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Abstract 14 

The impact of mining activities on the environment is vast. In this regard, many mines were 15 

operating well before the introduction of environmental law. This is particularly true of cinnabar 16 

mines, whose activity has declined for decades due to growing public concern regarding Hg 17 

high toxicity.  18 

Here we present the exemplary case study of an abandoned Hg mine located in the Somiedo 19 

Natural Reserve (Spain). Until its closure in the 1970s, this mine operated under no 20 

environmental regulations, its tailings dumped in two spoil heaps, one of them located uphill 21 

and the other in the surroundings of the village of Caunedo. This study attempts to outline the 22 

degree to which soil and other environmental compartments have been affected by the two 23 

heaps.  To this end, we used a novel combination of multivariate statistical, geostatistical and 24 

machine-learning methodologies. The techniques used included principal component and 25 

clustering analysis, Bayesian networks, indicator kriging, and sequential Gaussian simulations. 26 

Our results revealed high concentrations of Hg and, secondarily, As in soil but not in water or 27 

sediments. The innovative methodology abovementioned allowed us to identify natural and 28 

anthropogenic associations between 25 elements and to conclude that soil pollution was 29 

attributable mainly to natural weathering of the uphill heap. Moreover, the probability of 30 
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surpassing the threshold limits and the local backgrounds was found to be high in a large 31 

extension of the area.  32 

The methodology used herein demonstrated to be effective for addressing complex pollution 33 

scenarios and therefore they are applicable to similar cases. 34 

Keywords: Mercury, multivariate statistics, soil pollution, machine learning, geostatistics. 35 

 36 

1. Introduction 37 

In the last two centuries, industry, mining and traffic have left a notable anthropogenic footprint, 38 

which is reflected across environmental compartments (Wang and Yang, 2016). In this era, 39 

pollution has been particularly striking not only in urban systems (Biasioli et al., 2007; Boente 40 

et al., 2017; Zacháry et al., 2015) but also in natural or rural zones, where the safety of 41 

ecosystems is seriously threatened (Vitousek et al., 1997). Although industries are not 42 

frequently located in the latter areas, mining is a case apart as the geographical distribution of 43 

ores usually determined the initiation of mining activities, thus implying considerable 44 

disturbance of the local biogeography and biodiversity (Bamberger and Oswald, 2015; Venter et 45 

al., 2016). 46 

National or Natural Reserves are protected in many countries. The designation of new reserves 47 

often hampers urban projects, opening up a debate about development vs. sustainability 48 

(Castillo-Eguskitza et al., 2017). Nevertheless, environmental awareness is a relatively modern 49 

concept and related laws were introduced only in the last decades of the 20th century. However, 50 

mines have been operating since the dawn of humanity and with marked intensity since the 51 

industrial revolution (Abraham et al., 2018). Therefore studies to address the impact of mining 52 

on these protected areas worldwide  have proliferated in recent years (Abraham et al., 2018; de 53 

Mahiques et al., 2013; Hilson and Nyame, 2006; Li et al., 2018; Sánchez-Chardi et al., 2009; 54 

Zapico et al., 2017). 55 
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In the abovementioned context, mining is a frequent source of potentially toxic elements 56 

(PTEs); i.e. metallic elements or metalloids which can seriously disturb the environment and 57 

pose a threat to human health when present in high concentrations (Huamain et al., 1999). 58 

Among PTEs, Hg is a highly toxic element, even at very low concentrations, and especially 59 

when methylated (Syversen and Kaur, 2012). Moreover, it is easily absorbed, biomagnified and 60 

bioaccumulated within the food chain. Given these considerations, the EU launched a strategy 61 

in 2005 to reduce Hg emissions. In addition, under the recent the UN Minamata Convention on 62 

Mercury (2017), countries are required to put into place measures to control sources of Hg 63 

pollution (Evers et al., 2016), thus renewing interest in studying this pollutant. 64 

In the context of southern Europe, Spain has historically been one of the major Hg exporters. 65 

Special mention is given to the Almadén district (Jiménez-Moreno et al., 2016), the largest Hg 66 

deposit ever found, although there were other important Hg-mines in northern Spain, such as La 67 

Soterraña and El Terronal, which have been widely studied as a result of their dramatic 68 

environmental impact (González-Fernández et al., 2018; Matanzas et al., 2017). 69 

However, the effects of other abandoned Hg-sites should not be overlooked. In this regard, here 70 

we addressed the exemplary site of Caunedo (Fernández et al., 2017), which is located in the 71 

region of Asturias (NW Spain) within the Somiedo Nature Reserve. This Hg-mining area 72 

operated without environmental control until its closure in the 1970s.  73 

Thus, in the context of pollution, it is pertinent to assess the distribution of Hg and other PTEs, 74 

and their bioavailability and toxicity in this protected area. To this end, here we propose a 75 

methodology that combines classical and contrasted statistical methodologies for PTE 76 

identification and risk estimation (McIlwaine et al., 2014; Mohmand et al., 2015) with machine-77 

learning algorithms (Barzegar et al., 2018; Betrie et al., 2013) and geostatistical simulations 78 

