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Several structures are completely or partially manufactured in a factory and then transported to the final situation where they are
going to be located. An accurate methodology to check the serviceability of the structure in the factory, previously to the
transportation and final assembly, will diminish significantly the costs of validation of its dynamic behavior. *e structural
dynamic modification (SDM) can be used to predict the modal parameters of a supported structure from the experimental modal
parameters corresponding to the same structure but tested in a configuration easy to reproduce in a factory, such as the free-free
condition. However, the accuracy obtained with this technique depends on how well the boundary conditions modelled with the
SDM replicate the real support conditions. In this paper the SDM theory is used to predict the modal parameters of a pinned-free
beam, a cantilever beam, and a 3D steel beam structure from the experimental natural frequencies and mode shapes of the same
structures tested in free-free configuration. *e predictions provided by the SDM theory are validated by operational modal
testing on the supported structures. It is shown how the aforementioned boundary conditions can be modelled with the SDM, and
the accuracy provided by the technique is investigated.

1. Introduction

Several types of structures are usually assembled in a fac-
tory or other manufacturing site and then transported to
the construction site where the structure is to be located.
*e vibration serviceability state limit is one of the criteria
that must be considered in the dynamic design of these
structures in order to avoid resonances, which could cause
structural damages or affect the comfort of the users [1–5].
For this reason, structural design codes establish frequency
bands to be avoided, and the maximum acceptable accel-
eration levels in vertical and transversal directions are also
limited [6, 7]. Analytical and numerical models are gen-
erally used to predict the static and dynamic response of
structures [8–10].

*e analytical and numerical predictions can be vali-
dated by static tests (loading tests) or modal tests performed
once the structure is fully assembled. *is methodology
requires moving personnel and equipment to the place
where the structure is located in order to perform the tests

which increases significantly the financing costs of the
project if the structure, once in operation, needs some kind
of reinforcements or repairs to be undertaken in order to
fulfil the standards [6, 7].

*e structural dynamic modification theory (SDM)
[11–13] can be applied advantageously to validate the dy-
namic behavior of a structure in the factory, previously to the
transportation and final assembly; that is, the modal pa-
rameters of a structure with the boundary conditions that it
will have in operation are predicted from the experimental
modal parameters measured in the factory.

In this paper, a methodology to predict the modal pa-
rameters of a structure, using the modal parameters cor-
responding to modal tests performed in the factory and the
SDM theory, is presented. *e technique consists of two
steps. Firstly, the structure is tested using boundary con-
ditions easy to reproduce in the factory/lab, such as the free-
free condition (i.e., hanging the structure on two bridge
cranes by means of flexible elements). In the second step, the
natural frequencies and mode shapes of the structure with
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the new boundary conditions are predicted with SDM. In
this case, the SDM consists of introducing the boundary
conditions expected for the structure in operation and no
mass or stiffness changes have to be considered. *is means
that the accuracy provided by the methodology only de-
pends on how well the boundary conditions are modelled
and the test setup and the identification techniques used in
the modal tests.

*e results provided by the methodology can be used to
validate the structural design comparing the predictions
obtained with the SDM with those provided by a numerical
or analytical model.

In this paper, it is explained how to apply the meth-
odology and the accuracy achieved with the SMD in simple
structures with pinned and clamped boundary conditions is
investigated. *e modal parameters of a pinned-free beam,
a cantilever beam, and a 3D beam structure are predicted
using the SDM, and the modal parameters corresponding to
the same structures are tested in free-free boundary con-
ditions. *e predicted modal parameters are validated with
those obtained by operational modal tests performed on the
supported structures.

2. Theory of Structural Dynamic Modification

*e equation of motion of a multiple degree of freedom
system with mass matrix [M0], damping matrix [C0], and
stiffness matrix [K0], respectively, and subject to the force
F(t){ } is given by [10–13]

M0  €x{ } + C0  _x{ } + K0  x{ } � F(t){ }. (1)

In this case, free vibration with proportional damping
Equation (1) provides the following eigenvalue problem
[10–13]:

K0 −ω2
0 M0 


 ∅0  � 0{ }, (2)

where the eigenvalues ω2
0 represent the natural frequencies

and the eigenvectors ∅0  the mode shapes.
If the dynamic system given by Equation (1) is perturbed

with the matrices [ΔM], [ΔC], and [ΔK], respectively, the
equation of motion of the perturbed system is expressed as
[10–16]

M0 + ΔM  €x{ } + C0 + ΔC  _x{ } + K0 + ΔK  x{ } � F(t){ }.

