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Featured Application: Upper body kinematics (Head Yaw and Trunk Roll from evidence so far)
can be used to anticipate walking turns in the short-term, and can therefore be used to improve
the interaction between humans and robots in close proximity.

Abstract: Prediction of walking turns allows to improve human factors such as comfort and perceived
safety in human-robot interaction. The current state-of-the-art suggests that upper body kinematics
can be used for that purpose and contains evidence about the reliability and the quantitative
anticipation that can be expected from different variables. However, the experimental methodology
has not been consistent throughout the different works and the related data has not always been given
in an explicit form, with different studies containing partial, complementary or even contradictory
results. In this paper, with the purpose of providing a uniform view of the topic that can trigger new
developments in the field, we performed a systematic review of the relevant literature addressing
three main questions: (i) Which upper body kinematic variables permit to anticipate a walking turn?
(ii) How long in advance can we anticipate the turn from them? (iii) What is the expected contribution
of walking turn prediction systems from upper body kinematics for human-robot interaction? We
have found that head yaw was the most reliable kinematical variable from the upper body to predict
walking turns about 200ms. Trunk roll anticipates walking turns by a similar amount of time,
but with less reliability. Both approaches may benefit human-robot interaction in close proximity,
helping the robot to exhibit appropriate proxemic behavior interacting at intimate, personal or social
distances. From the point of view of safety, they have to be considered with caution. Trunk yaw is
not valid to anticipate turns. Gaze Yaw seems to be the earliest predictor, although existing evidence
is still inconclusive.
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1. Introduction

Human motion prediction is essential for the safe and effective interaction between humans and
robots in collaborative spaces. For instance, it has been outlined as a fundamental need for robots that
consciously navigate in the presence of humans, in order to develop a “human-aware” navigation
strategy [1]. Additionally, fueled by recently proposed specifications (ISO/TS 15066:2016—Robots
and robotic devices—Collaborative robots), it will likely be essential in the near future for the
realization of the “intimate collaboration” or the “close proximity interaction” paradigms described
by [2,3], respectively. In particular, studies have shown recently that human motion prediction
technologies have the potential to improve the efficiency of the team and the perception of
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safety and comfort by the user in different settings in which persons and robots share the same
physical workspace [4,5]. Likewise, human motion prediction may also be relevant in assistive
devices (active prosthesis/orthosis/exoskeletons) to switch between different locomotion modes [6,7],
by changing the control algorithms or by modifying the mechanical properties of the assistive
devices [8].

Automatic anticipated detection of walking turns from body kinematics is a plausible approach as
it is a well-known fact in neurosciences that postural adjustments are initiated prior to the actual change
in the heading direction, and that these adjustments are reflected in the kinematics of body segments
(see for instance [9]). It is also a feasible approach as nowadays there are different reliable technologies
that allow to sample these variables in real time, with optical sensors and Inertial Measurement Units
being the most representative. Some pioneering applications have confirmed the validity of this
approach [10,11]. Finally, it is a promising approach for human robot collaboration as it may be used to
schedule and execute robotic navigation plans that are compliant with the expected trajectories of the
user [1], furthermore contributing to improve the safety and comfort of the interacting humans [11].

In particular, the state-of-the-art comprises a vast amount of knowledge about the role of
upper body kinematics during locomotion steering that suggests that turn detection systems can be
implemented from them, especially from gaze, trunk and head kinematics (see Figure 1). For instance,
it has been shown that head anticipates motion direction to provide a stable reference frame that helps
to coordinate the motion of the other body segments [12]. Likewise, it was argued that trunk roll and
yaw control help the lower segments to further redirect the Body Center of Mass in the new direction of
travel [13]. Moreover, head yaw and trunk tilt were shown to be connected to eye movements in order
to stabilize the optic flow needed to control the upcoming steering maneuver [14]. Different steering
maneuvers, such as lane-changes [15] or obstacle circumventing [16], were shown to be eventually
preceded by some postural adaptations in the upper trunk. Steering under special circumstances,
such as manual wheelchair navigation [17] or while pushing a cart [18], changed the preceding upper
trunk motion as compared to normal biped walking.
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Figure 1. At the beginning and at the end of the turn all the upper body segments are aligned with
the actual trajectory of the subject (dotted line). However, during the preparation and execution of
the turn, certain postural adjustments are made sequentially which are reflected in the kinematics of
different variables of the upper body (gaze, head, trunk).

However, it is difficult to interpret this knowledge from the point of view of turn prediction
systems because the original studies were fundamentally oriented to study human motor and cognitive
controls. Additionally, the experimental methodology was not consistent throughout the different
works and the relevant data was spread over different scientific sources in an unstructured way and
not always given in an explicit form, with different works containing partial, complementary or even
contradictory results.

Thus, it is not clear yet what upper body kinematical variables can be reliably used to predict a
change of direction of a person during normal walking, the extent of anticipation that can be reached
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from them or the potential contributions that anticipated turn detection from upper body kinematics
could present on human-robot interaction.