(Benndorf, 2013). In this context, geostatistics allows establishment of the value of a variable 79 

using probabilistic models. For instance, the content of an element (e.g., Hg) in soil can be 80 

estimated by means of indicator kriging or by the index of geoaccumulation (Chakraborty et al., 81 

2017; Škrbić et al., 2018). Results may be more robust when powerful interpolation methods are 82 
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applied,  such as sequential Gaussian simulation (SGS), which involves dozens of simulations 83 

using optimizing mathematical algorithms (Boluwade and Madramootoo, 2015; Nunes and 84 

Almeida, 2010; Qu et al., 2014). However, to get a full picture of the nature of a given pollution 85 

problem, it is also necessary to understand how the different variables (element contents, 86 

geochemical backgrounds, etc.) are interlinked. This is where machine-learning procedures are 87 

required, since they provide key insights regarding the relationships between pollutants and 88 

other elements, thus increasing our knowledge of the variables of interest  (Ransom et al., 2017; 89 

Sui et al., 2016). In this regard, machine-learning methods based on Bayesian networks have 90 

experienced a recent boom and have started to be applied in geochemistry (Albuquerque et al., 91 

2017), including studies on pollutant removal (Fan et al., 2018) and the monitoring of wetlands 92 

(Whyte et al., 2018).  93 

Overall, the present study has a double objective. On the one hand, it seeks to assess and 94 

disclose the impact of a paradigmatic abandoned Hg-mine and waste heaps located in a nature 95 

reserve. On the other hand, it aims to provide effective methodological approaches based on the 96 

techniques mentioned above that can be extrapolated to other sites affected by Hg pollution. 97 

 98 

2. Materials and methods 99 

2.1 Site description 100 

Caunedo is located in the Somiedo Nature Reserve (Asturias, Spain, see Figure 1). This area is 101 

the natural habitat of endangered animal and plant species, including Ursus arctos (brown bear), 102 

Tetrao urogallus (capercaillie), and also taxaceae (taxus) and Ilex aquifolium (holly), among 103 

others (Naves et al., 2001; Nores et al., 2008). 104 

The presence of a Hg mineral deposit (cinnabar) embedded within limestone and dolomite 105 

layers attracted mining companies to this area between the 1940s and 1970s (Luque and 106 

Gutierrez-Claverol, 2006). Cinnabar was extracted from several sloping planes undermined by 107 
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the room and pillar method. The ore was transported to treatment plants close to other more 108 

relevant Hg mines, while mine waste was indiscriminately dumped in two spoil heaps. Although 109 

the area was officially included in the Spanish national inventory of polluted soils in 2001, no 110 

remediation work has been done until now (Fernández et al., 2017). 111 

In the context of pollutant mobility, topography plays an important role in this study. Boundary 112 

altitudes range from 900 m to 1200 m for a relatively minor area of study site (0.37 km2) located 113 

on the western hill of an enclosed valley, with slopes that average 30%. These features facilitate 114 

the formation of surface runoff, as well as a strong downhill wind that fosters pollutant 115 

dispersion. 116 

117 
Figure 1. Location of the Caunedo study area within the Nature Reserve in the Municipality of 118 

Somiedo (Asturias, NW Spain). 119 

 120 

2.2 Sampling design: Collection and preparation 121 
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Initially, topography and surficial hydrology were determined by means of a Light Detection 122 

and Ranging (LiDAR) model with an extension of 2000x2000 m and a density of 0.5 points/m2. 123 

This approach allowed us to obtain a Digital Terrain Model (DTM) with a spatial resolution of 124 

1x1 m.  125 

The contour of the study area was defined in terms of a 30 m buffer for soil samples in the 126 

entire area, except in the northern part (Fig. SM1), where a 150 m buffer was established due to 127 

the impossibility of sampling in this area. 128 

Regarding soils, 61 samples were taken. Most of these samples were collected in the 129 

hypothetical area of influence of the two spoil heaps, while a minor number were taken at points 130 

considered optimal for the evaluation of the geochemical background. Each sample was 131 

composed by five increases taken from each vertex of a 1 m edge square and its central point, 132 

from the top 20-25 cm of the soil, by means of an Edelman Auger. Afterwards, samples were 133 

passed through a 2 cm mesh screen in situ to remove large material such as organic matter, 134 

rocks, and gravel. The samples were transported to a laboratory, where they were dried in an 135 

oven at 30ºC to prevent the evaporation of Hg. They were then passed through a 2 mm mesh 136 

screen and the particles with a diameter of < 2 mm were quartered via a Jones riffle splitter for 137 

soil homogenization and ground in an RS100 Retsch mill at 400 RPM for 40 s until reaching < 138 

100 μm. 139 

In addition, five waste samples were taken: two in the western spoil heap, and three in the 140 

eastern one. These samples were subjected to the same preparation treatment as soils. 141 

For water, the Somiedo river is the only water flow active throughout the hydrological year. 142 