(3)

Using modal decomposition, the responses can be
written as a linear combination of the mode shape vectors by
means of [10–13]

x{ } � ∅0  q , (4)

where q  are the modal coordinates. If Equation (4) is
substituted in Equation (3), the former becomes

M0 + ΔM  ∅0  €q  + C0 + ΔC  ∅0  _q 

+ K0 + ΔK  ∅0  q  � F(t){ }.
(5)

Premultiplication of Equation (5) by ∅T0 leads to

∅0 
T
M0 ∅0  + ∅0 

TΔM ∅0   €q  + ∅0 
T

C0  ∅0  _q 

+ ∅0 
T
[ΔC] ∅0  _q  +  ∅0 

T
K0 ∅0 

+ ∅0 
TΔK ∅0  q  � ∅0 

T
F(t){ }.

(6)

Taking into account that the eigenvectors of the un-
perturbed system satisfy the orthonormal conditions, the
following are obtained:

∅0 
T
[M] ∅0   � [I],

∅0 
T
[C] ∅0   � [c],

∅0 
T
[K] ∅0   � ω2

0 ,

(7)

where [c] is a diagonal matrix containing the terms
cii � 2ζ iωi, with ζ i being the damping ratio of the i-th mode,
Equation (6) can be expressed as

[I] + ∅0 
TΔM ∅0   €q  + [c] + ∅0 

T
[ΔC] ∅0   _q 

+ ω2
0  + ∅0 

TΔK ∅0   q  � ∅0 
T

F(t){ },

(8)

which provides the following eigenvalue problem:

−ω2
I [I] + ∅0 

TΔM ∅0   p  + iωI [c] + ∅0 
T
[ΔC] ∅0   p 

+ ω2
0  + ∅0 

TΔK ∅0   p  � 0{ },

(9)

where the subindex “I” indicates perturbed system, ωI are
the eigenvalues, and p  are the eigenvectors. *e perturbed
mode shapes [∅I] can be written as a linear combination of
the unperturbed ones by means of [10–16]

∅I  � ∅0 [P], (10)

where [P] are the eigenmatrixes. From Equations (8) and
(9), it is inferred that the modal parameters of a structure
with new boundary conditions (perturbed structure) can be
predicted if the modal parameters of the unperturbed
structure, together with the mass, stiffness, and damping
change matrices, are known.

3. Application to a Steel Beam

3.1. Description of the Structure. A two-meter long steel
cantilever beam with a rectangular hollow section was used
in the investigation. *e mechanical and material properties
considered for the beam are shown in Table 1.

3.2. Free-Free Experimental Tests. *e beam was initially
tested in free-free configuration using OMA. In order to
reproduce the free-free conditions, the beam was initially
suspended using two springs as it is shown in Figure 1.
Twenty-one uniformly distributed PCB 333B32 accelerom-
eters with a sensitivity of 100mV/g were attached to the beam
(Figure 2) in order to identify the bending modes in both axes
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(strong or X-axis and weak or Y-axis). *e structure was
excited by applying several hits along the beam randomly in
time and space using an impact hammer, and the acceleration
responses were recorded with a sampling frequency of
2132Hz during a period of approximately 10 minutes using
a national instruments digital acquisition system.

*e experimental modal parameters were identified
from the experimental responses with the frequency-domain
decomposition (FDD) technique [13, 17]. *e singular value
decomposition (SVD) of the responses is shown in Figure 3.

*irteen modes were identified in the range of 0–
1066Hz. Six modes correspond to the strong axis (X) and
seven to the weak axis (Y). *e first four modes are rigid
body modes (two with respect to the weak axis, and two with
respect to the strong axis), while the remaining ones are
bendingmodes. Torsional modes were not considered in this
paper. *e natural frequencies and the mode shapes with
respect to the weak axis are shown in Table 2.

Moreover, although the numerical model is not needed
in the proposed methodology, a finite element model was
assembled using the program LISA 8.0 [18]. Linear Euler–
Bernoulli beam elements with two nodes and six DOFs per
node were used in the simulations. *e numerical natural
frequencies and the mode shapes are also included in
Table 2.