To provide an answer, in this paper we collected, structured and reinterpreted the relevant
information comprised in the state-of-the-art about human performance during walking turns in order
to answer three main questions:

• Which kinematic variables (upper body) reliably permit to anticipate a turn?
• How long in advance can we anticipate the turn from them?
• What is the expected contribution of upper body kinematics –based turn prediction systems in

human-robot interaction?

2. Materials and Methods

2.1. Paper Collection

IEEE Xplore and SCOPUS were selected as the reference database in order to have a broad
coverage that includes both scientific and technological fields. During a preliminary exploration,
we found two main topics containing information of interest for our purposes. The first was concerned
specifically with anticipatory postural adjustments to turning. The other analyzed human kinematics
during turning and sometimes included information about pre-turn maneuvers that can be interesting
to analyze anticipatory adjustments. Therefore, the final search was based on queries from the
following groups of keywords: (GAIT and ANTICIPATION and TURNING); ((GAZE or HEAD or
TRUNK or HIP) and TURNING and KINEMATICS). Additionally, we defined different synonyms
for the search, such as WALK in place of GAIT, or STEERING or CHANGE OF DIRECTION in place
of turning.

The inclusion criterion for the screening of papers was as follows:

• The experiments included a change in direction during normal walking of healthy adult subjects.
Sustained circle-walking was not considered.

• The results included quantitative values about the time/spatial anticipation from kinematics
(positions, velocities or accelerations) of variables of upper body segments.

• The studies were published in English.
• The studies were published in a journal.

An initial search was conducted in January 2016 (SCOPUS, IEEE Xplore), which included 2015.
397 raw references. Title and abstract were independently reviewed by the three authors and decision
about their relevance for the study was taken after consensus. 24 papers were selected. Seven of them
were removed after a preliminary read.

During the subsequent execution of the study, the authors individually screened (title, abstract,
preliminary read) new papers found using varied sources (SCOPUS, Web of Science, IEEE Xplore and
Google Scholar). These new papers were considered at different literature updates (September 2017,
February 2018). After a detailed analysis, one paper was incorporated into the study.

Selected papers were distributed among the authors. Each author collected the relevant data from
the assigned articles, with the final supervision of the other two.

From the finally considered works, nine of them did not provide precise quantitative results
and were not used for quantitative analysis. Relevant findings from these works were qualitatively
considered in the discussion when appropriate.

Figure 2 summarizes the process using the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) flow diagram.
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2.2. Definition of Variables

We defined the variables of interest to our study attending those included in the considered works.
We have found a great deal of work about the estimation of Gaze Yaw (GY), Head Yaw (HY), Trunk
Yaw (TY) and Trunk Roll (TR). Trajectory Heading (TJH) and Body Center Of Mass Medio-Lateral
Displacement (MLC) were included in some references, and will be used in our study to compare the
feasible anticipation with the previous variables.

Some other variables were included sparely in some studies. This is the case of Pelvis Yaw [19]
or Gaze/Head Elevation [20]. However, experimental data about them was scarce and, moreover,
existing studies reported no significant anticipation to the turn; thus, they were not included in our
later analysis.

2.3. Classification of Works

After a thorough analysis of the contents of the different works, we found two main classes of
studies that were used in our later analysis:

• Time synchronization. These studies addressed the synchronization of kinematical variables from
upper body segments during turning maneuvers, eventually including the trajectory heading or
the medio-lateral displacement of the body center of mass.

• Geographical anticipation. These studies addressed the anticipation of kinematical variables from
upper body segments in reference to external physical world landmarks, usually a corner pivot
located at the turning point.
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2.4. Compilation of Experimental Conditions

Nearly all the studies used optical motion capture systems to sample body kinematics. Technical
details are included in Table 1. The second column contains the addressed variables. Columns three
to five describe the number and position of head/trunk/center-of-mass(COM) markers used in the
optical motion capture system for the estimations. Column six describes the method used for the
estimation of the actual trajectory of the subject. Column seven includes the technique used to quantify
the anticipation between variables (see Figure 1). CC (Cross Correlation) was used for studies that
used cross correlation to obtain the delay between the compared variables. TO was used for studies
that compared the time the turn onset was detected in the compared variables. Experimental details
are included in Table 2 (trials, people, age, walking speed and kind of turning). The first column of
Tables 1 and 2 contains the reference of the work.

Table 1. Kinematical variables and estimation details in the studies based on optical motion capture
systems. Gaze Yaw (GY), Head Yaw (HY), Trunk Yaw (TY), Trunk Roll (TR), Trajectory Heading (TJH)
and Body Center Of Mass Medio-Lateral Displacement (MLC).

