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Abstract—Profile measuring is a key data process acquisition
in the milling industry. In rail rolling mills, profile measurement
systems inspect the shape of the contour of railways to assess
their dimensional quality. The assessment is twofold: firstly, it
can be used as feedback for shape control devices in upstream
manufacturing; secondly, it can be used to check compliance
with rail standards and client requirements. This paper deals
with adding autonomic computing capabilities, specifically self-
awareness, to a rail profile measurement system based on laser
range finding to perform the following tasks: i) automatically
detect changes in both the working environment and the operating
conditions; and ii) warn process computers and operators of
the rail rolling mill when working conditions indicate that the
inspection system is about to provide incorrect measurements.

Keywords—Autonomic computing; self-awareness; dimensional
assessment; shape inspection; machine vision.

I. INTRODUCTION

Steel rails are used to build rail tracks for wheeled vehicles
to transport passengers and cargo, as well as to manipulate
cargo in heavy industry and warehousing. Rails are engineered,
designed and produced to support high-speed and heavy-
loaded modern trains. The typical manufacturing process in-
volves several stages [1]. First, iron core is reduced in blast
furnaces. Then liquid iron is refined by means of controlled
oxidation of carbon and other elements in steelmaking vessels
called converters. After the basic steelmaking oxygen conver-
sion, a secondary steelmaking is addressed in arc furnaces,
where the desired steel composition is achieved by means of
adding alloying elements to the molten steel. The obtained
bloom undergoes a continuous bloom casting where oxide
inclusions are removed to achieve internal integrity of the steel.
Then blooms are re-heated before rolling. Finally, rails are
sawed and cooled.

In order to ensure the safety and quality of rail transporta-
tion, rail inspection is performed in two different scenarios to
assess if the rail successfully fulfills the required standards
and the requirements of the clients [2]: i) in the rolling
mill, where continuous monitoring of rail profiles during rail
manufacturing is used to assess flatness [3], surface [4] and
dimensions [5] of the rails; and ii) in the railroad, where rail
profile measurements are used to inspect the wear and tear of
the rail track.

In rail rolling mills, consistent rail dimensions and surface
quality are assured by tight control of rolling temperatures.
Processing speeds in these mills are ever increasing, pushing
on-line sensors to meet very narrow deadlines. In addition, the
strict and uniform tolerances of current international standards
imperative to rails demand high levels of accuracy on these

sensors. In the rolling process, dimensional inspection of rail
profiles is essential to provide precise feedback to upstream
rolling stages and to ensure the rails met the required standards
for modern high speed and heavy-haul networks.

In general, profile measurement systems in rail rolling mills
are based on active triangulation through laser range finding.
Other optical techniques, such as fringe pattern projection,
could potentially be used. However, such techniques require
a more complex setup, and typically present a higher compu-
tational cost [6], which makes their usage inadvisable for tasks
where laser triangulation suffices.

Laser triangulation systems are typically installed in hous-
ings to provide a controlled lighting environment and to
prevent human operators from being exposed to laser re-
flections. These installations may not be accessed by human
operators when the rolling mill is in operation. In addition, the
24/7 service goal of modern manufacturing lines means that
they cannot be stopped to check instrumentation, except for
scheduled maintenance stops. This makes on-line performance
evaluation of these systems difficult. On the contrary, some
active triangulation systems provide off-line performance eval-
uation [7], [8]. Tests run on these systems may show possible
measurement errors, and maintenance policies can be defined
when these errors are larger than a defined threshold. Other off-
line methods allow compensating measurement errors through
error characterization [9].

Autonomic computing refers to the self-management of the
resources of a computing system [10], [11]. Self-management
implies: i) self-configuration of the system for a certain usage
or a specific platform or user; ii) self-optimization of the
system and its use of resources, both reactively and proac-
tively; iii) self-healing of the system, which includes problem
detection, diagnostic and, when possible, repair; and iv) self-
protection of the system against security threats, both malicious
and not. In order to achieve these abilities, policies describing
the desired system conditions must be defined. These policies
determine how the effectors of the system should be used in
order to correct its operation. Such decisions must be based
on the properties of the system, which are measured by a
series of sensors. The basic structure of an autonomic system
can be seen in Fig. 1. Thus, a managed element (or a set
or managed elements) exposes sensors and effectors to an
autonomic manager, which implements the autonomic features.
The system conformed by the managed element or elements
and the manager is called an autonomic system.