3.3. Pinned-Free Configuration. *e SDM theory was ap-
plied to predict the natural frequencies and mode shapes of
the beam in the pinned-free configuration with respect to
both strong and weak axis.

*e methodology followed to predict the modal pa-
rameters will be described in detail for the weak axis. *e
first six experimental mode shapes (scaled to the maximum
component equal to unity) of the free-free beam (weak
axis) were considered in the predictions (Table 2) which are
given by

∅0  �

1 −1 0.98 −0.98 0.97 −0.93

1 −0.66 0.24 0.23 0.57 0.70

1 −0.33 −0.30 0.71 0.40 −0.32

1 0 −0.65 0 0.79 0

1 0.33 −0.39 −0.70 −0.19 0.56

1 0.66 0.24 −0.23 −0.54 −0.66

1 1 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where each column represents a mode shape and each row
represents the corresponding measured DOF (Figure 4). In
the operational modal analysis, the excitation force is un-
known and the mode shapes cannot be mass normalized

Table 1: Mechanical and material properties of the beam.

Section (mm) Young’s modulus (Pa) Inertia (strong axis, X) (cm4) Inertia (weak axis, Y) (cm4) Mass per unit length (kg/m)
RHS 80 × 40 × 4 2.1 × 1011 64.8 21.5 13.9

K K
A

A
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D x x
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y

y

Figure 1: Beam in free-free configuration.
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Figure 2: Test setup for the free-free configuration.
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[13, 19, 20].*emass-normalizedmode shapes ϕ  are related
to the unscaled mode shapes ψ  by the following equation:

ϕ  � ψ α, (12)

where α is the scaling factor, which can be calculated with the
following expression [10–12]:

α �
1

ψ 
T
[M] ψ 

. (13)

In this paper, a lumped mass matrix was assembled
in order to scale the mode shapes. *is model is expected
to provide good results because the mass is uniformly
distributed and the mass of the beam is known (it was
previously weighted).

*e analytical natural frequencies and the mode shapes
were predicted using the eigenvalue problem given by
Equation (9) where the effect of damping was neglected. As
there is no coupling between the bending modes with
respect to the weak axis and those with respect to the
strong axis (in both free-free and pinned-free configura-
tions), the modal parameters of each case were calculated
separately.

To predict the pinned-free case using SDM, the ana-
lytical model presented in Figure 4 was used, where each
DOF correspond to a sensor location. A spring with
stiffness ΔKu (Figure 4) was introduced to simulate the
pin support. *e stiffness magnitude was chosen after
conducting a sensitivity analysis using different values of
ΔKu. *e evolution of the first five natural frequencies for

Table 2: Experimental and numerical natural frequencies for the free-free configuration.

Mode Mode shape
Natural frequency (Hz)

Weak axis (Y) Strong axis (X)
Numerical Experimental Error (%) Numerical Experimental Error (%)

1 ≈0 0.5 — ≈0 0.5 —

2 ≈0 0.6 — ≈0 0.6 —

3 73.78 71.4 3.33 129.73 125.96 2.99

4 203.57 195.14 4.32 357.62 342.49 4.42

5 398.77 374.50 6.48 701.10 653.75 7.24

6 659.17 600.67 9.74 1159.09 1047.2 10.68

7 984.89 868.21 13.44 1731.83 — —

0
–100

–80

–60

–40

–20

0

200 400
Frequency (Hz)

600 800

Figure 3: Singular value decomposition for the beam under free-free conditions from 0 to 750Hz.
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different values of ΔKu is shown in Figure 5 from which it
is inferred that the natural frequencies remain unchanged
for values ΔKu ≥ 108 N/m. On the contrary, the trans-
lational components of a mode shape in a pinned support
must be zero. *e magnitudes of the first component
(DOF1) for each mode shape, considering different
stiffness values ΔKu, are shown in Figure 6. From Fig-
ures 5 and 6, it is inferred that a stiffness ΔKu � 108 N/m
guarantees that the behavior of the beam is pinned-free for
the first five modes considered in the investigation.