Thus, another set of five samples were taken: one from an active drainage channel from the 143 

western heap and the remaining four from the course of the Somiedo river, two of them before 144 

and after the water intakes of the dumps and another two at intermediate points. Samples were 145 

collected in dry season, when the river flow is lower and consequently the concentration is 146 

expected to be higher due to a minor dilution effect. The gathering was done in polyethylene 147 
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bottles and then filtered by means of a 0.45 μm pore size mesh. The first few milliliters were 148 

used for rinsing and were then discarded. The filtrate was transferred to clean polyethylene 149 

bottles and then acidified with HNO3 to pH < 2 prior to storage below 4ºC until analysis. 150 

Finally, four composite sediment samples were taken with a sediment sampler along the 151 

Somiedo river, very close to the site where the water samples were collected. These samples 152 

were subjected to the same preparation treatment as soils. 153 

The sampling area and different points mentioned above are shown in Figure 2. In addition, a 154 

3D-representation of the zone by means of Lidar technology is provided in the supplementary 155 

material (Fig. SM1). 156 

 157 

Figure 2. Bi-dimensional view of the study area: soil, water and sediment samples. Rounded soil 158 

samples were used to calculate the background. Western and eastern spoil heaps and surface 159 

run-off are also indicated.  160 
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 161 

2.3 Chemical analyses 162 

1 g representative sub-samples of soils, wastes and sediments were sent to the ISO 9002-163 

accredited Bureau Veritas Laboratories (Vancouver, Canada) and subjected to 1:1:1 “aqua 164 

regia” digestion. The total concentrations of the elements Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, 165 

Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W 166 

and Zn in the digested material were determined by Inductively Coupled Plasma-Mass 167 

Spectrometry (ICP-MS) by means of the Ultratrace AQ250 analytical package of the above 168 

mentioned laboratory (Detection Limits (mg·kg-1) of As (0.1) and Hg (0.005)). Five blanks 169 

(analytical and method), five duplicates, and ten analyses of standard reference materials 170 

(internal standards and OREAS45EA) were inserted in the sequences of samples to provide a 171 

measurement of background noise, accuracy and precision. 172 

Regarding water samples, eight PTEs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were quantified by 173 

means of an Inductively Coupled Plasma Mass Spectrometer (ICP-MS 7700, Agilent 174 

Technologies) using IDA (Isotopic Dilution Analysis). In addition, the main cations and anions 175 

were analyzed by ion chromatography (883 Basic IC plus, Metrohm). pH and conductivity were 176 

measured in situ using Hach Lange HQ electrodes (HQd Series Field Probe Kit). 177 

To evaluate the mechanisms that regulate the release and mobility of As and Hg, selected soil 178 

samples were also subjected to a sequential extraction similar to that proposed in Tessier et al., 179 

(1979) (see results). In brief, extracts with reagents of increasing strengths were taken from 2.5 180 

g samples, and exchangeable, carbonate-bound, Fe-Mn oxide bound, organic matter-bound and 181 

residual fractions were then obtained (Boente et al., 2017). Fractions were analyzed for PTE 182 

content by means of IDA-ICP-MS. 183 

In the same samples, Hg and As speciation was also determined in order to identify the 184 

proportion of methyl- and ethyl-Hg and As (III), which are more toxic than inorganic Hg and As 185 

(V) respectively. The species were separated and subsequently quantified in a 1260 Infinity 186 

HPLC coupled to a 7700 ICPMS (Agilent Technologies), as detailed in Gallego et al., (2015). 187 
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 188 

2.4 Descriptive statistics 189 

For all the elements analyzed in the soil samples, the mean, median, standard deviation (SD) 190 

and relative standard deviation (RSD) were calculated. 191 

The same database was subjected to a Factor Analysis by means of Principal Component 192 

Analysis (PCA). As proposed for geochemical data (Reimann and De Caritat, 2005), factor 193 

extraction was determined by the Kaiser/Gutmann criterion, whereas the Varimax/Orthogonal 194 

rotation was applied to minimize the number of variables with high loadings. To obtain groups 195 

of samples with similar geochemical profile, the factor score matrix was used as an input for a 196 

cluster analysis. This hierarchical procedure applied the Ward’s algorithm and the Squared 197 

Euclidean distance, maximizing the variance between groups and minimizing it between 198 

members of the same group (Murtagh and Legendre, 2014). 199 

Additionally, 16 of the 61 soil samples were used to estimate the local background for each 200 

element (Fig. 2). These samples were meticulously chosen from locations outside (upstream) 201 

the direct influence of the heaps or in the eastern bank of the Somiedo river (also not affected by 202 

the heaps influence).  Regarding local background, it is a concentration range that was 203 

calculated as the mean plus-minus two times the standard deviation of the 16 samples—the 204 

same expression as that used for the official threshold limits of the region of Asturias 205 