This work deals with adding autonomic computing capa-
bilities, which run on-line with no human intervention, for rail
profile measurement systems in rolling mills based on active
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Fig. 1. Basic structure of an autonomic system.

triangulation with two main goals. Firstly, automatically detect
changes in the environment that could lead to malfunction of
the system. Secondly, automatically warn process computers
and operators of the rail rolling mill when working condi-
tions indicate that the system is about to provide incorrect
measurements. The autonomic computing procedures proposed
in this paper add self-awareness capabilities [12], i.e. self-
inspection and self-decision, to the system. These procedures
characterize the laser patterns projected onto the surface of
rails to determine degradation on the system performance and
changes in the working environment. This approach is built
on our previous work [5], where we designed and developed
a rail profile measurement system for rail rolling mills.

This paper is organized as follows: Section II describes the
state of the art and our previous work. Section III describes
features of the light patterns that are useful for the purpose
of implementing autonomic capabilities. Section IV explains
the design and implementation of said autonomic capabilities.
Section V describes the experiments that were carried out on
the available image database and Section VI comments on their
results. Finally, our conclusions are stated in Section VII.

II. RAIL PROFILE MEASUREMENT USING MACHINE VISION

Profile measurement systems provide 3D information of
the contours of objects. In recent decades, many different
optical techniques have been proposed to retrieve 3D measure-
ments from the surface of manufactured products [13]. These
techniques are classified into passive and active [14]. The
former project light patterns onto the surface of the product
under inspection, whereas the latter only require environmental
light of the scene. Among all of them, active triangulation is
the most commonly used in industrial environments since it
provides the best relation between accuracy and cost.

A. Active triangulation using laser range finding

Optical sensors in industry tend to use controlled lighting
methods, that is, active methods, to avoid external noise
when they are installed in hostile environments. The most
commonly used method for contactless profile measurement
in the steelmaking industry is active triangulation.

Laser range finding is a method for determining the surface
profile of an object at a given section using laser triangulation.
The laser pattern generator is mounted perpendicular to the
surface under inspection, whereas the camera images the
intersection of the sheet-of-light with the surface at an angle,
α, called the triangulation angle. This angle determines the
measuring area and the resolution of measurements. Using the
mathematical camera model, together with the geometry of
the system, the distorted pattern imaged by the camera can be
translated into the world coordinate system, and thus, the 3D
height profile of the object can be provided.

B. Profile measurement in rail rolling mills

Rail inspection systems can be classified into two cat-
egories: i) contact systems, which use mechanical devices
and apply tactile techniques to indirectly observe the rail
geometry [15]; and ii) non-contact systems, mainly based on
automated visual inspection using structured light [16], [17].

In previous works we developed a machine-vision-based,
non-contact profile measurement system (PMS) of rails for
a rail rolling mill [5]. This system provides on-line mea-
surements of several dimensions of rails based on geometric
parameters of the transverse sections, also called profiles,
of the rails. The PMS is based on active range imaging,
specifically on laser triangulation, using four coupled laser
range finders, similar to those used in other applications in
the metal industry [18]. The geometry of this system is shown
in Fig. 2, where each pair {Ci, Li}, i ∈ [1, 4] represents
a laser range finder, also referred as a laser triangulation
unit. Experiments carried out both in the lab and in a rail
rolling mill demonstrate that the PMS provides accurate and
repeatable measurements [5]. This measurement system is able
to accurately inspect the dimensional quality of rails in the mill
using conventional, inexpensive machine vision components.

rail movement
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Fig. 2. Geometry of the rail profile measurement system used in this work:
C1, C2, C3 and C4 represent the image sensors whereas L1, L2, L3 and
L4 represent the laser emitters. The distances depicted in this figure are not
to scale.

This system is implemented based on a high-performance
software architecture, using pipelining and parallelism to meet
real-time constraints imposed by on-line monitoring. The sys-
tem is divided into five main stages: i) image acquisition;
ii) laser line detection and extraction; iii) 2D to 3D coordinate
translation; iv) 3D rail profile computation; and v) dimensional
measurement of the rail profile.

