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Abstract—In the present work, the assumptions made by the
classical state estimation theory based on weighted least squares
are revised when this theory is applied to low voltage systems with
non-aggregated smart meters data. The measurement errors will
be analysed obtaining some interesting conclusions about their
probability density functions. Finally, these conclusions will be
validated by means of different power flow tests using different
smart meters set-up.
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I. INTRODUCTION

The massive installation of Smart Meters (SMs) in low
voltage distribution networks is a fact. By 2020, the European
Commission estimates that more than 200 million devices will
be installed [1]. In some countries like Spain, by December
2018, all domestic consumptions should be monitored using
SMs [2].

Nowadays, most of the distribution companies are using
this technology just for billing purposes. However, researchers
are proposing new applications for taking advantage of the
large amount of data and information provided by these
devices. These applications go from client segmentation or
other kind of data extraction like theft detection [3] to topology
observation [4], [5], faults detection [6] or phase identification
[7], [8].

One of the most studied and referenced application is
the state estimation of the distribution grid using the SMs
data [9]–[14]. The approaches to the problem are different,
but it could be concluded that most of the researchers
agree that conventional estate estimation techniques applied to
transmission systems must be updated and modified in order
to be applied to the distribution level [9].

Many efforts has been employed in the development of
new techniques and methodologies, but in some cases, some
assumptions of the classical state estimation theory have been
adopted as canons. It is very common to find cases using
the classical theory and assuming that the measurement errors
are normally distributed. For instance in [10], a method for
phase connectivity verification and estimation is proposed.
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The authors can detect which phases are connected to the
distribution grid using an algorithm based on a three phase
state estimation procedure with equality and conditional
constraints. The minimisation function is the classical function
used by the weighted least squares (WLS) method and the
proposed algorithm combines real-time measurements with
data provided by the smart meters sampled at a low rate
(15min to 1hour).

In [12], the smart meter raw and processed data (labeled
as pseudo-measurements) sampled at low rate (5 to 20 times
per hour) are combined with other measurements coming from
regular SCADA systems an other smart grid sensors capturing
the data each few seconds. The limitations of the conventional
state estimation techniques are presented and the need of using
different time scales for estimate the state of medium voltage
distribution grids is evaluated. Again, the SM data are used in
an aggregated way in a 100 buses, 15kV network.

It must be remarked that there is not any relevant
study providing a comprehensive characterisation of the SMs
measurement errors in domestic applications. In most of
the cases, the analysis of the measurement error is carried
out with aggregated data. In [11], the authors obtain the
uncertainty bounds of the data provided by the SMs aggregated
at substation level. They use real smart meter data sampled
each 15 minutes for simulating loads in the IEEE low voltage
European test feeder. In [14], a very sophisticated cloud
based solution for performing state estimation in low voltage
systems is proposed, but again, the data are aggregated at the
concentrator level and the classical state estimation approach
is used considering that the aggregated errors provided by the
smart meters are normally distributed.

The work presented in [13] is one of the few studies in
which a test to determine weather or not the data set obtained
from the advanced metering infrastructure follows a normal
distribution is carried out. In this case, the test is made with
the data obtained from one of the buildings of the British
Columbia University campus with a minimum consumption
of 40kW and a maximum consumption of nearly 130kW.
For this reason, the conclusions cannot be extrapolated to a
domestic consumption profile. However, the paper introduces
the concept of the out-of-date (OD) signals for characterising
the error of the measurements provided by the SMs. A similar
approach will be followed in this paper to analyse the errors
of the domestic measurements and asses the viability of using
the classical estate estimation theory to low voltage systems
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with non-aggregated smart meter data.
The structure of the paper will be as follows. In section

II, the authors will state the very basics of the conventional
state estimation theory and emphasising the need of normally
distributed measurement errors. Section III will describe the
data set used for this study. The concept of OD signals for
characterising the error will be explained and applied to the
data set. Section IV analyses the measurement errors by means
of the Anderson-Darling test [13] and the conclusions about
the probability density function (PDF) of the errors and the
influence of the SMs set-up over these PDFs will be presented.
In section V, in order to strengthen these conclusions, different
power flows will be carried out in the European Low Voltage
test feeder considering different SMs set-up. In the last section
the general conclusions and recommendations for future works
will be stated.

II. CLASSICAL STATE ESTIMATION APPROACH

The classical state estimation theory is based on the
maximisation of the joint probability density function of a set
of measurements fm(z), where zT = (z1, z2, ..., zm) represent
a vector containing the m measurements of the system [15].
Function fm(z) represent the probability of having a specific
set of measurements and can be calculated as the product of the
different probability density functions for each measurements
if all measurements are independent.

fm(z) = f(z1) · f(z2) · · · f(zm) (1)

Assuming that the measurement errors are normally distributed
with zero expected value and they are independent,
maximising the joint probability density function (fm(z)) is
equivalent to minimising the function J(x) described below.

