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RESUMEN (en español) 
 

Los programas Big Data son aquellos que analizan información utilizando nuevos 

modelos de procesamiento que superan las limitaciones de la tecnología tradicional en 

cuanto al volumen, velocidad y variedad de los datos procesados. Entre estos, se destaca 

MapReduce que permite procesar grandes cantidades de datos en una infraestructura 

distribuida que puede cambiar durante la ejecución debido a los frecuentes fallos en la 

infraestructura y las optimizaciones. El desarrollador sólo diseña el programa, mientras 

que la ejecución de su funcionalidad es gestionada por un sistema distribuido, tales 

como asignación de recursos y el mecanismo de tolerancia a fallos, entre otros. Como 

consecuencia, un programa puede comportarse diferente en cada ejecución porque se 

adapta automáticamente a los recursos que estén disponibles en cada momento. Esta 

ejecución no determinista dificulta las pruebas del software y la depuración, 

especialmente para aquellos programas MapReduce con un diseño complejo. A pesar 

de que tanto el rendimiento y la funcionalidad son importantes, la mayoría de 

investigación sobre la calidad de los programas MapReduce se centra en rendimiento. 

Por el contrario, hay pocos estudios sobre funcionalidad a pesar de que varias 

aplicaciones MapReduce fallan con regularidad debido a defectos funcionales. Probar y 

depurar estos defectos es importante, especialmente cuando los programas MapReduce 

realizan tareas críticas. 

Esta tesis tiene como objetivo las pruebas y la depuración de programas MapReduce a 

través de nuevos enfoques para detectar y entender los defectos funcionales causados 

por un incorrecto diseño del programa. Estos defectos de diseño no sólo dependen de 

los datos de entrada, sino que unas veces pueden enmascararse y otras producirse por 

ejecutarse no deterministamente debido a la infraestructura distribuida con 

optimizaciones automáticas. Para detectar estos defectos, la tesis propone una técnica 

de prueba que ejecuta cada caso de prueba con diferentes configuraciones y que 

comprueba que esas ejecuciones generen siempre salidas similares. La técnica genera 

las configuraciones mediante Random testing, y Partition testing junto Combinatorial 

testing para simular las ejecuciones no deterministas que podrían ocurrir en un entorno 

de producción. Esta técnica está también automatizada utilizando un motor de ejecución 

de pruebas que es capaz de detectar estos defectos utilizando sólo los datos de entrada 

de las pruebas independientemente de su salida esperada. 

Una vez que se detecta el defecto, la tesis propone un framework automático de 

depuración para localizar la casusa raíz del fallo y aislar los datos que causaron el 

fallo. La causa raíz del fallo es automáticamente localizada a través de una técnica 

spectrum-based que analiza estadísticamente las características que tienen en común 

aquellas ejecuciones que causan el fallo y aquellas características que lo enmascaran. 



 
Los datos del caso de prueba se reducen para mejorar el entendimiento del fallo 

utilizando delta debugging y una técnica guiada por búsqueda que iterativamente 

reducen los datos a la vez que estos nuevos datos siguen causando el fallo. El framework 

de depuración propuesto en la tesis también permite la inspección de la ejecución 

distribuida a través de las habituales utilidades de depuraciones como los breakpoints y 

los watchpoints. 

Las anteriores técnicas de pruebas y depuraciones también pueden ser utilizadas en 

operación. La tesis propone un enfoque autónomo para detectar los defectos de 

diseño de los programas MapReduce que se están ejecutando en el entorno de 

producción. Este enfoque utiliza los datos que se están procesando en tiempo de 

ejecución en producción como entradas de los casos de prueba para detectar defectos de 

diseño en operaciones. 

Estas técnicas son evaluadas mediante experimentos controlados utilizando programas 

MapReduce reales. Los resultados muestran que las técnicas propuestas son capaces de 

probar y depurar los programas MapReduce automáticamente en pocos segundos. La 

técnica de prueba detecta la mayoría de los defectos de diseño de los programas 

MapReduce. Una vez que los defectos son detectados, la técnica de localización de 

defectos localiza habitualmente la causa raíz del defecto, y la técnica de reducción aísla 

la mayoría de los datos que causan un fallo para mejorar el entendimiento del defecto. 

En la técnica de reducción de datos, la técnica delta debugging reduce los datos en pocos 

segundos, por el contrario, el enfoque guiado por búsqueda consume más tiempo pero 

también reduce más los datos. 

Como conclusiones, las técnicas tradicionales de pruebas no son capaces de detectar 

estos defectos de diseño y las aplicaciones MapReduce deben ser probadas con enfoques 

nuevos como los propuestos en esta tesis. Una vez que el defecto de diseño es detectado, 

las técnicas de depuración ayudan a entender el fallo, pero las técnicas de depuración 

tradicionales cubren ampliamente los fallos causados por el código en lugar de aquellos 

causados por un incorrecto diseño como los de los programas MapReduce.  Desde el 

punto de vista de los defectos de diseño funcionales, las aplicaciones MapReduce deben 

ser tanto probadas como depuradas con nuevos enfoques como los que se proponen en 

esta tesis. 
 

RESUMEN (en Inglés) 
 

Big Data programs are those that analyse the information using new processing models 

to overcome the limitations of the traditional technology due the volume, velocity or 

variety of the data. Among them, MapReduce stands out by allowing for the processing 

of large data over a distributed infrastructure that can change during runtime due the 

frequent infrastructure failures and optimizations. The developer only designs the 

program, whereas the execution of its functionality is managed by a distributed system, 

such as the allocation of the resources and the fault tolerance mechanism, among others. 

As a consequence, a program can behave differently at each execution because it is 

automatically adapted to the resources available at each moment. This non-deterministic 

execution makes both software testing and debugging difficult, specially for those 

MapReduce programs with complex design. Despite both performance and functionality 

are important, the majority of the research about the quality of the MapReduce programs 

are focused on performance. In contrast, few research studies are about functionality 

although several MapReduce applications fail regularly due a functional fault. Testing 



 
and debugging these faults are important, specially when the MapReduce programs 

perform a critical task. 

This thesis aims to both testing and debugging the MapReduce programs with new 

approaches to detect and understand those functional faults caused by the wrong design 

of the program. These design faults not only depend on the input data, but they may be 

triggered sometimes and masked other times because the execution is non-deterministic 

due a distributed infrastructure with automatic optimizations. To detect these faults, the 

thesis proposes a testing technique that executes each test case in different 

configurations and then checks that the executions generate always similar outputs. 

The technique generates the configurations with Random testing, and Partition testing 

together with Combinatorial testing to simulate the non-determinist executions that 

could happen in a production environment. This technique is also automated by using a 

test execution engine that is able to detect these faults using only the test input data, 

regardless of the expected output. 

Once the design faults are detected, the thesis proposes an automatic debugging 

framework to locate the root cause of the fault and isolate the data that trigger the 

failure. The root cause of the fault is automatically located through a spectrum-based 

technique that analyses statistically the common characteristic of the executions that 

trigger the fault against those characteristics that masked the fault. The data of the test 

case are reduced to improve the fault understanding through delta debugging and search-

based techniques that iteratively reduce the data at the same time that the new data still 

trigger the failure. The debugging framework proposed in the thesis, also allows the 

inspection of the distributed execution through the common debugging utilities like 

breakpoints and watchpoints. 

The previous testing and debugging techniques can also be used in operations. This 

thesis proposes an autonomous approach to detect design faults in MapReduce 

programs executed in production environment. This approach uses the runtime data 

as test input data in order to detect the design faults in operations.   

These techniques are evaluated through controlled experiments using real-world 

MapReduce programs. The results show that the techniques proposed are able to test 

and debug the MapReduce programs automatically in few seconds. The testing 

technique detects the majority of the design faults of the MapReduce programs. Once 

the faults are detected, the fault localization technique usually locates the root cause of 

the design fault, and the reduction technique isolates the majority of the input data that 

triggers the failure to improve the fault understanding. In the reduction technique, the 

delta debugging technique reduces the data in a few seconds, in contrast the search-

based approach is more time consuming but also reduces more data. 

As conclusions, the traditional testing techniques are not able to detect these design 

faults and the MapReduce applications must be tested with new approaches like those 

proposed in this thesis. Once the design fault is detected, the debugging techniques help 

to understand this fault, but the traditional debugging techniques are broadly focused on 

the failures caused by the code instead of those caused by a wrong design like in the 

MapReduce programs. From the point of view of functional design faults, the 

MapReduce applications must be both tested and debugged with new approaches like 

those proposed in this thesis. 

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO EN 
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ABSTRACT 

Big Data programs are those that analyse the information using new processing models to 

overcome the limitations of the traditional technology due the volume, velocity or variety of the 

data. Among them, MapReduce stands out by allowing for the processing of large data over a 

distributed infrastructure that can change during runtime due the frequent infrastructure 

failures and optimizations. The developer only designs the program, whereas the execution of 

its functionality is managed by a distributed system, such as the allocation of the resources and 

the fault tolerance mechanism, among others. As a consequence, a program can behave 

differently at each execution because it is automatically adapted to the resources available at 

each moment. This non-deterministic execution makes both software testing and debugging 

difficult, specially for those MapReduce programs with complex design. Despite both 

performance and functionality are important, the majority of the research about the quality of 

the MapReduce programs are focused on performance. In contrast, few research studies are 

about functionality although several MapReduce applications fail regularly due a functional 

fault. Testing and debugging these faults are important, specially when the MapReduce 

programs perform a critical task. 

This thesis aims to both testing and debugging the MapReduce programs with new approaches 

to detect and understand those functional faults caused by the wrong design of the program. 

These design faults not only depend on the input data, but they may be triggered sometimes 

and masked other times because the execution is non-deterministic due a distributed 

infrastructure with automatic optimizations. To detect these faults, the thesis proposes a testing 

technique that executes each test case in different configurations and then checks that the 

executions generate always similar outputs. The technique generates the configurations with 

Random testing, and Partition testing together with Combinatorial testing to simulate the non-

determinist executions that could happen in a production environment. This technique is also 

automated by using a test execution engine that is able to detect these faults using only the test 

input data, regardless of the expected output. 

Once the design faults are detected, the thesis proposes an automatic debugging framework to 

locate the root cause of the fault and isolate the data that trigger the failure. The root cause 

of the fault is automatically located through a spectrum-based technique that analyses 

statistically the common characteristic of the executions that trigger the fault against those 

characteristics that masked the fault. The data of the test case are reduced to improve the fault 

understanding through delta debugging and search-based techniques that iteratively reduce the 

data at the same time that the new data still trigger the failure. The debugging framework 

proposed in the thesis, also allows the inspection of the distributed execution through the 

common debugging utilities like breakpoints and watchpoints. 

The previous testing and debugging techniques can also be used in operations. This thesis 

proposes an autonomous approach to detect design faults in MapReduce programs executed 

in production environment. This approach uses the runtime data as test input data in order to 

detect the design faults in operations.   

These techniques are evaluated through controlled experiments using real-world MapReduce 

programs. The results show that the techniques proposed are able to test and debug the 

MapReduce programs automatically in few seconds. The testing technique detects the majority 

of the design faults of the MapReduce programs. Once the faults are detected, the fault 



 

localization technique usually locates the root cause of the design fault, and the reduction 

technique isolates the majority of the input data that triggers the failure to improve the fault 

understanding. In the reduction technique, the delta debugging technique reduces the data in a 

few seconds, in contrast the search-based approach is more time consuming but also reduces 

more data. 

As conclusions, the traditional testing techniques are not able to detect these design faults and 

the MapReduce applications must be tested with new approaches like those proposed in this 

thesis. Once the design fault is detected, the debugging techniques help to understand this fault, 

but the traditional debugging techniques are broadly focused on the failures caused by the code 

instead of those caused by a wrong design like in the MapReduce programs. From the point of 

view of functional design faults, the MapReduce applications must be both tested and debugged 

with new approaches like those proposed in this thesis. 

 



 

RESUMEN 

Los programas Big Data son aquellos que analizan información utilizando nuevos modelos de 

procesamiento que superan las limitaciones de la tecnología tradicional en cuanto al volumen, 

velocidad y variedad de los datos procesados. Entre estos, se destaca MapReduce que permite 

procesar grandes cantidades de datos en una infraestructura distribuida que puede cambiar 

durante la ejecución debido a los frecuentes fallos en la infraestructura y las optimizaciones. El 

desarrollador sólo diseña el programa, mientras que la ejecución de su funcionalidad es 

gestionada por un sistema distribuido, tales como asignación de recursos y el mecanismo de 

tolerancia a fallos, entre otros. Como consecuencia, un programa puede comportarse diferente 

en cada ejecución porque se adapta automáticamente a los recursos que estén disponibles en 

cada momento. Esta ejecución no determinista dificulta las pruebas del software y la 

depuración, especialmente para aquellos programas MapReduce con un diseño complejo. A 

pesar de que tanto el rendimiento y la funcionalidad son importantes, la mayoría de 

investigación sobre la calidad de los programas MapReduce se centra en rendimiento. Por el 

contrario, hay pocos estudios sobre funcionalidad a pesar de que varias aplicaciones MapReduce 

fallan con regularidad debido a defectos funcionales. Probar y depurar estos defectos es 

importante, especialmente cuando los programas MapReduce realizan tareas críticas. 

Esta tesis tiene como objetivo las pruebas y la depuración de programas MapReduce a través de 

nuevos enfoques para detectar y entender los defectos funcionales causados por un incorrecto 

diseño del programa. Estos defectos de diseño no sólo dependen de los datos de entrada, sino 

que unas veces pueden enmascararse y otras producirse por ejecutarse no deterministamente 

debido a la infraestructura distribuida con optimizaciones automáticas. Para detectar estos 

defectos, la tesis propone una técnica de prueba que ejecuta cada caso de prueba con 

diferentes configuraciones y que comprueba que esas ejecuciones generen siempre salidas 

similares. La técnica genera las configuraciones mediante Random testing, y Partition testing 

junto Combinatorial testing para simular las ejecuciones no deterministas que podrían ocurrir 

en un entorno de producción. Esta técnica está también automatizada utilizando un motor de 

ejecución de pruebas que es capaz de detectar estos defectos utilizando sólo los datos de 

entrada de las pruebas independientemente de su salida esperada. 

Una vez que se detecta el defecto, la tesis propone un framework automático de depuración 

para localizar la casusa raíz del fallo y aislar los datos que causaron el fallo. La causa raíz del 

fallo es automáticamente localizada a través de una técnica spectrum-based que analiza 

estadísticamente las características que tienen en común aquellas ejecuciones que causan el 

fallo y aquellas características que lo enmascaran. Los datos del caso de prueba se reducen para 

mejorar el entendimiento del fallo utilizando delta debugging y una técnica guiada por búsqueda 

que iterativamente reducen los datos a la vez que estos nuevos datos siguen causando el fallo. 

El framework de depuración propuesto en la tesis también permite la inspección de la ejecución 

distribuida a través de las habituales utilidades de depuraciones como los breakpoints y los 

watchpoints. 

Las anteriores técnicas de pruebas y depuraciones también pueden ser utilizadas en operación. 

La tesis propone un enfoque autónomo para detectar los defectos de diseño de los programas 

MapReduce que se están ejecutando en el entorno de producción. Este enfoque utiliza los 

datos que se están procesando en tiempo de ejecución en producción como entradas de los 

casos de prueba para detectar defectos de diseño en operaciones. 



 

Estas técnicas son evaluadas mediante experimentos controlados utilizando programas 

MapReduce reales. Los resultados muestran que las técnicas propuestas son capaces de probar 

y depurar los programas MapReduce automáticamente en pocos segundos. La técnica de prueba 

detecta la mayoría de los defectos de diseño de los programas MapReduce. Una vez que los 

defectos son detectados, la técnica de localización de defectos localiza habitualmente la causa 

raíz del defecto, y la técnica de reducción aísla la mayoría de los datos que causan un fallo para 

mejorar el entendimiento del defecto. En la técnica de reducción de datos, la técnica delta 

debugging reduce los datos en pocos segundos, por el contrario, el enfoque guiado por 

búsqueda consume más tiempo pero también reduce más los datos. 

Como conclusiones, las técnicas tradicionales de pruebas no son capaces de detectar estos 

defectos de diseño y las aplicaciones MapReduce deben ser probadas con enfoques nuevos 

como los propuestos en esta tesis. Una vez que el defecto de diseño es detectado, las técnicas 

de depuración ayudan a entender el fallo, pero las técnicas de depuración tradicionales cubren 

ampliamente los fallos causados por el código en lugar de aquellos causados por un incorrecto 

diseño como los de los programas MapReduce.  Desde el punto de vista de los defectos de 

diseño funcionales, las aplicaciones MapReduce deben ser tanto probadas como depuradas 

con nuevos enfoques como los que se proponen en esta tesis. 
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I INTRODUCTION 

I.1 RESEARCH CONTEXT 

In the last decades the volume of data generated by companies has grown exponentially 

expecting to increase by 300 times from 2005 to 2020 [1]. This grow, not only in size, but also in 

complexity, arise several challenges to storing, transporting and analysing such information. To 

overcome these challenges, novel technologies are being created under the Big Data paradigm 

[2]. Their rise allows large scale analysis of data, from social web interactions to industrial sensor 

data, that can improve social and business performance.  

The adoption of and interest in these technologies/paradigms has increased over the last few 

years to the extent that several Fortune 1000 enterprises consider Big Data critical for business 

[3]. Despite the importance of these applications, some studies predicted that 60% of Big Data 

projects fail to go beyond piloting and would be abandoned in 2017 [4]. There are several 

obstacles and challenges in this paradigm. Big Data involves at the same time several fields such 

as data science to analyse the data, information technology to make it possible in a scalable way 

through new tools and technology beyond the state-of-the-art, and business science to find 

value from the analysis. These transversal skills are difficult to find in Big Data and in future 

years a shortage of experts is expected [5]. The lack of skills is also currently one of the main 

concerns [6]–[8] and causes that several companies are able to capture the data but not to 

process them [9]. Another obstacle is the poor data quality [10] that it is among the main 

concerns in Big Data [6]. Dealing with these complex data to integrate and process them is a 

challenge [11] and could incur in large costs. In U.S. economy the bad data cost around 3.1$ 

trillion per year [12] together with other derivate problems as for example the 6.8 billion of 

email pieces that could not be sent during 2013 by USPS (U.S. Postal Service) due to data quality 

issues among other problems in the address information [13]. The previous concerns and 

challenges, among other technological issues [7], [14], [15], can lead the Big Data projects to 

failures that impact both business and society. 

The MapReduce processing model [16] stands out among Big Data applications. It is a key 

technology very broadly used by organizations [17] and implemented in several mature 

frameworks [18], [19], such as Hadoop [20], Flink [21], [22] and Spark [23], [24], among others. 

Because it is so widely adopted, the quality of MapReduce programs is important, especially for 

those employed in critical sectors as such as health (DNA alignment [25]) and security (image 

processing in ballistics [26]). An analysis over several months at Yahoo! indicates that around 3% 

of MapReduce programs are not finished [27], whereas another broader study places this 

percentage between 1.38% and 33.11% [28]. A study of 507 programs in production reveals at 

least 5 different kinds of faults [29] that are caused by the incorrect design of MapReduce 

programs. Therefore, this thesis is focused to address these functional faults that are caused by 

incorrect design. 

These types of faults include, but are not limited to, race conditions, computations with 

unavailable data because the distributed system allocates them to another computer, or 

automatic optimizations that remove data that are relevant to calculating the output. These 

faults are difficult to detect because they depend not only on the data, but also on how these 

data are executed in the large distributed architecture: parallel executions, re-executions of 

some part of the data and optimizations, among others. In general, these non-deterministic 
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faults are prone to be masked in development/testing environments and go on to fail in more 

aggressive environments such as the production environment, thereby generating incorrect 

outputs or causing the program to crash. The distributed nature of these design faults 

complicates also the debugging. The localization of the root cause of the fault is complex 

because not only involves the code, but the design of the program. Then the developer could 

have difficulties to both understand and fix these non-deterministic design faults. 

There are several approaches to assess quality, and software testing is one of the most 

commonly used. According to the ISO/IEC/IEEE 29119-1:2013 standard [30], software testing 

aims to provide information relating to program quality and the potential impacts/risks of poor 

quality. Software testing research has evolved in recent years [31], but there are several 

challenges related to the testing of programs in cloud and adaptive architectures [32]. 

I.2 RESEARCH HYPOTHESIS 

This thesis focuses on the quality of the MapReduce programs, especially in testing and 

debugging. The research performed is based in the following hypothesis: 

H1. The MapReduce applications have specific characteristics that another kind of 

applications do not have, such as delegate their execution to a framework that handles 

the massive execution splitting the datasets along several servers, allocating resources 

in parallel, or re-executing of part of the program in case of infrastructure failures. These 

characteristics in conjunction are not broadly covered by the state-of-the-art testing 

techniques, and the MapReduce applications must be tested with new approaches. 

H2. The functional failures of the MapReduce applications that are wrongly designed entail 

the execution of the data concurrently in several servers in non-deterministic way. 

These failures are not just caused by the code, but by the design. The traditional 

debugging techniques are broadly focused on the failures caused by the code but not 

on those caused by the wrong design, then the MapReduce applications must be 

debugged with new approaches. 

I.3 RESEARCH GOALS 

The general goal of this thesis is to enhance the state-of-the-art of the software testing and 

debugging in the MapReduce field with experimentation and pragmatic basis. This goal is divided 

in the following sub-goals: 

1. Determine the state-of-the-art and the current quality problems of the Big Data 

programs that are executed through the MapReduce processing model. 

2. Develop new testing techniques to address the design of MapReduce applications that 

are executed in scalable way under both distributed and heterogeneous large 

infrastructures. 

3. Design new debugging techniques that provides an easy understanding of the complex 

faults of distributed MapReduce applications. 

4. Integrate and automate both the testing and debugging activities in a general quality 

process that can be applied in laboratory (pre-production) or during runtime 

monitoring the operations (production). 

5. Evaluate the effectiveness and efficiency of the testing and debugging techniques 

proposed. 
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I.4 RESEARCH METHODOLOGY 

To achieve the previous goals, the thesis was planned according to the below research and 

engineering methodologies/practices: 

• Systematic Literature Review [33] (systematic mapping study [34]): This kind of studies 

are focused to extract evidences through the analysis of the relevant literature. In 

Chapter II, the state-of-the-art of the software testing in the MapReduce applications is 

defined through the revision and classification of the literature applying a strict protocol 

to avoid bias. 

• Action research [35]: This methods pursue to join the scientific theory with the industrial 

practice through reflection feedback. In this thesis, the academic research is performed 

and discussed together with industrial organizations in order to frame their real 

problems. Some programs used to validate the research comes from the industry. 

• Experimentation: The contributions of the thesis are validated with experiments [36] 

using the usual techniques of software engineering field through real-world programs. 

I.5 CONTRIBUTIONS 

The main contribution of the thesis is the devise and automatization of both testing and 

debugging techniques in the MapReduce field. This main contribution is characterized in the 

following contributions: 

C1. Analysis of the state-of-the-art, challenges and gaps of software testing in the 

MapReduce application by means of systematic mapping study of the literature 

evidences. 

C2. Testing technique to automatically detects the design faults of the MapReduce 

application using input partitioning, combinatorial and random techniques, and 

metamorphic testing. 

C3. Debugging technique to automatically localize the root cause of the design faults in 

MapReduce applications through spectrum-based fault localization approach. 

C4. Debugging technique to automatically isolate the data that triggers the design faults of 

the MapReduce application using Delta debugging and a search-based technique based 

on genetic algorithm. 

C5. Automatization and integration of both testing and debugging techniques in a tool that 

support offline testing in laboratory. 

C6. Automatization and integration of both testing and debugging techniques in an 

autonomous system that performs testing-debugging without human intervention in 

production taking real data at runtime. 

C7. Experimentation with real-world programs of both testing and debugging techniques. 

These contributions are tackled in four nested lines of research. The first line is focused on the 

state-of-the-art to hypothesize about quality problems of MapReduce programs and how can be 

alleviated through research in both testing and debugging fields (C1). Then the second and third 

lines of research aboard testing (C2, C5, C7) and debugging (C3, C4, C7), respectively. Finally, the 

fourth line of research is focused on the integration of our work to be used not only in 

laboratory, but also on production in autonomous way (C6). 



Section I.5 - Contributions 12 

 

Despite the four line of research are mature with several publications, the ongoing work of the 

debugging is not yet published. An early version of the debugging techniques is published in two 

national conferences, but the last version is finished aimed to be published in a JCR journal. The 

remainder contributions are fully published in both journals and conferences, and they are also 

divulgated at different venues as Fig. 1 summarizes. 

This work was done in collaboration with the Institute of the National Research Council of Italy 

(CNR-ISTI), and additionally with the University of Castilla-La Mancha of Spain (UCLM). These 

collaborations were done through periodical videoconferences and visits. Morán visited UCLM 

one week, and CNR-ISTI during two internships of three months each one. 

The contributions of the thesis were also divulgated in different forums through posters and 

talks to discuss the vision of the research goals with another researchers that provides feedback. 

As a result, several tools were developed to support and automatize the research in all 

processes. 

 

Fig. 1 Summary of the thesis research and divulgation 
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TIN2013-46928-C3-1-R TIN2016-76956-C3-1-R
GRUPIN14-007Projects and research 

management
BP16215CNR (Italy) CNR (Italy)
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Research projects funded by:
TIN2013-46928-C3-1-R
TIN2016-76956-C3-1-R

The Spanish Ministry

The Principality of Asturias GRUPIN14-007
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1 research grant

1 research network
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I.5.1 First line of research: State-of-the-art, problems and hypothesis 

The first line of research has the following 4 publications: 

• JSEP 2019 [37] (Q3): Morán, J., de la Riva, C., Tuya, J. “Testing MapReduce 
programs: A systematic Mapping Study”. Journal of Software: Evolution 
and Process, 2019. 

• BIGR&I 2014 [38]: Morán, J., de la Riva, C., Tuya, J. “MRTree: Functional 
testing based on MapReduce’s execution behaviour”. International 
Symposium on Big Data Research and Innovation, 380-384, 2014. 

• JISBD 2014 [39]: Morán, J., de la Riva, C., Tuya, J. “Pruebas funcionales en 
programas MapReduce basadas en comportamientos no esperados”. 
Jornadas de Ingeniería del Software y Bases de Datos, 2014. 

• MT 2014 [40] (industrial prize): Morán, J., de la Riva, C. “Pruebas para 
sistemas con procesamiento y transformación de datos en paralelo”. 
Master thesis dissertation, University of Oviedo, 2014. 

We revised rigorously the literature about software testing in MapReduce applications 

summarizing the state-of-the-art, problems and gaps through systematic mapping study [37]. 

Among other findings, we observed gaps in the functional characteristic of the program quality. 

There are evidences that both performance and functional characteristics are relevant in 

MapReduce programs, but the majority of efforts are focused on performance and few in 

functional point of view. Then this thesis is focused to embrace this gap providing evidences, 

techniques, results and tools that mitigate the functional faults of MapReduce programs through 

testing and debugging. 

The general testing techniques can detect some faults of the MapReduce applications, but are 

unsuitable to detect those other faults that are specific of the processing model. Some of these 

faults are caused by the wrong design of the MapReduce application. The developer designs the 

program at high level using some functionalities such as Map, Reduce or Combine. Then the 

execution of the program is automatically managed by the framework, typically Hadoop, Spark 

or Flink. The programs must be designed accordingly to support all possibilities proposed at 

runtime by the framework and the environment, such as different parallelization degrees, re-

execution of some parts due infrastructure failures, or optimizations to avoid net bottlenecks 

removing some irrelevant data. We identified and classified these design faults [38], [39] aimed 

to approach them through testing in the second research line. 

With this classification of  design faults, we published a master thesis [40] that, despite is focused 

on research, received an industrial prize. 

I.5.2 Second line of research: Testing 

The second line of research is focused on these design faults through testing and has the 

following 4 publications: 

• IEEE TR 2018 [41] (Q1): Morán, J., Bertolino, A., de la Riva, C., Tuya, J. 
“Automatic Testing of Design Faults in MapReduce Applications”. IEEE 
Transactions on Reliability, vol. 67, no. 3, pp. 717-732, 2018. 

• ASTESJ 2017 [42]: Morán, J., Rivas, B., Riva, C., Tuya, J, Caballero, I., 
Serrano. Configuration/Infrastructure-aware testing of MapReduce 
programs. Advances in Science, Technology and Engineering Systems 
Journal, vol. 2, no. 1, pp. 90-96, 2017. 
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• BIGR&I 2016 [43]: Morán, J., Rivas, B., de la Riva, C., Tuya, J, Caballero, I., 
Serrano, M. “Infrastructure-Aware Functional Testing of MapReduce 
programs”. 2016 IEEE 4th International Conference on Future Internet of 
Things and Cloud Workshops (FiCloudW), Vienna, 2016, pp. 171-176. 

• JISBD 2016 [44]: Morán, J., de la Riva, C., Tuya, J. “Generación y Ejecución 
de Escenarios de Prueba para Aplicaciones MapReduce”. Jornadas de 
Ingeniería del Software y Bases de Datos, 2016. 

The design faults of the MapReduce programs are difficult to test because the same data could 

yield sometimes success and other failures depending on the execution (parallelism, 

optimizations and others). This execution is very difficult to control and the faults trend to be 

masked during laboratory tests because the infrastructure is not as aggressive as the production 

environment. At first point we explored different ways to execute the data in thoroughly 

possible situations to check if the program fails or not regardless of the execution [42]–[44]. 

Finally, we devised a testing technique that automatically detect automatically the design faults 

given only the data under test [41]. This technique does not execute the program under 

thoroughly situations, but on those infrastructure configurations that are relevant using input 

space partitioning, random and combinatorial testing. Then the faults are automatically 

detected by means of metamorphic testing [45] when the same data do not yield to equivalents 

outputs in the different infrastructure configurations. As a result, a tool called MRTest was 

developed: 

• MRTest: a xUnit testing tool that detects automatically the design faults 
of the MapReduce applications simulating the controlled execution of 
different infrastructure configurations.   

With this technique and tool, the design faults of the MapReduce programs can be automatically 

detected. These faults are manifested sometimes and masked in others in non-deterministic 

way. Then the root cause of the fault is difficult to both localize and understand. The common 

debugging techniques are not suitable for these faults because are focused on code and not 

neither on infrastructure configurations nor design level. 

I.5.3 Third line of research: Debugging 

The third line of research is focused on debugging these design fault and has the following 2 

publications: 

• JISBD 2018 [46]: Morán, J., de la Riva, C., Tuya, J. “Automatización de la 
localización de defectos en el diseño de aplicaciones MapReduce”. 
Jornadas de Ingeniería del Software y Bases de Datos, 2018. 

• JISBD 2017 [47]: Morán, J., de la Riva, C., Tuya, J., Rivas, B. “Localización 
de defectos en aplicaciones MapReduce”. Jornadas de Ingeniería del 
Software y Bases de Datos, 2017. 

The root cause of the design faults can be obtained analysing the characteristics that have in 

common both the infrastructure configurations that produce a failure and those that success. 

An initial approach to obtain the root cause of the faults is published with a spectrum-based 

fault localization technique [46], [47]. The last version of this technique including the controlled 

experiment is not yet published. 

The previous technique is able to localize automatically the characteristics of the infrastructure 

configurations that produces the failure. However, the faults are still difficult to understand due 
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the distributed flow of the data. In order to improve the understanding of the faults, we devised 

a technique that isolates the data that are relevant to trigger the fault removing the remainder 

of the data. This technique uses a search-based approach with delta debugging [48], [49] and a 

genetic algorithm [50], [51]. This technique is not yet published. 

To automatize the localization of the faults and the isolation of the data, we developed a tool 

that also support the other typical debugging commodities such breakpoints and watchpoints: 

• MRDebug: a framework to debug the MapReduce programs focused on 
design faults. The frameworks automatically localizes the root cause of the 
faults and reduces the data isolating those that are relevant to trigger the 
failure, then the developer can use breakpoints, watchpoints and the 
common debugging toolkit.  

The majority of this research line is not yet published. We are writing a paper that includes all 

of our debugging research with controlled experiments aimed to be published in JCR journal. 

Both, the testing and debugging, are done automatically based only on the test input data. Then 

the techniques can be used in production taking advantage of the production data. 

I.5.4 Fourth line of research: Operations 

The fourth line of research is focused on the operations and generation/selection of the data 

that can be used during the testing and debugging of the MapReduce programs. This research 

line has the following 3 publications: 

• QRS 2017 [52]: Morán, J., Bertolino, A., de la Riva, C., Tuya, J. "Towards Ex 
Vivo Testing of MapReduce Applications," 2017 IEEE International 
Conference on Software Quality, Reliability and Security (QRS), Prague, 
2017, pp. 73-80. 

• A-TEST 2015 [53]: Morán, J., de la Riva, C., Tuya, J. “Testing data 
transformations in MapReduce programs”. 6th International Workshop 
on Automating Test Case Design, Selection and Evaluation, 20-25, 2015. 

• JISBD 2015 [54]: Morán, J., de la Riva, C., Tuya, J. “Pruebas basadas en flujo 
de datos para programas MapReduce”. Jornadas de Ingeniería del 
Software y Bases de Datos, 2015. 

The data of the test cases can be generated manually using a general-purpose testing technique. 

We adapted the data flow testing technique [55] to the MapReduce processing model 

considering the transformations of the data in the infrastructure configurations [53], [54]. This 

technique is automatized in a tool called MRFlow: 

• MRFlow: a tool that indicates the test coverage items to test the programs 
based on data-flow testing technique adapted to MapReduce. 

The testing and debugging techniques only need data to be executed, and in Big Data field there 

are a lot of data. Then these techniques can take advantage of the runtime data. It is not possible 

to perform testing/debugging with all huge production data, and we devise a technique to 

extract and cache samples of the data to the laboratory at runtime. Then when a user executes 

a program in production, the tests of the program are performed in the laboratory in 

autonomous way without human intervention. As a result, a system called MrExist was 

developed: 
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• MrExist: an autonomous system that detects the execution of a 
MapReduce program in the production cluster and performs 
automatically testing/debugging in laboratory taking data from runtime. 

I.5.5 Other Divulgation related to the Thesis 

The research topics of the thesis were divulgated and discussed with other researchers at the 

following venues: 

Doctoral workshop: 

• JDUO 2017: Morán, J. “Técnicas de Prueba Funcionales para Nuevos 
Paradigmas de Procesamiento Masivo de Datos”. VI Jornadas Doctorales 
de la Universidad de Oviedo, 2017. 

Posters: 

• JSD 2018: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques 
for new massive data processing paradigms”. Jornada seguimiento 
doctorado. Universidad de Oviedo, 2018. 