From the measurement point of view, the key stage of
this PMS is laser line detection and extraction. Laser line
extraction is a straightforward task under controlled condi-
tions of surrounding light and laser power [19]. However,
common line extraction methods are highly sensitive to noise



and they have major problems in industrial environments. In
harsh environments a robust and accurate method capable of
dealing with variable luminance, reflections which show up
in images as noise, and uneven surfaces is required [20]. Our
rail PMS extracts the single-line pattern projected onto the rail
surface using a procedure based on a well-known differential
geometric algorithm [21].

III. LIGHT PATTERN CHARACTERIZATION

One of the most important features of an inspection system
based on laser triangulation is the light patterns projected
onto the surface of the product under inspection, which allow
retrieving the 3D shape of the product surface to later compute
measurements in the world coordinate system. These measure-
ments make up the inputs for high level layers of the system,
allowing, for instance, deciding whether the inspected product
fulfils the requirements of a client or whether it is compliant
with a given standard. Therefore, laser patterns provided by
the image acquisition subsystem of a laser-based sensor should
not be affected by changes in the environment and in working
conditions. If the main features of the laser patterns expected
onto the surface of the products under inspection are known,
this may allow to detect changes in the environment or in
working conditions, and the system could be automatically set
up to avoid their influences in the final measurements.

Defining the features of laser patterns projected onto the
surface of rails in harsh industrial environments, like a rolling
mill, seems to be an unaffordable task. Steel rail surfaces
are composed of a mixture of diffuse and reflective areas.
In addition, slag and dust deposited on the surface vary the
surface reflectivity. Therefore, the approach proposed in this
paper characterizes laser patterns based on thousands of rails
inspected previously by a rail PMS while being manufactured
in a rolling mill. Raw images acquired by this system are
processed to characterize the laser patterns according to the
procedures described below.

Experiments show that the uncertainty in measurements
based on laser triangulation techniques is mainly from the lens
aperture and the triangulation angle [22]. The lens aperture
greatly influences the line width imaged by the camera for a
given laser emitter. Although a large aperture to image a wide
line is desired, this would lead to laser speckle into the image.
The speckle noise [23] arises because, at each point of the
image, the light wave amplitudes is the result of summation of
contributions from all the scattering points of the object inside
one resolution cell of the imaging lens. When the object is
rough on a scale comparable to the wavelength of the laser
generator, as it happens with rail surfaces due to the milling
process, the summation involves random vectors. For some
portions of the image these vectors cancel each other, leading
to dark speckles, while for other parts of the image they tend
to reinforce each other, leading to bright speckles [7].

Next, we describe four features to characterize the laser
pattern projected by four laser emitters (using the rail PMS
described above) on the surface of a rail. These features are
the line width, the line intensity, the coverage ratio, and the
overlap distance. Sensors will be designed to measure each of
these features, and acquired data will be sent to the manager
to act in consequence, as shown in Fig. 1.

A. Line width

The width of a light pattern projected onto the surface of
the rail is a key feature for height discrimination —which
defines the accuracy of 3D measurement— using the laser
triangulation technique: the wider the line, the more accurate
the height measurement. Steger’s Gaussian line model [21] is
used to compute the line width for all points in the extracted
line. The line width is determined for all the light patterns
imaged by each camera in all the frames acquired while milling
a rail. Therefore, four width vales are provided by the sensor
for each rail: w1

r , w2
r , w3

r , and w4
r , where r is the measured rail.

Figure 3(a) shows a portion of the laser line projected onto the
surface of a rail, and the points (red and blue crosses) where
it is considered to end for the purpose of computing its width.

B. Line intensity

The intensity of the light pattern projected onto the surface
of the rail under inspection is another key feature for height
discrimination in laser triangulation. This feature can also
be used to detect image overexposition. The laser intensity
indicates the average gray value of the points in the laser line.
In the rail PMS used in this work, images are 8-bit grayscale;
thus, the line intensity is a value between 0 and 255.

The sensor designed to measure the intensity of the light
pattern computes the average of the intensity of all the pixels
crossed by the normals of the extracted laser points that are
nearer than half the line width. The line intensity is computed
for all the light patterns imaged by each camera in all the
frames acquired while milling a rail. Therefore, four intensity
values are provided by the sensor for each rail: h1r , h2r , h3r , and
h4r , where r is the measured rail. Figure 3(b) shows a portion
of the laser onto the surface of a rail, highlighting the pixels
used by the sensor to compute the line intensity.

