hourly real and reactive power values, is considered. A realistic
performance was obtained by making use of the ADRES-
CONCEPT database [13]. Table I shows the peak values of
these load profiles. The state of the system is obtained from
these data through the Direct Approach power flow algorithm
[14], which is specially suited for radial grids. Gaussian noise
was added to an augmented set of measurements, which are
highlighted in Fig. 1, to obtain corrupted values valid to
feed the FASE algorithm is a realistic fashion: 0.1% and
2.0% of the mean of the normal distribution was selected
as the standard deviation of voltages and power injections,

respectively. Thus, these standard deviations were also used
for the error covariance matrixR in the FASE algorithm.

By following the method described in Section III, optimum
values of αi, βi and φi were calculated for the 17 state
variables of the grid. These values are shown in Table II. The
good adjustment of these parameters to the optimization data
set can be observed in Table III. Here, theRMSE value is
calculated for thea priori estimates in three different cases: (a)
the näıve case, in which the state of every variable is forecast
using the value of the preceding state, i.ex̃i

k+1 = x̂i
k, (b) a

case with non-optimized parameters, taken identically forall
the state variables, and (c) the proposed improvement, which
uses custom optimized parameters. This last case, clearly beats
(a) and (b). In Table III,RMSE was calculated considering
the error between thea priori estimates and the “exact“ results,
not to leta posterioriestimates hide any estimation errors.

TABLE II
OPTIMUM αi , βi AND φi FOR STATE FORECASTING

Voltage αi βi φi Phase αi βi φi

V1 0.157 0.430 0.000 θ1 – – –
V2 0.643 0.759 0.000 θ2 0.825 2.850 0.329
V3 1.208 1.311 0.356 θ3 0.845 2.733 0.335
V4 1.206 1.317 0.360 θ4 0.852 2.694 0.332
V5 1.153 1.470 0.461 θ5 0.916 2.367 0.326
V6 1.127 1.550 0.457 θ6 0.908 2.407 0.315
V7 1.217 1.287 0.472 θ7 0.867 2.613 0.298
V8 1.132 1.533 0.397 θ8 0.730 3.478 0.330
V9 1.151 1.477 0.417 θ9 0.782 3.116 0.317

TABLE III
RMSE (IN THOUSANDS) FOR A PRIORI ESTIMATES OF STATE VARIABLES

APPLIED TO THE OPTIMIZATION DATA SET

Case Case
Voltage (a) (b) (c) Phase (a) (b) (c)

V1 0.796 0.792 0.681 θ1 — — —
V2 0.828 0.843 0.792 θ2 0.106 0.129 0.085
V3 1.859 2.265 1.457 θ3 1.486 1.661 1.265
V4 1.887 2.298 1.473 θ4 1.490 1.665 1.269
V5 3.052 3.773 2.155 θ5 2.341 2.651 1.957
V6 3.102 3.831 2.194 θ6 2.325 2.631 1.967
V7 4.879 5.998 3.430 θ7 3.436 3.896 2.874
V8 3.553 4.399 2.699 θ8 2.590 2.871 2.236
V9 3.873 4.744 2.874 θ9 2.647 3.003 2.297

However, the applicability of the method is not still demon-
strated until this point, as the optimization process is based
in past values from anoptimization data set. To probe the
real benefit of the proposal, atest data setof power injections
was extracted from the ADRES-CONCEPT database. This set
is built with data from the same aggregated loads used in the
optimization data set, but corresponding to different days. The
risk of overfitting is avoided due to clearly diverse profiles,
as can be seen in Fig. 2, where the measurements for real
and reactive power at bus 8 has been depicted both for the
optimization and test data sets. The FASE algorithm was run
again on this new test data set for the three cases described



above, but using the previously optimizedαi, βi andφi values
of case (c). Table IV clearly shows that the daily seasonality
of the measurements leads to improveda priori estimates also
for future values. In order to further illustrate the interest of the
proposed method, Fig. 3 shows the daily profile for the voltage
at node 9 and for the phase angle at node 6. In this figure,
the true values of these state variable are depicted together
with the a priori estimates from cases (a), (b) and (c). The
a posterioriestimates of the different cases are not shown in
the figure for the sake of clarity.
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Fig. 2. Daily load profile from measurements of power injections at bus 8:
optimization and test data sets

TABLE IV
RMSE (IN THOUSANDS) FOR A PRIORI ESTIMATES OF STATE VARIABLES

APPLIED TO THE TEST DATA SET

Case Case
Voltage (a) (b) (c) Phase (a) (b) (c)

V1 0.733 0.726 0.620 θ1 — — —
V2 0.743 0.743 0.698 θ2 0.114 0.143 0.104
V3 1.181 1.292 1.007 θ3 1.496 1.750 1.367
V4 1.199 1.314 1.017 θ4 1.504 1.761 1.375
V5 1.933 2.215 1.478 θ5 2.366 2.817 2.130
V6 1.968 2.259 1.490 θ6 2.365 2.811 2.141
V7 3.038 3.553 2.249 θ7 3.462 4.315 3.049
V8 2.103 2.211 1.634 θ8 2.524 2.915 2.350
V9 2.408 2.567 1.828 θ9 2.615 3.058 2.456

V. CONCLUSIONS

High-qualitya priori estimates can help in the implementa-
tion of smart grid systems in many ways. This work presents
a straightforward method to formulate improveda priori
estimates in FASE. The proposed methodology uses PSO as
a tool to optimize LES parameters. This contribution clearly
demonstrates that the use of custom optimized parameters
for each of the state variables overcomes the traditional use
of uniform parameters in FASE applications. This type of
optimization can successfully exploit the seasonality pattern of
load profiles on daily basis. The execution time of the proposed
optimization method grows linearly with the number of state
variables, thus making it suitable to be applied to large grids.
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Fig. 3. A priori estimates for voltage at bus 9 and phase angle at bus 6. Exact
state, (a) näıve case, (b) uniform values, (c) optimized parameters
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