(Fernández et al., 2018)-, the upper value of this range is the local Soil Screening Level (SSL); 206 

i.e. the level of concentration  in soil (threshold) above which there is concern enough to 207 

warrant site-specific study of risks (USEPA, 2007). 208 

2.5 Bayesian simulation 209 

The main potential contaminant, Hg, was the focus of an in-depth study of its patterns and 210 

distribution. A machine-learning approach based on a supervised Bayesian network was used to 211 

gain insights into the relationship between Hg and the other PTEs.  To this end, a direct acyclic 212 

graph (DAG) was machine-learnt from data, where the probabilistic relationships based on the 213 
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probability distributions of the elements’ concentrations maximized the prediction of the 214 

variable of interest (Hg). Given the possibility of Bayesian machine-learning for reasoning 215 

under uncertainty through the application of information theory, the mutual information (I) was 216 

computed between Hg and each PTE. The mutual information of two discrete random variables 217 

X and Y is defined as:  218 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)

  𝑦 ∈ 𝑌

 𝑙𝑜𝑔2 

𝑥 ∈ 𝑋

𝑝(𝑥, 𝑦)

 𝑝(𝑥)𝑝(𝑦) 
 (1), 

where p(x,y) is the joint probability distribution of X and Y, and p(x) and p(y) are the marginal 219 

probability distributions of X and Y. This computation allows identification of the PTEs that 220 

provide maximum information regarding the presence of high concentrations of Hg.  221 

The statistical study was completed with a sensitivity analysis. Given the aleatory uncertainty of 222 

sample collection, the risk of pollution is expressed in terms of confidence intervals. To this 223 

end, a Monte Carlo simulation was performed to generate 5,000 Bayesian networks for 224 

measuring how the joint probability distribution was modified. BayesiaLab software v. 7.0.1. 225 

was used for simulation. 226 

2.6 Geostatistical modeling 227 

The spatial characterization of Hg distribution was performed through a 3-step approach: 228 

i) Structural analysis - experimental variograms were computed and theoretical models fitted 229 

(Journel and Huijbregts, 1978). For computation, SpaceStat V. 4.0-.18. software 230 

(https://www.biomedware.com/) was used. 231 

The variogram is a vector function used to calculate the spatial variability of regionalized 232 

variables defined by the following equation: 233 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

2𝑁(ℎ)

 
(2), 

https://www.biomedware.com/
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Its argument is h (distance) where Z (xi) and Z (xi+h) are the numerical values of the observed 234 

variable at points xi, and xi+h. The number of forming pairs for a h distance is N (h). Thus, it is 235 

the median value of the square of the differences between all pairs of points in the geometric 236 

field spaced at a h distance. The graphic study of the variograms obtained provides an overview 237 

of the spatial structure of the variable. The nugget effect (Co) shows the behavior at the origin, 238 

whereas the sill (C1) and the amplitude (a) define the inertia used in the interpolation process 239 

and the influence radius of the variable, respectively. 240 

ii) To evaluate Hg behavior, indicator variables were constructed, in terms of the background 241 

applied. The indicator kriging algorithm is a non-parametric geostatistical method for estimating 242 

the probability of exceeding a specific threshold value, zk, at a given location. In indicator 243 

kriging, the stochastic variable, Z(u), is transformed into an indicator variable with a binary 244 

distribution, as follows (Goovaerts, 1997): 245 

𝐼(𝑢; 𝑧𝑘) = {
1, 𝑖𝑓 𝑍(𝑢) ≤ 𝑧𝑘 , 𝐾 = 1,2, … , 𝑚
0,                                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3), 

iii) Sequential Gaussian simulation (SGS) was used as a stochastic simulation algorithm for the 246 

construction of Hg spatial distribution scenarios. SGS starts by defining the univariate 247 

distribution of values. A normal score then transforms the original values to a standard normal 248 

distribution. Simulation of normal scores at grid node locations is done sequentially with simple 249 

kriging (SK) using the normal score data and a zero mean (Goovaerts, 1997). Once all normal 250 

scores have been simulated, they are back-transformed to original grade values. The outcome of 251 

a simulation is a twisted version of an estimation process, which reproduces the statistics of the 252 

known data, making a realistic view, but supplying a low prediction behavior. However, if a 253 

multiple sequence of simulations is designed, it is possible to obtain more reliable probabilistic 254 

maps. 255 

A hundred simulations were performed, and the average image was computed, together with the 256 

Standard Deviation for spatial uncertainty visualization (Albuquerque et al., 2017).  257 

 258 
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3. Results and discussion 259 

3.1 Pollution sources 260 

The sources of pollution were appropriately identified and delimited. They consisted of two Hg-261 

mining spoil heaps, named western heap and eastern heap. The western heap is located 1200 262 

m.a.s.l., while the eastern one is 500 m away from the former and at 1000 m.a.s.l. Moreover, the 263 

western dump is exposed to mechanical dispersion, while the eastern dump is embedded in a 264 

flat area within the village of Caunedo. Each heap is located in a different water basin (Fig. 2), 265 

and therefore there is no interaction between them from the hydrological point of view. 266 