*erefore, the following stiffness change matrix was used
in the analytical predictions:

[ΔK] �

1 × 1010 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

whereas it was assumed that ΔM � 0 and ΔC � 0.
In order to reproduce experimentally the pinned

boundary condition with respect to the weak axis, the

1 2 3 4 5 6 7

U1 U2 U3 U4 U5 U6 U7

(a)

1 2 3 4 5 6 7

ΔKu

U1 U2 U3 U4 U5 U6 U7

(b)

Figure 4: Analytical model of the (a) free-free and (b) pinned-free configurations.
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Figure 5: Analytical natural frequencies obtained for different spring stiffness ΔKu (X-axis).
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beam was welded to a plate as it is shown in Figure 7; that
is, the beam was welded with two short weld beads along
the short sides. *ese shorts weld beads guarantee that the
rotation is free with respect to the weak axis, whereas the
displacement is not permitted. *e plate was fastened with
four screws to a steel foundation clamped to the concrete
floor (Figure 7).

*e same methodology was followed with respect to the
strong axis. *e experimental modes were identified by
OMA, and the natural frequencies estimated with the FDD
technique are shown in Table 3. Moreover, a pinned-free FE
model was assembled to predict the modal parameters of
the pinned-free beam with respect to both axes. *e nu-
merical natural frequencies estimated are also shown in
Tables 3 and 4.

From Tables 3 and 4, it can be inferred that the natu-
ral frequencies of the pinned-free configuration can be

predicted with a good accuracy, the error between the ex-
perimental and the predicted natural frequencies being less
than 5% for both axes. It can also be observed that the
maximum error obtained with SDM is less than the obtained
with the numerical model.

*e modal assurance criterion (MAC) between the ex-
perimental and the analytical mode shapes predicted with
Equation (9) are shown in Table 5. It can be observed that the
mode shapes have been predicted with a good accuracy
(MAC> 0.95) for the first five modes, with respect to the
weak axis, and for the first three modes, with respect to the
strong axis. Due to the fact that a truncated model (free-free
experimental test) is used to predict the modal parameters of
the pinned-free beam, the mode shapes and the natural
frequencies of the higher modes are predicted with less
accuracy. *is is expected because the mode shapes of the
pinned-free beam are obtained as a linear combination of
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Figure 6: First component of the predicted mode shapes for different values of ΔKu (X-axis).
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Figure 7: Detail of the weld bead along the long side (a) and short side (b).

6 Shock and Vibration



a low number of mode shapes of the free-free configuration
[15, 21].

3.4. Fixed-Free Cantilever Configuration. A similar pro-
cedure was followed to predict the modal parameters of the
fixed-free configuration (cantilever). *e beam was fixed by
welding two steel plates (B) 6mm thick to both beam and
horizontal plate (A) (Figure 8).

*e analytical model shown in Figure 9, where both
displacement and rotation at node 1 have to be restrained,
was used for predicting the modal parameters of the fixed-
free beam from the results of the free-free configuration.
Due the fact that the rotations were not measured in the
free-free experimental tests, the experimental mode
shapes have been expanded using the local correspon-
dence principle [21]. *e free-free expanded mode shapes
(seven translational and seven rotational DOFs), nor-
malized to maximum component equal to unity, are
given by

∅0  �

1 −1 0.98 −0.97 0.97 −0.93 −0.93

0 1 −2.7 3.84 −6.72 −6.72 14.02

1 −0.67 0.24 0.23 −0.57 −0.57 0.70

0 1 −1.83 2.95 −2.26 −2.26 −1.66

1 −0.33 −0.3 0.71 −0.4 −0.40 −0.32

0 1 −1.48 −0.54 3.5 3.50 −1.85

1 0 −0.65 0 0.79 0.79 0.01

0 1 −0.22 −2.91 0.47 0.47 2.83

1 0.33 −0.4 −0.70 −0.19 −0.19 0.56

0 1 1.5 −0.53 −3.52 −3.52 −1.56

1 0.67 0.24 −0.23 −0.54 −0.54 −0.66

0 1 2.2 2.97 1.58 1.58 −2.55

1 1 1 1 1 1 1

0 1 2.26 3.99 7.88 7.88 15.69

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)

Table 3: Natural frequencies of the pinned-free beam with respect to the strong axis (X).

Mode
Natural frequency (Hz) Error (%)

Experimental Predicted (Equation (9)) Numerical Experimental − predicted Experimental − numerical
1 0.64 0 0 — —
2 89.01 90.64 89.40 1.80 0.44
3 279.51 286.53 289.72 2.45 4.65
4 568.4 570.78 604.51 0.42 6.35
5 939.52 913.62 1033.84 2.83 10.04

Table 4: Natural frequencies of the pinned-free beam with respect to the weak axis (Y).