Reference Variables Head Markers Trunk Markers COM Markers Trajectory
Estimation

Time
Difference

[12] HY, TJH 2: Frontal and
occipital (antenna)

Head midpoint
displacement CC

[21] HY, TY, TJH 2: Frontal and
occipital (antenna) 2: shoulders (antenna) Head midpoint

displacement CC

[22] GY, HY, TJH 2: Frontal and
occipital (antenna)

Head midpoint
displacement CC

[23] HY, TY, TR 3: Eyes border
and chin

3: acromions +
sternal notch TO

[24] HY, TY, TR,
MLC

3: Eyes border
(antenna) and chin

3: acromions +
xiphoid process

28: 14-segments
anthropometric model TO

[25] HY, TY, MLC 3: Eyes border + chin 3: acromions +
xiphoid process

By using trunk
markers TO

[26] GY, HY TO

[16] HY, TY, TR,
MLC 3: not specified 3: acromions +

xiphoid process
9: 3-segments (head,
neck, trunk) model TO

[27] HY, TJH
(video)

2: frontal and
occipital (antenna)

Head midpoint
displacement TO

[28] HY, TY, TR,
MLC 3: not specified 3: sternal notch By using trunk

markers TO

[29] GY, HY, TY 4: back and front
of temples

2: acromio-clavicular
joints

Head midpoint
displacement CC

[19] HY, TJH 3: temples + glabella 3: acromions +
sternum

Trunk markers
midpoint CC

[20] GY, HY, TJH 43: VICON® plugin
gait model

43: VICON® plugin
gait model

Isobarycenter of
the pelvis

displacement
CC

[30] HY 3: helmet Proyection of
the head TO

[31] HY, TY 4: helmet 4: backpack TO
[17] GY, HY, TY 3: not specified 3: sternal notch TO

An additional study was found where the orientation of some upper body variables (head, upper
back and lower back) was estimated from Inertial Measurement Units (IMU) [10]. An IMU was placed
in each of the addressed body segments. Ten subjects (mean age 30.9, standard deviation 4.3 years)
performed 49 trials involving turns at −90◦, −45◦, −22◦, 0◦, 22◦, 45◦, 90◦. Turn onsets were defined
on those variables by orientation and velocity thresholds and used to analyze their anticipation to
the actual turning time, estimated from the visual analysis of the experiments using motion capture
systems. IMUs were also used in [32] to study the anticipation between head and hip orientation.
Seven subjects (age 25–31) were asked to walk forward, then to continue straight or turning right/left
(90◦). Thirty trials were recorded for each subject, 10 of them in each turn condition. To determine
turn onset times, pelvis and head yaw behavior were modeled as second-order linear time invariant
systems with a nonlinear delay. Model parameters were identified from each experiment using widely
accepted computational methods (MATLAB® Identification Toolbox). The value identified for the
delay was used to time the turn onset from the start of the experiments.
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Table 2. Experimental conditions used in the studies based on optical motion capture systems.

Ref. Trials × People/Age (mean ± std)/Speed (m/s) Turning Angle (◦) or Turn Type

[12] 6 × 5/28 ± 2.5/(0.69 ± 0.03; 1.01 ± 0.03)
[21] 2 × 6/-/- 90
[22] 3 × 6/33 ± 4/1.15 ± 0.15 90
[23] 5 × 6/22.5 ± 2.1/- 20, 40, 60
[24] 20 × 5/24.8 ± 4/- −60, −30, 30, 60
[25] 20 × 5/19.7 ± 1.2/1.3 ± 0.2 30, 60
[26] 10 × 7/24.8 ± 4/- −60, −30, 30, 60
[16] 10 × 6/26.3 ± 2.9/1.3 ± 0.2 Obstacle
[27] 1 × 12/33 ± 3/(0.8 ± 0.07; 1.2 ± 0.05, 1.6 ± 0.06) 90
[28] 30 × 3/20.7 ± 2.9/1.30 ± 0.1 −40, 40

[29] 27 × 10/29.9 ± -/- Limaçon, eight (normal and extended),
cloverleaf, free-left and right

[19] 13 × 6/22 to 33.5/1.08 to 1.29 −90, 90
[20] 8 × 10/30 ± 5.2/ Eight, limaçon
[30] 24 × 10/32.1 ± 11.9/-
[31] 8 × 24/24 ± 2.5/(1.4; 2) 45, 180
[17] 2 × 8/26.9 ± 6.4/1.4 90

2.5. Data Analysis

We decided to base our primary analysis on the studies where optical motion capture systems
were used to sample body and trajectory kinematics (Tables 1 and 2).

In general, results were reported in numerical format in the original works using the mean
and standard deviation of the values collected for the analyzed parameter across experimental trials.
However, in some studies [23–25,28], results were reported using bar graphs showing the mean value
and the corresponding standard error. We identified from them the corresponding numerical values by
hand. To standardize the later analysis, we then estimated the standard deviation as the product of the
reported standard error times the square root of the number of effective experiments (Trials × People,
Table 2-Column 2). Additionally, we estimated the anticipation in distance to the corner pivot from
the anticipation times reported in [17] using the average walking speed of subjects in the experiments
(Table 2-Column2) .