• JDUO 2017b: Morán, J. “Functional testing techniques for new massive 
data processing paradigms”. Poster VI Jornadas Doctorales de la 
Universidad de Oviedo, 2017. 

• JSD 2017: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques 
for new massive data processing paradigms”. Jornada seguimiento 
doctorado. Universidad de Oviedo, 2017. 

• JSD 2016: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques 
for new massive data processing paradigms”. Jornada seguimiento 
doctorado. Universidad de Oviedo, 2016. 

• JSD 2015: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques 
for new massive data processing paradigms”. Jornada seguimiento 
doctorado. Universidad de Oviedo, 2015. 

Talks in summer schools: 

• HSST 2017: Morán, J. “Automatic Functional Testing of MapReduce 
Applications”. 7th Halmstad Summer School on Testing, 2017. 

• TAROT 2016: Morán, J. “Software Testing in MapReduce applications”. 
11th International Summer School on Training And Research On Testing, 
2016. 

• SS-SBSE 2016: Morán, J. “Functional testing of Big Data programs using a 
combinatorial algorithm”. 1st International Summer School on Search-
Based Software Engineering, 2016. 

• TAROT 2015: Morán, J. “Functional Testing of MapReduce programs”. 
11th International Summer School on Training And Research On Testing, 
2015. 

Some of the divulgation were about the general lines of the thesis research, but in other cases 

were specific ongoing work to obtain feedback from the research community. 

The thesis is focused on the detection and understanding of the design faults in MapReduce 

programs. This approach is reactive because analyse a program already implemented, but the 

design faults can also be avoided in proactive way during implementation. Then Morán 
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published a book to explain, in practical way, different design patters that can be used to 

implement MapReduce programs aimed to foster good practices during the design. 

Book: 

• VIU 2018: Morán, J. “Métodos para extracción, procesamiento y 
almacenamiento de datos masivos desde Internet”. Valencia International 
University, 2018. 

I.5.6 Projects and Research Management 

The work of this thesis is not done only by one person, but by the collaboration of the University 

of Oviedo with other 2 organizations: mainly with Institute of the National Research Council of 

Italy (CNR-ISTI), and additionally with University of Castilla-La Mancha (UCLM). The UCLM 

collaborates in the initial steps of the testing and debugging techniques, whereas the CNR-ISTI 

collaborates in the controlled experiments of testing/debugging in both laboratory and 

production environments. 

The collaborations were coordinated through frequent videoconferences, visits and internships. 

Morán visited UCLM during a week and also met the team members each year in national 

conferences. During this visit, the collaborators discussed different approaches of the testing 

technique to be designed, and how to tackle the functional faults of the MapReduce programs. 

In the collaboration with CNR-ISTI, Morán visited Italy twice in internships of three months each 

one. During the first internship, the collaborators designed and validated the testing technique 

proposing different approaches. In the second internship, the debugging technique of 

localization was mature, and the data isolation were devised with different approaches. 

Both collaborations, UCLM and CNR-ISTI, continue in this research lines through 

videoconferences and future visits/internships. 

Internships and collaborations: 

• CNR-ISTI (Italy): Lines of research 2, 3 and 4 (IEEE TR 2018 [41] and QRS 
2017 [52]). 

• UCLM (Spain): Lines of research 2 and 3 (ASTESJ 2017 [42], BIGR&I 2016 
[43] and JISBD 2017 [47]). 

Other collaborations are done through the specialized research networks. During this thesis, 

Morán become a member of the HEUR research network that is focused on meta-heuristics. 

Research network: 

• HEUR: network about meta-heuristics and used in the third line of 
research. 

During the thesis, Morán was member of three research projects aligned with the topics of the 

research, two leaded by Tuya and other leaded by De la Riva. 

Research projects: 

• TIN2013-46928-C3-1-R: Research project funded by the Spanish ministry 
about software testing in Big Data. 

• TIN2016-76956-C3-1-R: Research project funded by the Spanish ministry 
about software testing in both Big Data and mobile. 

• GRUPIN14-007: Research project funded by the Principality of Asturias 
about software testing. 
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This thesis was also supported by a pre-doctoral grant. 

Grant: 

• BP16215: Severo Ochoa pre-doctoral grant. 

I.6 THESIS ORGANIZATION 

The lines of research and organization of the chapters are summarized in Fig. 2. This first chapter 

is about the thesis research plan. The second chapter defines the state-of-the-art and the 

problem statement about functional design faults in the MapReduce programs (first line of 

research). Then the third chapter describes how to detect these faults through software testing 

technique (second line of research). In the fourth chapter, debugging techniques are detailed to 

localize and understand the root cause of the faults (third line of research). Then the fifth 

chapter particularized both the testing and debugging techniques to be executed autonomously 

during operations (production) taking advantage to the runtime data (fourth line of research). 

The conclusions and future works are summarized in the sixth chapter. Finally, the seventh 

chapter contains the appendices of the thesis. 

This thesis is structured with the following chapters: 

Chapter I “Introduction”: Contains the introduction of the thesis including the research 

context, hypothesis, goals, methodologies and contributions. 
 

Chapter II  “Background”: Defines the state-of-the-art by means of systematic mapping 

study aimed to find evidences in the literature of software testing in the 

MapReduce programs. This chapter also defines the problematic in which this 

thesis is focused, that is the design faults of the MapReduce programs. 
 

Chapter III  “Testing”: Describes the testing technique defined to detect automatically the 

design faults of the MapReduce programs. This technique executes the same 

program simulating different environments generated through input space 

partitioning, combinatorial and random testing. Then the outputs of these 

different executions are analysed with metamorphic testing to detect the 

faults. This testing technique is validated with controlled experiments in real-

world programs. 
 

 

Fig. 2 Summary of the thesis lines of research and organization 
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Chapter IV  “Debugging”: Details the debugging techniques defined to both localize and 

isolate the data that trigger the failure aimed to enhance the understanding of 

the fault. The majority of debugging techniques are focused on the code, but 

these design faults are caused by the structuration and not by the code. Then 

the debugging techniques are adapted to focus on the design by means of (1) 

spectrum-based fault localization to localize automatically the root cause of the 

fault in the design, and (2) delta debugging and search-based algorithm to both 

isolate and reduce the data that trigger the design failure. These debugging 

techniques are integrated in a framework that also support the common 

debugging toolkits. The techniques are validated with controlled experiments 

in real-world programs. 
 

Chapter V  “Operations”: Particularized the previous testing and debugging techniques to 

be used autonomously during the operations taking runtime data as test data. 

The previous testing and debugging techniques can be executed automatically 

providing only the input data of the test cases. In the field of Big Data, there are 

a lot of data in production. Then these techniques can be executed in 

autonomous way taking directly the data from production to detect design 

faults during runtime. This technique is defined with Ex Vivo approach that 

consist to take the data from production environment, but executing the tests 

outside in laboratory to inquire the quality of the program that is executed in 

production. 
 

Chapter VI  “Final remarks”: Summarizes the conclusions of the thesis and the future work 

by means of new research line focused not only to detect the faults 

automatically during runtime, but to fix the programs with self-adaptation 

approach and PDCA methodology. 
.  

Chapter VII “Appendices”: Contains the appendices of the thesis. 
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II BACKGROUND 

This chapter summarizes the broad related work analysing the state-of-the-art of software 

testing for MapReduce programs through a systematic mapping study. The majority of this 

chapter is published in JSEP 2019 [37]. Section II.1 introduces MapReduce together with the 

main challenges from the testing point of view. The research questions are proposed in Section 

II.2 together with the systematic steps planned to answer them. The execution of these steps 

(conducting) is described in Section II.3. The answers to research questions and other results are 

detailed in Section II.4. These results are discussed in Section II.5. The confidence of the results 

obtained from both planning and conducting is enumerated in Section II.6. Finally, Section II.7 

contains a summary. 

II.1 MAPREDUCE PROCESSING MODEL 

MapReduce programs [16] divide one problem into several subproblems that are executed in 

parallel over a large number of computers. The programs have two principal functions: (1) Map, 

that analyses parts of the input data and classifies them into subproblems, and (2) Reduce, that 

solves each of these subproblems. The data processed by these functions are handled internally 

in the form of <key, value> pairs. The “key” is the identifier of each subproblem and the value 

contains information that the subproblem needs to solve. To illustrate MapReduce, let us 

imagine a program that calculates the average temperature per year. This problem could be 

divided into one subproblem per year, then each subproblem only solves the average 

temperature in one year. In this program, the “key” is the year because it identifies each 

subproblem, whereas the “value” is the temperature of this year because this information is 

needed to solve the subproblem. Fig. 3 details a distributed execution of the program analyzing 

the years 2000-2003. Firstly, the Map function receives the data pertaining to years and 

temperatures and creates the <key, value> pairs with <year, temperature>. For example, <2000, 

3°> means that 3° is needed to solve the subproblem that calculates the average temperature 

of 2000. Then the Reduce function receives from all Maps one year with all of its temperatures, 

and calculates the average. For example, if one Reduce function receives the data that in the 

year 2000 there were 3° and 1° temperatures, that is <2000, [3°, 1°]>, then the average 

temperature for the year is 2°. 

The programs are executed by a framework that automatically manages the resource allocation, 

the re-execution of one part of the program in case of infrastructure failures, and the scheduling 

of all executions, among other mechanisms. The data analyzed could be stored in several 

distributed sources, such as non-relational databases and distributed file systems. 

The integration of all of these technologies in the MapReduce program stack presents a 

challenge for developers and testers. Some technologies do not scale well, do not support 

 

Fig. 3 Example of the MapReduce program that calculates the average temperature per year 

Reduce

Reduce

Reduce

<2001, [5º]>

<2003, [3º]>

<2000, [3º, 1º]>
<2002, [4º]> <2000, 2º>

<2001, 5º>

<2003, 3º>

<2002, 4º>

Map

Map

<2000, 3º>
<2002, 4º>

<2001, 5º>
<2000, 1º>

<2003, 3º>

2000, 3º

2002, 4º

2000, 1º

2001, 5º

2003, 3º



Section II.1 - MapReduce Processing Model 22 

 

indexing, or do not support ACID transactions, among others issues. Another challenge is the 

implementation of the data model in the program. MapReduce can analyze raw data without a 

data model (schema-less or unstructured) because the modelling of the data is codified in the 

program (schema-on-read). When considering the large data scale, it is difficult to establish a 

model for all data and there are several issues related to poor data quality, such as missing data, 

noise or incorrect data. Another problem is that new raw data are continuously generated and 

the data model could change over time, and then the program would need some changes. 

The balance and the statistical properties of the data can also change over time and they can 

affect the program, especially if there are performance optimizations in the code based on data 

property assumptions. For example, suppose that in the program that analyzes the average 

temperature per year, the last two years contain 80% of the data. In this case there could be at 

least two issues: (1) performance problems if these two years are analyzed in the same 

computer, and (2) memory leaks or resource issues due to the high quantity of data analyzed by 

one computer. A further challenge is the type of processing implemented; originally MapReduce 

analyzed the data only in batches, but nowadays there are streaming or iterative approaches, 

among others. For example, the temperature sensors create streams of data, and so the 

calculation of the average temperature is more efficient using a streaming approach, but it is 

more difficult to implement and not all programs could be processed in this way. In some 

domains it is better to change the <key, value> approach to another that permits better 

modeling of the program, such as Pangool [56], that uses tuples, or more complex structures 

like graphs [57]. 

In the main framework of MapReduce, Hadoop, there are a lot of configuration parameters that 

could affect the execution in terms of resources, data replications and so on. More than 25 of 

these parameters are significant in terms of performance [58]. The developer does not know 

the resources available when the program is deployed because the cluster continuously changes 

(new resources adding to scale or infrastructure failures  [59]), and this also makes the optimal 

configuration difficult. There are other advanced functionalities of MapReduce that could 

optimize the program, such as for example the Combine function. The problem is that if these 

functionalities are not well established there could be some side effects, such as incorrect 

output. 

In Big Data there are also other testing issues related to the ethical use of data. Different security 

procedures and policies should be considered in MapReduce programs throughout the data 

lifecycle. For example, the analysis of some data could be forbidden in the next season due to 

agreements with the data provider or due to legal issues. In other cases, the data should be 

anonymized or encrypted, especially any sensitive data. 

Several generic tools are used in the industry to test MapReduce programs, such as JUnit [60] 

with mocks. In order to facilitate the testing of MapReduce programs, MRUnit [61] runs the unit 

test cases without a cluster infrastructure. Another approach is MiniCluster [62] that simulates 

a cluster infrastructure in memory, or Herriot [63] that interacts with real infrastructure allowing 

finer-grained control, for example by the injection of computer failures that alter the execution 

of the program. There are different types of infrastructure failures that affect test execution and 

several tools simplify their injection such as AnarchyApe [64], ChaosMonkey [65] or Hadoop 

Injection Framework [66]. The remainder of this chapter analyses and summarizes the efforts of 

the research studies that are focused on covering the issues related to testing MapReduce 

applications. 
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II.2 PLANNING OF THE MAPPING STUDY 

This mapping study aims to characterize the knowledge of software testing approaches for 

MapReduce programs through a study of the exisiting research literature. To avoid bias, the 

planning of the mapping study describes several tasks based on the guidelines from Kitchenham 

et al. [67]: 

1. Formulation of the research questions (Subsection II.2.1). 

2. The search process to extract the significant literature (primary studies) to answer the 

research questions (Subsection II.2.2). 

3. Data extraction to obtain the relevant data from the literature (Subsection II.2.3). 

4. Data analysis to summarize, mix and put the data into context to answer the questions 

(Subsection II.2.4). 

These tasks are planned and then conducted independently as described in Fig. 4. The execution 

(conducting) of the mapping study is summarized in Section II.3. 

II.2.1 Research Questions 

The research questions are formulated to cover all of the information about software testing 

research in the context of MapReduce programs with different points of view. This chapter 

formulates the research questions based on the 5W+1H model [68], [69], also known as the 

Kipling method [70]. This method is used in other systematic reviews of software engineering 

[71] and answers the questions: Why, What, How, By whom, Where and When. 

The research questions of this mapping study are: 

RQ1. Why is testing performed in MapReduce programs? 

RQ2. What testing is performed in MapReduce programs? 

RQ3. How is testing performed in MapReduce programs? 

RQ4. By whom, where and when is testing performed in MapReduce programs? 

 
Fig. 4 Steps of systematic mapping study 

Reseach 
questions

Search 
process

Primary studies

Data 
extraction

Data 
analysis

Data ResultsAnalysis

Planning

Conducting 
each task

 
Fig. 5 Search process to obtain the primary studies in the mapping study 
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II.2.2 Search Process 

The mapping study answers the research questions by analyzing the series of studies that 

contain relevant information about these questions. These studies are called primary studies 

and are obtained through the tasks described in Fig. 5. First, the search terms (set of several 

words/terms) related to software testing and MapReduce are searched for in different data 

Table 1 MapReduce technology-related terms (population) 

Technology Terms and years of creation 

Field Big Data, Massive data, Large data 

Data processing Hadoop (2006) 

- Batch MapReduce (2004) 

- Iterative Spark (2013), Tez (2013), Stratosphere (2010), Dryad (2007), Flink (2014) 

- Streaming Storm (2011), S4 (2010), Samza (2013) 

- Lambda Lambdoop (2013), Summingbird (2013) 

- BSP Giraph (2013), Hama (2011) 

- Interactive Drill (2012), Impala (2012) 

- MPI Hamster (2011) 

Testing MRUnit (2009), Junit (1998), Mock, MiniMRCluster (2006), 

MiniYarnMRCluster (2012), Mini cluster (2007), QuerySurge (2011) 

Security Sentry (2013), Kerberos (2007), Knox (2013), Argus (2014) 

Resource Manager Yarn (2012), Corona (2012), Mesos (2009) 

MapReduce abstraction Pig (2008), Hive (2010), Jaql (2008), Pangool (2012), Cascading (2010), 

Crunch (2011), Mahout (2010), Data fu (2010) 

Yarn frameworks Twill (2013), Reef (2013), Spring (2013) 

Yarn integration Slider (2014), Hoya (2013) 

Data integration Flume (2010), Sqoop (2009), Scribe (2007), Chukwa (2009), Hiho (2010) 

Workflow Oozie (2010), Hamake (2010), Azkaban (2012), Luigi (2012) 

Coordinator Zookeeper (2008), Doozerd (2011), Serf (2013), Etcd (2013) 

SDK Hue (2010), HDInsight (2012), Hdt (2012) 

Serialization Sequence File (2006), Avro (2009), Thrift (2007), Protobuf (2008) 

Cluster Management Ambari (2011), StackIQ (2011), Whte elephant (2012), Ganglia (2007), 

Cloudera manager (2011), Hprof (2007), MRBench (2008), HiBench 

(2010), GridMix (2007), PUMA (2012), SWIM (2011) 

Filesystem HDFS (2006), S3 (2006), Kafka (2011), GFS (2003), GPFS (2006), CFS (2013) 

Other storage HBase (2008), Parquet (2013), Accumulo (2008), Hcatalog (2011) 

Cluster deployment Big top (2011), Buildoop (2014), Whirr (2010) 

Data Lifecycle Falcon (2013) 
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sources (journals, conferences and electronic databases). The papers that match these searches 

together with other studies recommended by experts constitute the potential primary studies. 

Finally, these studies are filtered as part of study selection in order to obtain only the studies 

that contain information which answers the research questions. In the following subsections 

each of the planning steps is described in detail. 

II.2.2.1 Search Terms 

The search terms are obtained from the three points of view proposed by Kitchenham et al. [67]: 

population, intervention and outcome. In this mapping study the population refers to the 

technologies and areas related to MapReduce, whereas the intervention and outcome refer to 

the software testing methods and the improvements obtained through software testing. 

The search terms of this mapping study follow the chain “MapReduce technology related terms 

AND Quality related terms” where: 

• The MapReduce technology related terms correspond with population and are 

enumerated in Table 1 with synonyms. The selection of the search terms is difficult when 

technologies are relatively new because the terminology is not well-established [33]. 

The Big Data paradigm and the MapReduce processing model are surrounded by a lot 

of buzzwords like other fields such as Cloud computing. In order to obtain the maximum 

Table 2 Quality-related terms (outcome and intervention) 

Quality characteristics Terms 

Functional suitability Functionality, functional, suitability, suitable, correctness, correctable, 

accuracy, accurate, compliance, compliant, appropriateness, appropriate 

Performance efficiency Performance, performable, efficiency, efficient, time-behaviour, resource 

utilization 

Compatibility Compatibility, replaceability, replaceable, coexistence, interoperability, 

interoperable 

Usability Recognizability, recognizable, learnability, learnable, operability, operable, 

ease of use, helpfulness, helpful, attractiveness, attractive, attractivity, 

technical, accessibility, accessible 

Reliability Reliability, reliable, availability, available, fault tolerance, recoverability, 

recoverable 

Security Security, secure, safety, confidentiality, confidential, integrity, 

nonrepudiation, accountability, accountable, authenticity, authenticable 

Maintainability Maintainability, maintainable, modularity, modular, reusability, reusable, 

analyzability, analyzable, changeability, changeable, modification, 

modifiable, stability, stable, testability, testable 

Portability Portability, portable, adaptability, adaptable, transferability, transferable, 

installability, installable, effective, effectiveness 

Other terms Testing, assert, assertion, check, checking, test, test case, validate, 

validation, verify, verification, bug, defect, fault, failure, error, quality, risk, 

evaluation 
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relevant literature and avoid missing some primary studies due to buzzwords and 

jargon, a thorough search is performed considering the MapReduce and Big Data related 

technologies enumerated in Table 1. 

• Quality related terms correspond with the Quality (sub)characteristics of ISO/IEC 

25010:2008-2011 [72] and ISO/IEC 9126-1:2001 [73] and their synonyms (outcome), 

together with other testing terms (intervention). Both are enumerated in Table 2. 

This chapter plans a wide search with 9384 combinations of terms in the paper title, obtained 

by 92 MapReduce technology-related terms and 102 quality-related terms. 

II.2.2.2 Data Sources 

The potential primary studies may be found in different data sources. This mapping study 

searches for the studies in the following data sources, grouped in four categories: 

a) High-impact journals and conferences. The potential studies are obtained through DBLP 

[74] with the search terms in 31 JCR journals [75] and 53 CORE conferences [76] 

enumerated in Appendix VIII.1. The journals and conferences selected are related to the 

software testing or Big Data. 

b) Electronic databases. The search terms are queried in IEEE Xplore [77], ACM Digital 

Library [78], Scopus [79], Ei Compendex [80] and ISI Web of Science [81], that are 

employed in other mapping studies of software testing [82] and recommended by 

Kitchenham et al. [83]. 

c) Other journals and conferences. Relatively new topics like MapReduce and Big Data are 

more likely to be published in specialized workshops/conferences [33]. The non-JCR 

journals and non-CORE conferences related to software testing or Big Data could be a 

good source of potential 

II.2.2.3 Study Selection 

Study selection is more difficult in systematic mapping studies than in systematic reviews [83]. 

Some potential primary studies obtained from the data sources might not contain information 

about software testing in the MapReduce programs. In this mapping study a series of filters 

selects only the studies that contain relevant information that answers the research questions. 

The potential primary studies that do not pass the filters are excluded, and the remainder make 

up the primary studies used to answer the research questions. The filters consist of the following 

exclusion criteria applied in the following order: 

C1) Exclusion filter by year. A potential primary study is excluded when the publication year 

is before the MapReduce paper (2004) or before the creation of technologies/fields 

expressed in the search terms of Table 1. 

C2) Exclusion filter by area. Potential primary studies are excluded when their research is 

not about Computer Science or Information systems. 

C3) Exclusion filter by field. Potential primary studies are excluded when they do not contain 

Big Data information. 

C4) Exclusion filter by topic. The final filter only includes the studies about software testing 

in the MapReduce programs; the remainder are excluded. 
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For example, the last filter excludes papers focused on software testing of the underlying 

technology such as the distributed system Hadoop, cloud computing, net or operative system, 

among others. Despite the normal execution of MapReduce programs depends on all these 

technologies, usually they are mature enough and the developer/tester is only focused on the 

MapReduce application. Some papers that have been excluded are intended to improve the 

performance of Hadoop through infrastructure failure forecasting [84]  or to inject infrastructure 

failures in a distributed file system [85], among other examples that also do not test the 

MapReduce applications. Some other papers employ the MapReduce and Big Data capabilities 

to speed up testing in other non-MapReduce programs. For example, [86], [87] are frameworks 

to perform unit testing and mutation testing in general programs taking advantage of the 

parallel capabilities of the MapReduce processing model. 

II.2.3 Data Extraction 

The relevant information from the primary studies is extracted through a template divided in 

two parts. The first part is in general based on checklists of international standards related to 

the research questions, and the second part is focused on other data that could be interesting 

to analyze. The data extracted for answering the research questions are: 

RQ1 “Why is testing performed in MapReduce programs?” Extraction of the arguments 

employed in the primary study to perform testing in MapReduce programs. 

RQ2 “What testing is performed in MapReduce programs?” The data are extracted following 

two checklists that characterize the type of testing performed in each primary study: a checklist 

of the 31 ISO/IEC 25010:2011 Quality (sub)characteristics [72], and a checklist of the 17 

ISO/IEC/IEEE 29119-4:2015 Quality-Related Types of Testing [88]. 

RQ3 “How is testing performed in MapReduce programs?” The data are extracted by following 

a checklist of the 11 ISO/IEC/IEEE 29119-1:2013 Annex A: Test activities [30], together with a 

checklist of test areas as follows: Testing specific to MapReduce programs, Testing not specific 

to MapReduce programs (other technologies/paradigms can be tested), Unclear and Not 

applicable. In addition, the following information about the tools used for testing is extracted: 

Does the study include the creation of a specific tool or use an existing tool? Is the tool based 

on another tool? Is the tool available? For example, if the tool is accessible via the Internet or 

with some type of open source license. 

RQ4 “By Whom, where and when is testing performed in MapReduce programs?” The data are 

extracted following three checklists focused on the roles, the lifecycle and the test level. The 

first checklist contains the following roles: Manager, Analyst, Architect, Tester, Test manager, 

Test strategist, Other stakeholders, Unclear and Not applicable. These test roles are described 

 

Fig. 6 Test levels based on ITSQB and adapted to MapReduce 
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in the ISO/IEC/IEEE 29119-1:2013 Annex E [30]. The second checklist contains the 6 ISO/IEC 

12207:2008 Software Implementation lower level Processes [89] and the 11 ISO/IEC 12207:2008 

System Context Technical processes [89]. The third checklist is based on ISTQB test levels [90] 

and adapted to MapReduce with two changes represented in Fig. 6: (1) Unit testing is divided 

into “Unit testing in Map function” and “Unit testing in Reduce function”, and (2) “Integration 

testing” is for the integration of the MapReduce program with other modules, whereas 

“Integration MapReduce testing” is for the integration between Map and Reduce functions.  

Other data are extracted in the mapping study because they may be interesting when 

characterizing the results and obtaining new findings. These data are extracted in a checklist 

with the following information about the research validation of the studies: 

a) The different types of validation summarized by Mary Shaw [91]: Analysis, Evaluation, 

Experience, Example, Persuasion and Blatant assertion. 

b) Other characterizations of the research: Validation with external programs, Validation 

with own programs, Another type of validation, Without validation, Unclear, Other and 

Not applicable. 

II.2.4 Data Analysis 

The data extracted from the primary studies are analyzed in order to answer the research 

questions. In empirical software engineering there are several methods [92]  based on different 

approaches according to the type of data or research questions, among other things. In this 

mapping study the analysis is performed using (1) thematic analysis [93] to answer RQ1, and (2) 

meta-ethnography [94] for the remaining research questions. These methods are focused on 

qualitative data but analyze the data in a different way. 

The thematic analysis method is selected to respond to RQ1 (Why is testing performed in 

MapReduce programs?) because it extracts a taxonomy of the reasons for testing from the 

primary studies. Then RQ1 is answered by a frequency analysis of these reasons for testing. This 

thematic analysis is performed with a grounded approach [95] that consists of the following 

steps: 

1. Reading of the primary studies. 

2. Extraction of the segments/phrases that include the reasons for testing. 

3. Creating a group of labels for each previous segment/phrase based on the type of reason 

for testing. 

4. Refining all labels several times until a few labels are obtained that compose a taxonomy 

of the reasons for testing. 

5. Frequency analysis of the reasons for testing employed in the primary studies based on 

the previous taxonomy. 

Meta-ethnography is selected to answer research questions RQ2 to RQ4 because it transforms 

the data from the primary studies into a more easily analyzable shared context. This method is 

employed in software engineering [96] and translates all primary studies on data under several 

facets that contain the checklists described in the data extraction (Subsection II.2.3). Once the 

data are extracted from the primary studies in these checklists, the research questions are 

answered by a frequency analysis. This mapping study follows the 7 steps proposed by Noblit et 

al. [94]: 
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1. Getting started. The topic under analysis is software testing of the MapReduce programs 

and is well studied through mapping study. 

2. Deciding what is relevant to the initial area of interest. All primary studies are important. 

3. Reading the studies. The primary studies are read in order to extract the relevant data. 

4. Determining how the studies are related. Primary studies could contain related concepts 

or very different concepts. The relationship between these concepts is established 

through the checklists of the data extraction of Subsection II.2.3. 

5. Translating the studies into one another. The primary studies are translated into 

relevant data according to the unified checklists of Subsection II.2.3. 

6. Synthesizing translations. This mapping study creates more general concepts by the 

answers of research questions. RQ2 is answered by a frequency analysis of their two 

checklists, whereas both RQ3 and RQ4 are answered through their three checklists 

described in Subsection II.2.3. 

7. Expressing the synthesis. The research questions are answered and discussed in Section 

II.4 following the previous steps of the mapping study. 

II.3 CONDUCTING THE MAPPING STUDY 

This section describes how each step of the systematic mapping study was conducted and how 

all problems were overcome. The planning of the systematic mapping study was refined by the 

three authors after several iterations. 

Search terms: In the first instance, a small number of specific search terms such as MapReduce 

and Big Data were defined, but some relevant literature did not match with this search. For 

example, Hadoop is a distributed system that supports the execution of MapReduce programs 

and non-MapReduce programs, but there are several papers that use Hadoop and MapReduce 

words interchangeably. Other relevant papers do not include the word MapReduce in the title, 

but do contain other words related to the MapReduce/Big Data ecosystem like Hive, PIG or 

Spark. Finally, we refined the research method by adding more search terms in order to obtain 

the maximum amount of relevant literature. 

Data sources: The data sources were also refined several times, especially the journals and 

conferences/workshops. Initially, we planned to analyze only the top journals and conferences 

such as ICSE. However, we observed that the relevant literature of software testing in 

MapReduce were not published at all in these journals and conferences. Finally, we added more 

journals and conferences/workshops that might contain relevant literature using both SEWORLD 

[97], DBLP [74] and our research experience. We added both JCR/CORE and non-JCR/non-CORE 

venues because a significant number of primary studies are published in this heterogeneity of 

venues, as we discuss in Section II.4. 

Study selection: For each data source, one author developed queries using the large number of 

search terms. This search was difficult to carry out because the software engineering search 

engines did not adequately support the mapping studies searches [98]. To avoid this problem, 

we created a program that splits the 9384 combinations of search terms in 2346 searches and 

simulates a human performing these requests. The potential primary studies were obtained over 

a period of approximately two months in order to avoid bans in the search engines due to a high 

number of requests. After some months we tried to use this program in another mapping study, 

but the program was obsolete due internal changes in the search engines. As other researchers 
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have noted, we also observe that digital search engines are not well-suited to complex searches 

[83]. 

After two months of both automatic and manual searches in 2311 proceedings/volumes (624 

from JCR/CORE venues and 1687 from non-JCR/non-CORE venues), in July 2016 we obtained 

more than 100000 studies represented in Fig. 7. Then we removed those that were retrieved 

several times across different data sources, obtaining thereafter more than 70000 potential 

primary studies. The majority of these studies were clearly non-relevant for this mapping study 

because they were not focused on software testing in the MapReduce programs. Following some 

practices of other systematic reviews of both social science [99] and software engineering [100], 

those studies that were clearly non-relevant were filtered out by only one of the authors, 

whereas those studies that were potentially relevant were filtered in parallel by two of the 

authors. The first filter was applied by only one of the authors because it only excludes those 

studies that are either published before MapReduce or before the technology that matches the 

query. For example, there were several studies excluded in the first filter because despite the 

fact that they were retrieved by the words “testing” and “pig”, they were published before the 

Apache Pig technology (2008) was developed. These studies were usually concerned with testing 

pigs (the animals) rather than Pig (the software). The majority of studies could be 

excluded/selected after only reading the title, but in other cases the author needed to read the 

abstract or the whole paper, in particular when considering the last filters. After the first filter, 

there were still more than 14000 potential primary studies in consideration. 

The second filter excludes those studies that are not related to either computer science or 

information systems. This filter was also applied by only one author because the studies 

excluded are clearly non-relevant, such as those about testing pigs (the animals) published after 
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2008. After the second filter was applied, there were still more than 1500 potential studies. The 

third filter excludes those studies that are not related to the Big Data field. This filter was applied 

by one author and excluded a few studies, some of which are about “cascading failures” in 

computer science models or databases that are clearly unrelated to the Big Data field. After 

applying the third filter, there remained more than 1300 potential primary studies. 

The fourth filter obtains those studies focused on software testing in the MapReduce processing 

model. This filter and the selection of the primary studies were almost completely applied by 

two of the authors and the disagreements were discussed by all authors. In the first instance 

one of the authors excluded 334 studies that are non-relevant because are related to Big Data 

Analytics. The remaining studies, numbering 1043, were related to Big Data Engineering and 

were filtered independently by two of the authors until the primary studies to be used in this 

chapter were obtained. Both authors agreed on 1002 studies: 50 of them passed the filter and 

were selected as primary studies, and the other 952 did not pass the filter. In contrast, both 

authors disagreed on 41 studies: one of the authors considered that 35 of them should pass the 

filter and be selected as primary studies, whereas the other author considered that the other 6 

studies should also pass the filter and be selected as primary studies. Despite 96% agreement 

between both authors, we applied the Kappa coefficient to statistically measure the inter-rater 

agreement [101]. We obtained 0.69 as a Kappa coefficient with [0.60-0.78] as a 95% confidence 

interval. This is usually interpreted as substantial [101] or moderate [102] agreement between 

both authors during the selection of the primary studies. The 4% disagreement (representing 41 

studies) were discussed and analyzed by the three authors until total agreement of the primary 

studies to be used in this chapter was achieved. The majority of disagreements were caused by 

an initial incorrect definition of the systematic mapping study plan because one author 

considered that studies about software testing in Hadoop system should be considered as 

primary studies, and the other author did not. We refined the plan indicating that the primary 

studies are only those about software testing in the MapReduce processing model and not those 

about software testing in other technologies or frameworks that do not comprise MapReduce. 

Other disagreements happened because one of the authors did not consider those papers about 

software testing in MapReduce abstractions like Pig and Hive as primary studies. There were 

other disagreements, for example those papers that instead of testing are related to debugging. 

After all authors had discussed and resolved the disagreements, 65 studies passed the filter. 

Some of these studies are the continuation of the same research, such as a conference paper 

with an improvement published in a journal. The old versions of the studies were excluded 

keeping only the latest study. There were several papers from the HP Labs team, but we 

considered that only three of them are considered primary studies because these studies were 

distinct from each other. As Section II.4 discussed, one of them [103] is focused on obtaining the 

execution time with microbenchmarks, whereas the other [104] is focused on the cloud cluster 

using different techniques, and the final study [105] is focused on Pig queries. Finally, 54 unique 

studies were selected as primary studies. 

Data extraction: In order to perform the data extraction, each one of these 54 primary studies 

were read at least once by two of the authors. Despite the guidelines from Kitchenham et al. 

[67] which suggest that at least two researchers extract the data independently, other 

researchers consider it practical that one author extracts the data and the other author checks 

the extraction [98]. This last practice is applied in software engineering by other systematic 

reviews [106] and we also extracted the data in similar way. One of the authors extracted the 

data from the primary studies, another author checked the extraction, and the doubts were 

discussed and resolved by the three authors. 



Section II.4 - Results 32 

 

Data analysis: Once the data were extracted, all authors discussed the interpretations and 

potential results. Then the three authors started to write the findings and the report. 

The current systematic mapping study took a lot of time despite not being the first conducted 

by our research group. The time consumed is one of the main criticisms of systematic reviews 

[83] .We specifically expended more time in: (1) creation and execution of a program to support 

the high number of search queries, (2) selection of the primary studies from a large amount of 

literature, (3) extraction of the data from each primary study, and (4) refinement of the research 

method. We performed the systematic mapping study two times, initially in 2015 and finally 

updated with the literature of 2016. 