Chemical analysis revealed that the Hg concentration in the western heap surpassed 3000 267 

mg·kg-1 at specific points. In the eastern heap, the maximum Hg concentration found was 114 268 

mg·kg-1. In contrast,  As presented maximum values of 194 mg·kg-1 in the eastern heap and 127 269 

mg·kg-1 in the western one.  270 

 271 

3.2 Pollution in environmental compartments 272 

3.2.1 Soil pollution 273 

The results of the multielement analysis are shown in Table 1. Descriptive statistics were 274 

calculated for the 61 samples collected and analyzed, while local Soil Screening Levels, as 275 

stated before, were assessed by taking into consideration only 16 of the 61 meticulously selected 276 

samples from unpolluted soils (Fig. 2). 277 

First, a range column allowed us to identify those PTEs that surpassed the legal limits. These 278 

limits are defined by the Risk-Based Soil Screening Levels (RBSSL) of the Asturias region, 279 

(BOPA, 2014); the remaining elements analyzed do not have RBSSL given that they are not 280 

considered contaminants of concern, and therefore they are not shown in Table 1. Thus, As, Co, 281 

Hg, Sb and V were the only elements that exceeded the limits set for Asturias on at least one 282 

occasion. On the other hand, the mean and median values were similar and low RSD (roughly 283 
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between 40 and 55%) for almost all the elements under study were observed, with the exception 284 

of Hg and Sb whose values exceeded 100%. 285 

Focusing on those elements that exceeded the regional RBSSL, in the first place, Co and V 286 

exceeded the limits in only one sampling point but not significantly. The limit for Sb was also 287 

narrowly surpassed but in only two samples. Given that these three elements are less toxic than 288 

than As and Hg, they were not included in the study.  289 

As regards As and Hg, both elements tend to appear together in the Hg-mining districts of 290 

Asturias (González-Fernández et al., 2018). However, in our case the relationship is not so clear  291 

given that As exceeded the official limits in only 5 samples and showed a low RSD, whereas Hg 292 

surpassed the limits in 53 of the 61 samples, showing  a high RSD and very different mean 293 

(13.1 mg·kg-1) and median (6.9 mg·kg-1) values, thus highlighting the irregular distribution of 294 

this element in the area. 295 

Table 1. Regional RBSSL (BOPA, 2014) for Asturias. Descriptive statistics (range, mean, 296 

median, standard deviation and RSD) for the analysis of 61 soil samples from the Caunedo area. 297 

And local SSL for the Caunedo study area (mean of the 16 background samples + 2 times their 298 

standard deviation –see Fig. 2- ) are also provided. All units are expressed in mg·kg-1, except 299 

RSD, which is expressed as a %. 300 

Element Regional RBSSL  Local SSL  Range Mean Median SD RSD 

As 40.0 37.7 2.9 - 69.4 22.9 21.5 12.5 54.4 

Ba 1540.0 353.5 40.0 - 530.0 173.9 150.0 97.3 55.9 

Cd 2.0 0.4 0.1 - 0.5 0.1 0.1 0.1 52.4 

Co 25.0 20.3 0.6 - 29.1 12.4 13.0 5.4 43.5 

Cr 10000.0 26.0 4.0 - 43.0 14.7 14.0 8.4 57.0 

Cu 55.0 24.1 4.4 - 30.3 17.3 18.4 6.0 34.6 

Hg 1.0 2.5 0.09 - 50.0 13.1 6.9 14.7 111.6 

Mn 2135.0 1185.9 23.0 - 1274.0 608.3 692.0 268.6 44.2 

Mo 6.0 1.2 0.2 - 1.8 0.6 0.5 0.3 49.6 

Ni 65.0 39.9 2.6 - 35.6 20.7 23.3 8.3 40.2 

Pb 70.0 27.1 7.8 - 34.7 19.5 19.3 5.8 29.9 

Sb 5.0 1.1 0.1 - 11 0.9 0.6 1.5 162.3 

V 50.0 41.2 7.0 - 58.0 21.5 20.0 9.3 43.0 

Zn 455.0 106.4 11.0 - 134.0 71.3 75.0 31.1 43.6 

 301 
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All things considered, it can be concluded that Hg is the leading contaminant in Caunedo, 302 

followed by As, but to a much smaller extent. Given these observations, we focused our study 303 

on Hg and As since the other PTEs studied could not be considered contaminants due to their 304 

dispersion and low concentration. 305 

3.2.2 Water pollution 306 

As described above, water samples were taken from various parts of the Somiedo river and from 307 

an active mine drainage channel flowing from the western heap (Fig. 2). Hydrochemical 308 

analyses revealed that all the samples corresponded to calcium bicarbonate waters with values 309 

of pH between 7.6 - 7.9 and conductivity ranging between 263 - 285 μS/cm. Being all values 310 

stable and in the range of low salinity and slightly alkaline waters. 311 

This observation is coherent with the content of PTEs, whose concentrations were lower than 312 

those established in environmental standards:  very low in the case of As (0.15-0.48 μg/l) or 313 

even under detection limits for Hg (< 0.1 μg/l). The absence of PTE in waters suggests that the 314 

flow rate of surface runoff that crosses the heaps, together with the residence time that this 315 

water is in contact with polluted soils, is insufficient to cause significant dissolution of the PTEs 316 

in water. However, the mechanical dispersion of the contaminants from the heaps is clearly 317 

noticeable in soils adjoining surface run-offs (Lillebø et al., 2011). Thus, it can be concluded 318 

that neither the waters of the area nor the principal stream are affected by PTE pollution. 319 