Mode
Natural frequency (Hz) Error (%)

Experimental Predicted (Equation (9)) Numerical Experimental − predicted Experimental − numerical
1 5.72 0 0 — —
2 52.73 50.42 50.84 4.39 3.72
3 161.88 163.38 164.77 0.92 1.75
4 327.26 335.64 343.785 2.56 4.81
5 541.98 558.61 587.94 3.07 7.82
6 792.48 829.24 897.333 4.64 11.68

Table 5: MAC between the experimental and the analytical mode shapes.

Mode
Strong axis (X) Weak axis (Y)

1 2 3 4 5 1 2 3 4 5 6
1 1.00 0.06 0.06 0.06 0.06 1.00 0.08 0.07 0.06 0.10 0.07
2 0.05 1.00 0.10 0.09 0.10 0.05 1.00 0.07 0.13 0.07 0.08
3 0.05 0.05 0.99 0.10 0.06 0.06 0.09 1.00 0.05 0.14 0.10
4 0.03 0.12 0.05 0.93 0.14 0.06 0.09 0.09 0.97 0.08 0.12
5 0.07 0.07 0.10 0.10 0.80 0.07 0.08 0.08 0.16 0.97 0.09
6 — — — — — 0.05 0.05 0.11 0.06 0.18 0.93
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where each column represents a mode shape and the rows
represent the DOF’s (the odd rows are displacements and the
even ones rotations). *e mode shape matrix given by
Equation (15) was considered for both directions (strong and

weak axes).*emodes were normalized to themass assuming
the entire amount ofmass is concentrated evenly in the DOFs.

*e fixed boundary conditions for the analytical model
were simulated by adding two springs ΔKu1

� 1 × 1010 N/m

Plate B

Plate A 

Tested beam

Figure 8: Details of the fixed support of the free configuration.
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Figure 9: Analytical model for the fixed-free configuration.
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Figure 10: Evolution of the natural frequencies for different ΔKu and ΔKθ combinations. Fixed-free configuration. (a) Weak Axis (Y).
(b) Strong Axis (X).
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andΔKθ1 � 8 × 105 N·m/rad, respectively, in node 1 (Figure 9).
*e stiffness change matrix is expressed as

[ΔK] �

ΔKu1
� 1 × 1010 0 0 0 0 0 . . .

0 ΔKθ1 � 8 × 105 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

*e magnitude of the springs stiffnesses was established
using the same procedure as that followed for the pinned-
free configuration. *e evolution of the natural frequencies
for different values of ΔKu1

and ΔKθ1 is shown in Figures 10
and 11, respectively, whereas the first component of the
mode shapes is presented in Figure 12.

*e predicted natural frequencies together with the
experimental ones identified by operational modal
analysis using the FDD technique are shown in Table 6. It
can be observed that the discrepancies between the ex-
perimental and the predicted natural frequencies are
higher than those obtained for the pinned-free config-
uration, the maximum error for all the modes in both axes
being approximately 16%. A larger error is expected in
this case because, on one hand, it is difficult to have
a perfect fixed boundary condition in real structures and,
on the other hand, the plates B (Figure 8) used to fix the
beam change slightly the length of the beam; that is, the
cantilever tested beam has a different length to that tested
in the free-free configuration. Consequently, it is not

possible to discriminate the influence of SDM theory and
that which comes from an imperfect fixed support or
from changes in the length of the beam in the discrep-
ancies. *e values ΔKu1

and ΔKθ1 considered in the
predictions correspond to a perfect clamping.

*e MAC between the predicted and the experimental
mode shapes is shown in Table 7. It can be observed that
there is a good correlation for the first four modes, but the
error increases with the order of the mode. *is is in
agreement with the results obtained by Avitabile [16] where
it is demonstrated that, for a cantilever beam, the un-
perturbed system (the free-free system) must contain
a sufficient set of vectors to describe the modified system
accurately. *us, many modes are necessary to predict the
modal parameters of a cantilever with a reasonable
accuracy.

From Tables 6 and 7, it can be inferred that the natural
frequencies and the mode shapes of the lower frequency
modes of a cantilever beam can be predicted with a rea-
sonable accuracy from a free-free system using the structural
dynamic modification theory if an appropriate set of modes
is considered and the experimental boundary conditions can
be reproduced with a reasonable accuracy in the analytical
model.