II.4 RESULTS 

The results were obtained through the execution (conducting) of the systematic mapping study 

that answers the research questions. The primary studies are summarized in Subsection II.4.1. 

From these, the data were extracted, and the analysis is developed in Subsection II.4.2 

answering the research questions. Other results that do not answer the research questions but 

remain relevant in characterizing the state-of-art of software testing in MapReduce applications 

are summarized in Subsection II.4.3. Finally, the general results are discussed in Subsection II.5. 

II.4.1 Primary Studies 

In this chapter, there are 54 primary studies that are derived from more than 70000 potential 

studies obtained though the search process detailed in Fig. 7. These primary studies are detailed 

in Appendix VIII.3 with the year of publication, type of contribution and a summary of their 

contents. 

The MapReduce processing model was described in 2004, but the software testing efforts in this 

field according to the primary studies only started in 2010 with only 1 study and after six years 

and six months the number of primary studies had increased to 54. Table 3 summarizes the 

frequencies of these primary studies over time and reveals that the research efforts of the topic 

may have grown because after 2013 the attention increases. 

The different types of validations employed in the research are summarized in Table 4. The 

majority of the studies validate their research through examples (41%) or experience (35%). In 

76% of the studies, the validation is carried out by applying the testing research in a program(s), 

but in 11% of the primary studies the research is not validated. 

Testing in Big Data has opened up new challenges [107], especially in the understanding of the 

data and its complex structures [108]. Gudipati et al. [109] establish a classification of testing in 

the Big Data field. This study includes the validation of the MapReduce process together with 

other non-functional characteristics like performance and failover. All of these characteristics 

are among the main challenges in Big Data testing [108] . In order to overcome these challenges 

Table 3 Frequency of the primary studies over time 

Statistics 2010 2011 2012 2013 2014 2015 

2016 until 

July 

Frequency 1 (2%) 7 (13%) 4 (7%) 19 (35%) 12 (22%) 10 (19%) 1     (2%)  

Absolute frequency 1 (2%) 8 (15%) 12 (22%) 31 (57%) 43 (80%) 53 (98%) 54 (100%) 
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though software testing, it is recommended to deploy a distributed environment like 

production, preferably in the cloud [109], [110]. 

Software testing can be performed in different dimensions and some authors suggest addressing 

the three Vs of Big Data (Volume, Velocity and Variety). In the case of high Volume, it could be 

difficult to check whether the test case output is the output expected, and the use of automatic 

tools can be helpful [109]. In the case of Variety such as semi-structured or un-structured data, 

it can be helpful to transform them in a structured way [109]. To test the Velocity, it is 

recommended to design performance tests [109]. In addition to Volume, Variety and Velocity, 

other authors suggest considering the Veracity through data cleaning and normalization [110]. 

Those four Vs have an impact not only on the program execution, but also on the performance 

tests [111]. Zhenyu Liu [111] classifies the performance testing in Big Data as: (1) concurrent 

test (the impact of multiple users and applications in concurrency), (2) load testing (realistic data 

loads to analyze the response of the program), (3) stress test (testing under extreme data), and 

(4) capacity test (the analysis of the resources that can be used). 

The majority of the primary study papers are focused on capacity and load testing. These studies 

are summarized in Subsection II.4.1.1, whereas those primary studies that are more related to 

the functionality are described in Subsection II.4.1.2. 

II.4.1.1 Performance testing and analysis 

In the primary studies, performance analysis is mainly addressed by the simulation of program 

executions, or by evaluation of a performance prediction model. These prediction models 

characterize performance based on different kinds of input parameters. The model of Song et 

al. [112] predicts the execution time given some characteristics about both the input dataset, 

the program functionality and the programming cluster. In addition, other models obtain the 

execution time by also considering the file system [113]. The prediction models can have 

different goals beyond the execution time, for example the Yang et al. model [114] helps to 

obtain the values of the input parameters that achieve the best execution time. The tester varies 

the input parameters (the network or the locality of the data, among others) and then analyzes 

the impact in performance. 

Performance can be predicted by using a stochastic approach, for example by Stochastic 

PetriNets [115]. Another stochastic model [116] also considers the MapReduce tasks that are re-

executed due to frequent failures. The performance of MapReduce and Big Data applications 

can also be evaluated through large scale stochastic models by Mean Field Analysis [117]. 

Table 4 Number of primary studies per type of validation 

 Number of studies 

Analysis 7 (13%) 

54 

(100%) 

Evaluation 0   (0%) 

Experience 19 (35%) 

Example 22 (41%) 

Persuasion 0   (0%) 

Blatant assertion 6 (11%) 

With  

validation 

Over 

programs 

External programs 30 (56%) 
41 (76%) 

47 (87%) 54 

(100%) 

Own programs 12 (22%) 

Other validation 8 (15%) 

Without validation 6 (11 %) 
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While some models predict performance by analyzing the execution time of several samples 

[118] or considering previous executions [103], other models consider some specific 

characteristics of the MapReduce execution. The Vianna et al. model [119] considers the 

influence over the performance of MapReduce tasks that are executed in parallel. The network 

is another issue that can cause bottlenecks in MapReduce programs and several models consider 

the network in order to predict the performance [120], [121]. Others also consider the task 

failures and I/O congestion [122]. 

Together with the network, memory can cause performance issues, especially in iterative 

programs or those with high I/O operations. The performance of the shared-memory 

computation programs can be predicted with the Tanzil et al. model [123], whereas in those 

programs with Remote Direct Memory Access, the Wasi-ur-Rahman et al. model [124] can be 

used. Apache Spark 3 programs process the data using distributed memory abstraction and their 

performance can be predicted by a model that executes a sample of data [125]. 

The cluster that executes MapReduce programs can also influence performance, especially 

when this cluster is formed by a heterogenic infrastructure. In these clusters, the Zhang et al. 

model [104] predicts performance within the bounds of upper and lower execution time. 

Another model that can predict the performance in these clusters employs the machine learning 

technique Support Vector Machine [126]. There are several clusters deployed in the cloud to 

obtain several advantages in terms of elasticity and cost. For programs executed in these 

clusters, performance can be predicted modeling the systems with Layered Queueing Network 

[127]. In the case of I/O intensive programs in the cloud, performance can be predicted using a 

CART (Classification And Regression Tree) model [128]. When the programs executed in the 

public cloud have deadline requirements to satisfy, performance can be predicted with the 

Locally Weighted Linear Regression model considering the previous execution and the data 

executed in parallel [129]. For those programs that are not only executed in a public cloud, but 

in a hybrid cloud, their performance can be predicted with the Ohnaga et al. model [130]. 

Several frameworks transform queries into MapReduce jobs, such as Hive [131] and Pig [132]. 

The execution time of the Hive SQL-like queries may be forecast using multiple linear regression 

to predict the execution time of all the MapReduce jobs generated from these queries [133]. 

The multiple regression analysis can be also used to predict the execution time of the join 

queries in Pig programs [134]. In contrast, the Zhang et al. model [105] predicts the performance 

of Pig programs considering the previous executions. 

In addition to the prediction models, the testers can simulate the execution of the programs to 

analyze their performance in a fine-grained way. As with the prediction models, the simulators 

also consider characteristics about the input dataset, the program functionality, the 

programming cluster and the file system [135]. The MRPerf simulator [136] considers the inter 

and intra rack interactions over network using ns-2, and can be combined with other simulators, 

such as DiskSim. The Chauhan et al. simulator [137] is based on MRPerf but including, among 

others elements, some random time due to operating system scheduling and network 

communication delays. 

The execution time of MapReduce programs can also be obtained using the modelling language 

proposed by Barbierato et al [138]. The tester can also monitor the execution of MapReduce 

programs and test cases, obtaining charts to evaluate performance and potential bottlenecks 

[139]. Villalpando et al. [140] propose a model for the Big Data application establishing a 
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relationship between performance and reliability measures based on the international standard 

of quality ISO/IEC 25010 [72]. 

Despite there being several research lines concerned with predicting the execution time, there 

is no comprehensible comparison between them. In general, these studies are evaluated only 

with a few different case studies. The scientific contribution of these prediction models can be 

improved with empirical evaluation against other models using a standardized benchmark. 

The main difference between these models is not just the technique/approach employed, but 

also the parameters used by the model. Different characteristics of the input dataset, program 

functionality, programming cluster and file system are considered as parameters, for example: 

size of data or number of <key, value> pairs (input dataset), complexity or overhead of Map 

(program functionality), number of CPU cores or racks (programming cluster), and number of 

HDFS replicas or the data transfer time for an HDFS block (file system). 

There are a lot of different parameters, but there is no clear indication of which parameters have 

more influence on performance. The contribution of the performance prediction studies can be 

improved evaluating which parameters really influence performance and which do not. Then 

the prediction models can be designed with a more standardized subset of parameters that have 

a notorious influence on performance. 

II.4.1.2 Functional testing 

Misconfiguration is one of the most common problems that lead to memory/performance issues 

in MapReduce [141]. However, according to the empirical study by Ren et al. [28], users rarely 

tune the configuration parameters that are related to performance. Users usually only turn the 

configuration parameters that are related to failures [28]. Another empirical study analyzes 200 

production failures and determines that the majority of failures are related to the data, and only 

1.5% are related to the performance (out of memory) [142]. In production there are several 

programs that do not finish their execution; Kavulya et al. [27] indicate that around 3% of 

programs have this problem, and a broader study indicates this percentage falls between 1.38% 

and 33.11% [28]. 

An analysis of 507 programs indicates at least 5 different kinds of faults caused by the non-

deterministic execution of the MapReduce [29]. The current thesis is focused in these faults. 

Camargo et al. [143] classify the specific faults of MapReduce, whereas our initial work [38] 

classify those caused by the non-determinism execution. Chen et al. [144] propose a formal 

approach to detect these faults caused by non-determinism. In contrast, Csallner et al. [145] 

employs symbolic execution to check the program under test. Another technique to detect the 

faults caused by non-determinism dynamically checks the properties of the program under test 

with random data [146]. One of the reasons for the non-deterministic execution is the tolerance 

of infrastructure failures. There are several studies that propose to inject infrastructure failures 

in the test case design [147]. Failure Scenario as a Service (FSaaS) [148] injects infrastructure 

failures into a cluster deployed in the cloud. 

Several testing techniques are devised in order to generate test inputs aimed at detecting 

functional faults, such as those caused by nondeterministic execution or other semantic errors. 

The MRFlow testing technique [53] generates the test coverage items that can be used to 

generate test inputs based on the data-flow technique adapted to the MapReduce processing 

model. Another technique to generate data of the test cases employs a bacteriological algorithm 

aimed to kill some semantic mutants specific to MapReduce which varies both the number of 
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the Reducers and the existence (or not) of the Combiner functionality [149]. In those Big Data 

ETL (Extract, Transform and Load) programs that integrate several technologies (MapReduce, 

Pig, Hive, among others), a subset of representative data for test can be obtained from the 

dataset through input space partition together with constraints [150]. In dataflow programs like 

Pig, the test inputs can be generated using dynamic-symbolic execution in the control-flow 

graph of the program [151]. 

Other kinds of checks can be performed in MapReduce programs. Dörre et al. [152] propose an 

automatic checker that statically detects incompatibilities between the types of the <key, value> 

pairs processed by MapReduce programs. Rabkin et al. [153]  statically analyze the configuration 

parameters used by different frameworks, including Hadoop. The MapReduce developers and 

testers should analyze the configuration parameters used because 17% of Hadoop options are 

not documented and 6% are not used in the code. The main Big Data frameworks can be 

affected in the same way as Hadoop because these issues are common in open-source programs 

[153]. The correctness of MapReduce programs can also be verified formally through proofs 

modelling the specification as Coq functions [154]. 

II.4.2 Analysis 

The primary studies contain the answers to the research questions, but this information is 

hidden inside them. The analysis obtains valuable information in order to answer the research 

questions based on the data extracted from the primary studies. The data were extracted 

following the template defined in Subsection II.2.3 and then analyzed by the methods described 

in Subsection II.2.4. In the following subsections the primary studies are analyzed, classified and 

summarized in order to obtain the answer to each research question systematically. 

II.4.2.1 RQ1 Why is testing performed in MapReduce programs? 

MapReduce programs are tested for several reasons. A model/taxonomy of these reasons were 

obtained by applying the thematic analysis method to the primary studies, as described in 

Subsection II.2.4. The reasons for testing obtained are: 

• Performance related: issues derived from the performance goals, service level 

agreements, size of the data, performance under infrastructure failures and 

prediction/analysis/optimization of performance. 

• Failure related: the specific faults of MapReduce programs and the number of programs 

that fail in production. 

• Improper use: not all programs fit correctly in the MapReduce processing model. 

• Data related: the challenges related to schema-less data and poor data quality. 

• Configuration related: the misconfiguration of the infrastructure or program parameters 

may produce a failure. 

• Time related: the programs may fail after a long time of resource usage. 

• Cost related: testing can be carried out in order to reduce the cost of development, 

resource utilization and so on. 

• Other: the reasons that do not fall in another category of the model/taxonomy of the 

reasons but do not constitute a new category of reasons. 

For each of the above categories of reasons for testing, Table 5 indicates the number of primary 

studies that details these reasons. Note that a primary study can contain one or more reasons 
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for testing. In Table 5, each reason for testing is also classified based on the degree of formality 

of the evidence in accordance with the following types: reasons with formal evidence and 

reasons with informal evidence. 

Reason with formal evidence: the reason for testing is detailed in the primary studies empirically 

or with some rigorous evidence of this reason to test. For example, if one paper performs an 

extensive analysis of several programs and detects that testing is necessary because a lot of 

programs crash in production, this would be considered a reason with formal evidence. 

Reason with informal evidence: the reason for testing is not clearly explained or not detailed in 

the primary studies due to the absence of rigorous analysis of the evidence for this reason to 

test. For example, if a paper indicates that the testing is necessary because the developers do 

not know how to configure the performance parameters of MapReduce programs, this would 

be considered a reason with informal evidence. 

The most frequent type of reason for testing is “performance related”, being described in 30 

primary studies and representing 49% of the total reasons given in all primary studies, followed 

by “failure related” with 14%, “data related” with 12%, and “cost related” with 8% of the total 

number of reasons. Considering the formal evidence of the testing reasons, “performance 

related” is also the main reason in the primary studies with 6% of the total reasons (5 of formal 

evidence out of a total of 17 of formal evidence), followed by “failure related” and “improper 

use” with 4% of total reasons (3 of formal evidence out of a total of 17 of formal evidence). 

In the model/taxonomy obtained through the analysis of the primary studies, the 41 

“performance related” reasons for testing were sub-divided in the following sub-categories of 

reasons: 

• Optimization/improvement of application performance: testing is aimed at the 

improvement of program performance. 

• Analysis of application performance: understanding of performance to detect 

bottlenecks, among other issues. 

• Influence of the infrastructure on application performance: whereas MapReduce 

applications can be designed without considering the infrastructure, program 

performance is influenced by the production infrastructure. 

Table 5 Number of primary studies per type of reason for testing 

Types of reasons 
Number of 

papers 

Number of formal 

reasons 

Number of informal 

reasons 

Number of 

total reasons 

Performance related 30 5 (6%) 36 (43%) 41 (49%) 

Failure related 11 3 (4%) 9 (11%) 12 (14%) 

Improper use 2 3 (4%) 1 (1%) 4 (5%) 

Data related 9 2 (2%) 8 (10%) 10 (12%) 

Configuration related 3 2 (2%) 1 (1%) 3 (4%) 

Time related 2 2 (2%) 0 (0%) 2 (2%) 

Cost related 7 0 (0%) 7 (8%) 7 (8%) 

Other 4 0 (0%) 4 (5%) 4 (5%) 

  17 (20%) 66 (80%) 83 (100%) 
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• Influence of dataset on application performance: in the same way that the infrastructure 

impacts performance, the dataset used in production also make an influence. 

• Fulfill SLA or performance goals: the reason for testing the program is to fulfill service 

level agreements or other performance goals such as deadlines. 

• Other: the reasons that do not fall in another sub-category of the model/taxonomy of 

the performance reasons but do not constitute a new sub-category of reasons. 

For each one of the above sub-categories of testing that are related to performance, Table 6 

indicates the number of the primary studies and their reasons for testing. 

From the 41 “performance related” reasons for testing, the most frequent are focused on the 

analysis (27% of “performance related” reasons) and optimization of performance (27% of 

“performance related” reasons), followed by the fulfillment of performance goals (24% of 

Table 6 Number of primary studies per type of performance-related reason 

Types of “performance 

related” reasons 

Number 

of papers 

Number of 

formal reasons 

Number of informal 

reasons 

Number of 

total reasons 

Optimization/improvement 

of application performance 
11 0 (0%) 11 (27%) 11 (27%) 

Analysis of application 

performance 
11 0 (0%) 11 (27%) 11 (27%) 

Influence of infrastructure 

in application performance 
4 3 (7%) 2 (5%) 5 (12%) 

Influence of dataset in 

application performance 
2 0 (0%) 2 (5%) 2 (5%) 

Fulfill SLA or performance 

goals 
10 2 (5%) 8 (20%) 10 (24%) 

Other 2 0 (0%) 2 (5%) 2 (5%) 

  5 (12%) 36 (88%) 41 (100%) 

 

Table 7 Number of primary studies per ISO/IEC 25010:2011 Quality (sub)characteristic 

   Number of studies 

ISO 25010:2011 

System/software 

product quality 

Functional 

suitability 

Functional Completeness 2   (4%) 
14 

(26%) 

46 (85%) 

Functional correctness 14 (26%) 

Functional appropriateness 2   (4%) 

Performance 

efficiency 

Time-behaviour 32 (59%) 
35 

(65%) Resource utilisation 14 (26%) 

Capacity 1   (2%) 

Reliability 

Maturity 1   (2%) 

3 (6%) 
Availability 1   (2%) 

Fault tolerance 1   (2%) 

Recoverability 3   (6%) 

Other studies 
Characterization studies 4 (7%) 

8 (15%) 
Overview of testing 4 (7%) 
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“performance related” reasons). The remainder of reasons for testing related to performance 

analyze the influence of the infrastructure (12% of “performance related” reasons) and the 

dataset (5% of “performance related” reasons), followed by other issues (5% of “performance 

related” reasons). 

Of all the reasons for testing the programs, only 20% are based on formal evidence, and the 

remaining 80% are based on informal evidence. Regardless of the formality of evidence, the 

reasons for testing MapReduce programs most frequently described in the primary studies 

include “performance related”, especially for the analysis, optimization and fulfillment of 

performance goals. The least commonly cited reasons for testing are “time related”, 

“configuration related”, “improper use” and “other”. 

II.4.2.2 RQ2 What testing is performed in MapReduce programs? 

The planning of Subsection II.2.4 proposes a meta-ethnography [94] to answer this research 

question. The data extracted from each primary study is categorized against two facets in order 

to answer RQ2: 

a) Quality (sub)characteristics for each study according to the ISO/IEC 25010:2011 [72] 

represented in Table 7. 

b) Quality-Related Types of Testing proposed in each study based on ISO/IEC/IEEE 29119-

4:2015 [88] and summarized in Table 8. 

The majority of efforts are focused on “performance efficiency”, accounting for 65% of the 

studies, then on “functional suitability” with 26% of the studies, and finally on “reliability” with 

6% of the studies. Regarding the type of testing, 59% apply “performance-related testing”, 22% 

employ “functional testing” and 4% use “backup/recovery testing”. 

The results obtained through the combination of both facets are more or less those expected: 

“performance-related testing” is related to “performance efficiency” characteristics, the 

“functional testing” to “functional suitability”, and “backup/recovery testing” to “reliability”. 

II.4.2.3 RQ3 How is testing performed in MapReduce programs? 

This research question is answered through the meta-ethnography [94] proposed in Subsection 

II.2.4. In order to answer RQ3, the primary studies were analyzed considering three facets: 

a) Testing methods/techniques are summarized in Table 9 according to the test activities 

proposed in Annex A of ISO/IEC/IEEE 29119-1:2013 [30]. 

b) Dependency between the primary studies and the MapReduce processing model is 

depicted in Table 10. This table describes whether the testing methods, techniques or 

studies are specific to MapReduce or could be applied to other paradigms/technologies. 

Table 8 Number of primary studies per ISO/IEC/IEEE 29119-4:2015 Quality-Related Type of Testing 

 Number of studies 

ISO/IEC/IEEE 29119-4:2015 

Types of testing 

Performance-Related Testing 32 (59%) 

44 (81%) Functional Testing 12 (22%) 

Backup/Recovery Testing 2 (4%) 

Other studies 
Characterization studies 5  (9%) 

10 (19%) 
Overview of testing 5  (9%) 

 



Section II.4 - Results 40 

 

c) Tools created or used in the primary studies to perform software testing are 

characterized in Table 11. 

The majority of the papers (74%) focus on testing only the MapReduce-specific parts of the 

program. These programs have challenges related to performance issues and the correct 

operation of the program under parallel architecture. These issues among others are tested 

mainly by “evaluation”, according to 48% of the studies and “simulation” in 17% of the studies. 

Other testing activities are used to a lesser degree, such as “structure based” in 7% of the studies 

or static analysis in 6% of the studies. 

More than half of the studies (65%) do not create or use testing tools in their research. There 

are in total 19 tools, where 11 are based on other software testing related tools, and only 5 are 

freely available on the Internet with an open source license. 

Table 9 Number of primary studies per ISO/IEC/IEEE 29119-1:2013 Test activity of Annex A 

 Number of studies 

ISO/IEC/ IEEE 

29119-1:2013 

Annex A: Test 

activities 

 

V&V analysis 
Evaluation 26 (48%) 

29 (54%) 

43 (80%) 

Simulation 9 (17%) 

Te
st

in
g 

Dynamic 

testing 

Structure based 4 (7%) 

7       

(13 %) 
12 (22%) 

Specification based 1 (2%) 

Experienced based 1 (2%) 

Other 1 (2%) 

Static 

testing 

Static analysis 3 (6%) 
5 (9%) 

Other 3 (6%) 

Formal  

methods 

Model checking 1 (2%) 
2 (4%) 

Proof of correctness 1 (2%) 

Other studies 
Characterization studies 6 (11%) 

11 (20%) 
Overview of testing 5   (9%) 

 

Table 10 Number of primary studies per test area covered 

 Number of studies 

Specific of MapReduce 40 (74%) 
50 (93%) 

Not specific of MapReduce 10 (19%) 

Other studies Characterization studies 4 (7 %) 

 

Table 11 Number of primary studies per tool created in their research 

   Number of studies 

Tool created 

or used 

Based on other 
Tool available 3   (6%) 

11 (20%) 
19 

(35%) 

Tool not available 8 (15%) 

Not based on other tools 
Tool available 2   (4%) 

8 (15%) 
Tool not available 6 (11%) 

No tool created or used   35 (65%) 
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II.4.2.4 RQ4 By whom, where and when is testing performed in MapReduce programs? 

The planning of the mapping study described in Subsection II.2.4 proposes a meta-ethnography 

[94] to answer the research question through three facets: 

a) The different roles that participate in the testing efforts of the MapReduce programs, 

described in Table 12. 

b) Test levels summarized in Table 13 that contains a characterization of ISTQB test levels 

[90] adapted to the MapReduce processing model according to Fig. 6. 

c) The development cycle phase according to the Software Implementation lower level 

Processes and System Context Technical Processes of ISO/IEC 12207 [89]  described in 

Table 14. 

Table 12 Number of primary studies per role 

 Number of studies 

Roles 
Tester 45 (83%) 

49 (91%) 
Developer 5 (9%) 

Other studies Characterization studies 5 (9%) 

 

Table 13 Number of primary studies per ISTQB test level 

 Number of studies 

Levels of 

testing in 

ISTQB 

Unit testing 
Unit testing Map 16 (30%) 

19 (35%) 

44 (81%) 

Unit testing Reduce 19 (35%) 

Integration MapReduce testing 35 (65%) 

Integration testing 4 (7%) 

System testing 2 (4%) 

Acceptance testing 0 (0%) 

Other 

studies 

Characterization studies 5 (9%) 
10 (19%) 

Overview of testing 5 (9%) 

 

Table 14 Number of primary studies per ISO/IEC 12207:2008 Software Implementation Lower Level Process and 
System Context Technical Process 

 Number of studies 

ISO/IEC 12207:2008 Software 

Implementation lower level 

Processes 

Software Construction Process 3   (6%) 

48 (89%) 
Software Qualification Testing Process 47 (87%) 

ISO/IEC 12207:2008 System 

Context Technical processes 

Implementation Process 3   (6%) 

48 (89%) System Qualification Testing Process 47 (87%) 

Software Operation Process 1   (2%) 

Other studies 
Characterization studies 5   (9%) 

6 (2%) 
Overview of testing 1    2%) 
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As expected, the main player for testing the MapReduce programs is the tester, as per 83% of 

the studies, and then the developer according to 9% of the studies. Almost all primary studies 

(87%) describe testing efforts in the “Software/System Qualification Testing Process” compared 

with 6% which focus on “Software Construction or the Implementation Process”. In these 

processes, the studies cover in more detail the specific MapReduce parts of the program (Map 

and Reduce functions) instead of the other parts. The majority of the research efforts in 65% of 

the studies focus on the integration testing between Map and Reduce functions, and then 35% 

of the studies cover unit testing at the Map or Reduce functions. To a lesser extent, the testing 

efforts are oriented towards the parts of the program that could not contain MapReduce 

functions: 7% of the studies consider integration testing between the MapReduce functions with 

other parts of the program, and 4% of the studies relate to testing the system. All testing levels 

are covered by the primary studies except for acceptance testing. 

From these results, it appears that the fulfillment of the contract or user requirements tested in 

the acceptance testing level is not greatly affected by the existence of MapReduce functions in 

the system. Despite the fact that Big Data programs can contain a composite of several 

technologies/programs, testing research efforts focus on testing the MapReduce functions in 

isolation from the rest of the system. Few studies consider that a Big Data program can contain 

MapReduce functions together with other technologies. Regardless of the test level, the testing 

described in the primary studies is mainly performed in the Software/System Qualification 

Testing Process. 

II.4.3 Summary 

The research questions of Subsection II.2.1 were answered through the primary studies, data 

extraction and data analysis. A summary is presented below: 

RQ1. Why is testing performed in MapReduce programs? There are at least seven reasons for 

testing the MapReduce programs. The most frequent reasons are based on performance issues 

(to analyze, optimize and fulfill performance goals), the existence of several or specific failures, 

the type and quality of the data processed by these programs, and testing to predict the 

resources required and efficiently select the resources to be used. To a lesser degree, the other 

reasons for testing are the improper use of the processing model or technology, program 

misconfiguration or failures after a long period of executions. 

RQ2. What testing is performed in MapReduce programs? The majority of the research efforts 

in testing the MapReduce programs focus on the analysis of performance, and to a lesser extent 

the functional aspects of MapReduce programs. 

RQ3. How is testing performed in MapReduce programs? Mainly by evaluation and simulation. 

In both cases testing is focused specifically on the MapReduce functions and does not consider 

other parts of the program. Several tools are used to perform testing, but few are available on 

the Internet. 

RQ4. By whom, where and when is testing performed in MapReduce programs? Testing is 

mainly performed by the tester in the Software/System Qualification Testing Process and major 

efforts focus on the MapReduce program (unit and integration testing between Map and Reduce 

functions). 

The analysis of several features about the primary studies reveals, in addition to the answers to 

the research questions, other findings which are analyzed below. 
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The relation between the reasons for testing the programs and the type of testing employed in 

each study is displayed in Fig. 8. According to Table 8, 59% of the studies focus on performance 

testing (RQ2), which is very important because MapReduce applications analyze large quantities 

of data. From RQ1 the reasons for testing the programs are obtained and 58% of these reasons 

are related to performance (48 reasons of a total of 85 according to the left side of Fig. 8). The 

reasons for performance testing and the number of studies that test performance are aligned. 

However, according to Table 8, the studies related to functionality only represent 22% of all 

studies even though 42% of the reasons for testing are related to functionality (35 reasons of a 

total of 85 according to the left side of Fig. 8). There are more reasons for testing functionality 

than there are studies about functionality, which can indicate a challenge in the functionality 

testing to cover these reasons and improve the quality evaluation of the MapReduce 

applications. The current thesis is focused on these functional faults through testing (Chapter 

III), debugging (Chapter IV) and operations (Chapter V). 

The main test activities in RQ3 are evaluation (seen in 48% of the studies) and simulation (seen 

in 17%). These two activities are the most frequent because the majority of studies are focused 

on performance testing (59% according to RQ2). Fig. 9 characterizes the test activities (RQ3) and 

test levels (RQ4) regarding different types of testing (RQ2). The test levels in each type of testing 

are more or less similar to the answer to RQ4: the principal efforts are at the integration testing 

level of Map and Reduce functions and to a lesser degree at unit level. However, the test 

activities are different depending on the type of testing: performance testing employs 

evaluation and simulation to predict the time of execution and resources required, but 

functionality testing performs a variety of different test activities considering specific 

characteristics of the MapReduce processing model (static testing, structure based, formal 

methods, experience based and specification based). 

The majority of the studies are published in conferences (76%) and there are a few studies 

published in a high-impact journal (13%). Despite the fact that the number of research lines of 
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testing in MapReduce is growing, the validation of these approaches is still simply through 

experience or case studies focusing on only a few programs, which are sometimes created by 

the researcher. According to Table 4, 11% of studies are not validated, 41% are validated with 

examples and 22% employ programs created by the researcher to validate their own work. The 

research contribution of testing papers can be improved using controlled experiments with a 

standard benchmark, especially when considering the performance prediction techniques that 

in general are not validated against other techniques. As noted in Subsection II.4.1, performance 

prediction techniques employ a lot of different characteristics/parameters of the input dataset, 

program functionality, programming cluster and file system. In consequence, there is no clear 

intuition of which parameters have more influence in performance. The researchers can 

improve the testing techniques with both an accurate analysis of the parameters that have more 

impact in performance and rigorous experimentation using other testing techniques as a 

baseline. 

This chapter analyzed 54 studies in detail, obtained through a wide search that resulted in 1377 

Big Data studies by applying a filter (C4), in which only the studies that address software testing 

of MapReduce applications pass. Of these 1377 Big Data studies, 1043 are about Big Data 

Engineering and 334 about Big Data Analytics. Table 15 classifies the Big Data Engineering 

studies based on the research topic in order to characterize the research efforts. This 

classification reflects the research efforts to boost the Big Data Engineering field because 44.1% 

of the studies improve the technology, 18.31% analyze the technology through studies and 

surveys, 9.01% create new technologies to manage and analyze data, and 6.62% are focused on 

the state-of-the-art and challenges. Despite the challenges of testing in the Big Data area  [108], 

[110], there are few research lines which focus on testing Big Data programs in general and 

MapReduce programs in particular. 

The most relevant findings of this mapping study are enumerated in Table 16 and discussed in 

the next Section. 

 

Fig. 9 Number of primary studies per test activity and test level according to the type of testing 
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II.5 DISCUSSION OF RESULTS 

This Section discusses the main findings obtained in the current systematic mapping study and 

enumerated in Table 16. Despite the recent interest in Big Data through several studies 

published to improve/study the underlying technology, few of them are focused on software 

testing [Finding 1]. Researchers not only have opportunities in software testing for Big Data 

programs, but also for MapReduce applications. Although MapReduce is one of the processing 

models most frequently used in Big Data, the programs are usually formed by the integration of 

a stack/pipe of different technologies. In contrast, the majority of research about software 

testing is only focused on the Map/Reduce code, without considering the code of other 

technologies of the Big Data stack [Finding 2]. The testing techniques are usually similar to those 

employed in general purpose software, and so the researchers should adapt other general 

testing research to MapReduce considering the specific characteristics of the processing model. 

The majority of studies about software testing in MapReduce applications are focused on 

performance using verification and validation test activities such as simulation or evaluation 

[Finding 3]. These tests are usually done to predict/forecast/analyze performance through 

models that use several parameters characterizing both the program functionality, the 

programming cluster and the file system [Finding 4]. Since each of these models employs 

Table 15 Number of Big Data engineering studies in the last filter of the mapping study 

 Number of studies 

Improvements  

of technology 

Performance 121 (11.6%) 

460 

(44.1%) 

1043 

(100%) 

Security 81 (7.77%) 

Data acquisition, storage and extraction 45 (4.31%) 

Fault tolerance and availability 42 (4.03%) 

Energy 42 (4.03%) 

Improvements outside of Hadoop 35 (3.36%) 

Scheduling 34 (3.26%) 

MapReduce model 14 (1.34%) 

Different frameworks 10 (0.96%) 

Other improvements 36 (3.45%) 

Studies/Surveys 
General quality in Big Data 171 (16.4%) 191 

(18.31%) Other 20 (1.92%) 

Software testing 
For MapReduce programs 64 (6.14%) 103 

(9.88%) For non-MapReduce programs 39 (3.74%) 

Big Data in the cloud 101 (9.68%) 

New frameworks 
New Hadoop frameworks 85 (8.15%) 94 

(9.01%) Other new Frameworks 9 (0.86%) 

State-of-the-art and challenges 69 (6.62%) 

Debug 6 (0.58%) 

Other 19 (1.82%) 

Not applicable (Big Data Analytics) 334 
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different heterogeneous parameters, then it is difficult to understand which are the ones that 

really affect performance, as well as the real weight/influence that these parameters have in 

performance. Performance testing research could be improved by means of both an analysis of 

the parameters used by other researchers, and rigorous experimentation using other models as 

a baseline. 