3.2.3 Sediment pollution 320 

For the four sediment samples taken from the Somiedo river, the PTE content was within the 321 

background of soils for all 37 elements. The samples showed highly stable concentrations (e.g. 322 

17.6-19.1 mg·kg-1 for As and 0.12-1.83 mg·kg-1 for Hg), except one (the nearest point to eastern 323 

heap, Fig. 2), which registered up to 8.65 mg·kg-1 of Hg. Since there were no indications of 324 

pollution upstream, and bearing in mind the proximity of this sample site to agricultural plots 325 

near the eastern heap, a local disposal of former mining waste is the most likely cause of the 326 

presence of Hg in this sediment.  327 
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3.2.4 Bioavailability and toxicity 328 

Sequential extraction was applied to three soil samples that considerably exceeded the regional 329 

RBSSL for Hg and As. Two of the samples were taken close to the heaps and the third was from 330 

the bottom of the valley. Considering the two first fractions obtained in the Tessier method as 331 

bioavailable, the results revealed very low ranges of bioavailability, between 0.40 and 0.85 % 332 

for As and between 0.01 and 0.02% for Hg. Consequently, potential absorption by plants is 333 

considered limited. 334 

In a different approach to potential toxicity effects, the presence of As (III) was perceivable but 335 

very low (1 mg·kg-1 average out of 20 mg·kg-1) for the three samples analyzed, As (V) being the 336 

minor toxic variant prevailing. For Hg, the same was observed: methyl mercury, CH3Hg+, 337 

presenting low concentrations (1 mg·kg-1 average out of 40 mg·kg-1) in comparison with the 338 

inorganic species of Hg.  339 

On the basis of the results in this section, it can be concluded that there is no risk of transmitting 340 

toxicity through the food chain and that contamination is largely restricted to soils.  341 

 342 

3.3 Patterns, distribution and associations of contaminants in soils 343 

As soils were identified as the only heavily polluted matrix, we performed a more in-depth 344 

study of them. First, results of a factor analysis (PCA and varimax rotation) for the multielement 345 

data are shown in Table 2. The factors extracted accounted for more than 85% of the total 346 

variance.  347 

Factor 1 (F1) presents high loadings for natural elements that do not represent a risk in the area 348 

and that are probably linked to soil minerals such as silicates, Fe-Mn oxides and some clays 349 

(high loads in Fe, Mn and K). Factor 2 (F2) is probably also related to clayey material (high V 350 

and Al loads). Factor 3 (F3) is related to carbonates (high Ca and Sr), and Factor 4 (F4) to 351 

cinnabar mineralization, being the group that presents most loadings for Hg, As and Sb. This 352 
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association is typical in natural quartz-vein deposits and it is coincident with elements labeled as 353 

“enriched” in section 3.1 (Hg deposits). Despite these observations, low loading for Hg in all 354 

factors revealed that a large part of Hg is highly independent of the rest of elements. 355 

Table 2. Factor loadings, percentage of variance explained by the Varimax-rotated factors 356 

(extracted by principal components) and communalities. Element loadings higher than 0.6 are 357 

marked in bold. 358 

      

Element F1 F2 F3 F4 Communality 

Co 0.95 0.23 0.00 0.14 0.97 

Sc 0.92 0.28 0.15 0.10 0.95 

Ni 0.91 0.29 0.15 0.15 0.96 

Mn 0.90 0.24 0.04 0.23 0.93 

K 0.90 0.10 0.03 -0.05 0.82 

Th 0.87 0.36 0.13 0.00 0.90 

La 0.86 0.26 0.06 -0.14 0.83 

Cu 0.82 0.10 -0.27 0.31 0.85 

Fe 0.82 0.43 -0.02 0.21 0.90 

Zn 0.73 0.49 -0.01 0.33 0.87 

Ba 0.65 -0.06 -0.49 0.03 0.67 

V 0.29 0.89 0.15 -0.05 0.91 

Ga 0.34 0.85 0.12 0.00 0.86 

Mo -0.02 0.83 0.15 0.20 0.74 

Cr 0.54 0.78 0.16 0.07 0.93 

Al 0.62 0.73 0.22 0.02 0.96 

Pb 0.46 0.70 -0.19 0.26 0.81 

Sr 0.12 0.05 0.87 -0.13 0.79 

Ca 0.31 0.11 0.86 0.30 0.94 

Na -0.25 0.40 0.71 0.00 0.73 

Mg 0.45 0.16 0.57 0.47 0.79 

Hg 0.33 0.05 -0.63 0.51 0.77 

Sb -0.17 0.08 0.05 0.92 0.88 

Au 0.22 0.05 -0.02 0.86 0.80 

As 0.43 0.51 0.01 0.58 0.78 

Cumulative explained  

variance (%) 