C. Coverage ratio

In ideal working conditions, the rail PMS expects a con-
tinuous light pattern projected onto the surface of the rail,
depicting its profile. However, in real measurement scenarios
the surface conditions of the rail and the hostile conditions of
the rolling mill atmosphere could lead to discontinuities in the
light pattern imaged by the system, which will affect further
measurement stages.

The sensor designed to measure the coverage ratio of the
light pattern at the intersection of the sheet-of-light generated
by the laser emitters and the surface of the rail computes the
portion of the rail profile that is covered by the laser line.
A point cloud that models the rail is built by sampling the
primitives (arcs and segments) from certain regions of the
rail that are visible to the camera for all rail models. The
distance between two consecutive points, measured on the
given primitive, is 0.5mm. Then, a point cloud describing the
laser line is built from the extracted line after being undistorted,
translated into the world coordinate system, and aligned with
the model. A point in the model point cloud, pm, is considered
to be covered if there is a point in the laser line point cloud,
pl, such that d(pm, pl) ≤ 1mm, where d is the Euclidean
distance between two points. The coverage ratio is computed
as the ratio between the number of covered points and the
total number of points in the point cloud of the rail model.
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Fig. 3. Laser characterization: (a) Line width: the laser line (red) and the extracted points are shown (black crosses), superimposed to the raw image, and the
points where the line is considered to end (|x| = w in Steger’s model) are also depicted (blue and red crosses); (b) line intensity: the pixels that are considered
when computing the intensity are marked (blue crosses); (c) coverage ratio: an example of coverage for one of the cameras is shown, where the model primitives
that were considered are shown in cyan, while the actual laser line is colored red; (d) overlap distance: part of the head of the rail model (black) is shown,
along with the normal vectors (also black, vertical), and both laser lines (red and blue).

Figure 3(c) compares the rail model primitives that should be
seen by camera C2 with the laser line as seen by said camera.

D. Overlap distance

In ideal working conditions, the light pattern imaged by
the rail PMS would be a continuous line where segments
imaged by separated cameras cannot be identified. That is,
all the points in the rail point cloud would match the ideal rail
profile and, without additional information, points in the areas
where laser lines from separated emitters overlap would not be
able to be tracked back to their acquisition source. However,
in industrial environments, calibrating the laser triangulation
units will incur in certain calibration errors which will affect
line overlapping [24]. In addition, although the rail PMS used
in this work is installed in a ruggerized housing in the rolling
mill —using rubber bushings to isolate vibrations caused
by rolling—, the geometry of the system (and hence, line
overlapping) could suffer some consequences of the extremely
hostile conditions in the mill.

In the rail PMS used in this work, laser lines overlap at four
different regions: The lines for cameras C1 and C2 overlap at
the head arc; the lines for cameras C1 and C4 overlap at the
rail web; the lines for cameras C2 and C3 also overlap at the
rail web; and the lines for cameras C3 and C4 overlap at the
foot. Overlaps at the rail web have been empirically identified
as the most unreliable, as laser lines are often weak there, and
that region is prone to occlusion. Therefore, only overlaps at
the head (‘upper overlap distance’) and the foot (‘lower overlap
distance’) should be considered for this purpose.

The sensor designed to measure the overlap distance of
the segments composing the light pattern fits the laser lines
from a pair of cameras to arcs or lines, depending on the
region of the rail where they are located. Then, normal vectors
of the model at every 1mm are generated, and the distances
between the points where the arcs or lines intersect each of
these normal vectors are computed. The computed distances
are then averaged. Figure 3(d) shows the appearance of two
overlapping laser lines together with the rail model.

IV. AUTONOMIC COMPUTING FOR RAIL PROFILE
MEASURING

The expression autonomic computing was coined by IBM
in 2001 [25]. The term autonomic was inspired by the au-

tonomic nervous system, which manages unconscious bodily
functions in animals. In an ideal implementation of autonomic
principles, an autonomic manager is supposed to implement
the so called MAPE-K loop [11]: Monitor the managed
element, collect and store sensor data; Analyze the stored data,
identify problems and opportunities for improvement; Plan
an action or sequence of actions for the managed element to
take, using a repository of knowledge which stores models for
system behaviour; and Execute the plan.

Depending on the degree of application of the principles
of autonomic computing, and on the complexity of the system,
some policies may be defined [26]: i) describe the actions
that must be taken when certain conditions are met (rule-
based policies); ii) describe the values that some properties
should have and let the system decide on specific actions (goal-
based policies); or iii) specify a utility function that must be
maximized or minimized (utility function-based policies).