4. Application to a Steel Beam Structure

*e steel beam structure shown in Figure 13 was used to
validate the structural dynamic modification theory in
a more complex case. *e structure consists of four steel
rectangular hollow section beams (50 × 30 × 3mm) welded
in points 1, 2, 3, and 4. *e dimensions of the structure are
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Figure 11: Evolution of the natural frequencies for different values of (a) ΔKu (ΔKθ � 8 × 105 Nm/rad) and (b) ΔKθ (ΔKu1
� 1 × 1010 Nm).

Fixed-free configuration (X-axis).
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Figure 13: Geometry of the structure (a) and the setup for the free-free configuration (b).

Table 6: Experimental and predicted natural frequencies for the fixed-free configuration.

Weak axis (Y) Strong axis (X)

Mode Natural frequencies (Hz) Error Natural frequencies (Hz) Error
Experimental
frequency

Frequency predicted
(Equation (9))

Experimental − predicted
(%)

Experimental
frequency

Frequency predicted
(Equation (9))

Experimental − predicted
(%)

1 10.93 9.55 12.60 15.617 15.67 0.33
2 67.69 78.09 15.36 103.25 117.87 14.16
3 186.88 185.90 0.53 296.6 305.81 3.11
4 362.91 377.11 3.91 573.72 611.66 6.61
5 570.67 1075.59 >100.00 1016.21 1064.90 >100.00
6 825.29 2291.05 >100.00 — 2280.30 >100.00

Table 7: MAC between experimental and predicted mode shapes.

MAC

Mode
Weak axis (Y) Strong axis (X)

1 2 3 4 5 6 1 2 3 4 5 6
1 1.00 0.09 0.06 0.10 0.13 0.00 1.00 0.09 0.07 0.08 0.08 —
2 0.07 1.00 0.08 0.12 0.09 0.00 0.05 0.96 0.20 0.06 0.09 —
3 0.08 0.12 0.99 0.08 0.18 0.00 0.05 0.03 0.95 0.18 0.03 —
4 0.08 0.08 0.09 0.92 0.10 0.00 0.09 0.15 0.06 0.81 0.49 —
5 0.07 0.09 0.05 0.31 0.59 0.04 0.03 0.02 0.04 0.01 0.31 —
6 0.07 0.10 0.09 0.07 0.67 0.10 — — — — — —
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Figure 12: Evolution of the first component of the mode shapes for different values of ΔKu and ΔKθ � 8 × 105 (SI units). Fixed-free
configuration (Y-axis).
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Table 9: Numerical frequencies and mode shapes for free-free configuration and pinned-supported configuration.

Numerical frequencies and mode shapes

Undeformed state
Mode Free-free configuration Pinned-supported configuration

1

f = 23.65Hz
f = 24.02Hz

2

f = 57.06Hz
f = 31.12Hz

3

f = 71.08Hz f = 78.22Hz

4

f = 154.67Hz f = 98.97Hz

5

f = 164.53Hz f = 131.47Hz

6

f = 173.80Hz f = 189.45Hz

Table 8: Experimental and numerical natural frequencies obtained for free-free configuration.

Mode
Natural frequencies (Hz)

Error (%)
Experimental Numerical

1 23.15 23.65 2.16
2 27.83 30.13 8.26
3 46.24 48.03 3.88
4 56.02 57.06 1.86
5 70.58 71.07 1.84
6 65.90 71.87 7.86
7 102.70 105.03 2.27
8 131.60 136.26 3.54
9 136.10 144.90 6.47
10 152.60 154.67 1.36
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shown in Figure 13 while the total mass of the structure is
21.94 kg.

4.1. Free-Free Experimental Tests. *e structure was initially
tested in free-free configuration using operational modal
analysis. *e structure was suspended using two springs.
Twelve accelerometers in the vertical direction with a sen-
sitivity of 100mv/g were attached to the structure. *e test
setup is shown in Figure 13.

*e structure was excited with an impact hammer
applying randomly hits both in time and in space. *e
responses were recorded with a sampling frequency of
2132 Hz during approximately 7 minutes. *e experi-
mental natural frequencies estimated with the frequency-
domain decomposition technique are presented in Table 8
(for simplicity, the solid rigid motion frequencies are
omitted) together with those obtained with a finite ele-
ment model assembled in ABAQUS [22] where quadratic
beam elements were used. *e maximum discrepancy
between both models is 8.26% (corresponding to the 2nd

mode). *e numerical mode shapes are presented in
Table 9.