According to the research lines, the main reason for testing MapReduce applications is 

performance [Finding 5]. Also the majority of the testing techniques for MapReduce applications 

are related to performance, as expected. The research lines also suggest that functionality is 

another of the relevant reasons to test MapReduce applications, but the actual number of 

functional testing techniques is low [Finding 6]. Researchers may have opportunities to devise 

new functional testing techniques considering the specific characteristics of MapReduce 

programs such as distributed execution and scalability, among others. The functional testing 

techniques of MapReduce programs involve different test activities, which include structure-

Table 16 Findings of the mapping study 

Id Finding 

1 Despite several studies that are aimed at both improving and studying the state-of-art of 
Big Data technology, there are in comparison few research lines focused on software 
testing of the Big Data programs [Subsection II.4.3] 

2 The majority of testing research in MapReduce applications is focused on either Map or 
Reduce or the integration of both, and cannot be applied to other processing models 
because they are specifically designed for MapReduce [Subsections II.4.2.3 and II.4.2.4] 

3 The majority of research is about performance testing, and, to a lesser degree, functional 
testing [Subsection II.4.2.2]. This research is about verification and validation analysis, 
and, to a lesser degree, about dynamic testing [Subsection II.4.2.3] 

4 The prediction/analysis models employed in performance testing use different numbers 
of heterogeneous parameters based not only on the MapReduce program functionality, 
but also on the cluster infrastructure, file system and data [Subsection II.4.1.1] 

5 The most frequent reasons for testing the MapReduce programs are based on 
performance issues (analyze, optimize and fulfill performance goals), existence of several 
and specific failures, the type and quality of the data processed by these programs, and 
testing to predict and efficiently select the resources [Subsection II.4.2.1] 

6 There are several rigorous reasons for testing the functionality of MapReduce 
applications, such as the percentage of programs that fail in production or the improper 
use of both functional semantics and data, but there are not many research efforts 
focused on this line of interest [Subsection II.4.3] 

7 Whereas performance testing is done by simulation and evaluation, functional testing 
employs different test activities, such as static testing and structure-based testing 
[Subsection II.4.3] 

8 As expected, testing research is focused on the software qualification process to help the 
tester [Subsection II.4.2.4] 

9 The majority of research neither creates nor uses a tool for testing MapReduce programs 
[Subsection II.4.2.3] 

10 Software testing research focused on MapReduce applications is usually published in 
conferences, and furthermore it is usually published without a strong validation, using 
only some case studies instead of rigorous empirical experiments [Subsection II.4.3] 
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based, static analysis and formal methods [Finding 7]. The researchers should adapt the 

dynamic/static/formal testing techniques of general-purpose software (data-flow, 

combinatorial or mutation testing, among others) to MapReduce considering the specific 

characteristics of the programming model. In the current thesis, Section I describes a functional 

testing technique for MapReduce programs based on Random testing [155], and Partition 

testing [156] together with Combinatorial testing [157], [158].  

Regardless of performance or functionality, the majority of testing is aimed at helping the tester 

in the software qualification process [Finding 8] without tools [Finding 9]. The contributions of 

researchers could not only help the testers, but could also help the final users providing 

automatic tools to support the design of test cases, and monitoring tools to analyze failures 

produced at runtime in production. In the current thesis, Chapter III describes a technique to 

detect faults for MapReduce programs during the runtime in production, and Chapter IV support 

their debugging. 

The majority of studies about software testing in MapReduce applications are published in 

conferences and evaluated with some case studies [Finding 10]. Researchers could improve both 

visibility and quality by means of rigorous experiments based on a benchmark of MapReduce 

programs that can expose functional/performance failures, such as SWIM [159], GridMix [160], 

SparkBench [161], BigBench [162] or TPCx-BB [163]. The current thesis is focused on design 

faults, but there is no a known benchmark for MapReduce programs that contains design faults. 

Then the thesis is evaluated with real-world programs obtained from both Internet and 

organizations that are interested in the quality of their MapReduce programs.  

II.6 LIMITATIONS OF THE MAPPING STUDY 

Despite the fact that both the planning and the execution (conducting) of this mapping study 

aimed to avoid bias, some limitations and researcher decision biases could exist [164]. 

• The results are limited by the academic context because the data sources are focused 

on the research field. Bias could be generated if the research papers do not represent 

the reality and motivations of software testing in MapReduce programs. 

• Following some practices from social science [99] and software engineering [100], the 

selection of the primary studies was performed by one author for those papers that are 

clearly non-relevant. In contrast, two authors selected the primary studies 

independently from 1043 studies that had more chances to be relevant. Both authors 

agreed in 96% of studies and obtained a substantial/moderate agreement with 0.69 as 

a Kappa coefficient and [0.60-0.78] as 95% confidence interval.  

• Despite the authors not finding quality problems in the primary studies, the quality of 

these studies was not formally evaluated. The same issue occurs in the majority of the 

systematic mapping studies [100] because quality assessment is usually not required 

[33]. 

• The data extraction was performed by one author and checked by another author. This 

practice is used in other systematic reviews [106] and some researchers consider it more 

practical than when data is extracted by several authors [98]. 

• Further bias occurs if some research questions cannot be properly answered through 

the checklist of the data extraction. In order to minimize this bias, the majority of these 

checklists are based on the international standards.  
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• Another less important potential bias could occur during the search process if some 

primary studies are not found with the search terms or expert opinions. In order to 

minimize bias, a thorough search is performed in several databases, journals, 

conferences and experts. 

In order to avoid bias in the results, all steps are reviewed and some countermeasures are taken 

in research questions, the search process, data extraction and data analysis: 

1. Research question: created by the Kipling method [70] instead of ad-hoc. 

2. Search process: 

Search terms: the use of a large number of terms could improve the search process by 

obtaining more potential primary studies. Some authors encourage the use of several 

short queries instead of long queries  [165]. This mapping study searches for a 

combination of 92 MapReduce related terms and 102 testing terms obtained from 

ISO/IEC 25010:2011 Quality (sub)characteristics [72] 44 with synonyms obtained 

through Kitchenham et al. [67] points of view. 

Data sources: this study searched 5 electronic databases recommended by Kitchenham 

et al. [83] and 2311 proceedings/volumes related to software testing of MapReduce 

programs. The other data source taken into account is the opinions of experts in the 

field in order to minimize the bias by adding primary studies that could not be found by 

the previous search.  

Study selection: this mapping study excludes non-relevant studies based on 4 filters. 

These filters were reviewed in order to obtain the relevant studies. 

3. Data extraction: the majority of the data extracted are based on checklists, in some cases 

obtained from international standards and in others created or adapted to the MapReduce 

processing model. 

4. Data analysis: the methods used in this chapter are employed in software engineering [92]. 

II.7 SUMMARY 

The number of studies on software testing of MapReduce programs has increased during recent 

years. A characterization was carried out based on 54 research studies obtained from more than 

70000 potential papers. The testing tasks in these programs are normally performed by the 

tester in the Software/System Qualification Testing Process due to a combination of the 

following 7 reasons: performance issues, potential failures, issues related to the data such as for 

example data quality, the reduction of the cost in resources, misconfigurations, improper use of 

the technology, time problems or other issues. These reasons for testing assume that both 

functional and performance testing are necessary, but the studies employ different approaches: 

functional testing considers different aspects of the program (such as specification and 

structure) while performance testing is more focused on simulation and evaluation. The current 

body of research focuses on performance testing, while there is a challenge in functional testing 

due to the importance of this line of research and the lack of research efforts. The current thesis 

is motivated on this challenge and focused on the functional faults caused by the wrong design 

of MapReduce programs. 

The main goal of performance testing in MapReduce studies is to predict the execution time and 

the resources required to efficiently execute the programs and satisfy the agreements. From the 
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functionality point of view, the goal of the studies is to detect faults considering the specific 

characteristics of the MapReduce processing model. Regardless of the type of testing, the 

majority of efforts are specific for the MapReduce technology at unit and integration level of the 

Map and Reduce functions. This situation may indicate a challenge in the integration of 

MapReduce programs with other programs, especially other Big Data stack technologies. 

The research into software testing in MapReduce programs is mainly validated with example 

programs. There is scope to evolve with better validations and thus improve the research 

impact. Despite the lack of maturity, several studies create tools to support testing, but few are 

available on the Internet for users or other researchers. In Big Data there are few research 

studies related to software testing in comparison to the number of research efforts focused on 

improving the technology, which indicates new opportunities in software testing of Big Data in 

general, and MapReduce in particular.  

The next chapters of the thesis are focused on both software testing and debugging of functional 

faults of the MapReduce programs caused by wrong design. The techniques proposed are 

automatized in tools and also evaluated through controlled experiments. 
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III TESTING 

The MapReduce programs can have different kind of functional faults. A study of 507 programs 

in production reveals at least 5 different kinds of faults that are caused by a wrong design of 

MapReduce programs [29]. Other researchers identify and classify more of such design faults of 

the MapReduce applications [38], [143]. In this chapter we propose new testing techniques to 

address these functional faults that are caused by incorrect design. These types of faults include, 

but are not limited to, race conditions, computations with unavailable data because the 

distributed system allocates them to another computer, or automatic optimizations that remove 

data that are relevant to calculating the output. These faults are difficult to detect because they 

depend not only on the data, but also on how these data are executed in the large distributed 

architecture (infrastructure configuration): parallel executions, re-executions of some part of 

the data and optimizations, among others. In general, these non-deterministic faults are easy to 

mask in development/testing environments and go on to fail in more complex environments 

such as the production environment, thereby generating incorrect outputs or causing the 

program to crash.  

In order to detect the design faults of the MapReduce programs, this chapter proposes a testing 

technique that executes the test case under the relevant and representative infrastructure 

configurations. The majority of this chapter is published in IEEE TR 2018 [41]. Section III.1 

introduces the faults of the MapReduce applications caused by a wrong design. Related work is 

then discussed in Section III.2. The testing techniques proposed and the automatization 

(MRTest) are defined in Section III.3. The experiment is performed and discussed in Section III.4. 

Finally, the conclusions and future work are detailed in Section III.5. 

III.1 BACKGROUND OF DESIGN FAULTS IN MAPREDUCE 

MapReduce programs process large datasets distributed over several computers using the 

"divide and conquer" principle. In its simplest form, the MapReduce developer needs to 

implement only two components: the Mapper that splits one problem into several subproblems 

(Divide), and the Reducer that solves these subproblems (Conquer). During the execution, 

several instances of Mapper analyse the dataset in parallel and send to each subproblem the 

data needed to be solved. After all Mappers are executed, several instances of the Reducer are 

executed in parallel to solve the subproblems. Internally, the data are codified as <key, value> 

pairs, where the key is an identifier of a subproblem, and the value contains all the information 

that is needed to solve the subproblem. The developer designs the business logic based on the 

<key, value> pairs emitted from Mappers to Reducers. Finally, the output is a series of <key, 

value> pairs obtained through the deployment and execution of Mappers and Reducers over a 

distributed infrastructure. 

More generally, a MapReduce program can be designed with more components. For example, a 

Combiner can be implemented to improve the performance by reducing the data exchanged 

between Mappers and Reducers. The Combiner is executed right after the Mapper with the aim 

of removing the <key, value> pairs that are irrelevant to solving the subproblem. The 

MapReduce applications can also be designed with other components such as, for example, the 

Partitioner that determines which Reducer analyses which <key, value> pair, the Sorter that 

controls the order of <key, value> pairs, and the Grouper that aggregates the values of each key 

before they are passed to the Reducer. 
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Distributed systems such as Hadoop execute the MapReduce programs in a non-deterministic 

way based on runtime factors, such as the resources available, observed infrastructure failures 

and other dynamic optimizations. Nevertheless, the same program with the same input data 

when executed in different infrastructure configurations should obtain the correct output. 

However, this is not always the case: in our first work in the second line of research [38] we 

identified and classified several design faults that are raised in some infrastructure 

configurations but masked in others. Despite the fact that some authors suggest that the parallel 

programming must be deterministic by default (unless the developer explicitly indicates non-

determinism) [166], this is not the case with these distributed systems. 

To illustrate MapReduce and its executions, let us suppose the computation of the average 

temperature per year given a large dataset containing several years with their observed 

temperatures. This program can be designed in different ways. We suppose that the developer 

makes the following decisions. The problem of average temperature per year is divided into 

several subproblems where each subproblem calculates the average temperature of one year 

only (Decision 1). Then each subproblem is composed of one year with all temperatures of this 

year (Decision 2), and it is solved with the temperature average (Decision 3). The program 

includes a Combiner to improve the performance (Decision 4). With the foregoing decisions, the 

Mappers receive a subset of temperature data and emit <year, temperature of this year> pairs. 

Then the distributed system aggregates all values per key, that is, each subproblem grouped 

with all the data that needs to be solved. Therefore, the Reducers receive subproblems like 

<year, [all temperatures of this year]> and calculate the average temperature. After the Mapper, 

the Combiner can be executed, aimed at removing the irrelevant temperatures, and emitting 

their average. 

The distributed system can execute the previous program in different ways, based on the 

runtime infrastructure configuration. For example, Fig. 10 shows three different executions with 

the following input: year 1999 with 4°, 2° and 3°; and year 2000 with 5°. Regardless of the 

infrastructure configuration, the program must obtain the right output: 3° as average in 1999, 

and 5° in 2000. The first configuration is the simplest with one Mapper, one Combiner and one 

Reducer. The Mapper analyses all temperatures and encodes them as <year, temperature>. 

Then the temperatures are grouped per year and sent to the Combiner that pre-calculates the 

average temperatures, and finally to the Reducer that obtains the correct output. 

 

Fig. 10 Execution of MapReduce program that calculates the average temperature per year 
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Depending on the runtime resources, the distributed system can execute the program 

automatically in more complex configurations. As we detail in Section IV, the configurations can 

have, among other things, a different number of Mappers and other automatic optimizations. 

For example, the second configuration of Fig. 10 is more complex than the first, employing one 

Mapper, two Combiners and two Reducers, also obtaining the correct output. We assume that 

the first Combiner receives the temperatures 4° and 2° of the year 1999, and emits their average, 

3°. The second Combiner receives year 1999 with 3° and emits it, whereas the year 2000 with 5° 

is passed directly from Mapper to Reducer. After the Mappers and Combiners are executed, one 

Reducer analyses the temperatures of the year 1999 and another Reducer the year 2000. 

Eventually, this configuration also obtains the correct output. 

In contrast, the third configuration that executes two Mappers, one Combiner per Mapper, and 

one Reducer does not obtain the right output. This execution obtains 3.25° as the average of 

1999 rather than 3° due to a design fault. The developer makes some incorrect design decisions, 

among them, the use of <year, temperature> pairs and the Combiner to optimize the program. 

Both decisions are incompatible in this program because the Combiner replaces the 

temperatures locally available in each computer with their average, and then the Reducer 

cannot calculate the global average using only the local averages. 

Although this program has a simple business logic, several developers make the previous 

incorrect design decisions to obtain the average temperature per year, as in the programs [167], 

[168]. The developer can fix the program by removing the Combiner, but this solution is not 

optimised. A better program design codifies the data as <year, {sum of temperatures, number 

of temperatures}> and uses a Combiner to update both the sum and number of temperatures 

[169]. 

A sample of a more subtle design fault is in the recommendation system Open Ankus [170]. The 

users assign points to a series of books, and then the system tries to forecast the points assigned 

for new books. The design fault is triggered during the calculation of the error between the user 

assignment and the system prediction. Fig. 11 depicts the execution of the program with the 

points assigned by Alice to the book Don Quixote and correctly predicted by the system. The 

first configuration with one Mapper for the predictions and one Mapper for the assignments 

obtains the correct output (the system predicts the result correctly). In contrast, when several 

Mappers for assignment are executed in parallel, the output of this program could potentially 

be faulty, depending on both the order of execution and how the data is distributed in parallel. 

For example, the program can be executed as in the second configuration of Fig. 11 obtaining 

the incorrect result that the system prediction is wrong. 

When the business logic tends to be more complex, as in machine learning programs, it can be 

difficult for the developer to make the right design decisions, and the program may be prone to 

side-effects. An incorrect design in the MapReduce program may cause a failure in one of the 

different ways in which the distributed systems can execute the program. These design faults 

are difficult to detect during testing because they may depend on dynamic execution contexts. 

Thus they can be missed in the laboratory, but are then triggered in aggressive environments, 

such as a production environment with a mix of large data and infrastructure failures. When 

these aggressive situations happen, the distributed systems manage the execution with 

different mechanisms, such as re-executing part of the program or performing some 

optimizations that can reveal design faults. To avoid incorrect outputs in production, it is 

desirable to detect these program faults in the early stages of the development process. 
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III.2 RELATED WORK 

Software testing is among the most commonly used software quality-assurance techniques 

[171]. In recent years, this field has seen great progress [31], but concerning the testing of Big 

Data applications, there remain several challenges according to the previous chapter. In this 

domain, most works focus on performance testing, but, functional testing is also important to 

avoid incorrect outputs. In this chapter we address functional testing. 

As seen in the earlier examples, some faults depend on how distributed systems execute the 

programs according to the infrastructure configurations. If the program generates incorrect 

outputs in some configurations and the expected output in others, then the program has a 

design fault. A study of 507 MapReduce programs in production reveals at least 5 different kinds 

of design faults [29]. To detect them, Csallner et al. [145] and Chen et al. [144] use testing 

techniques based on symbolic execution and model checking. Other authors [38], [143] 

identified and classified other design faults that depend upon the infrastructure configurations. 

This chapter proposes a test approach to detect such faults in the test environment by using a 

simulation of the infrastructure configurations based on combinatorial strategies. 

The production environment is composed of a large distributed infrastructure that over time 

exposes several failures [59]. In order to test in the same conditions as production, several 

research lines propose to inject infrastructure failures [85], [148] during testing, and several 

tools have been implemented to support their injection [64]–[66]. For example, Marynowski et 

al.  [147] propose creating the test cases by specifying which computers fail and when. While 

some of the design faults can be detected by injecting infrastructure failures, others require a 

fine-grained control of the distributed system and the underlying large infrastructure. In the 

production environment it is difficult to control the execution of the test cases because at the 

same time other programs consume the resources of the computers and other infrastructure 

failures can happen that are beyond the tester’s control. This chapter does not inject failures, 

but simulates the different infrastructure configurations in a test environment, thereby 

obtaining fine-grained control and reproducibility of the tests. 

Several research lines propose generating the test input data through different approaches: 

using a bacteriological algorithm [149], or with input domain analysis together with 

combinatorial testing [172]. Unlike these testing techniques, this chapter does not focus on the 

generation of the test input data, but on simulating their execution in the infrastructure 
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configurations that are more likely to reveal the faults. As such, the technique of this chapter is 

orthogonal to the above. The tester can use the previous approaches to obtain the test input 

data and then execute the test cases with the techniques proposed in this chapter. As we have 

shown, the same program and the same input data executed in different configurations might 

produce different results so, apart from deriving a good test suite, the testing of MapReduce 

applications also requires the derivation of the correct configuration.  

Several tools have been proposed to design and execute test cases for MapReduce applications. 

Herriot [63] allows the execution of the tests in a distributed infrastructure and at the same time 

supports the injection of infrastructure failures. Another tool called MiniClusters [62] executes 

the test cases in a distributed environment simulated in memory. For unit testing, MRUnit [61] 

provides an adaptation of JUnit [60] to the MapReduce processing model. All the above test 

tools only execute the test case in one infrastructure configuration and usually without 

parallelization. In this chapter we devise a testing technique to generate and execute a 

representative set of infrastructure configurations that could occur in production and as a whole 

is more likely to reveal design faults. It is automated by means of an MRUnit extension, as 

described below. 

III.3 MRTEST: AUTOMATIC MAPREDUCE TESTING TECHNIQUE 

In this section, we describe the test execution engine we propose called MRTest. Given a test 

input data, MRTest automatically generates the configurations aimed at revealing design faults 

(Subsection III.3.1), then executes the test case in these configurations (Subsection III.3.2), and 

finally checks if the program is faulty or not (Subsection III.3.3). 

III.3.1 Generation of Infrastructure Configurations for Testing 

This chapter proposes an automatic technique that, given test input data, generates a different 

number of configurations to test the programs. Then the faults are revealed when a failure 

occurs in one of these configurations. Ideally, these faults are detected executing all possible 

configurations, and as initial work we proposed to generate these thorough number of 

configurations (MRTest-Thorough), but  the approach exposed limitations because it takes a 

long time and only supports a small volume of test input data [42]. In order to overcome these 

problems, the thesis proposes other two techniques reducing the number of configurations 

generated while maintaining the fault detection effectiveness: the two techniques use Random 

Testing [155] (MRTest-Random) and Partition Testing (Equivalence Partitioning [156] with 

Combinatorial Testing [157], [158]) (MRTest-t-Wise). 

The first technique, MRTest-Random, generates the configurations randomly from all valid 

configurations. The tester indicates the number of configurations wanted, and MRTest-Random 

generates them randomly. 

The second technique, MRTest-t-Wise, divides the set of all valid configurations into several 

partitions with similar behaviour and applies a combinatorial strategy to generate the 

configurations under test. In software testing, depending on the failure probability [173], 

Random testing can be as effective as Partition testing [174] and can be a feasible option [175]. 

In other circumstances, Partition Testing can be more effective than Random Testing [176]. As 

we discuss in Section V, our experiments show that both techniques MRTest-Random and 

MRTest-t-Wise can be effective in revealing MapReduce faults, but MRTest-t-Wise is significantly 

better. The latter testing technique is schematically represented in Fig. 12 and described below 
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in three parts: (1) Division of the set of all valid configurations, (2) Combination strategy, and (3) 

Generation of the configurations. 

Division of the set of all valid configurations: The set of all valid configurations is divided based 

upon the following parameters and constraints that are also represented at the top of Fig. 12: 

Mapper: 

P1) Number of Mappers: 1 or >1. The program in production can be executed with one 

Mapper (1) that analyses the entire dataset, or alternatively with several Mappers that 

analyse different parts of the dataset in parallel (>1). 

P2) Data processing order of the inputs: data are processed in the same order as they are 

encountered in the input (same), or in a different order (different). The MapReduce 

processing model does not guarantee that the data will be processed in the same order 

as they are stored in the input. 

P3) Distribution of the input data in the Mappers: data equally distributed in the Mappers 

(equal) or not equally distributed (non equal). The Mappers process different subsets of 

input data: there could be configurations with an equal number of data in each Mapper, 

or with a different number of data. 

Combiner: 
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P4) Number of Combiners per Mapper: 0, 1 or >1. Each Mapper can execute one Combiner 

(1), several Combiners (>1) or can emit the data directly to Reducer (0). 

P5) Distribution of Mapper output in Combiners: data equally distributed in Combiners 

(equal) or not equally distributed (non equal). 

P6) Data directly from Mapper to Reducer: 0 or >0. All data emitted by Mappers can be pre-

processed by the Combiner functionality (0), or in contrast some data can pass directly 

from Mapper to Reducer without executing the Combiner functionality (>0). 

P7) Iterative executions of Combiner: 1 or >1. The output of the Combiner can be executed 

iteratively by the Combiner several times (>1) or only once (1). 

Reducer: 

P8) Number of Reducers: 1 or >1. The program can be executed in production with one 

Reducer that solves all subproblems (1) or with several Reducers that solve the 

subproblems in parallel (>1). 

For example, the configuration at the bottom of Fig. 10 is characterized by the following 

parameters: 

• P1 is >1: There are two Mappers. 

• P2 indicates a different order: The input data is executed in a different order than they 

are stored in the input. The 4° temperature is executed after 2°, but in the input the 

temperature 4° is before 2°. 

• P3 indicates a non-equal distribution of the data in Mappers: Each Mapper has a 

different number of input data. One Mapper has 1 register and the second has 3 

registers. 

• P4 is 1: Each Mapper only executes one Combiner. 

• P5 indicates an equal distribution of the Mapper output in its Combiners. Each Mapper 

only has one Combiner that receives all its data, then the output of the Mapper is equally 

distributed in its Combiner. 

• P6 is 0: There are no data that pass directly from the Mapper to the Reducer without the 

Combiner. 

• P7 is 1: The Combiners are not executed iteratively several times, they are executed only 

once. 

• P8 is 1: There is only one Reducer. 

The configurations under test are obtained by a combination of the previous parameters. 

However not all combinations make sense, and to prevent non-meaningful combinations, we 

have derived the following constraints that descend from the MapReduce processing model: 

• When the number of Mappers (P1) is 1, then: (a) Data processing order of the inputs 

(P2) is the same order as they are in the input, and (b) Distribution of the input data in 

the Mappers (P3) is equally distributed. 

• When the number of Combiners (P4) is 0, then: (a) the distribution of the data in the 

Combiners (P5) is not applicable, (b) the Data directly from the Mapper to the Reducer 

(P6) is >0, and (c) the iterative executions of the Combiner (P7) is not applicable. 

• When the number of Combiners (P4) is 1, then the data in the Combiners (P5) are equally 

distributed. 
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Combination strategy: Deriving all possible combinations of previous parameters is expensive 

and the t-Wise strategy (also known as t-Way) is applied [88], [157]. Instead of combining all the 

values of all parameters, t-Wise [177] combines only the values of all subsets of t parameters. 

For example, 1-Wise (each use) [178] requires that all values of each parameter appear in at 

least one test case, whereas 2-Wise (pairwise) requires that the combination of all values per 

pair of parameters appears in at least one test case. 2-Wise has been shown to be almost as 

good as all combinations of parameters [179] at detecting failures, but employing much fewer 

resources in terms of time and cost [180]. 

The MRTest-t-Wise technique generates the configurations covering the t-Wise combinations of 

the previous parameters and constraints. Fig. 12 details the configurations that must be covered 

(test coverage items) for 1-Wise and 2-Wise strategies. Each row of the figure represents a test 

coverage item that should be covered with a configuration that satisfies the parameters 

indicated by dots. The 1-Wise technique requires the generation of 3 configurations (test 

coverage items) when the program implements a Combiner, and 2 configurations in the other 

case. The 2-Wise is a more thorough combination, requiring 11 configurations for programs with 

a Combiner, and 6 when the program does not implement a Combiner. 

Generation of configurations: The configurations can be created manually to cover each test 

coverage item of the t-Wise selected, but the MRTest-t-Wise technique generates these 

configurations automatically. The following pseudo-code describes how the configurations are 

generated: 

Input:  t-Wise (testing technique selected, i.e. 2-Wise) 

  sut (software under test) 

Output: Configurations that cover t-Wise in sut 

(1) Configurations ← ∅   

(2) tcis ← Get all test coverage items of the t-Wise 

(3) ∀ tci ∈ tcis 

(4) | Configuration ← ∅ 

(5) | ∀ parameterToCover ∈ tci 

(6) | | value ← obtain randomly a value that covers  

parameterToCover in sut 

(7) | | IF value exists: 

(8) | |  Configuration ← Configuration ∪ value 

(9) | | ELSE //When there is no value to cover   

 parameterToCover 
(10) | |  The actual configuration cannot cover the  test  

coverage item in sut, then backtracks trying to 

| |  generate  again the  configuration  with  other 

| |  values in previous parameters  

| |_  [maximum τ times (threshold)] 

(11) | IF Configuration covers the tci in sut: 
(12) |_  Add Configuration to Configurations 

(13) RETURN Configurations 

In order to generate a configuration that covers each one of the test coverage items (1, 2, 3), 

the MRTest-t-Wise covers the first parameter with random values, then the second, and so on 

(4, 5, 6, 7, 8). For example, if the first parameter should be P1: >1, i.e., more Mappers, then a 

random value is selected greater or equal to 2 to guarantee >1 Mappers, and so on with the 

remainder of the parameters. Sometimes it can be impossible to cover one parameter because 
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the test input data add semantic constraints unknown until the values selected in the previous 

parameters are executed (9, 10). For example, sometimes it is impossible to obtain a 

configuration with >1 Reducers because the test input data always lead to one Reducer. In these 

cases MRTest-t-Wise uses a backtracking approach. First it fulfils randomly the first parameter 

(4, 5, 6), then it executes the part of the program affected by this parameter (7, 8) and tries to 

cover the second, and so on. When the generator discovers at runtime that one parameter 

cannot be covered, then it backtracks, changing the value of previous parameters (9, 10). For 

example, a configuration can be created with 2 Mappers (P1 >1) but three input data cannot be 

equally distributed in them (it is impossible to cover P3 with equal distribution), then the 

generator backtracks changing the configuration to three Mappers (it maintains P1 >1 but 

changes randomly its value), and finally the three data items can be distributed equally in the 

Mappers. A threshold is set to prevent the generator from performing indefinitely or from 

backtracking for too long. When the threshold is overcome, then the technique does not create 

the configuration and the test coverage item is not covered (11, 3). By default, the threshold is 

15 backtracks because we observed that usually when this number is exceeded then it is 

infeasible to cover the test coverage item, regardless of the set of valid configurations. Finally, 

those configurations that cover the test coverage items are generated (11, 12, 13). 

III.3.2 Execution of Test Cases 

In order to detect design faults, MRTest executes each test case in different configurations using 

one of the techniques described in the previous section (MRTest-Random, MRTest-t-Wise and 

MRTest-Thorough). Then MRTest checks systematically that all configurations lead to equivalent 

outputs. 

Given a test case with input data and, optionally, the expected output, the MRTest test 

execution engine is described in Fig. 13. First, MRTest executes the test input data in the base 

configuration (1), that is the simplest configuration with one Mapper, one Combiner and one 

Reducer without parallelization. Next, new configurations are iteratively generated (2,3) and 

executed (4) for a given testing technique selected by the tester: MRTest-Thorough, MRTest-t-

Wise or MRTest-Random. The output obtained executing each configuration is checked against 

the output of the base configuration (5), revealing a fault if these outputs are not equivalent (6). 

Then MRTest can reveal faults with only the test input data, but the tester can optionally declare 
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the expected output. In this case, the output of the base configuration is also checked against 

the expected output (7), detecting a fault when both are not equivalent (8, 9). 

For example, let us revisit the program in Subsection III.1 that calculates the average 

temperature per year. Fig. 1 describes the 1-Wise execution of a test case with the following test 

input data:  year 1999 with 4°, 2° and 3°; and year 2000 with 5°. Firstly, MRTest generates and 

executes the base configuration (top of the figure) obtaining 3° as average in 1999, and 5° in 

2000 (1, 2). Then MRTest generates and executes a configuration to cover the first test coverage 

item of 1-Wise (middle of figure), and again obtains the same output (3, 4, 5). In contrast, when 

it generates and executes the configuration of the third test coverage item (bottom of the 

figure), it obtains 3.25° as average of 1999 instead of the 3° obtained in the base configuration 

(3, 4, 5). Then MRTest automatically reveals a fault because the two outputs are different (6). 

We discuss further the oracle used in MRTest in the following subsection. 

The test execution engine MRTest was implemented based on MRUnit library [61] maintaining 

its API and including new functions to indicate the testing technique to be used. This library is 

used to execute each configuration. In MRUnit, the test cases are executed with the base 

configuration, but this library is extended to generate other configurations and enable 

parallelism supporting the execution of several Mapper, Combiner and Reducer tasks. This test 

execution engine employs randomness to generate the configurations, but also supports 

pseudorandom numbers, also called seeds, to guarantee that the execution of the test case is 

reproducible in a deterministic way. 

III.3.3 Test Oracle 

In software testing, the mechanisms that determine if the test reveals a fault or not are called 

test oracles [181]. There are some properties that characterize the efficacy of the test oracles 

[182], [183]. As discussed, if a design fault is present, the same program executed under 

different configurations can lead to different outputs. Based on this observation, the MRTest 

execution engine can reveal faults automatically even without knowing the expected output. It 

employs an automatic partial-oracle [181] that is derived from the program executions [184] 

using metamorphic testing [45]. Given a test case (original test case), metamorphic testing 

generates new test cases varying the original test case (follow-up test cases) to detect faults in 

a relationship amongst them (metamorphic relationship).  

According to the software testing standard [30], a test case not only uses the test input, but also 

other test data that specify requirements for the test, such as databases, or configuration in the 

case of MapReduce programs. MRTest intends to detect those design faults that not only depend 

on specific test input, but also on specific configurations. For these faults, the test case must be 

designed with both the test input and the configuration in mind. MRTest receives the test input 

and then the metamorphic testing is focused in the relationships between the potential 

configurations. Given the test input, MRTest executes these test input data on the base 

configuration (original test case). Then MRTest generates the follow-up test cases maintaining 

the original test input but, but providing each one with different configurations. Finally, MRTest 

checks that both original and follow-up test cases lead to an equivalent output (metamorphic 

relationship). Whereas the metamorphic testing techniques usually generate the follow-up test 

cases by varying the test input, our approach generates the follow-up test cases by maintaining 

the test input but varying the configuration of the system under test. 
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MRTest can also be employed when the expected output is previously unknown or costly to 

obtain, as occurs in several machine learning programs [185]. Fig. 14 describes how the MRTest 

oracle can detect faults when given only the input data. The original test case is the test input 

data executed in the base configuration (1 Mapper, 1 Combiner, 1 Reducer). Then MRTest 

generates and executes several configurations using the testing techniques described in the 

previous sections (follow-up test cases). Finally, it checks if their outputs are equivalent 

(metamorphic relationship), and if they are not then a potential fault is automatically detected. 

 According to the study of Segura et al. [186] the number of metamorphic papers will increase 

in years to come, but to date 49% employ the metamorphic testing capabilities in different 

problem domains, and only 2% present a tool. In our case, the testing technique of this chapter 

not only defines and automatizes the metamorphic relationship to the MapReduce domain, but 

it also develops a tool that detects faults easily with only the test input data. 

III.4 EXPERIMENTS 

The goal of these experiments is the evaluation of how, using different configurations in the 

execution of the test cases, the effectiveness in failure detection could be improved without 

significantly decreasing efficiency. The approach proposed in this chapter, MRTest, executes the 

MapReduce test cases under several configurations, whereas the usual test execution engines, 

for example MRUnit, only execute them under a simple configuration. In the experiments, 

MRTest and MRUnit are compared in order to answer the following research questions: 

RQ5. Do the test execution engines detect more failures when the MapReduce test cases 

are executed in different configurations? 

RQ6. How expensive is the execution of the test cases in several different configurations? 

The research questions are focused respectively on the effectiveness and efficiency during 

testing of the MapReduce programs. Depending on the field, the aptness of a technique can be 

referred to using different terms, for example: “effectiveness” for software testing techniques 

[187], “performance” for localization techniques [188], or “accuracy” for the classification 

techniques of machine learning [189]. In this chapter, we use the term “effectiveness” regarding 

the quantity of failures detected, and “efficiency” regarding the execution time employed by the 

techniques. The planning and the results of the related experiments are presented in the next 

two subsections, and the discussion of the experiments together with the limitations in 

Subsection III.4.3. 
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III.4.1 Effectiveness Experiments 

The goal of the effectiveness experiments is the assessment of how many failures are detected. 

Following the Basili et al. [190] template, the goal is: Analyze the test case execution engines 

(MRUnit and MRTest) for the purpose of evaluation with respect to their respective effectiveness 

in detecting failures due to a program design fault against the MapReduce processing model 

from the point of view of the tester and developer in the context of Big Data applications. The 

planning of the experiments is described in Subsection III.4.1.1 and their results are reported in 

Subsection III.4.1.2. 

III.4.1.1 Effectiveness: Setup 

In this experiment, 8000 different test cases from 4 real world programs are executed in MRUnit 

and MRTest in order to analyse their capability to detect failures. Each one of the 4 programs 

has a known design fault that is only revealed in some of the potential configurations and 

masked in others. The programs used, including a summary of the functionality and the cause 

of the faults, are: 

1. Open Ankus [170]: A recommendation system that predicts for each user the items that 

could be of interest to them (films, books, cities, and so on), based on choices of other 

users and their similarities to the user in question. This program could fail when the data 

of each user-item is split and parallelized. 

2. Data quality analysis [191]: Measure of the quality of data interchanged between 

companies, based on international standards. This program did not correctly track the 

measurements and they could be incorrectly assigned due the parallel execution. The 

production version of this program has removed the fault. 