J(x) =
m∑
i=1

(zi − hi (x))
2

Rii
= (z− h (x))

T
R−1 (z− h (x))

(2)
Where the term hi represent the function relating the
measurement i with the state vector x. h (x) can be
expressed as h (x) = (h1(x), h2(x), ...hm(x))

T . The matrix
R (covariance matrix) is a diagonal matrix in which the
term Rii represent the squared standard deviation of the
measurement i.

The expression presented in (2) is used for instance in [10],
[13], [14] and in many other references. It must be emphasised
that this expression requires normally distributed data and this
condition is not always corroborated.

III. DATA SET AND ERRORS CALCULATION

The data set used in this work was obtained from the
project ADRES-CONCEPT [16]. This data set provides data
of 30 different households in Upper-Austria during 7 winter
days and 7 summer days, providing a total of 420 household
profiles. The ADRES project provides active power, reactive
power and voltage sampled each second in each of the three
phases. In the present work, only the active power has been
considered using a fixed power factor and loads are assumed
to be single phase.

The active powers sampled at 1Hz will be processed to
emulate different SM set-up considering sampling times (∆t)
of 10s, 15s, 30s, 45s, 60s and 300s. The concept of out-of-date
(OD) signal presented in [13] will be adopted to calculate the
error assuming that the total error of the measurement i can
be calculated as:

etotali = emi + eOD
i (3)

Where emi represent the SM measurement error and eOD
i

represent the error derived from the load variation with the
time. There are two main factors when calculating this error,
the specific profile of the analysed load and the time interval
(∆t) used for setting up the SM. It must be considered that
during the sampling interval k the measurement obtained in
the interval k − 1 will be used.

In Fig. 1 a) the active power in the household 5 of the
above-described data set sampled at 1Hz is represented in
black. The measurement error (emi ) will be neglected. It must
be considered that the Smart Meters accuracy class is 0.5
[11], so the error added by the OD component (eOD

i ) will
be much higher than (emi ). In red, it is represented the OD
signal considering a Smart Meter sampling time of 5 min. It
must be pointed out that the OD signal for the interval k is
the mean value of the real signal in the interval k − 1, so the
eOD
i can be calculated as:

eOD
i (t) = Pi(t) − POD

i (t) (4)

Where Pi(t) is the active power consumed in the instant
t and POD

i (t) is the OD signal in the same instant. Two
levels of zoom have been made in Fig. 1 a) in order to
analyse Pi(t) and POD

i (t) from 16:00 to 20:00 hours and
from 18:15 to 18:30. In this last case, and because the SM
sampling time is set to 5 minutes we have three different
intervals labeled as k−1, k and k+1. The instantaneous error
from 18:15 to 18:30 is also represented. The average value
of this error in the above described intervals is respectively
0.01kW, 2.95kW and 1.93kW as it can be observed. In two
of the three analysed intervals, the mean value of the error
is far from being null. Figs. 1 b) to g) represent the OD
errors with different SM sampling times, from 10 seconds
to 5 minutes in the time interval going from 18:00 to 19:00
hours. As it can be observed, the higher the sampling time,
the higher the amount of instants in which the error is far
from zero. This conclusion could be considered as trivial.
However, up to the date, no statistical studies has been made
to determine how far from zero are these errors and if they are
or not normally distributed. In the next section an Anderson-
Darling test will be performed to the 420 household profiles
considering 6 different SM meters sampling times, analysing
more than 217 · 106 errors.

IV. ANALYSIS OF THE MEASSUREMENT ERRORS

Anderson-Darling test is commonly used to determine
whether or not a specific data distribution (F ) follows a normal
distribution with an empirical cumulative distribution function
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Fig. 1: Analysis of the active power in Household 5 and the measurement error using diferent Smart Meter set up.

(cdf) (Fn) calculating the distance between the two cdfs as
follows.

p =

∫ ∞
−∞

(Fn(x) − F (x))
2

F (x) (1 − F (x))
dF (x) (5)

This test was used for instance in [13] and it is going to be
applied to the ADRES data set. We will consider 6 different
sampling intervals for the SMs, 10s, 15s, 30s, 45s, 1min and
5min. During a specific sampling interval the measurement
provided by the SM will be the OD signal (POD

i (t)) that will
be constant. The Anderson-Darling test will be applied for
each sampling interval individually, and will determine wether
or not the instantaneous errors eOD

i (t) are normally distributed
in that specific time interval. In addition, the average error per
interval will be also presented. The so called "null-hypothesis"
assumes that the data are normally distributed. As in [13], if
the indicator labeled as p-value is lower than 0.05 the null-
hypothesis can be accepted.

In Fig. 2, the summary of the tests made to the 420 profiles
with different SM sampling frequencies is presented. In the
first row of the figure, the p-value is represented for each
SM set-up and for each interval in descending order. In the
second row, the average value of the error in each interval is
also representing but in ascending order per each SM set-up.
Each column represent a different SM sampling time. In grey,
the 420 profiles are represented and in red we can observe
the average profile for each SM set-up. For instance, if we
analyse the first column of the Fig. 2 (representing a smart
meter sampling time of ∆t = 10s), we can see that the average
profile p-value is higher than 0.05 in the 73.5% of the intervals
during the day. In those intervals it can be assumed that the

error is normally distributed. In the second row (first column),
we can observe that with the sampling period of 10s, the error
in the average profile is lower than 100W in the 93.5% of the
intervals during the day. The value of 100W was chosen as a
limit for considering the average error neglectable.