Autonomic computing techniques range from the com-
parison between the measured values, according to criteria
selected by the programmer or user —in which case the
manager can be implemented as a rule engine or an expert
system [27]—, to the use of machine learning techniques to
analyze the measured values during the entire life of the system
and apply the results in order to reach high-level goals [26].
Such techniques include neural networks, probabilistic models
and combinatorial search [28], depending on the specific self-
management feature that is to be implemented.

Apart from classifying autonomic systems according to
their architecture and their degree of compliance with IBM’s
autonomic ideals, a quantitative evaluation of autonomic ca-
pabilities may be performed. Self-healing and self-protection
capabilities may be measured by fault injection [29], while
self-optimization capabilities may be checked by subjecting
the system to a quickly varying workload under different
conditions.

A. Autonomic machine vision systems

Adding autonomic features to a computer vision system
entails analyzing the acquired images in order to determine the
state of the imaging devices, the light sources, and the image
processing modules. The resulting information may then be
used to detect problems, and to optimize the settings of both



the computer vision software and the hardware elements, to the
extent that they may expose their configuration to the software.

The managed elements of the machine vision system may
expose a set of image properties, so that only those properties
may be taken into account for self-management purposes,
or it may expose the raw images for sensors to extract full
potential of raw data. In the latter, the manager would operate
as a secondary computer vision system, and consider all the
features that may appear in the images.

B. Proposed approach

The approach proposed in this work aims to provide a rail
PMS with capabilities to: i) automatically detect changes in
both the working environment and the operating conditions;
and ii) warn operators of the rail rolling mill when working
conditions indicate that the inspection system is about to
provide incorrect measurements. The intervention of operators
or technicians is not required for problem diagnosis: it is only
needed for specific manual tasks, such as replacing or cleaning
the laser emitters, once an alert is notified by the system.

The core of the manager in the proposed approach is an
expert system, which is divided into two subsystems: a rule
system and a knowledge base. The rule system is based on
if-then rules, and the knowledge base is built upon the data
gathered by the sensors described above to characterize the
light pattern used by the PMS.

Generally, expert systems suffer from the knowledge acqui-
sition problem. This problem refers to the difficulties related
to obtaining the knowledge that the system must start working
with. In this work, we address the knowledge acquisition
through a broad experimentation process based on historical
data acquired by the rail PMS in several months of operation
in a rail rolling mill in many different working conditions.

C. Communication of issues to human operators in the pro-
posed approach

A standardized way to communicate issues to the human
operators is required. Such communication should be carried
out in three different ways:

1) Events: Alert events may be triggered in order to
warn the operator about serious system problems that require
immediate action. These include any individual sensor being
out of range to such an extent that current measurement results
may have no value; or the complete inability to measure rails
for any other reason, such as camera trigger failure. The event
notifications would state both the cause of the events and
the recommended manual action the operators or technicians
should perform, such as cleaning the camera lenses or repairing
the trigger system.

A set of rules may be used to decide when an alert event
should be triggered. Rules can be built by combining two kinds
of elements: strategies to compute the range for a given sensor
at a given time and strategies to compute the values that will
be compared with said range.

The following kinds of range strategies have been con-
sidered: i) hard limits where values must fall between two
predefined numbers; ii) percentile limits, where values must

fall between two predefined percentiles of the last N sensor
values; and iii) relative limits, where values must be within a
predefined distance of the average of the first N values since
the last calibration.

Possible value computation strategies are as follows: i) us-
ing the last value returned by the sensor; ii) using the average
of the last N values returned by the sensor, and not returning
a value when less than N values are available; and iii) fitting
a line to the last N sensor values, then using the value at a
given point in time, extrapolated from this line.

A tentative set of rules, combining all these strategies, can
be seen in Algorithm 1.

2) Reports: System reports may be issued periodically.
These reports may include recent sensor values, average and
other statistics; overall system health, derived from said values;
number of alerts and other events during the period covered
by the report; and estimated time until sensor values get out of
range. System reports are intended to provide a quick summary
in order for operators to check that the system is healthy, and
allow them to perform preventive maintenance when needed.