4.2. Pinned-Supported Structure in Four Points. *e SDM
theory was applied to predict the natural frequencies and
mode shapes of the structure with pinned supports in points
A, B, C, and D (Figure 13). A detail of the support in point A
is also shown in Figure 14.

Two solid rigid modes and six elastic modes of the free-
free structure (Table 9) were used to predict the modal
parameters of the structure pinned-supported in points A, B,
C, and D. A lumped mass matrix was assembled to nor-
malize the mode shapes to the mass matrix. *e pinned

supports where simulated with a spring in the vertical di-
rection with stiffness Ky � 108 N/m.*e natural frequencies
predicted with Equation (9) are presented in Table 10.

Operational modal analysis was applied to the pinned-
supported structure using the test setup shown in Fig-
ure 15. *e singular value decomposition of the responses
is shown in Figure 16 where it can be observed that the first
6 vertical bending modes were identified in the frequency
range 0–200Hz. *e experimental natural frequencies
obtained with the FDD technique are presented in Table 10.
*e discrepancies between the natural frequencies of
the first 6 modes predicted with SMD theory and the ex-
perimental ones identified by OMA are less than 9%. *is
error is of the same order as that existing between the
numerical and the experimental modes, the error being less
than 7.5%.

With respect to the mode shapes, the MAC between the
experimental mode shapes and those predicted with the
SDM theory is presented in Table 11 from which it can be
inferred that all the mode shapes are predicted with a good
accuracy, the MAC being higher than 0.99.

5. Conclusions

Structural dynamic modification theory has been applied in
this paper to predict the modal parameters of supported
structures using themodal parameters of the same structures
tested in free-free boundary conditions. *is methodology
could be used in a wide range of applications such as
structures that are usually assembled in a factory and then
transported to the site where the structure is to be located. A
pinned-free beam, a cantilever beam, and a 3D steel beam
were used to validate the proposed methodology. *e

Table 10: Experimental, numerical, and predicted natural frequencies for pinned-free configuration.

Vertical axis

Mode
Natural frequency (Hz) Error (%)

Experimental Predicted (Equation (9)) Numerical Experimental − predicted Experimental − numerical
1 25.25 25.74 24.02 −1.94 4.87
2 33.57 33.88 31.12 −0.92 7.30
3 80.68 77.42 78.22 4.04 3.05
4 104.10 95.02 98.97 8.72 4.93
5 127.52 132.33 131.47 −3.77 3.10
6 187.28 187.42 189.65 −0.07 1.27

Figure 14: Details of the support.
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technique can be summarized in two steps: (1) to test the
structure in free-free boundary conditions and estimation of
the modal parameters using operational modal analysis and
(2) to use the SDM theory to predict the modal parameters of
the supported structures using Equation (9). Due to the fact
that only unscaled mode shapes can be obtained with op-
erational modal analysis (OMA), a lumped mass matrix was
assembled and the mode shapes were normalized with
Equation (13).

*e technique has been validated by comparing the
modal parameters predicted with SDM with those estimated
with OMA. Accurate results have been obtained for pinned-
supported structures (error less than 10%), whereas the fixed
boundary condition is more difficult to replicate, the error
being less than 16% in the natural frequencies.

It has been demonstrated that the technique provides
good results when the boundary conditions considered in

Equation (9) reflect correctly the boundary conditions of the
experimental test. Moreover, a numerical model of the
structure is not needed with this methodology; that is, only
the modal parameters of the unperturbed structures are used
to predict the modal parameters of the perturbed structure,
together with the mass, stiffness, and damping change
matrices.
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Figure 16: Singular value decomposition (SVD) in the frequency range 0–200Hz.

Table 11: MAC between experimental and analytical mode shapes.

Mode
Vertical axis

1 2 3 4 5 6
1 1.00 0.03 0.00 0.00 0.01 0.00
2 0.00 0.99 0.00 0.00 0.00 0.00
3 0.00 0.06 1.00 0.00 0.00 0.13
4 0.00 0.11 0.00 1.00 0.00 0.00
5 0.01 0.00 0.00 0.00 0.99 0.00
6 0.00 0.02 0.15 0.00 0.00 1.00
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Figure 15: Test setup used in the experimental tests.
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