In some studies, onsets of different variables were timed from a common external reference
event. We have used that data to calculate the synchronization between the variables themselves.
For that purpose, we have calculated (see Supplementary Materials) the mean delay between the

variables by subtracting their mean delay from the reference event. s1,2 = 2
√

s2
1 + s2

2 − 2ρs1s2 was used
to estimate the standard deviation of the delay between variables s1 and s2, where s1 and s2 are the
reported standard deviations of the delay of each variable from the common reference event and ρ is
the correlation factor between the variables. In our study we have assumed that kinematical changes
in the upper body were highly positively correlated. Thus, we decided to use a correlation factor of
ρ = 0.85 [33,34].

Anticipation values from different studies were aggregated when appropriate using a random
effects model (R statistical analysis package, rma.uni() function from the metaphor package, default
Restricted Maximum-Likelihood Estimator method, [35]; see Supplementary Materials). Mean
anticipation between pairs of variables were analyzed. p-values and the 95% confidence interval
reported by the software were used to find those pairs where the null hypothesis (mean anticipation
equals zero) could be rejected.

2.6. Data Collection and Preprocessing

Table 3 contains the collected mean and standard deviation (column 2) of time delays of onsets
on Gaze Yaw (GY), Head Yaw (HY), Trunk Roll (TR) and Medio-Lateral COM (MLC) displacement
from a reference event in a preparatory step. Different reference events were used in the analyzed
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studies. In [26], the contralateral toe-off of the step that preceded the turn was used for that purpose.
Other studies were based on the right foot contact [23–25] or the heel contact that corresponded to the
initiating turning step [28].

Table 3. Time delays (mean ± standard deviation) from a reference event in a preparatory step to turn
onsets on different variables (GY, HY, TY, TR, MLC) collected from references specified in Column 4.
When not provided in the original paper, the standard deviation was estimated from the reported
standard error (Column 3) using the number of users and trials involved in the experiments as reported
in Table 2-Column 2.

Time Delay (ms) Standard Error Reference

GY 40 ± 371 [26]
326 ± 237 [26]

HY 180 ± 164 30 [23]
530 ± 164 30 [23]
360 ± 100 10 [24]
530 ± 250 25 [25]

−734 ± 1518 160 [28]
50 ± 317 [26]

349 ± 210 [26]
TY 470 ± 164 30 [23]

700 ± 164 30 [23]
420 ± 100 10 [24]
610 ± 200 20 [25]

−571 ± 1518 160 [28]
TR 280 ± 164 30 [23]

390 ± 164 30 [23]
500 ± 300 30 [24]

−177 ± 1518 160 [28]
MLC 610 ± 380 38 [24]

700 ± 200 20 [25]
−447 ± 1138 120 [28]

References [12,16,21,22,30] did not provide precise quantitative results. Relevant findings from
these works will be qualitatively considered in the discussion when appropriate.

Other authors reported anticipation times directly between variables and the trajectory heading.
In [29], authors reported an anticipation of 202 ± 83 ms from Gaze Yaw to Head Yaw, 444 ± 202 ms
from Gaze Yaw to Trunk Yaw and 212 ± 162 ms from Head Yaw to Trunk Yaw. In [19], Head Yaw was
found to anticipate Trajectory Heading by 207 ± 165 ms. In [20], Gaze Yaw and Head Yaw were found
to anticipate Trajectory Heading by 557 ± 160 ms and 264 ± 134 ms respectively.

Regarding the IMU-based studies, an anticipation of head, upper back and lower back orientation
onsets to the actual turning time of 204 ms, −69 ms and 5 ms were reported in [10]. Anticipation of
head turning with respect to pelvis turning was found to be of 528 ± 385 ms in [32].

With respect to geographical anticipation, [17] reported a time anticipation of Gaze Yaw, Head
Yaw and Trunk Yaw onsets to the corner pivot of 500 ± 300 ms, 800 ± 200 ms and 1500 ± 200 ms,
respectively. From them, we estimated the corresponding anticipation in distance at 0.35 ± 0.21 m,
0.57 ± 0.14 m and 1.07 ± 0.14 m. [27] reported an anticipation distance of Head Yaw onset to the corner
pivot of 0.3 ± 0.3 m. Other values regarding the anticipation to the corner pivot have been reported
in [30,31], however, they lacked precision and will be qualitatively considered in the discussion section
when appropriate.

3. Results

Table 4 contains data about the time synchronization of upper body kinematical variables
(Gaze Yaw, Head Yaw, Trunk Yaw, Trunk Roll). Additionally, we included available data about the
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anticipation time of each variable with respect to the estimated body Trajectory Heading (TJH) and the
Medio-Lateral COM displacement (MLC). Values in bold were directly reported in the corresponding
reference. The others were calculated by combining results from Table 3 as described in Section 2.5.