3) Dashboard: A sensor dashboard would be displayed on
demand, and show all the information that would appear in
a system report; current and historical sensor data; all the
recorded alerts and other events, including maintenance events,
and all the generated system reports. The sensor dashboard
is intended to expose all the available sensor information in
order to allow operators to investigate system failures or predict
future issues. The dashboard is mostly intended as a fallback,
to allow operators to find issues that the manager cannot
adequately detect; and also as a way to assess the quality of
the feedback returned by the autonomic manager, and fix any
issues caused by the manager itself.

V. EXPERIMENTAL RESULTS

Sensors were implemented to measure the light pattern
features described before. In order to determine their use-
fulness at detecting issues in the operation of the PMS, the
sensors were applied to the raw image database of each of the
52756 rails that were measured by the PMS in the rail rolling
mill between January 1, 2017 and December 31, 2017. This
database contains more than 79,12 million images.

Based on the outputs provided by these sensors, the au-
tonomic manager of the PMS is set up. Then, when the
PMS is operating it makes decisions that are communicated
to the human operators of the rail rolling mill as described in
Sect. IV.

Using the tentative rules described in Algorithm 1, the
percentage of rails that triggered an alert event for each sensor
and individual rule was computed, and is shown in Table I.

A. Line width

Figure 4(a) shows the average line width for every camera,
for all the rails that were considered. Results for cameras
C1 and C2 (the upper cameras) appear to be largely stable.
However, line widths seem to degrade in a monotonic manner
for camera C3, and reset to their original values from time
to time (when the camera is cleaned). Camera C4 appears to



Algorithm 1 Rule system. intensity , width , coverage and overlap lists contain the average values of each sensor for all
triangulation units and all measured rails. The function described here should be called every time a new rail is measured.

1: function CHECKHEALTH(intensity , width, coverage, overlap)
2: for all c ∈ 1..4 do
3: if not (1.75 ≤ widthc[last] ≤ 3) then . Rule W.1.
4: ALERT(widthc, “hardLimit”)
5: end if
6: recent ← widthc[last− 4999..last]
7: if not (recent10% ≤ avg(widthc[last− 249..last]) ≤ recent95%) then . Rule W.2.
8: ALERT(widthc, “movingAverage”)
9: end if

10: line ← LINEARINTERPOLATION(widthc[last− 249..last])
11: if not (1.75 ≤ line(now + 7 days)) then . Rule W.3.
12: ALERT(widthc, “prediction”)
13: end if
14: if not (50 ≤ intensityc[last] ≤ 240) then . Rule I.1.
15: ALERT(intensityc, “hardLimit”)
16: end if
17: recent ← intensityc[last− 4999..last]
18: if not (recent10% ≤ avg(intensityc[last− 249..last]) ≤ recent90%) then . Rule I.2.
19: ALERT(intensityc, “movingAverage”)
20: end if
21: line ← LINEARINTERPOLATION(intensityc[last− 249..last])
22: if not (50 ≤ line(now + 7 days)) then . Rule I.3.
23: ALERT(intensityc, “prediction”)
24: end if
25: if not (0.9 ≤ avg(coveragec[last− 249..last])) then . Rule C.1.
26: ALERT(coveragec, “movingAverage”)
27: end if
28: end for
29: for all d ∈ 1..2 do
30: if not (avg(overlapd[last− 249..last]) ≤ 0.25) then . Rule O.1.
31: ALERT(overlapd, “movingAverage”)
32: end if
33: lastCalib ← LASTCALIBRATION(overlapd)
34: avgLastCalib ← avg(overlapd[lastCalib..lastCalib + 249])
35: avgValue ← avg(overlapd[last− 249..last])
36: len ← count(overlapd)
37: if lastCalib + 249 ≤ len and not (avgValue ≤ avgLastCalib + 0.05) then . Rule O.2.
38: ALERT(overlapd, “movingAverageDeviation”)
39: end if
40: end for
41: end function

TABLE I. PERCENTAGE OF RAILS THAT TRIGGERED ALERT EVENTS.

Rules C1 C2 C3 C4 Overall
W.1 0.53 0.52 8.26 18.03 6.83
W.2 9.67 7.93 23.62 14.63 13.96
W.3 5.53 10.86 32.00 2.16 12.64

Any width rule 13.83 17.24 45.46 31.41 26.99
I.1 0.53 0.50 7.31 0.46 2.20
I.2 12.50 9.03 37.04 23.61 20.55
I.3 0.80 0.74 12.74 7.19 5.37

Any intensity rule 12.56 9.10 44.94 28.79 23.85
Coverage rule 3.91 2.72 27.23 35.65 17.38

O.1 1.68 16.96 9.32
O.2 7.80 31.38 19.59

Any overlap rule 8.31 33.34 20.83

have thicker lines than all the other cameras, as well as a higher
deviation.