52.23 67.20 77.25 85.29 

 

 

 359 
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A step further implied the clustering of soil samples. Five clusters of samples were identified 360 

(Figure 3). Cluster 1 (C1) and Cluster 2 (C2) are related to natural material. Taking geology into 361 

consideration, the first would be related to F1, the siliceous component, and the second to F2, 362 

the calcareous one on the eastern bank of the river. Both correspond to background samples in 363 

unpolluted soils. Cluster 3 (C3) mixes background samples with others that present anomalous 364 

levels of Hg, surely influenced by the composition of the western heap. Clusters 4 and 5 (C4 365 

and C5) have the largest number of samples and geographical scattering. This observation might 366 

be attributable to the influence of Hg. In general, C4 holds natural samples in the boundaries of 367 

the study area but that sometimes present high concentrations of Hg. Finally, sample core of C5 368 

is located in farms or pasturelands alongside the river, comprising areas with human influence 369 

in the downstream of the western heap and also with a relatively high content of Hg. 370 

 371 

Figure 3. Graphical clustering according to Ward’s algorithm. 372 
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 373 

To gain a better understanding of the Hg fate in the soils of Caunedo, a supervised machine-374 

learning procedure was performed. As a result, a supervised Bayesian network was constructed 375 

(Fig. 4) to characterize the target node (Hg). To create the model, a package of supervised 376 

learning algorithms included in the BayesiaLab software was executed. Upon assessing the 377 

network performance for each algorithm using k-fold cross-validation, Augmented Naive Bayes 378 

was the algorithm with the highest precision for this problem domain.  379 

The algorithm selected produced a model (Fig. 4a) with a double architecture made up of a 380 

naive structure (gray arrows), enriched by an unsupervised search of relations (black arrows) 381 

between the remaining nodes in the network that maximize the prediction of the target node 382 

(Catal et al., 2011; Webb et al., 2005).  383 

First, the model provides conceptual knowledge about the relationships influencing the presence 384 

of high levels of Hg. Second, a mutual information analysis was carried out from the Bayesian 385 

network generated, in order to capture the strength of relationship between the Hg and the rest 386 

of the PTEs. In Fig. 4b a quadrant map plots the mutual information for each element regarding 387 

their normalized mean concentration. As can be appreciated, the elements that present higher 388 

mean concentrations also show a higher informative content for Hg. Additionally, if the 389 

maximum value that the entropy of Hg can take for this study is considered, normalized mutual 390 

information can be obtained, resulting in descending order: Cu (14.64%), Pb (13.37%), Zn 391 

(11.41%), Mn (10.46%), As (10.41 %), Ni (9.83%) and Co (9.67%). In other words, knowing 392 

the concentration of Cu, the most influential element found, the uncertainty regarding Hg is 393 

reduced on average by 0.292 bits, which can be translated to a 14.64% of gain of information. 394 

This can be considered a low-to-moderate gain, thus certifying the independent behavior of Hg 395 

previously observed. On the other hand, with the exception of As, which is the second 396 

contaminant, and Pb, the remaining PTEs belong to the aforementioned factor of natural 397 

elements (F1) that appears in low concentrations. The findings of this section demonstrated the 398 
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independent geochemical behavior of Hg in the study area, and strongly proposed its connection 399 

with the Hg-mining works and the spoil heaps. 400 

 401 
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 402 
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Figure 4. Machine-learning analysis. a) Supervised Bayesian network built with an Augmented 403 

Naive Bayes algorithm for Hg characterization. The naive structure is represented by gray 404 

arrows, while the secondary (augmented) structure is shown with black arrows. b) Quadrant 405 

mapping representing the mutual information supplied by each element related to Hg. 406 

 407 

The machine-learning procedure ended with a test of sensitivity (Fig. SM2).  Discretization 408 

defined three states labeled as the desirable 0 – 1 mg·kg-1 (regional RBSSL), 1 –2.5 mg·kg-1 and 409 

> 2.5 mg·kg-1 (local SSL). In brief, the results obtained for a 95% confidence level showed that 410 

a random sample collected in Caunedo would carry an average probability of 73.5% of being 411 

over the local SSL, whereas the regional RBSSL would be exceeded on average in 88.5% of the 412 

cases.  413 

 414 

3.4. Iso-probability maps  415 

The use of indicator geostatistics allows mapping of the probability of attribute values 416 

exceeding a certain cut-off value. These probability maps are useful for decision makers as they 417 

are easy to interpret and as many maps as thresholds of interest can be produced (Ribeiro et al., 418 

1997). In the present application, the two adopted cut-off values were 2.5 ppm, corresponding to 419 

the local SSL (Indicator I1 – local background), and 1 ppm, corresponding to the regional 420 

RBSSL (Indicator I2). Fig. 5 shows the experimental omnidirectional variograms fitted by 421 

spherical models for the two indicator variables. For both indicators, the nugget effect was 422 

between 0 and 25% of the total variance and the range was between 300 to 350 m, defining the 423 

inertia used in the interpolation process (over 75%) and the variable structure influence zone, 424 

respectively. The probability maps, generated by indicator kriging, are shown in Fig. 5a. The I1 425 

probability map shows a strong central anomaly corresponding to the main water drainage 426 

direction from abandoned mines (Fig. 5a (left)). Concerning I2, the probability of exceeding the 427 

regional background (1 ppm) was higher than 50% for almost the entire survey area (Fig. 5a 428 