3. Movie analysis [192]: Statistics analysis of movies, based on the ratings of users. This 

program is implemented with an incorrect Combiner. 

4. Data cleaner Knn analysis [193]: Knn machine learning algorithm to clean text data, 

based on the number of transformations, insertions and removals of incorrect letters in 

the words of the text. This program fails when one Mapper needs data that are not 

locally available because it is assigned to another Mapper. 

For each program, 2000 test cases that contain data able to trigger the faults are executed in 

MRUnit and MRTest with different modes. The test cases are generated iteratively with random 

data until we have 2000 test cases that are able to trigger the fault. Because the program faults 

are known, all of the potential test cases are automatically analysed in order to check if the data 

can generate incorrect outputs under at least one configuration of the MapReduce 

configurations. For example, the program described in Section III.1 that calculates the average 

temperature of each year, has a design fault that is not revealed by all inputs. We can 

automatically check if an input data is able to trigger the fault because the failure is only raised 

when the average of temperatures is different to the global average of local averages. 

The population of the experiment is composed of all test cases with data able to trigger these 

faults in some configurations. Each of these test cases is then taken as the experimentation unit, 

and the observation is whether the test execution engines detect a failure or mask the fault. 

The dependent variable or response variable is the rate of failures detected by the different 

execution engines, which are the independent variable. The baseline is MRUnit and the 

treatments are MRTest executed in the following modes: 
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• 1-Wise: Based on the test coverage items proposed in MRTest-1-Wise algorithm, 

executes 3 or 2 configurations depending on whether the program has a Combiner or 

not, respectively. 

• 2-Wise: Based on the test coverage items proposed in MRTest-2-Wise algorithm, 

executes 11 or 6 configurations depending on whether the program has a Combiner or 

not, respectively. 

• 0-Random that executes randomly one configuration (MRTest-Random), in order to 

compare fairly with MRUnit that also executes one configuration (one Mapper, one 

Combiner and one Reducer). 

• 1-Random in order compare fairly with 1-Wise. Executes 3 or 2 configurations 

depending if the program has a Combiner or not, respectively. 

• 2-Random in order to compare fairly with 2-Wise. Executes 11 or 6 configurations 

depending if the program has a Combiner or not, respectively. 

MRTest-thorough is not analysed in the experiments due to its limitations, such as only 

supporting a small amount of test input data or taking a long time to execute a test case. There 

are other elements that could affect the experiment and are treated as blocking factors: 

• The size of the test input data could affect the rate of failures detected, so two sizes of 

data are considered: a small size (between 1 and 10 <key, value> pairs) and a larger size 

for functional testing purposes (between 11 and 35 <key, value> pairs). 

• The generation of the configurations in MRTest is based on some pseudorandom 

functionality that could introduce noise in the failure rate. During the experiments, the 

different test engines employ the same pseudorandom number generated also in a 

pseudorandom way. 

In the experiments two sampling methods are used: consecutive sampling to select the 

MapReduce programs and random sampling to select the test cases. Ideally the subject 

programs should be selected randomly, but as in the case in many software engineering 

experiments, this is not viable [194]. As such 4 real world programs that contain a known fault 

are selected instead. 

As stated above, for each one of these programs, 2000 test cases that contain data able to trigger 

the fault are generated randomly. We grouped them in trials of 100 test suites with 20 test cases 

each: 50 test suites contain test cases with input data between 1 and 10 <key, value> pairs, and 

the other 50 test suites between 11 and 35 <key, value> pairs due to a pre-established blocking 

factor. All of these test suites are executed in the baseline (MRUnit) and the five treatments 

(MRTest), and then the rate of the failures detected is observed. This type of experiment design 

is called “within subject design with post-test”. 

In these experiments, the effectiveness is measured by the percentage of failures detected per 

test suite. Then the effectiveness of the execution engines is compared via the statistic test 

Wilcoxon Sign Rank Test. This non-parametric statistic test analyses if there are significant 

differences based on the medians, then the null hypothesis is defined as H00: 

median(Effectiveness)MRUnit = median(Effectiveness)MRTest 

III.4.1.2 Effectiveness: Results and Discussion 

Table 17 summarizes the number of test cases which detect a failure by each test execution 

engine (MRUnit and MRTest) during the experiments. This table shows that design faults against 
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the MapReduce processing model are not detected in general by MRUnit, whereas MRTest 

approaches are able to detect them. The number of test executions that detect a failure by 

MRUnit is almost 0% whereas even considering the weakest MRTest approach, 0-Random, more 

than 15% of the test cases detect a failure; the strongest MRTest approach, 2-Wise, catches a 

failure in more than 60% of test cases. In general terms, 1-Wise and 1-Random detect more 

failures than MRUnit, and finally 2-Wise and 2-Random detect the majority of failures, regardless 

of the number of <key, value> pairs in the input data. In all approaches, the execution time of 

Table 17 Effectiveness of failure detection of 100 test suites of 20 test cases for each one of the 4 real world 
programs with fault 
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Open 

Ankus 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 307 0.30 293 0.30 600 0.30 

1-Wise 490 0.50 302 0.30 792 0.40 

1-Random 513 0.50 479 0.50 992 0.50 

2-Wise 754 0.75 620 0.60 1374 0.70 

2-Random 898 0.90 861 0.85 1759 0.90 

Data 

quality 

analysis 

MRUnit baseline 1 0.00 3 0.00 4 0.00 

0-Random 773 0.75 900 0.90 1673 0.85 

1-Wise 816 0.80 954 0.95 1770 0.90 

1-Random 925 0.95 984 1.00 1909 0.95 

2-Wise 994 1.00 1000 1.00 1994 1.00 

2-Random 992 1.00 1000 1.00 1992 1.00 

Movie 

analysis 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 169 0.15 183 0.20 352 0.15 

1-Wise 562 0.55 395 0.40 957 0.48 

1-Random 378 0.35 328 0.30 706 0.35 

2-Wise 952 0.95 861 0.85 1813 0.90 

2-Random 694 0.70 534 0.53 1228 0.63 

Data 

cleaner 

Knn 

analysis 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 876 0.75 946 0.95 1822 0.90 

1-Wise 983 0.80 1000 1.00 1983 1.00 

1-Random 978 0.95 997 1.00 1975 1.00 

2-Wise 1000 1.00 1000 1.00 2000 1.00 

2-Random 1000 1.00 1000 1.00 2000 1.00 
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each test case is reasonable, being in the order of a few milliseconds/seconds. As we explain in 

detail in the following subsections, the majority of the test cases take less than 1 second to be 

executed in MRTest, regardless of the approach employed. 

During the experiments, MRUnit only detects 4 faults out of 8000, having an effectiveness of 0 

in Table 17 due to rounding to two decimal places. These faults are detected because MRUnit 

sorts the <key, value> pairs when the base configuration is executed and sometimes this change 

is enough to detect the faults. The execution of the test cases under different configurations can 

reveal design faults whereas the execution under one configuration could mask them, as occurs 

in MRUnit. Fig. 15 shows for each program the differences between the tests execution engines 

in terms of the effectiveness (percentage of failures detected per test suite). This figure uses a 

violin plot that shows the probability density function and gives a reference with a boxplot. The 

best testing techniques at detecting failures are 2-Wise and 2-Random, followed by 1-Random 

and 1-Wise, then 0-Random, and finally MRUnit, which hardly detects any design failures. 

According to the Wilcoxon Sign Rank Test, all MRtest approaches are significantly better at 

detecting failures than MRUnit. 

In order to compare the best approaches, the Wilcoxon Sign Rank Test is also applied in each 

program between 2-Wise and 2-Random. Considering the Data Quality Analysis and Data 

Cleaner Knn Analysis programs, there is no significant difference between 2-Wise and 2-Random 

(p-value[1-10]=0.69, p-value[11-35]=1, p-value[1-10]=1 and p-value[11-35]=1, respectively), for the Open 

Ankus program 2-Random is better (p-value[1-10]=2.7e-09 and p-value[11-35]=2.8e-09) and for the 

Movies Analysis program 2-Wise is better (p-value[1-10]=3.7e-10 and p-value[11-35]=3.8e-10). 

Fig. 16 shows the aggregation of the data for the 4 programs, 2-Wise being the best approach in 

detecting failures with a significant difference compared with 2-Random (p-value=0.0043). 

 

Fig. 15 Distribution of percentage of failures detected per test suite in each program 
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In terms of failure detection effectiveness, all MRTest approaches are better than MRUnit, with 

2-Wise and 2-Random standing out, followed by 1-Random and 1-Wise, and finally 0-Random. 

III.4.2 Efficiency Experiments 

The goal of the efficiency experiment is the assessment of how much time is spent during the 

execution of the test cases. Following the Basili et al. [190] template the goal is: Analyze the test 

case execution engines (MRUnit and MRTest) for the purpose of evaluation with respect to their 

efficiency in executing the test cases of the MapReduce programs from the point of view of the 

tester and developer in the context of Big Data applications. The planning of the experiments is 

described in Subsection III.4.2.1 and their results in Subsection III.4.2.2. 

III.4.2.1 Efficiency: Setup 

In this experiment, 16000 different test cases from 8 real world programs are executed in 

MRUnit and MRTest in order to analyse the execution time expense per test case. Half of these 

programs have design faults and their test cases are re-used from the previous experiment, the 

other 4 programs have no known faults and their functionality is summarized below: 

5. Graph clustering [195]: Algorithm to cluster the connected nodes in graphs. 

6. Phonetic analysis [193]: Algorithm to clean text data based on the similarities and 

differences between the phonetic pronunciation. 

7. Goldstein analysis [196]: Measure of the conflicts and cooperation between countries 

based on the Goldstein code. 

8. Restaurant analysis [197]: Finds restaurants by cuisine located in safe/unsafe zones in 

New York. 

For each of these programs, 2000 test cases are generated randomly and executed in MRUnit 

and MRTest with different modes. The population is composed by all possible test cases of the 

MapReduce programs, and each one is the experimentation unit. All test cases are executed in 

order to analyse the execution time (observation). As in the previous experiment, sets of 20 test 

cases constitute the test suites that are executed in 6 test engines. 

 
Fig. 16 Distribution of percentage of failures detected per test suite (effectiveness) in all programs 
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The dependent variable or response variable is the execution time of the test case by the 

different execution engines (independent variable). The baseline is MRUnit and the treatments 

are MRTest executed in the same way as the previous experiment: {0,1,2}-Random, {1,2}-Wise. 

In this experiment, there are other variables that could affect the results and they are treated 

as blocking factors (note that the first two factors were also considered in the previous 

experiments): 

• The size of the input data affects the execution time. The following number of <key, 

value> pairs are considered during the experiments: between 1 and 10, and between 11 

and 35. 

• The pseudorandom functionality of the MRTest could introduce noise. To avoid it, the 

same pseudorandom numbers are used in the MRTest and are generated in a 

pseudorandom way. 

• MRTest executes the test cases with different configurations until a failure is detected 

or the maximum number of configurations of the approach is reached. Therefore, the 

execution time can be different whether the program has a fault or not. In this 

experiment two types of programs are considered: 4 programs with faults reused from 

the previous experiment and 4 programs without known faults described in this section. 

• The execution time could depend on the resources of the computer. All test cases are 

executed in a commodity computer with a CPU Intel Core i5, 3.20GHz Windows 10 x64, 

and Java 1.8 with memory generated dynamically up to 250MB. 

In order to detail the differences in the execution time, this experiment analyses descriptive 

statistics: a regression model of the execution time in terms of the number of input <key, value> 

pairs. 

As in the previous experiment, the sampling methods are consecutive sampling of 8 real world 

programs and random sampling for the test cases. The number of trials per program is again 

100 test suites of 20 test cases divided in two sizes of input data: from 1 to 10 <key, value> pairs, 

and from 11 to 35 <key, value> pairs. Each of these test suites is executed in the MRUnit 

(baseline) and MRTest with different parameters (treatments). This type of experiment design 

is called “within subject design with post-test”. 

III.4.2.2 Efficiency: Results and Discussion 

MRUnit is the most efficient approach because it only executes one Mapper, one Combiner and 

one Reducer, whereas MRTest executes several of these configurations in order to reveal more 

faults simulating a production environment. Table 18 summarizes the average execution time 

of test cases in programs with and without known design faults. MRTest executed in 2-Wise 

mode is a better approach for detecting failures than Random, but it usually takes longer. In the 

test cases executed during the experiments, MRUnit takes, on average, a few milliseconds to 

execute a test case, whereas MRTest usually takes a few milliseconds-seconds, depending on 

the program and the data that are received. When the program has a fault and MRTest detects 

it, the execution time is quite similar to MRUnit (x2 or x3) because MRTest finishes after the 

execution of few configurations. In the case that MRTest does not detect a fault, the execution 

time on average increases by x200 or x400 from MRUnit, but it remains in the order of 

milliseconds-seconds per test case. 



Section III.4 - Experiments 68 

 

Given a program, there are several test cases that take more time than others, especially when 

{1,2}-Wise does not cover the test coverage items after trying to generate several 

configurations. The most expensive test case takes 4.5 minutes for the previous reasons, but in 

general the test cases are executed in milliseconds or a few seconds, depending on the program 

functionality and the input received. As Fig. 17 depicts, 75% of the test cases are executed in 

less than 1 second and 90% in less than 4 seconds. 

Table 18 Average execution time of test case through 100 test suites of 20 test cases for each one of the 8 real world 
programs, in milliseconds 
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 MRUnit baseline 51.0 50.9 53.0 54.4 4.9 3.7 3.3 3.8 

0-Random 69.0 69.2 75.1 64.4 193.4 44.1 8.7 7.5 

1-Wise 84.2 94.3 1780.7 80.2 769.9 131.6 21.4 33.3 

1-Random 72.2 72.4 89.2 65.0 501.7 73.2 13.3 11.5 

2-Wise 149.9 145.0 2248.9 70.6 5140.7 384.3 74.8 563.1 

2-Random 77.4 73.5 140.0 64.7 1855.1 195.0 33.9 27.1 
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 MRUnit baseline 51.8 50.6 55.3 78.8 7.7 4.8 5.4 5.3 

0-Random 76.0 75.3 93.2 115.0 1183.7 283.7 19.4 16.6 

1-Wise 85.5 104.8 139.4 152.2 3141.6 431.6 29.8 49.9 

1-Random 84.0 78.9 157.7 117.4 3445.0 539.6 36.5 28.6 

2-Wise 128.6 117.3 468.3 123.5 15013.0 1357.9 118.2 2282.4 

2-Random 104.0 78.8 575.7 117.2 13161.2 1606.6 153.5 105.2 

 

 

Fig. 17 Accumulated distribution of the test cases execution time 
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The execution time depends on several factors, but it increases according to the number of <key, 

value> pairs in the test case. In Fig. 18 the trend of the execution time based on the number of 

<key, value> pairs is described for the 4 programs with faults, and in Fig. 19 for the other 4 

programs without known faults. This trend in general has more slope in 2-Wise, 1-Wise and 2-

Random because these approaches generate and execute more configurations. In these 

approaches the execution time is more dispersed because it does not only depend on the 

number of <key, value> pairs, but also on the program and on the data processed. In the case of 

{1,2}-Wise, the execution time also depends on the non-covered test coverage items, because, 

for example, in the most expensive test cases, MRTest takes a long time trying to generate values 

that cover the configurations that cannot be covered. For this reason, the execution time of 2-

Wise in the Open Ankus and Data Quality analysis programs decreases according to the input 

size. When these two programs receive a small amount of input data, the 2-Wise takes time 

trying to cover the test coverage items. In some cases, 1-Wise is more expensive than 2-Wise 

because the test coverage items are different. For example, in the Data cleaner Knn analysis 

program, the second test coverage item of 1-Wise cannot be covered (it requires only one 

Reducer and the program guarantees several) but the approach wastes time trying to cover it. 

While MRUnit is not intended to detect these design faults, all approaches of the MRTest are 

effective enough detecting them, particularly 2-Wise mode. These approaches take a few 

milliseconds-seconds to execute the test cases and could be a reasonable alternative to detect 

design failures before they are encountered in production. 

 

Fig. 18 Execution time of the test cases of programs with known faults according to the number of <key, value> 
pairs 
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III.4.3 Discussion of Results 

The experiments indicate that both test execution engines proposed in this chapter, MRTest-

Random and MRTest-t-Wise, are able to detect within an acceptable time a broad number of 

failures that are caused by the non-deterministic executions of MapReduce programs. Of the 

two, the MRTest-2-Wise is significantly better at failure detection, and takes an acceptable 

amount of time to complete the tests as well. In contrast, the MRUnit test execution engine 

employs less time but it hardly detects any of these types of failures. The remainder of this 

subsection discusses the limitations of these experiments, including the internal, external and 

construct threats of validity and their subcategories [194], [198], [199]. 

The internal threats are those issues regarding the causal relationship between independent 

variables and dependent variables. One part of the experiments analyses the execution time, 

but some noise can be introduced into the measurements by other operative system tasks 

(Confounding effects of variables). To mitigate this problem, the experiments are executed in 

the same computer without any other programs operating in the background. 

The tool that automates the research, MRTest, can contain faults and other limitations. To 

mitigate the potential faults of the tool, manual/automatic testing was performed mainly from 

the functional and performance point of view. This tool may cause side-effects in the programs 

that perform some communications with external services that are outside the testing context. 

For example, when the program under test inserts data in an external database, MRTest can 

perform the insertions for each of the configurations executed. When the external service is fully 

controllable, then the tester can handle the side-effects inside the test cases. 

 

Fig. 19 Execution time of the test cases of programs without known faults according to the number of <key, value> 
pairs 
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The external threats are those issues that can affect the generalization of the results. The 

subjects of this experiment are 16000 test cases randomly selected from 8 MapReduce programs 

selected by consecutive sampling. Ideally, the programs should also be selected randomly, but 

often this is not feasible in software engineering (Interaction of selection and treatment). For Big 

Data programs, there is no benchmark of faults and industrial programs are not usually 

available. This problem is mitigated by using some real-world applications, instead of using 

programs with seeded faults (hand-seeded faults or mutation faults) that are prone to other 

external threats [200], [201]. Therefore, there are other issues regarding seeded faults when 

they are used to evaluate testing techniques. The hand-seeded faults are injected by the expert 

and they are subjective, decrease the reproducibility of the experiments and are not 

representative of real faults in terms of easy detection [202]. In contrast, mutation faults are 

representative of the majority of faults, but this is not the case when the developer implements 

an incorrect algorithm [203]. The faults pursued by this thesis fall into the previous category of 

faults that are not possible to substitute with mutations. The faults that are the target of this 

thesis are caused by incorrect design decisions that lead to the implementation of faulty 

algorithms, completely different from those of the correct implementation. As such, the 

injection of mutation faults is not a feasible way to evaluate the testing techniques of this 

chapter. 

The tool that automates the research, MRTest, does not fully support the testing of non-

deterministic programs (Applicability of results across different samples). This research proposes 

the execution of the test case in different configurations and finally a metamorphic relationship 

checks if their outputs are equivalent. The tool only checks if the outputs are equals or not, but 

this is not enough for non-deterministic programs. To avoid this problem, the tester can 

implement a function to check if two non-equal outputs are equivalent or not in the non-

deterministic program. There are also metamorphic relationships for non-deterministic 

programs [204], [205]. 

Other results can be obtained if MRTest generates the configurations in a different way 

(Applicability of results when technique is varied). The configurations are generated based on 

the combination of different parameters, but there could be more parameters not considered 

or better ways to generate the configurations such as, for example, using a search-based 

approach. 

The construct threats are those issues between the experiment and its underlying theoretical 

concepts. The test execution engines proposed are only compared against MRUnit despite the 

fact that there are other ways to automate the testing execution. In general, MRUnit is more 

standardized and controllable when performing tests in the MapReduce applications. 

One part of the experiment analyses the efficiency of the test execution engine based only on 

the execution time measure, but there could be more measures not considered, such as memory 

(Mono-operation bias). To mitigate this problem, the experiments were executed in a 

commodity computer with few resources. The memory does not appear relevant because its 

usage was low during the experiments. Furthermore, the tool that automates the research was 

tested to avoid memory bottlenecks, and some memory leaks of MRUnit were removed. 

III.5 CONCLUSIONS 

The detection of design faults in MapReduce depends on the test input data and on the test 

configurations, i.e. how the test data are executed in parallel. These design faults can be 
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revealed in some executions and masked in others. Thus, although the application may appear 

to work correctly in the test environment, this might not be the case when it is passed to 

production because usually these faults are only revealed in aggressive environments. In this 

chapter, we presented two black-box testing techniques that automatically detect these faults. 

Given a set of test input data, the testing techniques simulate the execution in infrastructure 

configurations aimed at revealing the faults, and check that all executions lead to equivalent 

outputs. These testing techniques are automated in a test execution engine called MRTest. 

We performed an empirical study to evaluate the effectiveness and efficiency of the testing 

techniques proposed (MRTest-Random and MRTest-t-Wise) compared to the XUnit tool of 

MapReduce programs (MRUnit). The results showed that our approaches are more effective in 

detecting faults while still employing reasonable time. The results also showed that MRTest-t-

Wise based on Partition testing detects faults with a significantly lower fraction of tests than 

MRTest-Random that is based on Random testing. 

MRTest enables fine-grained control of the test case execution at the same time as it guarantees 

its reproducibility in the same circumstances. The simulation of the test case in different 

production environments can be carried out in a non-intrusive way and with few resources, 

deploying MRTest on a commodity computer in the laboratory. Furthermore, the testing 

techniques of this chapter are easy to use because they do not need the expected output to 

reveal the faults, only the test input data. 
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IV DEBUGGING 

The previous chapter of the thesis proposes a testing technique to detect design faults 

automatically in the MapReduce applications by analyzing the execution of the input data under 

different infrastructure configurations. Once a design failure is detected, the developer will 

debug the program to both locate and understand the fault, and fix the program. The design 

faults of the MapReduce are difficult to debug because sometimes are masked and other times 

are manifested in non-deterministic way. This chapter proposes a framework called MRDebug 

aimed to help developers during debugging to locate automatically the root cause of the design 

fault, and isolate automatically the data that trigger the failure. 

The root cause of the faults is located through spectrum-based fault localization technique that 

analyzes the execution of several configurations to extract a pattern of the characteristics that 

 

Fig. 20 Automatic testing and debugging 
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usually triggers the failure and those that usually mask it. This root cause of the fault is an entry 

point for the developer to understand the fault, but sometimes may not be enough because the 

test cases process several data with concurrent interactions. To improve the understanding of 

the fault, MRDebug also isolates/minimizes the data that are relevant to trigger the failure 

removing these other data that are irrelevant to understand the fault through a search-based 

algorithm (delta debugging or genetic algorithm). 

The majority of this chapter is planned to be published in JCR journal, but the initial work is 

published in JISBD 2018 [46]. Section IV.1 describes the MRDebug framework: Fault localization  

(Section IV.2) and input reduction (Section IV.3). The experiments are detailed in Section IV.4.  

The related work is described in Section IV.5, and finally the Section IV.6 contains the conclusions 

of the chapter. 

IV.1 DEBUGGING FRAMEWORK: MRDEBUG 

Once the fault was detected through the testing technique of the previous chapter, the 

debugging phase is started to help developers to understand both the failure and the fault. For 

example, the fault of the program that calculates the average temperature per year (Section II.1) 

is depicted in Fig. 20. The first configuration executed does not produces a failure, but the 

configuration of the middle reveals a fault caused by a wrong design of the application. Despite 

the test case has only 20 <key, value> pairs, this fault is difficult to both understand and fix. This 

chapter describes the MRDebug framework that is intended to automatically debug the design 

faults of the MapReduce applications as Fig. 21 summarizes. This framework is able to 

automatically localize the root cause of the fault (Subsection IV.2), isolate the data trigger the 

failure (Subsection IV.3), and provide the common debugging utilities. 

As a result of debugging, the developer does not obtain the complex configuration that triggers 

the fault like the middle of Fig. 20, but obtains a more simple configuration like in the bottom of 

Fig. 20. The input reduction technique automatically minimizes the data that trigger the fault 

making the wrong distributed processing easier to understand. The localization technique 

automatically obtains the characteristic of the configuration that trigger the fault. Then the 

developer can be focus just in one part of the program. Some studies suggest that developers 

could be beneficed by the integration of debugging techniques [206]. Then to make the 

debugging more practical, MRDebug also supports the common utilities like breakpoints or 

watchpoints simulating the distributed execution. 

 

Fig. 21 MapReduce testing and debugging framework 
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IV.2 FAULT LOCALIZATION 

Fault localization techniques aim to locate the root cause of the fault. Among them, the most 

used in research is the spectrum-based fault localization that analyzes the common 

characteristics of the test executions that fail and their differences with those that success [207]. 

These techniques obtain the suspicious cause of the fault following a procedure with the 

following four parts: (1) definition of the characteristics to be analysed (program spectra), (2) 

generation of several test cases, (3) execution and monitoring of tests, and (4) analysis of the 

characteristics executed. 

The characteristic analysed are defined according a program spectra [208], [209] such as the 

coverage of code, parts of the configurations or other resources. The suspicious cause of the 

fault is obtained analyzing the characteristics covered by not only one test case, but a test suite 

with different test cases. This analysis yields to different suspicious cause of the fault depending 

on the quality of the test suite executed, such as the number of test cases [210], the variety of 

executions [211] and coincidental masking of the faults in executions [212], [213]. The best test 

cases generated/designed, the more chances to obtain the root cause of the fault. 

From each test case executed, the fault localization techniques monitor the characteristics 

covered to rank the most suspicious cause of the fault. This ranking is obtained analyzing the 

similarity/distance from the vector that contains the failures of all test cases (failure) to the 

vector of the coverage of each characteristic in all executions (characteristic covered). Those 

characteristics that are covered during the failures and also not covered in the succeeded tests, 

has more chances to be the root cause of the fault. That is, the characteristic that has more 

suspiciousness to be the root cause of the fault is the one that has a vector of coverage more 

similar to the failure vector. Then the technique uses a ranking metric to rank each characteristic 

according to the suspiciousness (similarity). There are several ranking metrics based on binary 

similarity measures and no one is the best in all domains of fault localization [214]. 

IV.2.1.1 Fault Localization in MapReduce applications 

The fault localization techniques are usually focused on the source code. However, the root 

cause of the fault is not always the source code, for example the localization techniques of 

product lines localize the root cause of the faults in features sets instead of the source code 

[215]. The same happens in the design faults of the MapReduce programs because the root 

cause of the fault can be a characteristic of the distributed execution, such as the number of 

Mappers executed in parallel or the optimizations in the Combiner. 

A MapReduce application can be executed with a configuration that is composed by different 

characteristics according to its design like the two executions of the top of Fig. 20. The first 

configuration of the figure masked the failure and has the following characteristics, among 

others: 1 Mapper, 1 Combiner and 1 Reducer. In contrast, the second configuration has other 

characteristics that reveal the failure, among others: several Mappers, the data is not executed 

in the same order as in the input, several Combiners, and several Reducers. The execution of the 

MapReduce programs could success or fail depending on the characteristics of the configuration 

executed (number of Mappers, execution order, distribution of data, and others detailed below). 

Fig. 22 summaries the spectrum-based fault localization technique proposed. MRDebug 

generates and analyzes the characteristics of the different configurations (Program spectra) to 

obtain automatically the root cause of the fault. Given a configuration that fails, MRDebug 

generates new configurations changing just one characteristic in order to analyze if this change 



Section IV.2 - Fault localization 76 

 

is able to commute the execution to fail/success (Generation of configurations). These 

configurations are executed using MRTest as automatic testing technique (Chapter III) collecting 

the characteristics covered (Execution and monitorization). Then the characteristics of the 

configurations are analysed together considering the patterns of those that success and those 

that fail. Finally, the technique obtains a ranking of the characteristics that are more likely to 

cause the failures (Analysis of suspicious). This technique is detailed below. 

Program spectra: The MapReduce design faults are caused by characteristics of the distributed 

executions. Then the program spectra used is focused in these characteristics that were defined 

in our previous testing technique [41] through input space partitioning: Number of Mappers (1 

or >1), Data processing order of the inputs (Mappers executed in the same order as input or 

different), Distribution of input data in Mappers (equally distributed or not equally), Number of 

Combiners (0, 1, or >1), Distribution of the Mapper outputs in Combiners (equally distributed or 

not equally), Data directly from Mapper to Reducer (0 or >0), Iterative executions of Combiner 

(1 or >1), and Number of Reducers (1 or >1). In total, these 17 characteristics can be combined 

in different configurations. In each execution, the technique collects the characteristics covered 

to obtain the one that usually triggers the failure. 

 

Fig. 22 Fault localization technique in MapReduce programs 
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Generation of configurations: MRDebug starts with one execution/configuration and generates 

more configurations with different characteristics aimed to provide enough information to 

locate the root cause of the fault. The configurations are generated  based on the Lewis 

counterfactual theory of causality [216] like other fault localization techniques [217]. Then, 

MRDebug modifies the configuration that failed in testing generating several new configurations 

with just one characteristic change in order to analyse if this change is able to mask the fault or 

continue with the failure. Fig. 23 summarizes the generation of these new configurations that 

changes only one characteristic: varying the execution order of the Mappers, executing the 

configuration with several Combiners, without Combiner, with one Reducer, and so on with one 

characteristic changed to cover new characteristics. These new configurations that are close to 

the configuration that fails aims to avoid the coincidental masking of the faults. 

Execution and monitorization: The configurations generated in the previous step are executed 

and the design failures triggered are collected. During the execution, MRDebug also tracks the 

characteristics covered by each configuration. 

Analysis of suspicious: Once the configurations are generated and executed, the characteristics 

of these configurations are analysed to obtain those that are more prone to be covered when 

the execution fails (Characteristic covered = TRUE, failure = TRUE) and those that usually are not 

covered when the execution success (Characteristic covered = FALSE, failure = FALSE). MRDebug 

supports the most common 52 ranking metrics [188], [207], [218]. 

Example: Fig. 23 depicts all procedures of the fault localization in the program that calculates 

the average temperature per year starting with the configuration that causes the failure in the 

middle of Fig. 20. This program fails because the Combiner calculates the average temperature 

with the temperatures available locally, but Reducer is not able to obtain the global temperature 

with the local temperatures. The configuration that triggers the failure is composed by the 

following characteristics, among others: Mappers that are executed in different order than the 

input data, some Mappers have one Combiner, other Mappers have several Combiners, and one 

Reducer. Per each characteristic of this configuration, 5 new configurations are generated 

varying (1) the order of the Mapper, (2) with several Combiners, (3) without Combiner, (4) with 

one Reducer, and so on (Generation of configurations). Note that Fig. 23 only depicts 1 of the 5 

configurations generated. Next, each configuration is executed to check if the characteristic 

changed is able to mask the failure or still trigger it (Execution and monitorization). For example, 

the first configuration changes the execution order of Mapper and obtains the same output 

(failure regardless of the execution order), then the order of Mappers apparently does not 

produce the failure. However, the third configuration changes the number of Combiner to 0 and 

the output of the test cases change from failure (one-several Combiners) to success (zero 

Combiners). This is an evidence that the number of Combiners is suspicious to cause failures: the 

failure is triggered with several Combiners and masked with zero Combiners. This last analysis is 

done through the ranking metric M2 obtaining that the most suspicious characteristic is the 

execution of several Combiners (Analysis of suspicious). Effectively, this MapReduce program 

was wrongly design because does not admit this Combiner functionality and the failures are 

triggered when several Combiners are executed. This information allows the developer to fix the 

program removing the Combiner (patching the failure instead to correct the fault [206]) or 

creating a new design of the program that supports other kind of Combiner.  
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IV.3 INPUT REDUCTION 

The fault localization technique obtains automatically a ranking of the most suspicious root 

causes of the fault. This ranking is an entry point for the developer to continue with the 

debugging to both understand and fix the fault. Usually the root cause of the fault is not enough 

to understand the fault, and the developers need more contextual information [206]. In the 

example program of the previous subsection, the fault localization obtains that the most 

suspicious cause of the fault is the execution of several Combiners, but this is not enough to 

understand completely the fault. Even without very large test input data as in the middle of Fig. 

20 (20 <key, value> pairs), the fault is not easy to understand because only 3 <key, value> pairs 

trigger the failure and the other data difficult the understanding. Highlight those data related to 

the fault can improve the understanding of the faults as other researchers suggest [206]. 

The MRDebug framework proposes to highlight the relevant test data minimizing/isolating the 

data that trigger the failure to improve the understanding of the MapReduce design faults. As 

Fig. 24 summarizes, this input reduction approach generates iteratively new subsets of the test 

input data that still trigger the failure removing/unselecting those irrelevant <key, value> pairs. 

Each one of these subsets are used to execute the program and determine if the data still trigger 

the failure or not. In each iteration, the new subsets of data are generated by means of search-

based strategy [219]: delta debugging that is a greedy approach focused on local search [48] 

(Subsection IV.3.1.2), or genetic algorithm (Subsection IV.3.1.1) [50], [51]. These subsets are 

executed using MRTest as automatic testing technique/oracle (Chapter III) that determinises if 

the subset of data is able to trigger the failure (feasible solution) or not (unfeasible solution). 

After several iterations/optimizations, the technique obtains automatically a minimal/small 

subset of data that still trigger the fault. Finally, these small data make the fault more easy to 

understand. For example, the bottom of Fig. 20 depicts a simple test case with only 3 <key, 

value> pairs that is more easy to analyse than the test case of the middle. In the following 

subsections, the genetic algorithm and delta debugging strategies are detailed. 

IV.3.1.1 Genetic Algorithm 

Genetic algorithms solve problems based on the nature selection of the Darwin theory about 

evolution. The solutions of the problem are represented by one individual and codified in the 

chromosome. The goal of these algorithms is to generate better individuals that inherit the best 

genes through reproduction and mutation as occurs in nature. 

The genetic algorithm proposed to reduce/isolate the data of the test case (individual) that 

trigger the failure is summarized in Fig. 25. At first point, the technique generates and executes 

several subsets of data randomly (initial population). Then the algorithm evaluates how good 

 

Fig. 24 Input reduction technique 

Input data 
that trigger a 

fault

Selection of input 
data subset

Strategies:
- Delta debugging
- Genetic algorithm

Check if the data 
trigger the fault

Automatic 
partial oracle: 
MRTest

Is the subset of 
input data a minimal 
& trigger a fault?

No
Yes

Minimal input 
data that still 
trigger the fault



Section IV.3 - Input reduction 79 

 

each subset is (fitness function), considering that the subset is as good as less data that still 

trigger the failure has. Subsequently, the algorithm improves the actual subsets of data trying 

to reduce their number of data (generation of new population). This algorithm also generates 

iteratively new subsets of data until there is no improvement in the last generations (fitness 

equally in last generations). As result, the algorithm obtains a minimal data or at least an enough 

small data that still trigger the failure. 