Table I confirms that most alert events would be triggered

for cameras C3 and C4. Rule W.3 (prediction) events are more
common for camera C3, correctly detecting the degradation of
its line width.

B. Line intensity

Figure 4(b) shows the average line intensity for every
camera, for all the rails that were considered. Again, laser
intensity can be seen not to degrade at all for the upper cam-
eras, C1 and C2. However, for the lower cameras the intensity
degrades continuously, and it only improves when the lenses
are cleaned, the laser emitters are replaced or the exposure
time is increased. As such, the observed degradation may be
attributed to the accumulation of oil and steel particles, which
would mainly affect the lower cameras and laser emitters.

Again, most alert events would be triggered for the lower
cameras, C3 and C4.
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Fig. 4. Results of some of the sensors for the first rail that was measured
by the production system every day from January 1, 2017 to December 31,
2017: (a) Line width; (b) line intensity; (c) coverage ratio.
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Fig. 5. Lower (red) and upper (blue) overlap distances.

C. Coverage ratio

Figure 4(c) shows the average coverage ratio for every
camera, for all the rails that were considered. Cameras C1

and C2 can be seen to have a stable coverage ratio. Cameras
C3 and C4, however, can be seen to degrade very quickly. The
results of this sensor are very similar, at least in tendency, to
those of the previous one.

Consistently with results from the other sensors, alert
events are more common for the lower cameras.

D. Overlap distance

Figure 5 shows the average value of both upper and lower
overlap distance for all the rails that were measured during
2017. The lower cameras consistently have larger values, as
well as a higher deviation.

Line distances were expected to slowly increase after every
calibration. However, they seem to be mostly stable, excluding
the outliers; they even show a slight tendency to decrease at
some points.

Alert events are more common for the lower cameras
here, as with the other sensors, even though the kinds of
issues this sensor is intended to detect (need for recalibration)
are different from those detected by the other ones (mostly
degraded laser emitters and dirty camera lenses).

VI. DISCUSSION

The expert system described above has shown its potential
to detect issues in the triangulation units (and, to a limited
extent, to predict them): not just by determining whether the
results are inside a predefined range but also in a number of
additional ways that take into account the variability of sensor
data, and the tendency it shows.

For instance, the approach proposed in this paper has
warned technicians of the rail rolling mill that working con-
ditions of triangulation units of cameras C3 and C4 change
frequently, making them operate in worse conditions than



triangulation units of cameras C1 and C2 (see Table I and
Figure 4).

The rules shown here are just tentative, and refinement is
needed. Strict rules were used in the previous experiments in
order to communicate any potential issue in the rail profile
measurement system, but rules for the production environment
should be more permissive, so that each alert event corresponds
to an actual need for maintenance.

VII. CONCLUSIONS

Rail profile measurement systems in rolling mills are
crucial inspection equipment to guarantee compliance with
rail standards prior rail track construction. Systems based on
laser triangulation may suffer from degradation of hardware
components of the image acquisition subsystem and from
environmental conditions inherent to hostile environments.

In this work, we added autonomic computing capabilities
to create a self-aware rail profile measurement system in a
rail rolling mill, based on characterizing the laser patterns
projected onto the surface of the rails by means of a set of
proposed sensors. The output provided by these sensors is
used to set up an expert system that is able to warn process
computers and operators of the rail rolling mill.

Future work will involve changing the behavior of the
profile measurement system using the output provided by
the expert system, to guarantee proper operation or schedule
corrective actions for preventive maintenance.

ACKNOWLEDGMENT

This work was partially funded by project TIN2014-56047-
P of the Spanish National Plan for Research, Development and
Innovation, by project FUO-EM-372-14 and by the “Severo
Ochoa” program of the Asturian Regional Government under
grant PA-17-PF-BP16009.

REFERENCES

[1] B. Deo and R. Boom, Fundamentals of Steelmaking Metallurgy. Pren-
tice Hall, 1993.