Table 4. Time anticipation (column 3, mean ± standard deviation) between gaze (GY), body segments
(TY, TR), trajectory heading (TJH) and body center of mass medio-lateral displacement (MLC). Values
in bold were directly reported in the corresponding reference. The others were calculated by combining
results from Table 3. Each value is accompanied by the corresponding reference into brackets.

Time (ms) HY TY TR MLC TJH

GY

10 ± 195 [26]
23 ± 125 [26]
202 ± 83 [29]
293 ± 84 [20]

444 ± 202 [29] 557 ± 160 [20]

HY

290 ± 90 [23]
170 ± 90 [23]
60 ± 55 [25]

80 ± 132 [25]
163 ± 831 [28]
212 ± 162 [29]

100 ± 90 [23]
−140 ± 90 [23]
140 ± 221 [24]
557 ± 831 [28]

250 ± 300 [24]
170 ± 132 [25]
287 ± 814 [28]

207 ± 165 [19]
264 ± 134 [20]

TY

−190 ± 90 [23]
−310 ± 90 [23]
80 ± 221 [24]
394 ± 831 [28]

190 ± 300 [24]
90 ± 110 [25]

124 ± 814 [28]

TR 110 ± 201 [24]
−270 ± 814 [28]

An aggregated analysis reveals that Gaze Yaw significantly anticipates Head Yaw by 179 ms
(p-value < 0.01). The 95% confidence interval for the anticipation is [54 ms, 305 ms]. However,
the shortest value (10 ± 195 ms) reported in [26] could be explained by the nature of sudden turn
decisions which just made subjects re-orient segments faster, as they were told the direction to turn
using a visual cue that was emitted at the turning point. Therefore, if we consider only the remaining
experiments, where subjects were informed at the beginning of the experiment about the turn to take,
and hence, had enough time in advance to schedule the turning maneuver, the combined analysis
reveals that Gaze Yaw significantly anticipates Head Yaw by 198 ms (p-value < 0.01, 95% confidence
interval [68 ms, 327 ms]).

Head Yaw significantly anticipated Trunk Yaw by 149 ms (p-value < 0.01, 95% confidence interval
[47 ms, 251 ms]). As before, some results (170 ± 90 ms, 60 ± 55 ms, 80 ± 132 ms, reported in [23–25])
were obtained from experiments where users had to turn immediately after a signal/auditive clue.
Excluding these results, Head Yaw significantly anticipated Trunk Yaw by 271 ms (p-value < 0.001,
95% confidence interval [117 ms, 424 ms]). On the other side, Head Yaw significantly anticipated
Trajectory Heading by 241 ms (p-value < 0.05, 95% confidence interval [37 ms, 445 ms]). Conversely,
Head Yaw was not significantly different from Trunk Roll (mean anticipation 11 ms, 95% confidence
interval [−178 ms, 200 ms]), nor from Medio-Lateral COM Displacement (mean anticipation 185 ms,
95% confidence interval [−49 ms, 420 ms]).

Trunk Yaw did not significantly anticipate Medio-Lateral COM Displacement (mean anticipation
102 ms, 95% confidence interval [−98 ms, 302 ms]).

Finally, Trunk Roll significantly anticipated Trunk Yaw by 216 ms (p-value < 0.01, 95% confidence
interval [84 ms, 348 ms]). Trunk Roll did not significantly anticipate Medio-Lateral COM Displacement
(mean anticipation 88 ms, 95% confidence interval [−295 ms, 471 ms]).

In relation to the geographical anticipation, reported values were sparse and lacked precision in
most references. For that reason, we decided not to aggregate them, deferring their consideration for
the discussion in a qualitative sense.
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4. Discussion

From the analysis of the available data we can state the following.

4.1. Gaze Yaw Is the Earliest Predictor of Walking Turns; However, Existing Evidence Does Not Allow to
Quantify the Anticipation and Its Reliability

Our analysis revealed that Gaze Yaw anticipated Head Yaw up to 179 ms in aggregated
terms. However, we have found that in one of the considered studies [26] both events were almost
simultaneous. Additionally, eye movements have been found to depend greatly on ambient factors that
can even reverse the usual sequence of anticipatory movements as reported in [17], where GY happens
even after TY. This behavior may be explained as gaze does not develop standalone in turn negotiation,
being intrinsically coordinated with the head progression [36,37]. The collected results also show that
Gaze Yaw anticipates Trunk Yaw by 444 ms [29] and Trajectory Heading by 557 ms [20]. However,
only a single study is available for each of these values, and thus, no generalization can be made
from them. Therefore, Gaze Yaw anticipation to walking turns needs further research to be confirmed,
perhaps oriented to the common consideration and quantification together with head turning.