(right)). 429 
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These high probabilities for Hg soil contamination indicate that the soil surpasses the RBSSL 430 

and, in addition, that it is highly enriched in Hg as a consequence of the human footprint, as 431 

mentioned in previous sections. 432 

3.5. Hg spatial patterns and associated spatial uncertainty 433 

A hundred simulations were performed using Sequential Gaussian Simulation (SGS) on a 100 x 434 

100 m grid. These simulations were used to generate 100 equiprobable scenarios as a 435 

conditional stochastic simulation of the distribution of Hg concentrations (Fig. 5b (left)) and the 436 

special uncertainty – Standard Deviation – (Fig. 5b (right)). As no single realization can be 437 

taken as a better representation of reality, the average spatial image (AI) is then used to assess 438 

the Hg spatial distribution pattern, while the spatial variability image (standard deviation map) 439 

allows quantification of spatial uncertainty. This shows the normal score experimental 440 

omnidirectional variogram for Hg fitted by two nested spherical models. The nugget effect is 441 

about 45% of the total variance and a range of 300 m, defining the inertia used in the 442 

interpolation process (65%) and the variable structure influence zone, respectively. 443 

The spatial patterns allowed the classification of two different zones of Hg contamination: The 444 

northern area (high associated spatial uncertainty), and the southern (low associated spatial 445 

uncertainty). The former is clearly influenced by the western heap, and the degree of dispersion 446 

was found to be greater in the northern area. Indeed, this area of Caunedo is where remediation 447 

measures should be undertaken, prioritizing actions to address public health concerns associated 448 

with the western spoil heap. 449 
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 450 

Figure 5. Geostatistical analysis of Hg. a)  (Left) Experimental indicator variogram for I1 and 451 

the probability map for Hg content exceeding 2.5 ppm (local SSL); (Right) Experimental 452 

indicator variogram for I2 and probability map for Hg content exceeding 1 ppm (regional 453 

RBSSL). b) (Left) Omnidirectional variogram and fitted spherical models; (Right) Average 454 

Image (AI) and Spatial uncertainty (Standard Deviation). 455 

 456 

 457 
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4. Conclusions 458 

The present study sought to provide a group of tools to assess the environmental impact of 459 

derelict mines. The methodology used synchronized classical geochemistry, uni and 460 

multivariate statistics, machine learning/Bayesian networks, indicator kriging and sequential 461 

Gaussian simulations to simplify a complex database of  PTEs for the purpose of identifying 462 

pollutants and providing details of their patterns, relationships, origins and distribution. Our 463 

approach was successfully applied to the abandoned Hg mine of Caunedo, in the Somiedo 464 

Nature Reserve.  465 

It was observed that Hg and to a lesser extent As were the principal pollutants. Of the 466 

environmental compartments studied, mechanical dispersion via weathering agents (surface run-467 

off, winds, slope) affected only soils, while river sediments showed mild pollution coherent 468 

with the values found for soils. Water showed no pollution. The toxicity and bioavailability 469 

studies performed on the soils revealed that both Hg and As persisted in the environment mainly 470 

in the form of their less toxic chemical species. 471 

After identifying Hg as the main pollutant, we performed a detailed study of this PTE using 472 

multivariate statistics and Bayesian networks. The combination of techniques divided the 473 

samples into five clusters in which Hg was present in three, while Bayesian network revealed 474 

the independent behavior of Hg, for which the elements most contributing (although to a very 475 

low degree) to Hg pollution were Cu, Zn, Mn and As.  476 

Finally, the geostatistical study of Hg in soils revealed that almost the entire area surpassed the 477 

regional RBSSL (or legal concentration limits – 1 mg/kg for Hg) and even the local SSLs 478 

(natural enrichment). The western heap had a greater effect on the environment that the eastern 479 

heap, which was better encapsulated, and the geochemical anomalies were delimited for all  480 

directions except north. The harsh topography made it impossible to sample in these areas, 481 

given that rocky outcrops are prevalent in this direction. 482 
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Remediation measures should be applied in the spoil heaps since their influence on the soils of 483 

the Nature Reserve has been demonstrated. For the heaps, confinement and/or stabilization 484 

techniques should be considered followed by restoration techniques whereas for soils, 485 

phytoremediation approaches with autochthonous species could be a sustainable choice. 486 

In conclusion, the advances reported here allowed addressing properly each step of a 487 

characterization process: This included the identification of pollution sources (heaps), the 488 

delineation of the area impacted (geostatistical study), and the examination of the geochemical 489 

behavior of pollutants (by means of both multivariate and Bayesian approaches). This 490 

methodology may be extrapolated to other study cases focused on pollution by Hg or other 491 

heavy metal(loid)s mining. 492 
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