Individual (chromosome): The solution of this problem, also called individual, is one of the 

possible subsets of the test input data (<key, value> pairs). Given an input data that failed during 

testing with N <key, value> pairs, the search space is composed by (2^N)-1 possible subsets of 

data (individuals). The subset of data of each individual is encoded in a chromosome composed 

by a binary string schema [50] as in the Fig. 26. The genes of the chromosome indicate if the 

<key, value> pair is selected (1) or not (0). Then this chromosome can be decoded in a subset of 

data that could still trigger the failure or success. The best individuals are those that trigger the 

failure with less data. 

Initial population: The initial population is composed by several individuals randomly generated 

together with another individual composed by all input data that failed in testing. This last 

individual is used to start the reduction approach with the worst feasible solution. 

Some researchers suggest an initial population with large number of individuals [220], but 

similar results can be achieved with smaller number initial population after several generations 

[221]. The use of small number of individuals like 20 is also preferable when the cost of each 
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generation/individual can be high, as in our case. As the experimentation of Section IV.4 details, 

sometimes the execution can take several seconds/minutes because the individuals are 

executed by MRTest (Chapter III). 

Execution of individuals: Each individual composed by a subset of input data is executed by 

MRTest [41]. Then the algorithm obtains automatically if the individual has data able to trigger 

the failure (feasible individual) or not (infeasible individual). 

Fitness: Each individual is evaluated by a fitness function that indicates how good is the subset 

selected. The best ones are those that triggers the failure with few data, whereas the worsts are 

those that either cannot trigger the failure or have lots of data.  

The goal is to minimize the fitness considering the feasible and infeasible individuals. The 

feasible individuals are those that triggers the failure, and their fitness is defined as the number 

of the data selected. In contrast, the infeasible individuals are those that are not able to trigger 

the failure. This infeasible individuals are penalized by a maximum fitness value (death penalty 

[222]). One good practice to stablish this penalty is by the minimal penalty rule that consist in 

the lower penalty that make the individual still worse than the worst feasible individual [223]. 

In the input reduction problem, the worst feasible individual always contains all input data 

(fitness = number of input data that failed during the testing). Then the fitness is defined as: (1) 

”the number of input data that failed in testing + 1” for the individuals that are not able to trigger 

the failure, and (2) “the number of data selected” for those individuals that trigger the failure. 

Generation of new population: The initial population is iteratively improved with new 

individuals that inherits the best chromosome genes, these are those <key, value> pairs that are 

relevant to trigger the failure. This new generations of individuals are created using all of the 

following operations: (1) elitism, (2) asexual reproduction, (3) sexual reproduction, (4) mutation, 

(5) non-duplicated individuals, and (6) generational replacement. These operations aims to 

obtain both the maximum reduction of subset of input data that trigger the failure (local 

minimal), and diversity of these data (skip local minimal to reach global minimal). 

From one generation to the next, the best individual is preserved (elitism [224]) to provide two 

advantages: guarantees that each generation has at least one subset of data that triggers the 

failure (feasible solution), and the new generation has at least one individual that has either the 

same or less number of <key, value > pairs than the previous generation. This best individual can 

be better if is able to still trigger the failure with at least one <key, value> pair less. Then the 

algorithm also explores the close subsets of this elite individual generating new similar subsets 

reducing just one <key, value> pair. This operation is called asexual reproduction of one 

individual mutating one random gen of the chromosome [225] to reduce one <key, value> pair. 

The previous two operations (elitism and asexual reproduction) search only a small part of the 

search space. Then these individuals generated from the asexual reproduction trend to improve 

the solutions towards a local minimal whereas the other operations trends to skip the local 

minimal. 

The algorithm also provides diversity in the subsets of the test input data selected to search the 

space more broadly and skip local minimal aimed to reach the global minimal. The remainder 

individuals of the new generation are generated through sexual reproduction of previous 

generation and little mutations. All individuals of the next generations are generated mixing two 

parents selected through the roulette wheel method [51]. This method selects the individuals 

randomly but weighted according to the fitness value, then the individuals with less data that 

triggers the failure have more chances than those that either not trigger the failure or have more 
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data. For each two individual parents selected, two individual offspring are generated using one-

point crossover [51] to join different parts of the two subsets aimed to still trigger the failure 

but with more diversity of data. This method generates one individual with the first part of the 

input data from the father chromosome and the remainder part of data from the mother, and 

also another individual with the opposite (the first part is from mother and the second from 

father). The point that separates/crosses the chromosome genes from the father to the mother 

is selected randomly. Then each offspring is a mix of the father subset and mother subset 

(previous generation). Finally, each gen of the chromosomes can be mutated swapping the value 

to introduce littles changes selecting or unselecting one <key, value> pair. Some researchers 

suggest to perform the mutations with low probability [224], for example 1%. 

In this algorithm, each new individual generated must be a completely new individual (not 

duplications [226]). In case that one new individual was generated identically before, this 

individual is replaced by a new random subset of the test input data. The completely new 

individuals generated in each generation replace the previous generations (generational 

replacement [51], [227]). 

Termination criteria: New generations are created until there is no improvement in the best 

individual fitness during the last generations (K-iterations [228]). 

Example: Fig. 26 depicts part of the input reduction technique using the input data that fail in 

the top of Fig. 20. An initial population is generated with one individual that contains all data 

that trigger the failure (top of Fig. 26) and other 19 random subsets of these data (not 

represented in Fig. 26). Then MRDebug uses the genetic operators to iteratively generate new  

better individuals that modify the subsets of the test input data and reduce their number of 

<key, value> pairs. Finally, the algorithm converges after 7 generations to the minimal subset of 

data that still trigger the failure as in the bottom of Fig. 26. This subset of the test input data is 

also represented in the bottom of Fig. 20 containing only 3 <key, value> pairs after MRDebug 

removed the irrelevant data to enhance the understanding of the fault. 

IV.3.1.2 Delta Debugging 

Delta debugging is an approach proposed by Zeller et al. to simplify the test cases isolating the 

inputs [48]. This isolation/minimization is done through a greedy search-based algorithm aimed 

to find the first local minimal using a binary-search strategy recursively. At first point, the 

algorithm proposed by Zeller et al. divides the search space in two halves (binary-search). If one 

of the halves still contains the solution, then is again divided deeper and the other halve is 

discarded (greedy). If none of the halves contains the solution, then the granularity of the search 

space is increased dividing again one of the halves in two (binary-search). This approach is 

applied recursively until reach the first local minimal.  

The details of the technique are in the original paper of Zeller et al. [48], [49]. MRDebug only 

adapts delta debugging to the input reduction problem of the MapReduce applications using 

MRTest (Chapter III) as automated testing technique/oracle. The search space is composed by 

all input data that trigger the failure, then the data are iteratively divided into two subsets 

(binary-search). If one of these subsets still trigger the failure, then this subset is divided again 

into two subsets until reach a local minimal, and the other subset is discarded (greedy). In the 

other case that none of the two subsets of data are able to trigger the failure, the granularity is 

increased dividing one of the subsets into two sub-subsets that are combined with the other 



Section IV.4 - Experiments 82 

 

subset generating a new search space. The approach is applied recursively until reach a local 

minimal subset of data that still trigger the failure. 

IV.4 EXPERIMENTS 

The goal of the experiments is to evaluate both the effectiveness and efficiency of the debugging 

techniques proposed in this chapter to understand the MapReduce design faults: fault 

localization technique (Subsection IV.4.1) and input reduction technique (Subsection IV.4.2). 

Finally, Subsection IV.4.3 discuss the results and the limitations. 

IV.4.1 Fault Localization experiments 

The goal of this experiment is the assessment of how effective and efficient the fault localization 

technique is locating the root cause of the MapReduce design faults. The research questions are: 

RQ7. Is the fault localization technique better providing the root cause of the MapReduce 

design faults than a random location (baseline)? 

RQ8. The fault localization technique obtains a ranking of the MapReduce characteristics 

that could be the potential root causes of the design fault. How many characteristics 

should be analyzed until reach the root cause of MapReduce design fault? 

RQ9. Which ranking metrics of those used in fault localization are better to rank the root 

causes of the MapReduce design faults? 

RQ10. How much execution time is employed by the fault localization of the MapReduce 

design faults? 

RQ11. The localization technique analyzes several configurations previously generated. How 

many MapReduce configurations must be generated by the fault localization technique 

to achieve a good balance between maximum rate of design faults located and low 

execution time? 

The setup of the experiments aimed to answer the previous research questions is described in 

Subsection IV.4.1.1. The results are detailed in Subsection IV.4.1.2. 

IV.4.1.1 Fault Localization experiment: setup 

In this experiment, 8000 different test cases from 4 real-world programs (2000 test cases per 

program) are analysed by the fault localization technique to evaluate their capability to localize 

the root cause of the faults. These 4 programs are the same used in the previous chapter and 

each one has a known design fault: (1) Open Ankus [170] is a recommendation system that fails 

when the recommendation data about the same item are split and parallelized, (2) Data quality 

analysis [191] measures the quality of the data interchanged by companies and fails when the 

data are not processed in the same order as in the input due a parallelization issues (the fault is 

actually fixed), (3) Movie analysis [192] obtains statistics about movies and fails due a wrong 

implementation of Combiner, and (4) Data cleaner Knn analysis [193] is a machine learning 

program to clean data that fails when there are several Mappers each one trying to access to 

non local available data. 

The population of the experiment is composed of all test cases that trigger MapReduce design 

faults. Each of these test cases is then taken as the experimentation unit, and the observations 

are: the ranking of the potential root causes of faults (suspiciousness rank) obtained by the fault 
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localization technique (RQ7-RQ9 and RQ11), and execution time (RQ10). The dependent variable 

or response variable is: position of the root cause of fault in the suspiciousness rank (RQ7-RQ9 

and RQ11), and execution time in milliseconds (RQ10). The baseline is the random localization 

that obtains a random suspiciousness rank, and the treatments are the fault localization 

technique using the most common 52 ranking metrics [188], [207], [218]: Ample, Ample2, 

Anderberg, Arithmetic Mean, Baroni Urbani and Buser, Binary, Braun Banquet, Cbi Increase, Cbi 

Log, Cbi Sqrt, Cohen, Dennis, Dice, Euclid, Fleiss, Fossum, Goodman, Gower, Hamann, Hamming, 

Harmonic Mean, Jaccard, Kulczynski, Kulczynski2, M1, M2, Mccon, Michael, Minus, Mountford, 

O, O^P, Ochiai1, Ochiai2, Overlap, Pearson, Phi Geometrical Mean, Rogers and Tanimoto, 

Rogot1, Rogot2, Rusell And Rao, Scott, Simple Matching, Sokal, Sorensen Dice, Tarantula, 

Tarwid, Wong1, Wong2, Wong3, Wong3 Prime, and Zoltar.  

These experiments could be affected by the input data size, then a blocking factor is stablished 

with two different sizes of data as in the previous experiments [41]: small size (between 1 and 

10 <key, value> pairs) and a larger size for functional testing purposes (between 11 and 35 <key, 

value> pairs). 

In the experiments, two sampling methods are used: consecutive sampling to select the 

MapReduce programs and random sampling to select the test cases. Ideally, the subject 

programs should be selected randomly, but as in the case in many software engineering 

experiments, this is not viable [194]. As such, four real-world programs that contain a known 

fault are selected instead. 

These experiments answer the research questions using different statistical measures. Whereas 

RQ10 is answered analysing the execution time trend because is focused on efficiency, the other 

research questions analyse the position of the root cause of the fault inside the suspiciousness 

rank. RQ7 is answered comparing the positions of the root cause of the fault that are provided 

by both random localization and fault localization. The comparison is done by the non-

parametric statistic test Wilcoxon Sign Rank test that measures the differences among the 

paired medians with the following one-tail null hypothesis: H01: median(rank position of the root 

cause of the fault by fault localization) = median(rank position of the root cause of the fault by 

random localization). This kind of evaluation is also done in other fault localization studies [229]. 

RQ8 is answered using one of the most used evaluation metrics in fault localization [188], the 

EXAM score [230]: percentage of the suspiciousness rank that must be analysed until reach the 

position of the root cause of the fault. 

Another metric to evaluate the fault localization techniques is the AUC (area under curve) that 

allows the comparison among ranking metrics [231]. AUC consider the position of the root cause 

of the fault in each test case. AUC is defined as the sum per each test case of the percentage of 

suspiciousness rank not analyzed. RQ9 is answered using AUC normalized between 0 and 1. 

The RQ11 is focused on how much configurations should be generated and analyzed to obtain 

good rate between effectiveness and efficiency. Intuitively, more number of configurations 

yields on better results, but also on more execution time. In other domains, Abreu et al. [210] 

study empirically the relation between the fault localization accuracy and the number of analysis 

performed. In our domain these number of analysis (number of configurations generated) could 

vary and then are also empirically studied. The research question is answered though the 

execution of all experiments varying the number of configurations and analyzing the trend of 

the AUC normalized along the different ranking metrics. 
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IV.4.1.2 Fault Localization experiment: results 

The localization technique generates and analyzes several configurations to obtain the root 

cause of the faults. Depending on the number of configurations generated, the results varies a 

 
Fig. 27 Distribution of Exam score (% of characteristics examined in the ranking to detect the root cause of fault) and 

ranking position of the root cause according to teach ranking metric in each program 
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bit. As we can see below in the answer of RQ11, the results are enough good generating and 

analyzing just only one configuration per each characteristics of configurations. These results 

are improved when more configurations are generated and analyzed. The best number of 

configurations in terms of efficiency and effectiveness is 5 according of RQ11. Then MRDebug 

use by default 5 as number of configurations per each characteristic, and the remainder 

experiments for RQ7-RQ10 evaluates the localization technique with this default option. 

Fig. 27 details the distribution of the position of the root cause of the fault in the suspiciousness 

rank obtained automatically by the fault localization technique. In the rigth of the figure is also 

detailed the baseline (random localization). Table 19 summarizes the p-values that compares 

the localization technique and the random localization. Regardless of the ranking metric, the 

fault localization technique is better than random localization with a p-value lower than 0.05. 

There are two exceptions in Data quality analysis program, Rogot1 and Scott, with 11-35 <key, 

value> pairs as input. In the movie analysis program there are also 9 ranking metrics that are not 

significantly better than random localization, but the other 43 ranking metrics achieve significant 

better results than random localization. In the aggregation of the 4 programs, all ranking metrics 

are significantly better than random and the null hypothesis H01 is rejected according to 

Wilcoxon Sign Rank test. Then the answer of RQ7 is that the localization technique achieves in 

general significant better results than random localization. 

According to Fig. 27, the fault localization technique usually ranks the root cause of the fault in 

the first top positions. There are some exceptions in the movie analysis program because its root 

cause of the fault is complex and then difficult to localize. Despite the program does not support 

the Combiner, not always triggers the fault when a Combiner is executed. The fault is 

triggered/masked depending on several factors such as if Combiner is executed or not, the logic 

of the program, and the distribution of the data in the configuration. These issues add noise and 

the technique sometimes ranks in the first positions characteristics that, although are not the 

root cause of fault, are very related. Then the root cause of the fault of the movie analysis 

program are usually ranked in in the firsts four positions, that is in less than the 23.5% top of the 

rank (Exam score). However, the fault localization still provides better results than random. In 

the remainder of programs, and in the aggregation of all programs, the root causes of the fault 

are in the top positions of the rank. Then the answer of RQ8 is that the root causes of fault are 

in general ranked in the first positions. 

Despite all ranking metrics of the literature, there is no one formula that outperforms the rest 

in all contexts [214]. In our domain, all ranking metrics not only are in general significantly better 

than random localization, but also achieve good results. Table 20 summarizes and sorts ranking 

metrics according to the AUC normalized. After all experiments, the answer of RQ9 is that the 

best ranking metrics to locate MapReduce design faults are M2, O^P and Wong3 prime. 

From the previous ranking metrics, Fig. 28 describes the accumulated percentage of faults 

localized at each ranking position. The root causes of fault are ranked in the first position in more 

than 85% of times for Open Ankus, more than 94% for Data quality analysis, more than 25% for 

movie analysis, and 100% for Data cleaner knn analysis. When the data of all programs are 

aggregated, in more than 75% of times the root cause of the fault is ranked in the first position, 

and more than 85% in the second position. Then more information is added in the answer of 

RQ8: the root cause of the fault is in general ranked in the first positions (more than 75% of 

times in the first position and more than 85% of times in the second position). 
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Table 19 P-values of the experiments performed in each program according to the ranking metrics used in fault 
localization 

 Programs  

 Open Ankus Data quality analysis Movies analysis 
Data cleaner Knn 

analysis 
All 

programs 
Ranking metric [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] 

AMPLE 6.3E-127 1.6E-117 0.01117 2.3E-05 7.0E-24 0.0002 2.2E-138 2.2E-138 ~ 0 

AMPLE2 7.9E-145 1.6E-139 1.0E-88 4.6E-70 1.9E-60 2.3E-57 1.4E-166 1.4E-166 ~ 0 

ANDERBERG 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0 

ARITHMETIC MEAN 3.1E-138 2.5E-132 2.4E-105 1.7E-86 2.0E-39 1.0E-46 1.4E-166 1.4E-166 ~ 0 

BARONI URBANI 
AND BUSER 1.2E-131 5.1E-122 1.7E-142 2.8E-147 1.1E-55 4.0E-51 1.4E-166 1.4E-166 ~ 0 

BINARY 5.9E-139 3.2E-129 2.1E-139 1.1E-147 4.1E-10 1.0E-15 1.4E-166 1.4E-166 ~ 0 

BRAUN BANQUET 5.1E-134 9.6E-125 2.4E-142 2.8E-147 1.9E-64 1.2E-60 1.4E-166 1.4E-166 ~ 0 

CBI INCREASE 2.4E-129 7.2E-123 1.3E-115 1.3E-68 7.1E-36 3.0E-40 2.8E-166 2.8E-166 ~ 0 

CBI LOG 2.5E-126 3.2E-105 6.0E-90 5.0E-55 3.4E-35 4.2E-37 1.4E-166 1.4E-166 ~ 0 

CBI SQRT 3.5E-133 6.5E-129 6.4E-89 4.4E-55 8.7E-30 1.7E-33 1.4E-166 1.4E-166 ~ 0 

COHEN 1.1E-125 3.9E-121 1.5E-104 1.7E-86 6.7E-36 3.4E-37 1.4E-166 1.4E-166 ~ 0 

DENNIS 3.2E-138 4.6E-132 1.4E-96 1.1E-56 1.0E-44 3.0E-44 1.4E-166 1.4E-166 ~ 0 

DICE 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0 

EUCLID 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

FLEISS 2.7E-118 2.2E-86 5.8E-125 4.1E-133 4.6E-24 5.0E-07 1.4E-166 1.4E-166 ~ 0 

FOSSUM 6.7E-141 1.7E-122 4.0E-146 1.8E-148 3.0E-43 2.9E-50 1.4E-166 1.4E-166 ~ 0 

GOODMAN 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53  3.3E-55 1.4E-166 1.4E-166 ~ 0 

GOWER 1.9E-33 4.3E-16 4.3E-28 3.9E-46 1 1 1.4E-166 1.4E-166 1.27E-110 

HAMANN 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

HAMMING 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

HARMONIC MEAN 2.4E-144 3.2E-139 2.4E-105 1.7E-86 5.1E-49 5.4E-51 1.4E-166 1.4E-166 ~ 0 

JACCARD 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0 

KULCZYNSKI 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0 

KULCZYNSKI2 1.5E-146 1.2E-141 1.0E-144 7.3E-148 6.4E-41 2.8E-53 1.4E-166 1.4E-166 ~ 0 

M1 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

M2 9.3E-147 8.6E-141 4.0E-146 1.8E-148 9.3E-47 2.5E-58 1.4E-166 1.4E-166 ~ 0 

MCCON 1.5E-146 1.2E-141 1.0E-144 7.3E-148 6.4E-41 2.8E-53 1.4E-166 1.4E-166 ~ 0 

MICHAEL 5.8E-147 8.8E-141 1.1E-62 3.2E-21 6.0E-67 2.3E-63 2.2E-138 2.2E-138 ~ 0 

MINUS 3.7E-147 1.1E-141 2.4E-105 1.7E-86 7.0E-47 3.6E-60 1.4E-166 1.4E-166 ~ 0 

MOUNTFORD 2.2E-141 2.6E-135 2.2E-144 7.3E-148 4.8E-37 8.3E-44 1.4E-166 1.4E-166 ~ 0 

O 5.9E-147 8.7E-142 3.2E-146 2.6E-148 3.0E-31 8.4E-52 1.4E-166 1.4E-166 ~ 0 

O POW P 4.0E-147 8.1E-142 7.9E-147 1.8E-148 9.9E-39 7.6E-54 1.4E-166 1.4E-166 ~ 0 

OCHIAI1 7.6E-145 5.6E-139 1.1E-144 7.3E-148 1.3E-46 3.1E-54 1.4E-166 1.4E-166 ~ 0 

OCHIAI2 2.2E-139 3.7E-132 2.4E-105 1.7E-86 5.9E-68 9.7E-56 1.4E-166 1.4E-166 ~ 0 

OVERLAP 6.1E-116 1.6E-105 2.2E-94 1.3E-58 4.2E-09 2.9E-13 3.8E-163 3.8E-163 ~ 0 

PEARSON 2.3E-144 3.2E-139 2.4E-105 1.7E-86 2.5E-26 7.5E-46 1.4E-166 1.4E-166 ~ 0 

PHI GEOMETRICAL 
MEAN 2.4E-144 3.2E-139 2.4E-105 1.7E-86 3.0E-50 2.7E-51 1.4E-166 1.4E-166 ~ 0 

ROGERS AND 
TANIMOTO 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

ROGOT1 1.4E-123 2.5E-100 4.7E-29 0.99999 5.8E-26 3.3E-08 1.4E-166 1.4E-166 ~ 0 

ROGOT2 2.4E-144 3.5E-139 2.4E-105 1.7E-86 4.9E-49 4.2E-51 1.4E-166 1.4E-166 ~ 0 

RUSELL AND RAO 5.0E-138 1.8E-128 7.3E-142 9.2E-148 8.1E-09 3.3E-14 1.4E-166 1.4E-166 ~ 0 

SCOTT 1.4E-123 2.5E-100 4.7E-29 0.99999 1.7E-26 6.2E-09 1.4E-166 1.4E-166 ~ 0 

SIMPLE MATCHING 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

SOKAL 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

SORENSEN DICE 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0 

TARANTULA 1.2E-129 1.6E-124 8.9E-125 6.9E-100 2.8E-36 6.0E-39 2.8E-166 2.8E-166 ~ 0 

TARWID 1.2E-129 1.6E-124 1.3E-115 1.3E-68 7.8E-36 7.2E-39 2.8E-166 2.8E-166 ~ 0 

WONG1 5.0E-138 1.8E-128 7.3E-142 9.2E-148 8.1E-09 3.3E-14 1.4E-166 1.4E-166 ~ 0 

WONG2 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0 

WONG3 3.7E-147 7.7E-142 2.5E-142 2.8E-147 6.6E-38 9.0E-51 1.4E-166 1.4E-166 ~ 0 

WONG3 PRIME 3.7E-147 7.7E-142 1.7E-142 2.8E-147 1.1E-38 2.7E-54 1.4E-166 1.4E-166 ~ 0 

ZOLTAR 2.4E-147 1.4E-142 1.0E-144 7.3E-148 4.8E-32 8.3E-51 1.4E-166 1.4E-166 ~ 0 
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Table 20 AUC normalized in each program according to the ranking metrics used in fault localization 

 Programs  

 Open Ankus Data quality analysis Movies analysis 
Data cleaner Knn 

analysis 
All 

programs 
Ranking metric [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] 

M2 0.985 0.958 0.997 1.000 0.832 0.841 1.000 1.000 0.917 
O POW P 0.984 0.962 0.998 1.000 0.819 0.837 1.000 1.000 0.915 

WONG3 PRIME 0.982 0.961 0.994 0.999 0.819 0.838 1.000 1.000 0.914 
KULCZYNSKI2 0.977 0.956 0.996 0.999 0.823 0.835 1.000 1.000 0.914 

MCCON 0.977 0.956 0.996 0.999 0.823 0.835 1.000 1.000 0.914 
WONG3 0.982 0.961 0.994 0.999 0.817 0.833 1.000 1.000 0.914 
ZOLTAR 0.985 0.963 0.996 0.999 0.807 0.833 1.000 1.000 0.913 

O 0.985 0.961 0.997 1.000 0.799 0.828 1.000 1.000 0.912 
OCHIAI1 0.960 0.938 0.996 0.999 0.830 0.832 1.000 1.000 0.910 
FOSSUM 0.967 0.909 0.997 1.000 0.826 0.831 1.000 1.000 0.907 
MINUS 0.978 0.959 0.957 0.941 0.830 0.840 1.000 1.000 0.904 

ANDERBERG 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 
DICE 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 

GOODMAN 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 
JACCARD 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 

KULCZYNSKI 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 
SORENSEN DICE 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903 

MOUNTFORD 0.941 0.918 0.996 0.999 0.810 0.814 1.000 1.000 0.901 
AMPLE2 0.963 0.943 0.949 0.933 0.850 0.833 1.000 1.000 0.900 

BRAUN BANQUET 0.899 0.869 0.994 0.999 0.848 0.835 1.000 1.000 0.897 
PHI GEOMETRICAL 

MEAN 
0.956 0.939 0.957 0.941 0.832 0.824 1.000 1.000 0.897 

HARMONIC MEAN 0.956 0.939 0.957 0.941 0.830 0.823 1.000 1.000 0.897 
ROGOT2 0.956 0.939 0.957 0.941 0.830 0.824 1.000 1.000 0.897 
PEARSON 0.956 0.939 0.957 0.941 0.793 0.820 1.000 1.000 0.892 
OCHIAI2 0.923 0.898 0.957 0.941 0.853 0.827 1.000 1.000 0.891 

BARONI URBANI 
AND BUSER 

0.887 0.855 0.994 0.999 0.833 0.819 1.000 1.000 0.891 

ARITHMETIC MEAN 0.920 0.899 0.957 0.941 0.812 0.818 1.000 1.000 0.885 
DENNIS 0.918 0.898 0.954 0.931 0.818 0.811 1.000 1.000 0.883 

RUSELL AND RAO 0.908 0.879 0.992 0.998 0.740 0.757 1.000 1.000 0.876 
WONG1 0.908 0.879 0.992 0.998 0.740 0.757 1.000 1.000 0.876 
BINARY 0.908 0.880 0.989 0.997 0.739 0.752 1.000 1.000 0.875 

CBI SQRT 0.891 0.878 0.950 0.930 0.790 0.793 1.000 1.000 0.871 
CBI LOG 0.888 0.838 0.950 0.931 0.801 0.799 1.000 1.000 0.868 
COHEN 0.859 0.847 0.956 0.941 0.800 0.799 1.000 1.000 0.868 

MICHAEL 0.985 0.961 0.928 0.893 0.862 0.841 0.857 0.857 0.866 
FLEISS 0.864 0.778 0.976 0.982 0.782 0.730 1.000 1.000 0.857 

TARANTULA 0.876 0.863 0.972 0.953 0.801 0.801 0.918 0.918 0.856 
TARWID 0.876 0.863 0.969 0.943 0.800 0.800 0.918 0.918 0.855 

CBI INCREASE 0.876 0.859 0.969 0.943 0.800 0.803 0.918 0.918 0.854 
SCOTT 0.872 0.806 0.917 0.852 0.785 0.737 1.000 1.000 0.839 

ROGOT1 0.872 0.806 0.917 0.852 0.784 0.735 1.000 1.000 0.838 
OVERLAP 0.827 0.804 0.954 0.937 0.738 0.751 0.919 0.919 0.826 

AMPLE 0.882 0.851 0.880 0.886 0.786 0.717 0.857 0.857 0.809 
EUCLID 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 

HAMANN 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 
HAMMING 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 

M1 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 
ROGERS AND 
TANIMOTO 

0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 

SIMPLE MATCHING 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 
SOKAL 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 

WONG2 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803 
GOWER 0.615 0.562 0.909 0.923 0.534 0.558 1.000 1.000 0.734 

RANDOM 0.474 0.469 0.872 0.872 0.678 0.677 0.505 0.505 0.614 
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The experiments demonstrate that the fault localization technique is effective locating the root 

cause of the faults. Other goal of the experiments is also to evaluate the efficiency. Fig. 29  

describes the execution time according to the number of <key, value> pairs of the test case. The 

localization technique employs few time, generally less than 6 seconds. The execution time also 

follows a linear trend increasing the seconds when the input data is bigger. Then the answer of 

RQ10 is that the fault localization technique is efficient employing only few seconds and is also 

scalable with respect to the size of the test input data. 

The fault localization technique obtains the root cause of the fault by means of the analysis of 

several configurations. Depends on the number of configurations, the technique could yield 

 

Fig. 28 Percentage of accumulated fault rightly localized in each position of the ranking for all programs 
according to different ranking methods 
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Fig. 29 Execution time of the fault localization technique according to the number of <key, value> pairs 
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better or worst results. To obtain the ideal number of configurations, Fig. 30 summarizes the 

trend of the distribution of the AUC normalized in different ranking metrics along all experiments 

varying the number of configurations. As expected, the fault localization obtains better results 

when the number of configurations generated/analyzed increases, but also decrease the 

efficiency. To obtain the number of configurations beyond which there is no improvement in 

AUC, we calculate the second derivate of the curve. In this derivate, there is no value equally to 

zero, then the AUC normalized is always slightly increased until a limit of 0.88. This improvement 

is bigger between 1 to 5 number of configurations (from 0.82 to 0.87) and very lower after that 

(from 0.87 to 0.88). Then the answer of RQ11 is 5 number of configurations because, as we can 

see in RQ7-RQ10, yields to a very good effectiveness and very good efficiency. 

IV.4.2 Input Reduction experiments 

The goal of this experiment is the assessment of how effective and efficient the input reduction 

techniques are isolating the data that triggers the MapReduce design faults. The research 

questions are: 

RQ12. Are both input reduction techniques, genetic algorithm and delta debugging, better 

search strategies than random searches (baseline) to isolate the input data that trigger 

the MapReduce design faults? 

RQ13. Which of the input reduction techniques proposed, genetic algorithm and delta 

debugging, is better isolating the data that trigger the MapReduce design faults? 

RQ14. How much data reduce the input reduction techniques? 

RQ15. How much execution time is employed by the input reduction techniques of the 

MapReduce design faults? 

The setup of the experiments aimed to answer the previous research questions is described in 

Subsection IV.4.2.1. The results are detailed in Subsection IV.4.2.2. 

 

Fig. 30 Effectiveness of ranking metrics used by the fault localization technique according to the number of 
configurations generated 
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IV.4.2.1 Input Reduction experiments: setup 

The experiments are very similar to the fault localization experiments. The same test cases that 

triggers the faults are used as experimental units, but only in those with 11-35 <key, value> (1000 

test case per each of the 4 programs). The reason to not include in the experiment the test cases 

with 1-10 <key, value> pairs is because the search space is small (lower than 1024 subsets of 

input data) and then can be analyzed thoroughly without a search strategy. The search space 

grows exponentially, and then is not viable to explore thoroughly all search space with 11-35 

<key, value> pairs due costly reasons (search space from 2047 to 34359738367 subsets of input 

data). In these test cases, the search strategies proposed in this chapter can be used. 

In this experiment, the dependent variable or response variable is the quantity of data 

reduced/isolated (RQ12-RQ14) and the execution time (RQ15). The baselines of the experiment 

are random searches in the search space (RQ12) and delta debugging (RQ13). The random 

baseline aims to find a minimal subset of the input data that trigger the fault by means of 

random searches in the space, that is, the technique selects randomly without substitution 

several subsets of the input data. In the experiment, two random baselines are used, Random-

G and Random-D, that perform per each test case the same number of searches than genetic 

algorithm and delta debugging, respectfully. The treatments of the experiment are the genetic 

algorithm (RQ12-RQ13) and delta debugging (RQ12). The genetic algorithm is parametrized with 

the default options: initial population of 20 individuals, the asexual reproduction generates 4 

individuals in each generation and the mutation probability is 1%. 

As in the fault localization experiment, the research question related to the efficiency, RQ15, is 

answered analysing the execution time trend. The other research questions are about 

effectiveness and are answered according to the data reduced. The RQ14 is answered analysing 

the percentages reduced by the input reduction techniques. The other two research questions, 

RQ12-RQ13, are answered with statistical tests as in other test suite reduction papers [232]–

[234]. The difference is that the techniques of this chapter instead to reduce the size of the test 

suite, are focused in the reduction of the input data of the test cases. Then instead to measure 

the percentage of test suite reduced [235], [236], the experiment measures the percentage of 

test input data reduced. The comparison of the percentages of input data reduced is done by 

the t test statistical test that measures the differences among the paired means with the 

following one-tail null hypothesis: H02: mean(% reduced by genetic algorithm) = mean(% 

reduced by Random-G) (RQ12), H03: mean(% reduced by delta debugging) = mean(% reduced by 

Random-D) (RQ12), and H04: mean(% reduced by genetic algorithm) = mean(% reduced by delta 

debugging) (RQ13). 

IV.4.2.2 Input Reduction experiments: results 

Fig. 31 details the distribution of the percentage of data reduced by each input reduction 

technique. Table 21 also summarizes the mean of percentage reduced. The genetic algorithm 

and delta debugging are clearly better techniques than their random counterpart even though, 

respectively, they perform the same number of searches. The p-values are lesser than 0.001, 

then the null hypothesis H02 and H03 are rejected. The answer of RQ12 is that both, the genetic 

algorithm and delta debugging, reduce better the test input data than their equivalent random 

techniques. 

Both techniques, genetic algorithm and delta debugging achieve in the Data cleaner Knn analysis 

program the same percentage of input reduction (85.4%). The data of this program is easy to 
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reduce because also by a random search can be achieved good reduction (80.5% by Random-G). 

Then the search space of this program contains a lot of good/optimal solutions and both 

techniques, genetic algorithm and delta debugging, reach them easily. For the other 3 programs, 

the search space is more complex and the selection of a properly search strategy could yield in 

better input reduction. In these programs, the genetic algorithm achieves significant better 

input reduction than delta debugging. For the Open Ankus program, genetic algorithm reduces 

in average 84.3% of input data and delta debugging 83.5% (p-value < 0.001); for the Data quality 

analysis, 90.4% and 90% (p-value < 0.001); and for Movie analysis, 85.4% and 81.9% (p-value < 

0.001). The null hypothesis H04 is rejected. Then the answer of RQ13 is that the genetic 

algorithm is significant better isolating the input data that trigger the fault than delta 

debugging. 