4.2. Trunk Yaw Is Not Valid to Predict Walking Turns as It Tracks the Actual Trajectory of the Subject

In our study we did not find quantitative data regarding the synchronization between Trunk Yaw
and Trajectory Heading. In any case, considering the analyzed literature, we can consider that both
evolve synchronously, and Trunk Yaw is thus not valid to predict walking turns.

Papers [19,20] reported no significant difference between Trunk Yaw and Trajectory Heading.
This was additionally supported in [29], where the authors reported a short delay (−26.52 ± 73.45 ms)
between Trunk Yaw and pelvis rotation trajectory that was not significantly different from zero. Results
in [10] were also consistent with this statement, showing that the turn can be detected from the upper
trunk with a delay of 69ms and from the lower trunk with an anticipation of 5ms.

An apparently contradictory result was reported in [17,31], where Trunk Yaw was found to predict
the geographical corner pivot from 0.9 m to 1.14 m. This result can lead to think that Trunk Yaw
anticipates walking turns. However, they may be explained by different turn negotiation strategies or
simply by the experimental conditions. For instance, in some experiments described in [31], subjects
had to walk along a trajectory painted on the floor that actually started to bend in the turning direction
before the corner pivot, using concentric circles (0.5 m of radius) around it. Therefore, users had to
modify the walking trajectory before the corner pivot, which could justify the anticipated detection
Trunk Yaw onset.

Our analysis also showed that Trunk Yaw onset was not significantly different from Medio-Lateral
COM Displacement onset, further confirming the statement, as Medio-Lateral COM Displacement is
also an indicator of the change in the trajectory of the subject.

4.3. Head Yaw Is a Reliable Choice to Consistently Anticipate Heading Direction in Real Time by Around
200 ms

It is well known in neuroscience that the head anticipates motion direction to provide a stable
reference frame that helps to coordinate the motion of the other body segments (see for instance [12,28]).
As expected, results from the addressed studies are consistent with this behavior: changes in Head Yaw
precede changes in other upper body segments and in the trajectory orientation. This was even found
under different experimental conditions (eyes open/closed or walking forwards/backwards [22]).
Discrepancies to this general finding have been occasionally reported. However, they can be attributed
to the particularities of the addressed experiments. In [17], Trunk Yaw was delayed 600 ms from
Head Yaw. However, in this study, the experiments were designed to study the effect on locomotor
coordination when pushing a wheelchair and this may perhaps have biased the results. In [16], Head
Yaw was found to be synchronized with Trunk Yaw, however, in this work, subjects were involved in a
very particular steering maneuver (obstacle avoiding).
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Initial studies found an anticipation of about 440 ms from Head Yaw to Trunk Yaw [21]. However,
results of [23,28,29] advance that this anticipation is expected to be lower. An interesting remark is
that results of [29] agree with those of [23,28], even though they were obtained under a completely
different experimental setup, involving a greater diversity of turns.

Our aggregated analysis revealed a significant anticipation of Head Yaw to Trunk Yaw of 149ms,
on average. This anticipation increases to 271 ms if we consider only preplanned turns.

The results of these studies were also consistent with others obtained from different experimental
setups using body-worn inertial sensors [10], where head onset anticipated the upper back yaw onset
by 273 ms. A recent work [32], also based on inertial sensors, reported a greater anticipation (528 ms
on average from the head yaw to the pelvis yaw). However, the experimental setup is dramatically
different, including a different definition to detect onsets of variables and advanced machine learning
methods for the data analysis, and cannot be easily compared.

The aggregated analysis reveals also that Head Yaw significantly anticipates Trajectory Heading
by 241ms on average. This anticipation is consistent with the Head Yaw-Trunk Yaw anticipation,
thus providing an additional support about the actual evolution of Trunk Yaw with the Trajectory
Heading. However, a noteworthy result is that the aggregated analysis showed that Head Yaw does
not significantly anticipate Medio-Lateral COM Displacement. Medio-Lateral COM Displacement
estimation is in itself a complex problem that may be the reason for this contradictory result.

4.4. Trunk Roll Anticipates Trajectory Heading Similarly to Head Yaw but with Less Reliability

We have found conflicting results about the role of the Trunk Roll during walking turns. In [23],
Trunk Roll anticipated Trunk Yaw, however, in [24] the sequence was reverted. Results from [28]
showed that Trunk Roll is the last change registered in the analyzed biomechanical chain, even after
Medio-Lateral COM Displacement. In [16], Trunk Roll was found to be negligible, although in this
paper anticipation was monitored in a special steering case (circumventing an obstacle). These could
indicate that the role of Trunk Roll in the turning strategy may vary depending on the actual conditions
of the turn. In any case, our combined analysis showed that Trunk Roll anticipation is not significantly
different from Head Yaw anticipation. Thus, Trunk Roll can be considered an additional predictor of
walking turns with a similar anticipation to that obtained from Head Yaw, but with less reliability.