[2] M. Papaelias, C. Roberts, and C. Davis, “A review on non-destructive
evaluation of rails: State-of-the-art and future development,” in Pro-
ceedings of the Institution of Mechanical Engineers Part F Journal of
Rail and Rapid Transit, vol. 222, no. 4, 2008, pp. 367–384.

[3] P. Bernal, D. Garcia, and R. Usamentiaga, “Rail flatness measurement
method based on virtual rules,” IEEE Transactions on Industry Appli-
cations, vol. 53, no. 4, pp. 4116–4124, 2017.

[4] F. J. delaCalle, D. F. Garcia, and R. Usamentiaga, “Inspection system for
rail surfaces using differential images,” IEEE Transactions on Industry
Applications, 2018.

[5] J. Molleda, R. Usamentiaga, A. F. Millara, D. F. Garcia, P. Manso,
C. M. Suarez, and I. Garcia, “A profile measurement system for
rail quality assessment during manufacturing,” IEEE Transactions on
Industry Applications, vol. 52, no. 3, 2016.

[6] W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape
measurement using coded fringe patterns without phase unwrapping or
projector calibration,” Optics Express, vol. 22, no. 2, pp. 1287–1301,
2014.

[7] H. Baribeau and M. Rioux, “Influence of speckle on laser range finders,”
Applied Optics, vol. 30, no. 20, pp. 2873–2878, 1991.

[8] N. VanGestel, S. Cuypers, P. Bleys, and J. P. Kruth, “A performance
evaluation test for laser line scanners on CMMs,” Optics and Lasers in
Engineering, vol. 47, no. 3-4, pp. 336–342, 2009.

[9] F. Xi, Y. Liu, and H.-Y. Feng, “Error compensation for three-
dimensional line laser scanning data,” The International Journal of
Advanced Manufacturing Technology, vol. 18, no. 3, pp. 211–216, 2001.

[10] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50+4, 2003.

[11] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Computing Surveys, vol. 40,
no. 3, 2008.

[12] M. R. Nami and K. Bertels, “A survey of autonomic computing sys-
tems,” in 3rd International Conference on Autonomic and Autonomous
Systems, ICAS’07, 2007, pp. 26–30.

[13] F. Chen, G. Brown, and M. Song, “Overview of three-dimensional shape
measurement using optical methods,” Optical Engineering, vol. 39,
no. 1, pp. 10–22, 2000.

[14] Y. Frauel, E. Tajahuerce, O. Matoba, A. Castro, and B. Javidi, “Com-
parison of passive ranging integral imaging and active imaging digital
holography for three-dimensional object recognition,” Applied Optics,
vol. 43, no. 2, pp. 452–462, 2004.

[15] Q. Tang, “Railway track geometry realtime inspection system,” in
Proceedings of the IEEE Instrumentation and Measurement Technology
Conference, 1992, pp. 656–660.

[16] C. Alippi, E. Casagrande, F. Scotti, and V. Piuri, “Composite real-
time image processing for railways track profile measurement,” IEEE
Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp.
559–564, 2000.

[17] Z. Liu, J. Sun, H. Wang, and G. Zhang, “Simple and fast rail wear
measurement method based on structured light,” Optics and Lasers in
Engineering, vol. 49, no. 11, pp. 1343 – 1351, 2011.

[18] J. Molleda, R. Usamentiaga, and D. Garcia, “On-line flatness measure-
ment in the steelmaking industry,” Sensors, vol. 13, no. 8, pp. 10 245–
10 272, 2013.

[19] M. Levoy, S. Rusinkiewicz, M. Ginzton, J. Ginsberg, K. Pulli, D. Koller,
S. Anderson, J. Shade, B. Curless, L. Pereira, J. Davis, and D. Fulk,
“The digital michelangelo project: 3d scanning of large statues,” in Pro-
ceedings of the ACM SIGGRAPH Conference on Computer Graphics.
ACM Press/Addison-Wesley Publishing Co. New York, NY, USA, 2000,
pp. 131–144.

[20] R. Usamentiaga, J. Molleda, and D. Garcia, “Fast and robust laser stripe
extraction for 3d reconstruction in industrial environments,” Machine
Vision and Applications, vol. 23, pp. 179–196, 2012.

[21] C. Steger, “Unbiased extraction of lines with parabolic and gaussian
profiles,” Computer Vision and Image Understanding, vol. 117, p.
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