Despite the genetic algorithm is significant better reducing the data than delta debugging, both 

techniques achieve a good percentage of reductions. Table 21 and Fig. 31 indicate that both 

techniques usually reduce the data more than 80%-85%. Then the answer of RQ14 is that both 

techniques, genetic algorithm and delta debugging reduces the majority of the data, but the 

genetic algorithm achieves significant better rates of reduction. 

Whereas delta debugging is a greedy approach that search for the first minimal data that triggers 

the fault, the genetic algorithm additionally tries to skip the local minimal aimed to achieve the 

best solution (global minimal data that trigger the fault). Then delta debugging employs few time 

 

Fig. 31 Distribution of percentage of input reduction in each program by different input reduction techniques 
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to isolate the data, while the genetic algorithm takes more time trying different solutions until 

converge. Fig. 32 details the execution time trend of each technique according to the size of 

input data, and Table 22 summarizes the average execution time. As expected, delta debugging 

employs usually few seconds to isolate the input data that trigger the fault. On the other hand, 

the genetic algorithm employs a lot of more time, sometimes in hour scale. The other 

disadvantage of the genetic algorithm is that the execution time grows faster according to the 

number of <key, value> pairs to be isolated. In contrast, the execution time of delta debugging 

grows more slowly. Then the answer of RQ15 is that whereas delta debugging is scalable 

employing few seconds, the genetic algorithm does not scale rightly and employs minutes-

hours. 

IV.4.3 Discussion 

The experiments indicate that MapReduce programs with design faults can be automatically 

debugged with the fault localization and input reduction techniques proposed. The fault 

localization discovers automatically in few seconds the right root cause of the design faults, 

specially when employs the M2, O^P or Wong3 prime ranking metrics. In the other hand, the 

input reduction techniques, genetic algorithm and delta debugging, isolate automatically the 

data that trigger the fault achieving usually more than 80-85% reduction of the input data. The 

genetic algorithm obtains significant better reductions than delta debugging, but also employs 

Table 21 Mean of the percentage of input data reduced by each technique in the programs 

 
 

 Program 
Input reduction 

technique 
Open 
Ankus 

Data quality 
analysis 

Movie 
analysis 

Data cleaner 
Knn analysis 

Genetic 84.3% 90.4% 85.4% 85.4% 

Delta Debugging 83.5% 90.0% 81.9% 85.4% 

Random-G 69.0% 77.4% 62.3% 80.5% 

Random-D 51.8% 63.1% 48.3% 65.3% 
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Fig. 32 Execution time of the test input reduction according to the number of <key, value> pairs 
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more time. Then the genetic algorithm can be used to reduce the input data during 

laboratory/offline testing because the execution time is not an issue. In contrast, the execution 

time is an issue in the runtime testing like the approach proposed in the next chapter, then in 

this scenario is better to use delta debugging because in few seconds achieves good reductions. 

The remainder of this subsection discusses the limitations of these experiments through the 

threats of validity and their subcategories [194], [198], [199]. 

The conclusion threats are those issues that could affect the concluding of the experiments. The 

debugging techniques of this chapter generate test cases with different configurations and then 

take advantage of the testing technique proposed in the previous chapter to automatically check 

if there is a failure or not. This oracle is not 100% accurate and could provide wrong information 

for the debugging techniques (inaccurate data). Then the fault localization technique and the 

input reduction techniques (genetic algorithm, delta debugging, and also the baselines Random-

{G,D}), decrease their effectiveness. This is not a big issue because all techniques uses the same 

oracle, and usually provides the right information [41]. 

The internal threats are those issues regarding the causal relationship between independent 

variables and dependent variables. RQ10 and RQ15 analyze the execution time, but some noise 

can be introduced into the measurements by other operative system tasks (confounding effects 

of variables). To mitigate this problem, the experiments are executed in the same computer 

without any other programs operating in the background. 

The tool that automates the research, MRDebug, can contain faults and other limitations. To 

mitigate the potential faults of the tool, both manual and automatic testing was performed 

mainly from the functional and performance point of view. This tool also uses MRTest as testing 

technique/oracle and has the same limitations described in the previous chapter (Section III.4.3). 

For example, when the program under test inserts data in an external database, MRDebug and 

MRTest can perform the insertions for each of the configurations generated/executed. When 

the external service is fully controllable, then the tester can handle these side effects inside the 

test cases. 

The external threats are those issues that can affect the generalization of the results. The 

subjects of this experiment are 8000 test cases randomly selected from 4 MapReduce programs 

selected by consecutive sampling. Ideally, the programs should also be selected randomly, but 

often this is not feasible in software engineering (Interaction of selection and treatment). For Big 

Data programs, there is no benchmark of faults and industrial programs are not usually 

available. This problem is mitigated by using some real-world applications, instead of using 

programs with seeded faults (hand-seeded faults or mutation faults) that are prone to other 

Table 22 Mean of the execution time of input reduction measured in milliseconds by each technique in the 
programs 

 Program 

Input reduction 

technique 

Open Ankus Data quality 

analysis 

Movie 

analysis 

Data cleaner Knn 

analysis 

Genetic 20195 ms 3632696 ms 484364 ms 3341 ms 

Delta Debugging 898 ms 57079 ms 25634 ms 306 ms 

Random-G 18337 ms 4132114 ms 341645 ms 3570 ms 

Random-D 811 ms 44829 ms 6361 ms 303 ms 
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external threats [200], [201]. Therefore, there are other issues regarding seeded faults when 

they are used to evaluate testing techniques. The hand-seeded faults are injected by the expert 

and they are subjective, decrease the reproducibility of the experiments and are not 

representative of real faults in terms of easy detection [202]. In contrast, mutation faults are 

representative of the majority of faults, but this is not the case when the developer implements 

an incorrect algorithm [203]. The faults pursued by this thesis fall into the previous category of 

faults that are not possible to substitute with mutations. The faults that are the target of this 

thesis are caused by incorrect design decisions that lead to the implementation of faulty 

algorithms, completely different from those of the correct implementation. As such, the 

injection of mutation faults is not a feasible way to evaluate the debugging techniques of this 

chapter. 

The test cases used to evaluate the debugging techniques has 1-10 and 11-35 input data. The 

results of the experiments could not be generalizable for all other sizes of the input data 

(Applicability of results across different samples). However, in the experiments the debugging 

techniques scale rightly regardless of the input data. The sizes of the input data used in the 

experiments (1-10 and 11-35) follows the same design of our previous experiments [41]. During 

functional testing and debugging, when the test cases has more data, more difficult to both 

detect and debug the faults. Then, the functional test cases are usually designed with few data, 

specially in when the programs are executed in distributed fashion. 

Other results can be obtained if the fault localization technique generates/analyzes the 

configurations in a different way, or if the input reduction technique employs other search 

strategy (Applicability of results when technique is varied). Despite there are room to improve, 

the techniques achieve very good effectiveness. 

The construct threats are those issues between the experiment and its underlying theoretical 

concepts. The fault localization technique is only compared against a random localization 

because the other techniques of the literature are not suitable for MapReduce design faults. 

These other techniques are usually focused in the analysis of the statements instead of 

configurations. In the case of the input reduction, the genetic algorithm is compared against 

both random and an adaptation of the delta debugging algorithm that is very used to isolate 

faults. 

One part of the experiment analyses the efficiency of the debugging techniques based only on 

the execution time measure, but there could be more measures not considered, such as memory 

(Mono-operation bias). To mitigate this problem, the experiments were executed in a 

commodity computer with few resources. The memory does not appear relevant because its 

usage was low during the experiments. Furthermore, the tool that automates the research was 

tested to avoid memory bottlenecks. 

IV.5 RELATED WORK 

Debugging distributed programs is a difficult task, specially in the Big Data field [237]. Several 

works propose debugging techniques focused on performance for Big Data frameworks [84], 

[238] and others for the MapReduce programs [239], [240]. In contrast, the current chapter is 

not focused on performance debugging, but on functional debugging. Olston et al. [241] 

interview ten employers of Yahoo! about debugging dataflow programs like MapReduce. The 

majority of them suggests that can be valuable to obtain the data and operators that cause the 

failure. The current chapter undertakes both tasks in MapReduce design faults through the 
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MRDebug framework. MRDebug localizes the root cause of the fault, isolates/reduces the data 

that trigger the failure, and supports the common debugging utilities such as breakpoints. 

Fault localization: Daphne [242] is a debugger for DryadLINQ (framework that supports and 

extends the MapReduce processing model). This debugger diagnostics the root cause of the 

faults based on a decision tree at different levels of abstraction considering logs and stack traces 

of the execution. The current work does not analyze neither logs nor stack traces because is 

focused on the failures that are triggered by some non-deterministic executions. Then MRDebug 

analyzes with spectrum-based fault localization not only one execution, but several executions 

to localize the non-deterministic characteristics that trigger the failure. 

Isolation/reduction of the data: BigSift [243] is a runtime debugger for applications executed in 

Spark (framework that support and extends the MapReduce processing model). This debugger 

isolates the data through delta debugging combined with data provenance and an automatic 

oracle provided by the tester. The approach proposed in the current chapter also isolates the 

data through delta debugging but do not need that the tester provides an oracle. MRDebug is 

focused only on design faults and then uses a generic oracle from our previous chapter (MRTest). 

In addition to delta debugging, the current work also performs the isolation of the data through 

a more generalized search-based algorithm [244]. 

Debugging utilities: Inspector Gadget [241] is a debugger that alerts about predicate violations 

and also traces the data that produce the failures in Pig programs (abstraction of the MapReduce 

processing model). Our previous work also alerts of potential failures in production [52], but 

only for those caused by MapReduce design faults. The current work, MRDebug, also allows to 

trace the failures, but only for those caused by design faults and only at high level with 

breakpoints and watchpoints in a simulation environment. 

BigDebug [245] is a runtime debugger that allows to insert simulated breakpoints and 

watchpoints in Spark production environment. In contrast, the approach proposed in the current 

chapter simulates the production environments to allow the insertion of the breakpoints and 

watchpoints. 

Other works are focused on record and replay failures. Arthur [246] is a debugger for Hadoop 

and Spark that traces the relevant data and allows to replay the failure. Newt [247] is another 

debugger of MapReduce applications that captures runtime information allowing the tracing 

and reproduction of failures. Bergen et al. [248] proposes a debugger for Spark that records 

failures from production and reproduces these failures locally to support breakpoints. These 

approaches that are focused on record-replay failures does not handle properly the non-

determinism failures, that is the main goal of the current work. Arthur [246] considers a 

checksum of the output and then can detect non-determinism, but is not able to reproduce non-

deterministic results. Newt [247] can also record the non-deterministic data but is not able to 

reproduce them deterministically. The current work, MRDebug, is focused in debugging failures 

caused by non-deterministic executions due a design fault. MRDebug simulates different 

infrastructure configurations to capture several executions that cause the failure and several 

that mask it. Then MRDebug can reproduce deterministically the non-deterministic executions 

through seeds.  
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IV.6 CONCLUSIONS 

The design faults of the MapReduce can be automatically debugged to locate the root cause of 

the fault and isolate the data that trigger the failures. The common fault localization techniques 

are focused on the source code, but these MapReduce faults are caused by wrong design instead 

of the code. The root cause of these faults can be automatically obtained through spectrum-

based fault localization analysing the infrastructure configurations instead of the source code. 

The root cause of the fault is not usually enough to understand the fault. In order to improve 

the debugging, the isolation/minimization of the data that trigger the failure can help to 

understand the fault. The relevant data can be isolated through search-based algorithms aimed 

to reduce the data that triggers the failure. The localization and input reduction techniques are 

automatized in a debugging framework called MRDebug. This framework also simulates the 

distributed executions to support the common debugging utilities such as breakpoints and 

watchpoints. 

We performed an empirical study to analyze the effectiveness and efficiency of both localization 

and input reduction techniques. The results showed that both techniques debug rightly the 

programs in reasonable time.  The localization technique obtains the root cause of the faults 

analysing few configurations in scalable way employing also few seconds. The spectrum-based 

fault localization techniques use a similarity metric to analyze the potential root causes of the 

fault. MRDebug obtains usually the right root cause of the fault regardless of the similarity 

metric employed, but the bests for MapReduce design faults are M2, O^P and Wong3 prime. 

MRDebug contains two input reduction techniques: delta debugging and genetic algorithm. 

Both techniques reduce the majority of the data making the wrong execution of the MapReduce 

design fault simpler to understand. The genetic algorithm isolates the data significantly better 

than delta debugging, but also employs much more time. Then the genetic algorithm is better 

when there are no deadlines like in offline testing on laboratory. Contrary, delta debugging is 

better when there are deadlines like in online testing on production as in the approach proposed 

in the next chapter.   
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V OPERATIONS 

The previous chapters of the thesis propose techniques to test and debug the functionality of 

the MapReduce applications. These techniques analyze the execution of the input data under 

different infrastructure configurations, then both techniques are able to detect and diagnose 

the design faults automatically given only the input data. These input data are provided by the 

tester, but this chapter proposes an autonomous approach to take the data from runtime to 

test-debug, without human intervention, the programs that are executed in production. 

Once the data are taken automatically from runtime as test input data, the testing and 

debugging techniques can detect and diagnose the faults also in automatic way. In Big Data field, 

it is not feasible to test-debug the programs with all runtime data because is expensive from the 

performance and resources point of view. As initial work, we proposed a data-flow criteria called 

MRFlow [53] that is adapted to MapReduce considering the different transformations of data 

from Mapper to Combiner-Reducer. This data-flow criteria has also several limitations to use 

automatically during runtime because requires to both instrument the program and analyze the 

whole runtime data to obtain a sample that covers the data-flow criteria. Then the data-flow 

criteria is not feasible at all to obtain in few seconds the input data for testing-debugging each 

program executed production. Instead to obtain an input data for each program like in the data-

flow criteria, the data can be obtained for all programs that use the same runtime data and then 

use a cache mechanism to accelerate the execution of the testing-debugging techniques in few 

seconds.  

The approach proposed in this chapter, MrExsist, identifies the programs executed in production 

and then takes samples of the runtime data (usually from cache) to perform testing and 

debugging with the techniques of the previous chapters. This approach takes both program and 

data from production, but instead to test-debug the applications in production (In Vivo), test-

debug these applications in laboratory to obtain a fine-grained control and reproducibility of the 

tests. The chapter proposes a hybrid approach between testing-debugging in the laboratory and 

testing in production, which we have named the Ex Vivo approach: the tests are automatically 

obtained from the runtime data, but they are executed outside of the production environment 

so as not to affect the application. 

The majority of this chapter is published in QRS 2017 [52]. Section V.1 discusses the background 

and related work about testing in production. Section V.2 defines the Ex Vivo testing approach, 

and Section V.3 describes the MrExist framework based on this approach that is adapted to the 

MapReduce processing model. Then MrExist is validated in Section V.4. Finally, the conclusions 

are included in Section V.5. 

V.1 BACKGROUND AND RELATED WORK 

In the production environment, the infrastructure failures are fairly frequent. Several research 

lines suggest the injection of infrastructure failures [85], [148] during the testing, and several 

tools support it [64]–[66]. For example, Marynowski et al. [147] create test cases specifying 

which computers fail and when. Some faults can be detected with the injection of infrastructure 

failures, but others require a full control of the distributed system and its underlying large 

infrastructure. To detect this kind of faults, this work does not inject infrastructure failures, but 

simulates the different infrastructure configurations in a lab to obtain fine-grained control and 

reproducibility of the tests. 
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Other testing techniques focus on the generation of test input data with different approaches 

like a bacteriological algorithm [149] or input domain together with combinatorial testing [172]. 

Unlike the previous testing techniques, this chapter takes the data directly from production in 

runtime. 

There are several tools to design and execute test cases for MapReduce applications. Herriot 

[63] allows the execution of the tests in a real cluster at the same time that it supports the 

injection of the infrastructure failures. Other tools called MiniClusters [62] execute the test cases 

in a cluster simulated in memory. For unit testing, MRUnit [61] provides an adaptation of JUnit 

[60] to the MapReduce processing model. This chapter also proposes a testing tool for the 

MapReduce processing model, but unlike the others it performs full automatic testing in 

production with the runtime data. 

V.2 EX VIVO TESTING 

Modern software applications are increasingly distributed, pervasive, and adaptive. For such 

systems, the boundary between development-time and production is vanishing [249], and 

several authors (e.g., [250], [251]) have proposed that software testing can (or should) be used 

even after  deployment to continue detecting functional faults that cannot be found in the 

development environment. Testing in the production environment has been referred to with 

different terminology [252]: 

• Online testing, as opposed to offline, to highlight that testing is done without 

interrupting the normal operation. 

• Testing “in the field”, as opposed to traditional testing performed “in the lab”. 

• Runtime testing, to highlight that testing is done employing execution data from 

operation, rather than other artificial data. 

• A form of testing in production is also monitoring, which is referred to as passive testing 

in contrast with actively providing some stimulus (test input). 

From the previous approaches, other testing approaches arise, among them In Vivo testing 

[253]. This kind of testing is performed inside the production environment but in an isolated 

process in order not to affect the program executed in production. In this way, testing can take 

advantage of information from production such as runtime data, third party libraries or 

configurations. However, online tests also consume memory and other production resources 

that could negatively impact the program executed in production, especially regarding 

performance. 

The performance of the MapReduce programs is important because they usually analyze large 

and complex datasets [254]. The information of these datasets can be useful for carrying out 

testing in runtime [255], but the execution of the tests in the production environment is 

problematic for several reasons. Hadoop automatically manages the executions carried out in 

production, but does not support fine-grained control and reproduction in the same 

circumstances. In addition, the tests executed in production consume resources and can 

negatively impact the performance of the applications. Although production data can be a good 

test data, in the MapReduce context it is not feasible to execute the test cases in the production 

environment like the In Vivo testing. A more convenient alternative is the execution of the test 

cases in a simulator outside production, but using production data as test inputs. 
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Thus, this chapter proposes a novel testing approach called Ex Vivo. This new type of testing 

takes some information from production like the In Vivo approach, but performs testing outside 

the production environment. Then testing can take advantage of the runtime information but in 

a more controllable way than In Vivo, and without the limitations imposed by the actual 

production environment. The Ex Vivo testing also has few risks to impact the execution of 

programs because it does not take resources from production like the In Vivo approach. To the 

best of our knowledge there are no testing approaches with these principles, either in 

MapReduce or in other software contexts. 

The terminology used of In Vivo and Ex Vivo testing, together with In Vitro, has been borrowed 

from biological sciences where they are used to denote different kinds of tests. As Fig. 33 

describes, In Vivo (latin for "within the living") are those tests performed inside an organism, Ex 

Vivo (latin for "out of living") outside, and In Vitro in a tube. In software testing the organism 

could be seen as the analogy for the production environment whereas the tube could be the 

development-testing environments. Consequently, In Vitro is the traditional testing that does 

not take advantage of the production information to detect faults. In contrast, both In Vivo and 

Ex Vivo, take advantage of this information (for example runtime data), but testing is performed 

in different environments: In Vivo performs testing inside the production environment, while Ex 

Vivo performs testing outside. 

V.3 MREXIST: EX VIVO TESTING FRAMEWORK FOR MAPREDUCE APPLICATIONS 

In order to perform testing not only in development-testing phases, but also actively during 

production, an automatic continuous testing framework is proposed.  This framework is called 

MrExist (MapReduce EX vIvo teSTing) and it is based on the Ex Vivo testing approach exposed in 

Section V.2 adapted to the MapReduce processing model characteristics. These programs are 

executed in a non-deterministic way by a distributed system, for example by Hadoop. Usually 

these systems do not allow fine-grained control of the execution, thus making testing more 

difficult. The Ex Vivo framework proposed here takes data under execution and then executes 

test cases based on such real data in a test server outside the production environment. 
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Therefore the execution of the test cases does not take resources from production, does not 

introduce side-effects and can be fully controlled. 

Fig. 34 describes the MrExist framework starting with a user that executes a program and 

finishing by testing performed automatically without any knowledge either of the specification 

or of the expected output. Firstly a probe detects that a user has executed a program (1), and 

the probe sends this program to the test server (2). Then the program is parsed by the test server 

(3) to obtain the location of the data and the MapReduce functionality code. This code is 

instrumented (4) to analyze its internal states, and the test input data are sampled from the 

production data (5). Finally, the testing is performed using the testing technique of the chapter 

III that only needs the test input data and the program to detect functional faults (6). Once the 

faults are detected, the debugging technique of the previous chapter can be integrated 

automatically. 

Generally speaking, a challenge for testing in production is how to check whether the output is 

correct or not (test oracle), especially in those programs that are specifically developed to obtain 

some previously unknown or costly answer [181], as for example some machine learning 

programs. Such problems do not exist in those faults addressed by the thesis, as we can compare 

the outputs obtained for the same data in different configurations (Chapter III). The MrExist 

framework automatically detects a functional fault when the same data executed in different 

configurations do not generate an equivalent output. The different parts of MrExist are 

described in detail in the subsections below together with the following example. 

Consider the program that calculates the average temperature per year described in Fig. 10 

(Chapter III). This problem can be divided in as many subproblems as there are years, then each 

subproblem only calculates the average temperature for one year. To start off, several Mappers 

receive subsets of historical data and emit <year, temperature of this year>. After the execution 

of all Mappers, the temperatures (values) are grouped by their year (key). Then, several 

Reducers receive subproblems like <year, [all temperatures of this year]>, that is one year with 

all temperatures for this year, and emit the average. This program optimizes the performance 

through a Combiner functionality that receives several temperatures and then they are replaced 

by their average to decrease the data sent from one computer to another. This program has a 

functional fault because all the temperatures are needed to obtain the total average 

temperature. First, the Combiner replaces the data available locally for their average, and then 

the Reducer calculates the global average with these local averages, but sometimes this output 

does not match the average of all temperatures. This kind of fault is difficult to detect in the 

MapReduce programs and is usually masked during the testing [42] because the latter does not 

suffer aggressive situations as in the execution of large data in production like parallelization, 
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computer failures, automatic optimizations and so on. Then these programs can be released to 

production and the Ex Vivo framework proposed, MrExist, could automatically detect faults and 

notify the user in runtime. 

V.3.1 Parser 

The probe sends the program executed in production to the test server. Then the program is 

parsed in order to obtain the MapReduce code functionality and the location of the dataset 

employed in production. The parser analyzes the bytecode with Javassist [256] not only to obtain 

the bytecode of the Mapper, Combiner and Reducer, but also other MapReduce advanced 

functionalities such as Partitioner and Sort, among others that are relevant for testing. 

The parser employs a cache based on MD5 hashes [257] that leverages the communications 

between client and test server. The client only sends a few bytes of hash instead of the program, 

and when the test server does not have the program in the cache, then it can request it. The 

parser also detects automatically if the program under test has been tested before or not, and 

then registers the different versions/improvements of the program based also on its hashes. 

For example, when the user executes the program that calculates the average per year, the 

probe sends the MD5 hash of the program to the test server. If the program is not in the cache, 

the test server requests the program from the probe. Then the program is parsed in the test 

server obtaining (1) location of dataset, (2) code of the MapReduce functionality, and (3) other 

metadata such as the number of the version. For the program under test the parser obtains the 

following MapReduce code: AvgMapper function (Mapper), AvgReducer function (Reducer and 

Combiner), TextInputFormat function (Input format), among other advanced codes of the 

MapReduce programs and dependencies. Finally, the parser checks if the program has been 

tested before or if it is a new version with changes of a previous program. Then the parser 

registers this information about the program version, allowing the visualization of the quality 

evolution in the user programs. 

V.3.2 Instrumentation 

The Mapper, Combiner and Reducer functions in Hadoop do not return any data, the <key, 

value> pairs are sent from one function to another based on buffers, dumps, and remote calls, 

among others. In order to observe the internal states of the program under test, the MapReduce 

functions are instrumented. The instrumentation automatically adds mocks, stubs and spies 

inside the code using mocking frameworks widely used in practice [258] such as Mockito [259] 

and PowerMock [260]. 

For example, in the program that calculates the average temperature per year, the parser 

obtains that avgMapper and avgReducer code implement the Mapper, Combiner and Reducer. 

In order to enable full control and monitoring of their internal states during testing, these 

functions are instrumented with mocks, stubs and spies. 

V.3.3 Sampling 

In addition to the code under test, MrExist needs data to perform testing. The sampling method 

generates the test input data from the location previously obtained by the parser.  

In Big Data, the datasets usually contain a huge amount of data stored in a distributed database 

or filesystem, such as HBase [261] or HDFS (Hadoop Distributed File System) [262]. In terms of 

resources, it is not feasible to perform functional testing with all of these large data. Instead, 
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MrExist generates a smaller test input data with a reservoir sampling [263]. This algorithm 

samples streams of data and can be parallelized to improve the performance. The MrExist 

framework implements the sampling using the MapReduce processing model to employ Big 

Data power during the sampling of the large datasets. This algorithm assigns a random number 

to each <key, value> pair, and then only the highest are sampled.  

The samples obtained from the sampling algorithm are used as test input data and are saved in 

a specific binary format for the <key, value> data, called SequenceFile [264]. These samples are 

obtained based on randomness, but the algorithm also supports pseudorandom numbers, also 

called seeds, to obtain the samples in a deterministic way and support the reproduction of the 

test cases in the same circumstances. 

In a Big Data cluster there are several datasets, but the majority of the programs only analyze 

the same one, two or few datasets [28], and sometimes concurrently [265]. To avoid multiple 

samplings of these Big Data datasets a cache is implemented to improve performance [266], 

[267]. Then the sampling method is only executed when the dataset has no samples in cache. 

These samples can also be generated proactively, for example scheduling the samplings of the 

available datasets during weekends, nights or at other times with low production activities. 

In the program that calculates the average temperature per year, the parser obtains the dataset 

used in production. Then MrExist checks if the cache contains test input data for this dataset. If 

there is no data, a sampling is performed obtaining the following 20 temperatures also depicted 

in the top of Fig. 20: year 1995 with 7⁰, 9⁰, 7⁰ and 10⁰; year 1996 with 1⁰, 3⁰, 2⁰ and 5⁰; year 

1997 with 8⁰ and 6⁰; year 1998 with 5⁰; year 1999 with 4⁰, 2⁰ and 3⁰; year 2000 with 5⁰ and 10⁰; 

year 2001 with 9⁰ and 8⁰; year 2002 with 12⁰, and year 2003 with 13⁰. Then these test input data 

are available in the cache for future uses in testing. 

V.3.4 Testing 

The execution of the program in production is managed by a distributed system, for example 

Hadoop, that automatically allocates resources in a parallel way, re-executes different parts of 

the program in case of computer failures, performs some data optimization and mixes the 

analysis of different parallel traces, among others. These automatic mechanisms guide the 

execution in a highly scalable way, but could also cause that a program generates an incorrect 

output. In this case, the program has a functional fault because it generates valid or incorrect 

output depending on the infrastructure configuration as happen in those programs of the 

previous chapters. 

MrExist detects these faults employing a specific MapReduce testing technique proposed in 

Chapter III (MRTest). This testing technique executes the same data in different infrastructure 

configurations and checks whether their outputs are similar or not. These infrastructure 

configurations are generated with a combination of a different number of Mapper/Reducer 

tasks, and several MapReduce optimizations, among others. Fig. 35 describes the execution of 

the testing technique taking advantage of the sampling and instrumentation of the previous 

subsections. The test server obtains the test input data from sampling, and the software under 

test from instrumentation. Then the test server executes each test input data with different 

configurations and finally checks if the outputs are equivalent, revealing a fault if they are not. 

These configurations are generated and executed with an extension of MRUnit [42], [61] (JUnit 

[60] for MapReduce), and checked with Hamcrest matchers [268]. 
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In the program that calculates the average temperature per year, MrExist automatically detects 

a fault. First, the parser obtains that the program under test has a customized Mapper, Combiner 

and Reducer functionalities, among other MapReduce advanced functions. Then these functions 

are instrumented, and the testing is performed with the different test input data obtained from 

production by the sampling method. The top of Fig. 20 describes the testing performed with 20  

test input data using MRTest testing technique (Chapter III). The test server iteratively generates 

and simulates different configurations, and then checks if one of the outputs is not equivalent 

to the others. The first configuration generated is made up of only one Mapper, one Combiner 

and one Reducer. The second configuration executes the same data with concurrency and 

different optimizations obtaining different outputs than the previous configuration. Then a fault 

is automatically discovered in the program executed in production and the developer can debug 

this program automatically using the MRDebug debugging approach (Chapter IV). In this case, 

the program does not support this Combiner because it replaces the temperatures available 

locally by their average, and then Reducer calculates erroneously the total average with these 

local averages. 

Once the fault is automatically detected, MrExist sends an email to the user in order to notify 

the fault. The email not only contains the existence of the fault, but also represents how this 

fault is caused, as can be seen at the middle of Fig. 20. Then the user can debug and stop the 

program to avoid incorrect worthless output while also saving money, energy and time of large-

scale computation resources, especially for those MapReduce programs that finish their 

execution after several hours [28] or days  [27]. 

V.3.5 Test oracle 

The test oracles have some properties to characterize the testing efficacy [182], [183]. The 

MrExist framework aims to detect faults without human intervention, and the oracle used 

during testing is an automated partial oracle [181]. This kind of oracle can detect some faults 

without any knowledge about the expected output. The oracle employed in MrExist is 

automatically derived from the program executions [184] using metamorphic testing [45], [269], 

[270], that is a field also employed to test machine learning programs [185] and in In Vivo 

frameworks [271]. The metamorphic testing given a test case checks relationships inside one or 

different executions of the program. The test case is called original test case, the different 

executions are called follow-up test cases, and the relationship that should be satisfied is called 

metamorphic relationship. 

The MrExist framework proposes a metamorphic testing that can automatically test the 

MapReduce programs. This approach obtains the test cases from production (original test cases) 
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then executes them with different configurations (follow-up test cases) and finally checks if their 

outputs are equivalent (metamorphic relationship), if not a potential fault is detected.  

In most metamorphic testing research, the test cases are generated with random testing [186]. 

In MrExist, the original test cases are also obtained randomly based on a sampling of the 

production dataset. One benefit of testing with this automatic oracle is that these random data 

can be useful to cover more test domains [272]. 

According to the study of Segura et al. [186] the number of metamorphic papers will increase in 

the following years, but to date 49% employ the metamorphic testing capabilities to different 

problem domains, and only 2% present a tool. In our case, this chapter not only defines and 

automatizes the metamorphic relationship to the MapReduce domain, but also develops a tool 

that detects faults in production without human intervention and non-intrusively from runtime 

data. 

V.3.6 Probe 

MrExist executes testing with runtime data when a MapReduce program is executed in 

production. The probe detects the execution of the program and catches it together with other 

information about the context and user. Then the probe sends the program and all information 

to the test server asynchronously with the aim of minimizing the impact of the probe in terms 

of execution time.  

The probe is not intrusive in the sense that no modification or additional code is necessary either 

in the MapReduce applications or in the production cluster. To enable MrExist framework it is 

only necessary (1) the replacement of one library in the Hadoop client that adds the probe for 

all programs executed in this computer, and (2) the deployment of the test server to perform 

testing with access to the Hadoop cluster and data sources employed in production. The test 

server is a Java application that automatically deploys a Jetty server [273] and serverless 

database SQLite [274], [275] both embedded inside. Thus the test server is self-contained and 

can easily be deployed from one computer to another in case of computer failures. 

V.4 CASE STUDY 

In order to validate the testing framework MrExist, we use the real-world program Open Ankus 

[170] as case study. This program is also used to evaluate the other techniques proposed in the 

thesis (chapters III and IV). Open Ankus implements both Machine Learning and Data Mining 

libraries using the MapReduce processing model. One part of the program is a recommendation 

system that predicts the best books for each user based on the books read by others. The system 

obtains the similarities between users based on the points that each user assigns to different 

books. Given these similarities, the system predicts the points from each user to each book, and 

the highest are recommended. Finally, when the user assigns points to the book, the system 

calculates the error of its previous prediction. 

This program is executed in the production environment, and MrExist automatically notifies the 

existence of a functional fault. This fault arises in the following situation: (1) the system predicts 

that Alice could assign 0 points to Don Quixote, (2) Alice assigns 0 points to Don Quixote, (3) 

later the system detects a change in Alice’s taste and predicts that Alice could assign 10 points 

to Don Quixote, and (4) Alice assigns 10 points to Don Quixote. For the previous situation 

obtained from runtime data, the expected output is that the predictions are accurate with 0% 
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of error. But MrExist detects that the MapReduce program has a fault because it sometimes 

obtains 100% of error as output and 0% in others, depending on the infrastructure configuration 

(number of computers, computer failures, and so on). The program checks per each user-book 

the first points assigned against the first points predicted, and so on (0 vs 0 and 10 vs 10, 0% of 

error). The fault arises when the infrastructure configuration causes that the input data are 

processed in a different order. The MapReduce processing model splits the input data into 

several subsets that are analyzed in parallel, then the final part of the input data can be 

processed before the first part. This fault is revealed when the infrastructure configuration 

causes that the first assignment is checked against the second prediction, and the second 

assignment against the first prediction (0 vs 10 and 10 vs 0, 100% of error). 

Fig. 36 depicts the Ex Vivo testing for the previous situation. When the program is executed in 

production, the tests are executed in the test server. Firstly, the large runtime data is sampled 

to obtain test input data, among others: (1) prediction of Alice-Don Quixote: 0 points, (2) 

assignment of Alice-Don Quixote: 0 points, (3) prediction of Alice-Don Quixote: 10 points, and 

(4) assignment of Alice-Don Quixote: 10 points. Then these runtime data are executed in several 

configurations. The first configuration obtains 0% of error as output whereas the second obtains 

an incorrect output of 100% of error because the infrastructure configuration causes that the 

program analyzes the input data in a different order. Then the testing framework MrExist 

notifies the user of the existence of a functional fault in the program executed in production. 

V.5 CONCLUSIONS 

This chapter introduces a context-independent testing approach called Ex Vivo to detect faults. 

The tests are designed from production data and executed in a different environment to avoid 

side-effects and gain fine-grained control. This approach is employed in the thesis in an 

automatic testing framework for MapReduce programs. The execution of an application triggers 

the testing in background taking advantage of runtime data and detecting faults without human 

intervention. In the case of a fault, the framework notifies the user who can debug and stop the 
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faulty program, allowing to improve the quality, avoid incorrect output and save time, money 

and energy of the large-scale resources executed in production. 

