

Universidad de Oviedo

FUNCTIONAL TESTING TECHNIQUES

FOR NEW MASSIVE DATA

PROCESSING PARADIGMS

Ph.D. Thesis Dissertation in Computer Engineering

Programa de Doctorado en Informática

Author

Jesús Morán Barbón

Supervisors

Dr. Claudio de la Riva Álvarez

Dr. Javier Tuya González

July 2019

This document is an online version of the international PhD thesis after removing the sensible
data like signatures and the personal identificators of both author, supervisors and advisor. The
printed version of the PhD thesis is available in the University of Oviedo.

The contact of the author, Jesús Morán is:

• moranjesus@uniovi.es

• Computer Science Department, University of Oviedo, Asturias, 33203, Spain

In addition to the committee in charge of evaluating this dissertation and the two supervisors of
the thesis, it has been reviewed by the following researchers:

• Franz Wotawa (Graz University of Technology, Austria)

• Arnaud Gotlieb (Simula Research Laboratory, Norway)

FO
R

-M
A

T-
V

O
A

-0
1

0
 (

R
eg

.2
0

1
8

)

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Título de la Tesis

Español/Otro Idioma: Técnicas de prueba
funcionales para nuevos paradigmas de
procesamiento masivo de datos

Inglés: Functional testing techniques for new
massive data processing paradigms

2.- Autor

Nombre: Jesús Morán Barbón DNI/Pasaporte/NIE: *******

Programa de Doctorado: Programa de Doctorado en Informática

Órgano responsable: Centro Internacional de Postgrado

RESUMEN (en español)

Los programas Big Data son aquellos que analizan información utilizando nuevos

modelos de procesamiento que superan las limitaciones de la tecnología tradicional en

cuanto al volumen, velocidad y variedad de los datos procesados. Entre estos, se destaca

MapReduce que permite procesar grandes cantidades de datos en una infraestructura

distribuida que puede cambiar durante la ejecución debido a los frecuentes fallos en la

infraestructura y las optimizaciones. El desarrollador sólo diseña el programa, mientras

que la ejecución de su funcionalidad es gestionada por un sistema distribuido, tales

como asignación de recursos y el mecanismo de tolerancia a fallos, entre otros. Como

consecuencia, un programa puede comportarse diferente en cada ejecución porque se

adapta automáticamente a los recursos que estén disponibles en cada momento. Esta

ejecución no determinista dificulta las pruebas del software y la depuración,

especialmente para aquellos programas MapReduce con un diseño complejo. A pesar

de que tanto el rendimiento y la funcionalidad son importantes, la mayoría de

investigación sobre la calidad de los programas MapReduce se centra en rendimiento.

Por el contrario, hay pocos estudios sobre funcionalidad a pesar de que varias

aplicaciones MapReduce fallan con regularidad debido a defectos funcionales. Probar y

depurar estos defectos es importante, especialmente cuando los programas MapReduce

realizan tareas críticas.

Esta tesis tiene como objetivo las pruebas y la depuración de programas MapReduce a

través de nuevos enfoques para detectar y entender los defectos funcionales causados

por un incorrecto diseño del programa. Estos defectos de diseño no sólo dependen de

los datos de entrada, sino que unas veces pueden enmascararse y otras producirse por

ejecutarse no deterministamente debido a la infraestructura distribuida con

optimizaciones automáticas. Para detectar estos defectos, la tesis propone una técnica

de prueba que ejecuta cada caso de prueba con diferentes configuraciones y que

comprueba que esas ejecuciones generen siempre salidas similares. La técnica genera

las configuraciones mediante Random testing, y Partition testing junto Combinatorial

testing para simular las ejecuciones no deterministas que podrían ocurrir en un entorno

de producción. Esta técnica está también automatizada utilizando un motor de ejecución

de pruebas que es capaz de detectar estos defectos utilizando sólo los datos de entrada

de las pruebas independientemente de su salida esperada.

Una vez que se detecta el defecto, la tesis propone un framework automático de

depuración para localizar la casusa raíz del fallo y aislar los datos que causaron el

fallo. La causa raíz del fallo es automáticamente localizada a través de una técnica

spectrum-based que analiza estadísticamente las características que tienen en común

aquellas ejecuciones que causan el fallo y aquellas características que lo enmascaran.

Los datos del caso de prueba se reducen para mejorar el entendimiento del fallo

utilizando delta debugging y una técnica guiada por búsqueda que iterativamente

reducen los datos a la vez que estos nuevos datos siguen causando el fallo. El framework

de depuración propuesto en la tesis también permite la inspección de la ejecución

distribuida a través de las habituales utilidades de depuraciones como los breakpoints y

los watchpoints.

Las anteriores técnicas de pruebas y depuraciones también pueden ser utilizadas en

operación. La tesis propone un enfoque autónomo para detectar los defectos de

diseño de los programas MapReduce que se están ejecutando en el entorno de

producción. Este enfoque utiliza los datos que se están procesando en tiempo de

ejecución en producción como entradas de los casos de prueba para detectar defectos de

diseño en operaciones.