4.5. Head Yaw Predicts the Geographical Turning Point at a Constant but Unknown Distance

The paper [38] can be considered a pioneering study about geographical anticipation. In this case,
anticipation was measured against the point defined by the intersection of the rectilinear part of the
actual path that the subject described before and after the turn. Results show that Head Yaw started
later and later as speed increased, from 3.8 s at 1.4 m/s to 0.44 s at 9.7 m/s. However, when it was
plotted versus the distance from the corner, the waveforms aligned almost perfectly; thus, being the
first work to support that the anticipation of Head Yaw to the turning point is constant in distance, not
in time. Numerical results showed an anticipation of between 2 m and 9 m depending on the individual
subject. However, these experiments were designed using a virtual reality environment that sometimes
supposed very high velocities and were thus not representative of normal walking conditions.

Later studies supported what has been called the “spatial invariance” hypothesis, which means
that Head Yaw starts to vary at a constant distance to the turning point. However, reported anticipation
distances did not allow to quantify it with precision. Head Yaw anticipation to the corner pivot was
quantified in 0.3 m [27] and 1.1 m [31]. This anticipation was found to be invariant to the walking
velocity [27] and to the turning angle (from 22◦ to 135◦) [31]. Interestingly, this did not depend on the
turn strategy, as there were no significant differences in results from experiments where users were
told to walk along a trajectory painted on the floor from results from other experiments where users
could freely negotiate the turn [31]. The work [17] reported a larger anticipation distance of 2.1 m.
Similarly, in [30], authors reported anticipation to the turning point in the range of 2–4 m. These results,
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consistent for each work but greatly diverging between different references, might advance that the
actual anticipation distance may depend on the type of turn and its environmental constraints.

5. Considerations about Turn Prediction Systems from Upper Body Kinematics in
Human-Robot Interaction

The previous analysis finds a direct application in human-robot interaction. It revealed that Head
Yaw is the earliest variable affected by the turning maneuver with an adequate degree of reliability.
As Head Yaw predicts anticipated trajectory heading, based in the correlation-based studies in Table 1,
it can be used to elaborate advanced predictive models of the spatial occupancy of the subject for the
“goal-free motion prediction” problem [3]. At the moment, quite simplistic models have been used for
this purpose, mainly based on the projection of the current position of the subject using the current
velocity and trajectory heading direction [1,3]. Head Yaw/Trunk Roll can also be used to predict in
time an upcoming turning maneuver (onset-based studies, Table 1), and therefore, can be used to
predict the specific destination or walking direction when a finite number of possibilities are available
(“goal-based motion prediction” problem [3]).

From a safety point of view, robot motion planning in human robot collaboration that considers
turn prediction from Head Yaw or Trunk Roll has to be used with caution. Head Yaw is the preferred
behavior during turning [19]. However, head rotations are neither a necessary nor a sufficient
component of steering control [39]. With regard to Trunk Roll, the reliability of the anticipation
is lower, even though the anticipated detection of walking turns can be useful to increase comfort or
perceived safety. An appropriate sensor-based dynamic robot motion planning [40] with improved
proxemic behavior can be achieved by controlling the movement synchronization or the separation
distance with the human. For a walking velocity of 1.6 m/s, an anticipation to the trajectory change
around 200 ms may permit to forecast the position of the subject about 0.32 m ahead. This anticipation
can be relevant for human-robot teams interacting at an intimate distance (up to 0.46 m), but also at
a personal distance (0.46 m to 1.2 m) or even at a social distance (1.2 m to 2.4 m) [41]. However, for
larger distances of separation between the human and the robot, turn anticipation from these variables
is not expected to suppose a relevant improvement.

Many technical alternatives are available for the estimation of Head Yaw and Trunk Roll in
human-robot interaction applications. Optical motion capture systems require a precise deployment
of cameras and complex calibration procedures, which can be a limitation in some unstructured
interaction scenarios. As an alternative, wearable sensors attached to the body in clothes, hats,
headbands, glasses, etc., have been successfully applied to the early detection of turns [10,32].
The downside is that inertial sensors suffer from signal drift issues. However, this problem is
diminishing due to technological advances in the sensors and in the processing methods [42].

6. Scope of the Study

We have considered only healthy adult subjects (with an average age of about 27 from Table 2,
column 2). Turning strategies depend on the grade of maturity of children [21] and may also vary
for the elderly [43,44]. In any case, some results showed that anticipation may not be so different
for the elderly (Head Yaw-Trunk Yaw delay was found similar for young and elderly people [28]).
Additionally, our analysis was limited to subjects walking at normal velocities (average walking speed
of around 1.2 m/s from Table 2, column 2). No studies were found addressing this variable under
significant different walking velocities to permit to extrapolate this result to a general case.