This approach is applied in a real-world program executed in a production cluster, and without 

any modification, the testing framework automatically notifies that the program has a functional 

fault. 
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VI FINAL REMARKS 

This thesis enhances the state-of-the-art of the software testing and debugging in the 

MapReduce field proposing new techniques that support the following hypothesis (Section I.2): 

H1: The MapReduce applications have specific characteristics that another kind of 
applications do not have, such as delegate their execution to a framework that handles 
the massive execution splitting the datasets along several servers, allocating resources 
in parallel, or re-executing of part of the program in case of infrastructure failures. These 
characteristics in conjunction are not broadly covered by the state-of-the-art testing 
techniques, and the MapReduce applications must be tested with new approaches. 

H2: The functional failures of the MapReduce applications that are wrongly designed 
entail the execution of the data concurrently in several servers in non-deterministic way. 
These failures are not just caused by the code, but by the design. The common debugging 
techniques are broadly focused on the failures caused by the code but not on those 
caused by the wrong design, then the MapReduce applications must be debugged with 
new approaches. 

The thesis is divided in four lines of research and the research questions of each one are 

summarized in the Section VI.1. The conclusions of this thesis are described in Section VI.2. 

Finally, the future work is in Section VI.3. 

VI.1 SUMMARY OF RESEARCH QUESTIONS 

The first line of research is focused on the state-of-art and challenges in software quality of 

MapReduce programs. The following research questions were answered through a systematic 

mapping study (Chapter II): 

RQ1. Why is testing performed in MapReduce programs? There are at least seven 
reasons for testing the MapReduce programs. The most frequent reasons are based on 
performance issues (to analyze, optimize and fulfill performance goals), the existence of 
several or specific failures, the type and quality of the data processed by these programs, 
and testing to predict the resources required and efficiently select the resources to be 
used. To a lesser degree, the other reasons for testing are the improper use of the 
processing model or technology, program misconfiguration or failures after a long period 
of executions. 

RQ2. What testing is performed in MapReduce programs? The majority of the research 
efforts in testing the MapReduce programs focus on the analysis of performance, and to 
a lesser extent the functional aspects of MapReduce programs. 

RQ3. How is testing performed in MapReduce programs? Mainly by evaluation and 
simulation. In both cases testing is focused specifically on the MapReduce functions and 
does not consider other parts of the program. Several tools are used to perform testing, 
but few are available on the Internet. 

RQ4. By whom, where and when is testing performed in MapReduce programs? Testing 
is mainly performed by the tester in the Software/System Qualification Testing Process 
and major efforts focus on the MapReduce program (unit and integration testing 
between Map and Reduce functions). 

Other findings: 
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1. Despite several studies that are aimed at both improving and studying the state-of-art 
of Big Data technology, there are in comparison few research lines focused on software 
testing of the Big Data programs. 

2. The majority of testing research in MapReduce applications is focused on either Map 
or Reduce or the integration of both, and cannot be applied to other processing models 
because they are specifically designed for MapReduce. 

3. The majority of research is about performance testing, and, to a lesser degree, 
functional testing. This research is about verification and validation analysis, and, to a 
lesser degree, about dynamic testing. 

4. The prediction/analysis models employed in performance testing use different 
numbers of heterogeneous parameters based not only on the MapReduce program 
functionality, but also on the cluster infrastructure, file system and data. 

5. The most frequent reasons for testing the MapReduce programs are based on 
performance issues (analyze, optimize and fulfill performance goals), existence of several 
and specific failures, the type and quality of the data processed by these programs, and 
testing to predict and efficiently select the resources. 

6. There are several rigorous reasons for testing the functionality of MapReduce 
applications, such as the percentage of programs that fail in production or the improper 
use of both functional semantics and data, but there are not many research efforts 
focused on this line of interest. 

7. Whereas performance testing is done by simulation and evaluation, functional testing 
employs different test activities, such as static testing and structure-based testing. 

8. As expected, testing research is focused on the software qualification process to help 
the tester. 

9. The majority of research neither creates nor uses a tool for testing MapReduce 
programs. 

10. Software testing research focused on MapReduce applications is usually published in 
conferences, and furthermore it is usually published without a strong validation, using 
only some case studies instead of rigorous empirical experiments. 

According to the previous findings, the functional testing of MapReduce programs has several 

challenges. The second line of research faces these challenges focused on those faults caused 

by a wrong design of the MapReduce programs. These faulty programs do not support the non-

determinism of the large-scale executions due the infrastructure failures or the optimizations. 

Then we devised a testing technique that automatically executes the test cases under different 

configurations that take into account this non-determinism. This technique is detailed in Chapter 

III and answers the following research questions: 

RQ5. Do the test execution engines detect more design failures when the MapReduce 
test cases are executed in different configurations? Yes, the execution of the test case 
in different configurations reveals more design faults. Despite a random selection of 
configurations (MRTest-Random) can reveal several design faults, a better selection of 
the configurations through Partition and Combinatorial testing (MRTest-t-Wise) reveals 
more design faults. MRTest-2-Wise usually detects automatically the majority of design 
faults in MapReduce programs. 

RQ6. How expensive is the execution of the test cases in several different 
configurations? The execution time of test cases in several configurations takes more 
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time than execution in one configuration: x2 or x3 when a fault is detected, and x200 or 
x400 when a fault is not detected. Regardless of the previous differences, the execution 
time of the test cases in several executions is reasonable, usually few seconds.  

This testing technique (MRTest) is able to detect the design faults of the MapReduce programs 

automatically without an expected output (oracle). Once the fault is detected, the next step is 

to debug the program to understand this fault. The third line of research aims to debug the 

MapReduce programs in order to (1) localize the design characteristic that triggers the failure, 

(2) isolate the input data that triggers the failure to reduce the irrelevant data making the test 

case easier to understand, and (3) allow the inspection of the parallel execution through 

breakpoints. These techniques are detailed in Chapter IV and answer the following research 

questions: 

RQ7. Is the fault localization technique better providing the root cause of the 
MapReduce design faults than a random localization (baseline)? Yes, the localization 
technique achieves in general significant better results than random localization. Some 
ranking metrics can achieve in some programs similar and worst localization than random 
localization technique, but overall the fault localization technique proposed achieves the 
best results in the majority of ranking metrics. 

RQ8. The fault localization technique obtains a ranking of the MapReduce 
characteristics that could be the potential root causes of the design fault. How many 
characteristics should be analysed until reach the root cause of MapReduce design 
fault?  Few, the root causes of fault are in general ranked in the first positions regardless 
of the ranking metric used. The fault localization technique using the best ranking metrics 
localizes the fault usually in the first position of the ranking. 

RQ9. Which ranking metrics of those used in fault localization are better to rank the 
root causes of the MapReduce design faults? The majority of ranking metrics achieves 
good results, but the best ranking metrics to locate MapReduce design faults are M2, 
O^P and Wong3 prime. These ranking metrics usually locates the fault in the first position 
of the ranking. 

RQ10. How much execution time is employed by the fault localization of the 
MapReduce design faults? The fault localization technique is efficient employing only 
few seconds to localize the root cause of the fault. The test cases with more data are 
more difficult to debug than those with less data, but the technique also employs few 
seconds because is linearly scalable. 

RQ11. The localization technique analyses several configurations previously generated. 
How many MapReduce configurations must be generated by the fault localization 
technique to achieve a good balance between maximum rate of design faults located 
and low execution time? 5. The localization technique improves the effectiveness 
executing more configurations, but also employs more time.  From 0 to 5 configurations 
the effectiveness has a substantial improvement compared with the slightly 
improvement after 5 configurations. 

RQ12. Are both input reduction techniques, genetic algorithm and delta debugging, 
better search strategies than random searches (baseline) to isolate the input data that 
trigger the MapReduce design faults? Yes, the genetic algorithm and delta debugging 
reduce better the test input data than their equivalent random techniques. 

RQ13. Which of the input reduction techniques proposed, genetic algorithm and delta 
debugging, is better isolating the data that trigger the MapReduce design faults? The 



Section VI.2 - Conclusions 110 

 

genetic algorithm is significant better isolating the input data that trigger the fault than 
delta debugging. For some programs, delta debugging can achieve similar reductions 
than genetic algorithm, but in the genetic algorithm can achieve bigger reductions. 

RQ14. How much data reduce the input reduction techniques? The genetic algorithm 
and delta debugging reduce the majority of the data. However, the genetic algorithm can 
reduce more data. 

RQ15. How much execution time is employed by the input reduction techniques of the 
MapReduce design faults? Delta debugging is scalable employing few seconds, but the 
genetic algorithm does not scale rightly and employs minutes-hours. The delta debugging 
technique converges in the solution faster than genetic algorithm, but the genetic 
algorithm also searches more exhaustively a better solution that sometimes achieves. 

The testing technique is able to detect the design fault and the debugging framework provides 

the potential causes of this fault to make it easy to understand and fix. These techniques can 

also be used to detect faults in the programs executed in production. The fourth line of research 

is focused in the design fault during the operations (Section V). The programs executed in 

production can be tested automatically through the testing technique proposed in the thesis 

and taking samples of runtime data as input. Once the fault is detected, the root cause of the 

fault can also be automatically obtained through the debugging techniques proposed in the 

thesis. 

VI.2 CONCLUSIONS 

There are several challenges to test the functionality of the MapReduce programs due the 

execution over large-scale infrastructure with frequent infrastructure failures. Some of the 

functional faults may be masked in a testing/development environment but revealed in 

production because the program is wrongly designed to support optimizations and concurrency 

at large scale. 

These faults can be detected executing the test cases in different configurations that reproduce 

the production environment with the non-deterministic executions due the frequent 

infrastructure failures and optimizations, among others. We devised a testing technique and a 

tool that checks that the same input executed in different configurations provides similar 

outputs, in other case a design fault is detected. Usually this technique detects the design faults 

automatically in few seconds. 

However, these design faults are not easy to debug due the parallel execution of the code and 

the internal optimizations. However, the root cause of the fault can be automatically localized 

analysing those design characteristics that are usually more prone to trigger the failure and 

those that masked the fault. We devised a fault localization technique and tool that (1) generate 

several relevant configurations, and (2) analyse statistically the characteristics of these 

configurations that are more prone to fail and succeed. This technique provides automatically 

in few seconds a rank of the more suspicious characteristics of the design, and the root cause of 

the design fault is usually the top. 

Although the root cause of the fault is localized, these design faults can not be easy to 

understand because the test cases fail in executions that involves concurrency and 

optimizations. We devised an input reduction technique to isolate the relevant data that still 

trigger the failure making the fault easier to understand. This technique reduces the majority of 
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the input data in few seconds. The input reduction and fault localization techniques are 

integrated in a debugging framework that also support the inspection of the code though the 

common debugging utilities such as breakpoints and watchpoints. 

The previous testing and debugging techniques can be used automatically in laboratory, but they 

can also be used in production with the runtime programs. We devised an autonomous 

environment to detect design faults in the MapReduce programs executed in production taking 

samples of the runtime data as input of test cases. Once a design failure is detected 

automatically in few seconds of execution, the developed is informed about the fault and its 

root cause. Then the developer can stop the Big Data program saving money, energy, computer 

resources and potential failures. 

VI.3 FUTURE WORK 

The techniques proposed in the thesis are able to detect and debug the design faults of the 

MapReduce programs automatically in both laboratory and production. As future work we plan 

to also fix the MapReduce programs automatically through self-adaptation technique. Some of 

the design faults that are caused by optimizations can easily fixed turning down the 

optimizations or with little modifications. In other cases, the faults are difficult to fix like in those 

with domain-specific semantic in the design. There are also other cases in which the automatic 

fix is not possible because the whole program functionality does not fit in the MapReduce 

processing model. Currently, we are working in a PDCA methodology to not only fix the program, 

but also measure the impact of the functional patch in performance and maintenance. We plan 

to automatize this methodology through a search-based approach. 

As future work, we also plan to adapt the testing and debugging techniques to other systems 

and integrate them with other technologies of the Big Data stack. Some frameworks very used 

in Big Data like Spark and Flink extend and generalize the MapReduce processing model adding 

different operations that can also yield in non-deterministic faults. The techniques proposed in 

this thesis can be slightly expanded to address these new kinds of faults. 
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VII CONSLUSIONES Y TRABAJO FUTURO 

En las pruebas funcionales de los programas MapReduce hay varios desafíos debido a la 

ejecución en una infraestructura de gran escala con frecuentes fallos de infraestructura. Algunos 

de los defectos funcionales pueden estar enmascarados en un entorno de pruebas/desarrollo 

pero revelados en producción porque el programa está incorrectamente diseñado para soportar 

optimización y concurrencias a gran escala. 

Estos defectos pueden ser detectados ejecutando los casos de prueba en diferentes 

configuraciones debido a los frecuentes fallos de infraestructura y optimizaciones, entre otros. 

Hemos diseñado una técnica de prueba y una herramienta que comprueba que la ejecución de 

la misma entrada en diferentes configuraciones provea salidas similares, en caso contrario se 

detecta un defecto de diseño. Normalmente esta técnica detecta los defectos de diseño 

automáticamente en pocos segundos. 

Sin embargo, estos defectos de diseño no son fáciles de depurar por la ejecución paralela del 

código y las optimizaciones internas. No obstante, la causa raíz del defecto pude ser localizada 

automáticamente analizando tanto aquellas características de diseño que habitualmente son 

más propensas a provocar el fallo, como aquellas otras que encascaran el defecto. Hemos 

diseñado una técnica de localización de defectos y una herramienta que (1) genera varias 

configuraciones, y (2) analiza estadísticamente las características de esas configuraciones que 

son más propensas a fallar y a tener éxito. Esta técnica proporciona automáticamente en pocos 

segundos un ranking de las características de diseño más sospechosas, y la causa raíz del defecto 

de diseño suele estar en las primeras posiciones. 

Aunque se localice la cusa raíz del defecto, estos defectos de diseño no pueden ser fácilmente 

entendibles porque los casos de prueba fallan en ejecuciones que involucran concurrencia y 

optimizaciones. Hemos diseñado una técnica de reducción de datos que aísla los datos 

relevantes que siguen causando el fallo, haciendo que el defecto sea más fácil de entender. Esta 

técnica reduce la mayoría de los datos de entrada en pocos segundos. Las técnicas de reducción 

de datos y de localización de defectos se han integrado en un framework de depuración que 

también soporta la inspección del código a través de las utilidades habituales de la depuración 

como los breakpoints y los watchpoints. 

Las anteriores técnicas de pruebas y depuración pueden ser utilizadas automáticamente en el 

laboratorio, pero también pueden utilizarse en producción con los programas que se están 

ejecutando. Hemos diseñado un entorno autónomo que detecta los defectos de diseño de los 

programas MapReduce que se ejecutan en producción tomando como entradas de los casos de 

pruebas muestras de los datos que se están procesando en producción. Una vez que un fallo de 

diseño es detectado automáticamente en pocos segundos de ejecución, el desarrollador es 

informado sobre el defecto y su causa raíz. Entonces el desarrollador puede parar el programa 

Big Data para ahorrar dinero, energía, recursos de computación y evitar potenciales fallos.  

Las técnicas propuestas en la tesis son capaces de detectar y depurar automáticamente los 

defectos de diseño de los programas MapReduce tanto en el laboratorio como en producción. 

Como trabajo futuro planeamos también corregir automáticamente los programas MapReduce 

utilizando una técnica de autoadaptación. Algunos de los defectos de diseño son causados por 

optimizaciones que pueden ser fácilmente corregibles deshabilitando la optimización o con 

pequeñas modificaciones. En otros casos, los defectos son difíciles de corregir como ocurre con 

aquellos que tienen en el diseño semánticas específicas de un dominio. También hay otros casos 
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en los que la corrección automática no es posible porque toda la funcionalidad del programa no 

es compatible con el modelo de procesamiento MapReduce. Actualmente estamos trabajando 

en una metodología PDCA que no sólo corrija el programa, sino que también mide el impacto 

que tiene la mejora funcional respecto al rendimiento y el mantenimiento. Planeamos 

automatizar esta metodología a través de un enfoque guiado por búsqueda. 

Como trabajo futuro también planeamos adaptar las técnicas de pruebas y depuración a otros 

sistemas e integrarlas con otras tecnologías Big Data. Algunos frameworks muy utilizados en Big 

Data como Spark y Flink extienden y generalizan el modelo de procesamiento MapReduce 

añadiendo diferentes operaciones que también pueden causar defectos no-determinísticos. Las 

técnicas propuestas en esta tesis pueden expandirse ligeramente para abordar estos nuevos 

tipos de defectos. 
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VIII APPENDICES 

VIII.1 HIGH-IMPACT JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY 

Table 23: High-impact journals for the mapping study 
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ACM Computing Surveys Q1 5.24 4150 88  Q1 6.75 6629 76 

ACM SIGPLAN Notices Q1 0.49 3657 389  Q1 0.34 2541 378 

ACM Transactions on Database 
Systems (ACM TODS) Q2 0.63 969 19 

 
Q2 1.52 1504 26 

ACM Transactions on Information 
Systems (ACM TOIS) Q2 0.98 1220 27 

 
Q2 2.31 1790 33 

ACM Transactions on Software 
Engineering and Methodology 
(ACM TOSEM) 

Q3 1.51 700 21 

 

Q2 2.52 1104 16 

Computer Science and Information 
Systems (ComSIS) Q4 0.62 265 64 

 
Q4 0.84 392 47 

Distributed and Parallel Databases Q4 0.80 293 21  Q4 1.18 349 19 

Distributed Computing Q3 1.26 498 26  Q2 1.67 954 24 

Empirical Software Engineering 
(ESE) Q2 1.39 828 52 

 
Q2 3.28 1453 68 

The International Arab Journal of 
Information Technology (IAJIT) Q4 0.52 292 78 

 
Q3 0.72 502 93 

IEEE Software Q2 0.82 1638 55  Q1 2.19 2547 69 

IEEE Transactions on Knowledge 
and Data Engineering (IEEE TKDE) Q1 2.48 6465 245 

 
Q1 3.44 9370 239 

IEEE Transactions on Parallel and 
Distributed Systems (IEEE TPDS) Q1 2.66 5080 282 

 
Q1 4.18 8313 271 

IEEE Transactions on Software 
Engineering (IEEE TSE) Q1 1.51 4221 62 

 
Q1 3.27 6712 59 

International Journal of Data 
Warehousing and Mining (IJDWM) Q4 0.63 146 17 

 
Q4 0.73 219 15 

International Journal of 
Information Management (IJIM) Q1 2.69 1937 73 

 
Q1 3.87 3087 115 

International Journal of 
Information Processing and 
Management (IJIPM) 

Q1 1.40 2296 63 

 

Q1 2.39 3067 72 

International Journal of 
Information Technology and 
Decision Making (IJITDM) 

Q3 1.18 627 45 

 

Q3 1.66 742 56 
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International Journal of 
Information Technology and 
Management (IJITM) 

Q4 0.60 226 23 

 

Q4 1.07 281 29 

International Journal of Software 
Engineering and Knowledge 
Engineering (IJSEKE) 

Q4 0.24 216 55 

 

Q4 0.30 345 52 

Information and Software 
Technology (IST) Q1 1.57 2145 153 

 
Q1 2.69 3448 122 

Journal of Database Management 
(JDM) Q4 0.12 131 7 

 
Q4 0.27 182 9 

Journal of Information Technology 
(JIT) Q1 4.78 1695 24 

 
Q1 6.95 2515 19 

Journal of Management 
Information Systems (JMIS) Q1 3.03 3818 41 

 
Q1 2.36 4456 30 

Journal of Software: Evolution and 
Process Q4 0.73 140 46 

 
Q4 1.03 319 50 

Journal of Parallel and Distributed 
Computing (JPDC) Q1 1.32 1983 94 

 
Q1 1.93 2740 84 

The Journal of Strategic 
Information Systems (JSIS) Q2 2.60 1159 17 

 
Q2 3.49 1580 15 

Journal of Systems and Software 
(JSS) Q1 1.42 3243 181 

 
Q1 2.44 5161 229 

Knowledge and Information 
Systems (KAIS) Q2 1.70 1559 110 

 
Q2 2.00 2146 117 

Software Quality Journal (SQJ) Q4 0.79 280 24  Q3 1.86 486 33 

Software Testing, Verification& 
Reliability (STVR) Q3 1.08 363 25 

 
Q3 1.59 612 20 

Table 24: CORE conferences for the mapping study 

CORE Conferences 
CORE 
2014 

CORE 
2017 

ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (SIGKDD) A* A* 

Computer Aided Verification (CAV) A* A* 

IEEE International Conference on Data Mining (IEEE ICDM) A* A* 

International Conference on Data Engineering (IEEE ICDE) A* A* 

Special Interest Group on Management of Data Conference (SIGMOD) A* A* 

Very Large Data Bases Conference (VLDB) A* A* 

Automated Software Engineering (ASE) A A 

Biennial Conference on Innovative Data Systems Research (CIDR) A A 

Empirical Software Engineering and Measurement (ESEM) A A 

European Conference on Parallel Processing (EURO-PAR) A A 

European Conference on Principles of Data Mining and Knowledge 
Discovery (PKDD) A A 
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International Conference on Database Theory (ICDT) A A 

International Conference on Distributed Computing Systems (ICDCS) A A 

International Conference on Extending Database Technology (EDBT) A A 

International Conference on Information and Knowledge Management 
(CIKM) A A 

International Conference on Software Engineering (ICSE) A A 

International Conference on Statistical and Scientific Database 
Management (SSDBM) A A 

International Symposium on Cluster Computing and the Grid (CCGRID) A A 

International Symposium on Intelligent Data Analysis (IDA) A A 

International Symposium on Software Testing and Analysis (ISSTA) A A 

Joint International Conference on Formal Techniques for Networked and 
Distributed Systems (FORTE) A A 

Pacific-Asia Conference on Knowledge Discovery and Data Mining 
(PAKDD) A A 

Parallel Computing Technologies International Conferences Series (PaCT) A A 

SIAM International Conference on Data Mining (SDM) A A 

Symposium on Large Spatial Databases (SSTD) A A 

ACM SIGSOFT International Symposium on the Foundations of Software 
Engineering (FSE) A B 

Advances in Databases and Information Systems (ADBIS) B B 

Australasian Data Mining Conference (AusDM) B B 

Australasian Database Conference (ADC) B B 

Databases and Programming Language (DBPL) B B 

European Software Engineering Conference (ESEC) A B 

IEEE International Conference on Cloud Computing (IEEE CLOUD) B B 

IEEE International Enterprise Distributed Object Computing Conference 
(IEEE EDOC) B B 

International Baltic Conference on Databases and Information Systems 
(DB&IS) B B 

International Conference on Data Warehousing and Knowledge Discovery 
(DaWaK) B B 

International Conference on Database and Expert Systems Applications 
(DEXA) B B 

International Conference on Database Systems for Advanced Applications 
(DASFAA) B B 

International Conference on Management of Data (COMAD) B B 

International Conference on Parallel and Distributed Processing 
Techniques and Applications (PDPTA) B B 

International Conference on Quality Software (QSIC) B B 

International Conference on Software and Data Technologies (ICSOFT) B B 

International Conference on Tests and Proof (TAP) B B 

International Database Engineering and Applications Symposium (IDEAS) B B 

International Workshop on Data Warehousing and OLAP (DOLAP) B B 



Section VIII.2 - Other Journals and Conferences used for the Mapping Study 118 

 

Software Engineering and Knowledge Engineering (SEKE) B B 

Symposium on Applied Computing (SAC) B B 

Euromicro International Conference on Parallel, Distributed and 
Network-Based Processing (PDP) C C 

Evolution and Change in Data Management (ECDM) C C 

IEEE International Conference on Cloud Computing Technology and 
Science (IEEE CloudCom) C C 

International Conference on Intelligent Data Engineering and Automated 
Learning (IDEAL) C C 

International Conference on Software Testing, Verification and Validation 
(ICST) C C 

International Workshop on Formal Approaches to Testing of Software 
(FATES) C C 

Symposium on Principles of Database Systems (PODS) C C 

VIII.2 OTHER JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY 

Table 25: Other journals for the mapping study 

ACM DATA BASE International Journal of Intelligent Information and 
Database Systems (IJIIDS) 

ACM SIGSOFT Software Engineering 
Notes (ACM SIGSOFT) 

International Journal of Information Quality (IJIQ) 

ACM Transactions on Management 
Information Systems (ACM TMIS) 

International Journal of Information Systems and 
Change Management (IJISCM) 

Big Data Research International Journal of Information Technologies 
and Systems Approach (IJITSA) 

Computing and Information 
Technology (CIT) 

International Journal of Parallel, Emergent and 
Distributed Systems (IJPEDS) 

European Journal of Information 
Systems (EJIS) 

Journal of Cases on Information Technology (JCIT) 

Foundations and Trends in 
Databases (FTDB) 

Journal of Data and Information Quality (JDIQ) 

IEEE Cloud Computing Journal of Digital Information Management (JDIM) 

IEEE Computer Journal of Enterprise Information Management 
(JEIM) 

IEEE Distributed Systems Online 
(IEEE DS) 

Journal of Information and Data Management 
(JIDM) 

IEEE Transactions on Big Data Journal of Information 

IEEE Transactions on Cloud 
Computing (IEEE TCC) 

Journal of Information Processing (JIP) 

International Journal of Big Data 
Intelligence (IJBD) 

The Journal of Information Processing Systems (JIPS) 

International Journal of Cloud 
Applications and Computing (IJCAC) 

Journal of Information Technology Research (JITR) 
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International Journal of Cloud 
Computing (IJCC) 

Journal of Systems and Information Technology 
(JSIT) 

International Journal of Distributed 
Systems and Technologies (IJDST) 

Transactions on Large-Scale Data- and Knowledge-
Centered Systems (Transactions LDKS) 

International Journal of Enterprise 
Information Systems (IJEIS) 

Journal of Enterprise Information Management 
(JEIM) 

Table 26: Other conferences for the mapping study 

Advances in Model-Based Testing (A-
MOST) 

Industrial Conference on Data Mining (ICDM) 

Alberto Mendelzon Workshop on 
Foundations of Data Management (AMW) 

International Conference on Intelligent Data 
Acquisition and Advanced Computing Systems 
(IDAACS) 

International Conference on Big Data 
Analytics (BDA) 

Internet and Distributed Computing Systems 
(IDCS) 

International Conference Beyond 
Databases, Architectures, and Structures 
(BDAS) 

IEEE/ACM International Symposium on Big 
Data Computing (BDC) 

International Conference on Big Data and 
Smart Computing (BigComp) 

IEEE International Conference on Big Data 
(IEEE BigData) 

International Congress on Big Data 
(BigData Congress) 

IEEE Symposium on Large-Scale Data Analysis 
and Visualization (IEEE LDAV) 

Workshop on Scalability in Model Driven 
Engineering (BigMDE) 

International Conference on Algorithms for 
Big Data (ICABD) 

British National Conference on Databases 
(BNCOD) 

International Conference on Big Data and 
Cloud Computing (BdCloud) 

International Conference on Cloud and 
Autonomic Computing Conference (CAC) 

International Conference on Big Data Cloud 
and Applications (BDCA) 

International Conference on Cloud and 
Green Computing (CGC) 

International Conference on Big Data 
Computing and Communications (BigCom) 

International Conference on Cloud 
Computing and Services Science (CLOSER) 

International Conference on Big Data 
Computing Service and Applications 
(BigDataService) 

Cloud Computing (CloudComp) International Multiconference on Computer 
Science and Information Technology (IMCSIT) 

Conference on Data and Application 
Security and Privacy (CODASPY) 

International Workshop on Machine Learning, 
Optimization, and Big Data (MOD) 

International Computer Software and 
Applications Conference (COMPSAC) 

Symposium on Network Cloud Computing and 
Applications (NCCA) 

International Conference on Cloud and 
Service Computing (CSC) 

Conference on Next Generation Information 
Technologies and Systems (NGITS) 

European Joint Conference on Theory and 
Practice of Software (ETAPS) 

ACM Symposium on Cloud Computing (SoCC) 

International Conference on Future Data 
and Security Engineering (FDSE) 

SPIN Workshop on Model Checking of 
Software (SPIN) 
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Federated Conference on Computer 
Science and Information Systems (FEDCSIS) 

Symposium on Computational Intelligence in 
Big Data (CIBD) 

International Conference on Future 
Internet of Things and Cloud (FICLOUD) 

Symposium on Information Management and 
Big Data (SIMBig) 

USENIX Workshop on Hot Topics in Cloud 
Computing (HotCloud) 

Testing: Academic 

International Conference on Advanced 
Cloud and Big Data (CBD) 

International Conference on Testing 
Communicating Systems (TestCom) 

International Conference on Cloud 
Engineering (IC2E) 

Workshop on Big Data Benchmarking (WBDB) 

International Conference on Algorithms for 
Big Data (ICABD) 

Workshop on Big Data Benchmarks, 
Performance Optimization, and Emerging 
Hardware (BPOE) 

International Conference on Innovative 
Computing and Cloud Computing (ICCC) 

Workshop on Mobile Big Data (Mobidata) 

International Conference on Data 
Engineering and Management (ICDEM) 

 

VIII.3 PRIMARY STUDIES 

Table 27: Primary studies 

Ref. Year Contribution 
Number of 
citations1 

Summary 

[142] 2013 Conference 20 
A study and characterization of MapReduce-like 
failures 

[112] 2013 Conference 30 
A prediction model of individual MapReduce 
jobs based on important properties 

[120] 2013 Conference 25 
A performance prediction based on network 
properties and configuration of the cluster 

[138] 2013 Conference 22 

A performance prediction based on a 
representation of the architecture with some 
information of the MapReduce program 

[150] 2015 Conference 7 

Generator of representative data to testing Big 
Data programs based on input space 
partitioning 

[27] 2010 Conference 311 
A study and characterization of more than 
170000 MapReduce executions 

[114] 2011 Conference 46 
A simple performance prediction model that 
considers the program and the system 

[119] 2013 Journal 47 

A model that obtains several metrics about the 
MapReduce programs performance and 
resource utilization 

[109] 2013 Briefing 19 
Classification of testing in Big Data and the 
underlying challenges 

[143] 2013 Conference 8 
Classification of MapReduce faults based on 
empirical changes in the programs 
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[144] 2015 Conference 13 
Checking of the commutativity problem in the 
Reduce functions 

[121] 2013 Conference 30 

A performance prediction model based on 
information about the MapReduce program 
and the cluster 

[136] 2012 
Doctoral 

dissertation 
14 

A simulator of MapReduce program that 
obtains a prediction of the performance 

[117] 2014 Journal 50 

A performance prediction model of MapReduce 
program using Mean Field Analysis and 
information of the program, system and data 

[127] 2015 Conference 7 

A performance prediction model of MapReduce 
program in the cloud considering the program 
and the data 

[148] 2012 Conference 34 

A failure injector in the architecture using the 
cloud manager in order to test the MapReduce 
programs 

[110] 2013 Conference 7 Challenges of software testing in Big Data 

[28] 2013 Conference 97 
A study and characterization of three Hadoop 
clusters 

[129] 2016 Journal 31 

Prediction of the performance and optimization 
of resource utilization based on deadline 
requirements 

[139] 2011 Conference 54 
Monitoring of the MapReduce program that 
generates detailed reports of the execution 

[141] 2013 Journal 54 
A study and characterization of several bugs in 
Big Data programs 

[128] 2015 Conference 10 

A performance prediction model of the 
MapReduce programs considering the 
deployment in virtualized cloud and the 
characteristics of the program 

[118] 2012 Conference 11 

A performance prediction model of the 
MapReduce programs considering several 
samplings of the input data 

[147] 2015 Journal 11 

A testing framework to run the MapReduce 
programs under architectural failures in order 
to test 

[122] 2013 Conference 7 

A performance prediction model of the 
MapReduce programs considering the resource 
contention and the task failures 

[38] 2014 Conference 7 

Classification of several MapReduce faults with 
a series of challenges in order to reveal the 
faults 

[145] 2011 Conference 28 
Functional Testing of the Reduce function 
based on symbolic execution 

[29] 2014 Conference 22 
Characterization of the MapReduce programs 
based on empirical study 
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[123] 2014 Conference 5 

A performance prediction model of the 
MapReduce programs considering the memory 
shared and disk I/O 

[103] 2014 Journal 9 

Prediction of the MapReduce performance 
based on empirical executions and an 
adjustment based on micro benchmarks 

[140] 2014 Journal 19 

Performance analysis model for MapReduce 
applications based on ISO 25010 that 
establishes a relationship between the 
performance and reliability measures 

[115] 2013 Conference 1 
Obtains the performance of the MapReduce 
programs based on Stochastic Petri Nets 

[133] 2015 Conference 2 

Performance prediction of HIVE-QL queries 
through the underlying MapReduce 
applications based on multiple lineal regression 

[105] 2013 Journal 13 
Performance prediction of PIG queries through 
the underlying MapReduce applications 

[113] 2014 Conference 2 

Performance prediction for a MapReduce 
program and optimization based on the type of 
application and potential bottlenecks 

[124] 2014 Conference 6 

Mathematical model for performance 
prediction of the RDMA-Enhanced MapReduce 
programs 

[104] 2013 Conference 32 

A performance prediction model of the 
MapReduce programs considering information 
of the program and the performance for several 
parts of the program 

[130] 2015 Conference 3 
Model that predicts the performance of 
MapReduce applications in hybrid clouds 

[125] 2015 Conference 33 
Simulation of the Spark applications in order to 
obtain performance information 

[126] 2014 Conference 1 

A performance prediction model of the 
MapReduce programs considering the 
heterogeneity of the cluster 

[116] 2011 Conference 29 

A performance prediction model of the 
MapReduce programs based on the mean time 
between failures 

[111] 2014 Conference 8 
Overview and challenges of performance 
testing in Big Data 

[151] 2013 Conference 8 
Data generation for dataflow programs based 
on symbolic execution 

[135] 2014 Conference 8 

Simulating the MapReduce program under 
configurable hardware in order to obtain a 
performance prediction 

[137] 2014 Conference 2 
Simulating the scheduler of the MapReduce 
program in order to test the best configuration 

[107] 2015 Conference 6 Test factory model for Big Data development 
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[153] 2011 Conference 71 

Static analysis of the MapReduce configuration 
in order to detect misconfigurations and avoid 
failures 

[152] 2011 Conference 12 

Automatic checking of the java types inside 
MapReduce programs in order to detect 
incompatible types 

[149] 2012 Dissertation 7 

Data generator for MapReduce programs based 
on bacteriological algorithm in order to test the 
program 

[53] 2015 Conference 6 

Testing technique for MapReduce programs 
based on data flow and the MapReduce 
specifics 

[146] 2013 Conference 5 
Checking the correctness of the dataflow 
programs based on the operators properties 

[134] 2013 Journal 0 
Performance prediction of the join queries in 
Pig 

[108] 2013 Journal 11 Overview and challenges of testing in Big Data 

[154] 2011 Conference 17 

Formal verification of the MapReduce program 
based on a model of the program/specification 
and invariants 

1 Number of citations obtained from Google Scholar [276] in 2018. 
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