As it can be observed in the Fig. 2, the higher the sampling
period, the lower the percentage of intervals in which the error
is normally distributed. For instance, analysing the 6th column
(first row) of the figure (∆t = 5min), we can observe that less
than 8% of the intervals have the error normally distributed
for the average profile. In the case of the average error of the
average profile, it is lower than 100W in the 69.10% of the
intervals.

TABLE I: Percentage of intervals with normally distributed
errors (Condition 1), percentage of intervals with average error
lower than 100W (Condition 2) and percentage of intervals
fulfilling both conditions at the same time.

∆t 10s 15s 30s 45s 1min 5min
Cond. 1(%) 63.9 53.2 38.1 29.8 24.3 4.3
Cond. 2(%) 96.9 96.7 95.8 95.4 94.6 86.8

Cond.1&2(%) 62.9 52.3 37.4 29.3 23.9 4.0

The Fig. 2 is very illustrative to analyse the behaviour of the
p-value and the average error of the average profile separately.
However it is interesting to know, how many of the intervals
in which the error is normally distributed (Condition 1) have
also an error lower than 100W (Condition 2). Table I contains
the percentage of intervals fulfilling condition 1, condition 2
and both conditions and the same time, not for the average
profile but for all profiles. As it can be observed, for a specific
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Fig. 2: Analysis of the measurement errors depending on the smart meters sampling time configuration. In the first row the
p-value for Anderson-Darling test is represented, in the second row the average error in all the intervals is represented. In the
horizontal axis the number of intervals is represented. For intance, with ∆t = 1min, 100% will represent the 1440 intervals
of 1 minutes

Fig. 3: Behaviour of the error in the different hours of the day
depending on the day.

SM set-up the percentage of intervals fulfilling conditions 1
and conditions 1 and 2 is nearly the same. This means that
for a specific interval, if the error is normally distributed, the
probability of having a neglectable average error is nearly
100%.

However, during the day, the behaviour of the errors varies
in a correlated way with the load of the system. In Fig. 3a) The
aggregated power of the 420 profiles is represented (black),
also the OD signal for the ∆t = 5min is represented in red.
Fig. 3b) contains the percentage of the intervals that fulfil the
two conditions described above at the same time (normally
distributed errors and neglectable average error). As it can be

observed, the curves for the different SMs set-up are nearly
parallels. In addition, these curves are inversely correlated
with the aggregated load of the system (Fig. 3a)). It could
be concluded that for a given SM sampling time, the higher
the load, the lower the probability of fulfilling both conditions
1 and 2 at the same time. For sampling periods longer than
30 seconds, the conditions for applying the conventional state
estimation theory are fulfilled in less than 50% of the intervals
no matter the time or the level of load of the system.

V. LOAD FLOW VERIFICATION

In order to strengthen the conclusions extracted from the
previous analysis, the IEEE European low voltage test feeder
(Fig. 5) was loaded with 55 of the previous described profiles.
The considered assumptions when solving the power flow
problem are the ones described in [11]:

• All consumptions are monitored using Smart Meters.
• The smart meters measures are synchronised.
• The error of an individual measure can be neglected.
• The phase identification and the data management system

work perfectly.

In Fig. 4a), the voltage at load 53 is represented. Fig. 4b)
contains the voltage drop from the substation to the load 53.
The results obtained when the system is loaded with the real
data sampled at 1Hz are depicted in black. In blue and red,
we can observe the results obtained using the OD signals of
the smart meters for ∆t = 1min and ∆t = 5min. It must
be remarked that with ∆t = 5min set-up, the voltage profile
is nearly flat during a normal day with voltage drops limited
to 2V. The errors obtained when comparing the power flow
results obtained with the signal sampled at 1Hz and the OD
signals are depicted in Fig. 4 b), c), d), f), g), h). As it was
expected, the higher the ∆t, the higher the error.
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Fig. 4: Power flow results obtained using 1Hz sampled profiles as well as the OD signals with SM set-up of 10s, 15s, 30s,
45s, 1min and 5min. a) Voltage in the load 53 (See Fig. 5. e) Voltage drop from substation to load 53. b), c), d), f), g), h)
Errors with the different OD signals with the above-mentioned SMs sampling times.
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Fig. 5: IEEE European low voltage test feeder topology.

VI. CONCLUSSIONS AND FUTURE WORKS

In this work, it was demonstrated that the non-aggregated
data obtained from the smart meters (SMs) are not suitable for
being used with the conventional state estimation techniques
based on weighted least squares (WLS) due to the strong
influence of the sampling time over the error and its probability
density function (pdf). Even when the smart-meters are
configured to send the data each 10s, the error in more
than 37% intervals does not fulfil the requirements for being
used with the WLS technique. Future works will consider
the possibility of applying forecasting aided state estimation
(FASE) or other techniques like Kernel density estimation
especially designed for not-normally distributed errors.
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