For our study, we have combined results from experiments addressing diverse trajectories: corners
at different angles, 180◦ turns, limaçon, free trajectories, etc. (see Table 2, column 3). Thus, our analysis
can be interpreted from the point of view of walking performance under general turning conditions.
Likewise, all the experiments were run in a laboratory setup. It is open to investigation if they hold
for daily living conditions, although [11] supported this after a preliminary study in an industrial
environment. Another relevant question is that the experiments were designed such that subjects
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had to undertake turning maneuvers in previously unknown environments and conditions. Re-test
experiments to analyze the effect of habits or custom turns over the anticipation were not found in the
literature. However, we hypothesize that gaze/head anticipation would still remain in custom turns,
similar to the situation where gaze/head anticipation still happens in turns without vision ([20,23]).

The kinematics of head and trunk have been estimated in the addressed studies from optical
motion capture systems using different sets of body markers and anatomical models (see Table 1).
For our study, we have assumed that all these variables have been properly estimated in the original
work. However, the Body Centre Of Mass estimation from body kinematics is in itself a complex
problem. In the analyzed studies, different methods were used for that purpose to estimate the
medio-lateral displacement of body center of mass (see Table 1): from a 14-segment anthropometric
model including legs and arms in [24], from four trunk markers in [25], from head, neck and trunk
segment markers in [16] and from a “two-segments plus foot” anthropometric model [28]. Likewise,
no clear consensus has been found about how to define the actual trajectory of the subject or the actual
time of trajectory change: from the time when the subject is at the maximum curvature point of the
actual trajectory [21,22], using the tangent of head trajectory [12], from “the displacement vector of the
midpoint between the three trunk markers” [19], from the pelvis direction [20] or from “the projection
of the middle point of the head on the floor” [29]. It is not clear how these different procedures to
estimate body center of mass or trajectory heading may have affected the results. Finally, the methods
used for the estimation of the kinematics of the gaze (oculography and eye tracking) were quite diverse
and difficult to compare.

Different signal processing procedures have been applied in the addressed works to analyze the
time synchronization of kinematical variables (Turn Onset, Cross Correlation). What is more, in some
works, turn onsets were timed from a different reference event. This makes a raw comparison of the
quantitative reported values difficult. However, in our study, we differentially compared the turn onset
times found in each study. This makes it irrelevant whether onsets were defined from different events,
or even when different techniques were used to define them. Regarding the geographical anticipation
analysis, the considered studies addressed the initiation of turning with respect to a geographical
landmark (usually a corner pivot) defined consistently throughout the different works.

The previous factors, and other issues detected in our study such as missing data or varied
experimental conditions, make the quantitative aggregated results eventually provided in the
discussion only valid as indicative values. Additionally, standard deviation values reported in Table 4
have been occasionally calculated using a correlation factor of 0.85. This implies that variables (HY, TY,
TR, MLC) are supposed to be highly correlated.

7. Conclusions

Human-Robot interaction, and perhaps other scenarios where humans and machines interact,
may greatly benefit from automatic methods for human movement prediction. Even though human
movement performance has been extensively addressed in the neuroscientific and biomedical fields,
it has rarely been considered in this context and there is presently a real need to reinterpret the
state-of-the-art from the point of view of obtaining practical conclusions.

In this paper, we particularly addressed the control mechanisms of the human body that occur
during walking turns. To correctly negotiate changes of direction, some adaptations develop in the
upper body prior to the turning point. These adaptations are reflected in the kinematics of those upper
body segments, and thus, can be detected in real time to predict the occurrence of the turn. However,
some questions were still unanswered: what variables can be reliably used for that purpose and how
long in advance can one expect to anticipate the turn from them? Moreover, what is the expected
impact for human-robot interaction of anticipating walking turns from upper body kinematics?

To contribute to these research questions, we have compiled, analyzed and discussed a great
deal of evidence about the quantitative anticipation of walking turns from upper body kinematics.
On the one hand, our study supports the feasibility to anticipate the trajectory direction in unrestricted
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walking conditions from Head Yaw and Trunk Roll kinematics by around 200 ms in time. On the
other, it supports that they are the only kinematical major variables in the upper trunk that can be
used for that purpose from existing evidence thus far, as pelvis and trunk yaw have been found
to evolve simultaneously with the trajectory of the subject. Regarding Gaze Yaw, existing studies
advanced that it is perhaps the earliest predictor; however, more work is needed to quantify its utility
for practical applications.

Anticipating turns from Head Yaw and Trunk roll is a plausible, feasible and promising approach
using state-of-the-art sensors and simple signal processing methods. Its main contributions are
expected to occur in close proximity interaction scenarios, helping the robot to exhibit appropriate
proxemic behavior. However, this approach has to be used with caution from the point of view of
human safety, as anticipated head rotation is not a necessary part of steering control and trunk roll
does not exhibit a clear consistent behavior in the considered research.

Supplementary Materials: https://gitlab.com/simur/applsci-419915/blob/master/applsci-419915.zip.
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