Estas técnicas son evaluadas mediante experimentos controlados utilizando programas

MapReduce reales. Los resultados muestran que las técnicas propuestas son capaces de

probar y depurar los programas MapReduce automáticamente en pocos segundos. La

técnica de prueba detecta la mayoría de los defectos de diseño de los programas

MapReduce. Una vez que los defectos son detectados, la técnica de localización de

defectos localiza habitualmente la causa raíz del defecto, y la técnica de reducción aísla

la mayoría de los datos que causan un fallo para mejorar el entendimiento del defecto.

En la técnica de reducción de datos, la técnica delta debugging reduce los datos en pocos

segundos, por el contrario, el enfoque guiado por búsqueda consume más tiempo pero

también reduce más los datos.

Como conclusiones, las técnicas tradicionales de pruebas no son capaces de detectar

estos defectos de diseño y las aplicaciones MapReduce deben ser probadas con enfoques

nuevos como los propuestos en esta tesis. Una vez que el defecto de diseño es detectado,

las técnicas de depuración ayudan a entender el fallo, pero las técnicas de depuración

tradicionales cubren ampliamente los fallos causados por el código en lugar de aquellos

causados por un incorrecto diseño como los de los programas MapReduce. Desde el

punto de vista de los defectos de diseño funcionales, las aplicaciones MapReduce deben

ser tanto probadas como depuradas con nuevos enfoques como los que se proponen en

esta tesis.

RESUMEN (en Inglés)

Big Data programs are those that analyse the information using new processing models

to overcome the limitations of the traditional technology due the volume, velocity or

variety of the data. Among them, MapReduce stands out by allowing for the processing

of large data over a distributed infrastructure that can change during runtime due the

frequent infrastructure failures and optimizations. The developer only designs the

program, whereas the execution of its functionality is managed by a distributed system,

such as the allocation of the resources and the fault tolerance mechanism, among others.

As a consequence, a program can behave differently at each execution because it is

automatically adapted to the resources available at each moment. This non-deterministic

execution makes both software testing and debugging difficult, specially for those

MapReduce programs with complex design. Despite both performance and functionality

are important, the majority of the research about the quality of the MapReduce programs

are focused on performance. In contrast, few research studies are about functionality

although several MapReduce applications fail regularly due a functional fault. Testing

and debugging these faults are important, specially when the MapReduce programs

perform a critical task.

This thesis aims to both testing and debugging the MapReduce programs with new

approaches to detect and understand those functional faults caused by the wrong design

of the program. These design faults not only depend on the input data, but they may be

triggered sometimes and masked other times because the execution is non-deterministic

due a distributed infrastructure with automatic optimizations. To detect these faults, the

thesis proposes a testing technique that executes each test case in different

configurations and then checks that the executions generate always similar outputs.

The technique generates the configurations with Random testing, and Partition testing

together with Combinatorial testing to simulate the non-determinist executions that

could happen in a production environment. This technique is also automated by using a

test execution engine that is able to detect these faults using only the test input data,

regardless of the expected output.

Once the design faults are detected, the thesis proposes an automatic debugging

framework to locate the root cause of the fault and isolate the data that trigger the

failure. The root cause of the fault is automatically located through a spectrum-based

technique that analyses statistically the common characteristic of the executions that

trigger the fault against those characteristics that masked the fault. The data of the test

case are reduced to improve the fault understanding through delta debugging and search-

based techniques that iteratively reduce the data at the same time that the new data still

trigger the failure. The debugging framework proposed in the thesis, also allows the

inspection of the distributed execution through the common debugging utilities like

breakpoints and watchpoints.

The previous testing and debugging techniques can also be used in operations. This

thesis proposes an autonomous approach to detect design faults in MapReduce

programs executed in production environment. This approach uses the runtime data

as test input data in order to detect the design faults in operations.

These techniques are evaluated through controlled experiments using real-world

MapReduce programs. The results show that the techniques proposed are able to test

and debug the MapReduce programs automatically in few seconds. The testing

technique detects the majority of the design faults of the MapReduce programs. Once

the faults are detected, the fault localization technique usually locates the root cause of

the design fault, and the reduction technique isolates the majority of the input data that

triggers the failure to improve the fault understanding. In the reduction technique, the

delta debugging technique reduces the data in a few seconds, in contrast the search-

based approach is more time consuming but also reduces more data.

As conclusions, the traditional testing techniques are not able to detect these design

faults and the MapReduce applications must be tested with new approaches like those

proposed in this thesis. Once the design fault is detected, the debugging techniques help

to understand this fault, but the traditional debugging techniques are broadly focused on

the failures caused by the code instead of those caused by a wrong design like in the

MapReduce programs. From the point of view of functional design faults, the

MapReduce applications must be both tested and debugged with new approaches like

those proposed in this thesis.

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO EN
INFORMÁTICA

CONTENTS

ACKNOWLEDGEMENTS ... 3

ABSTRACT .. 5

RESUMEN .. 7

I INTRODUCTION ... 9

I.1 Research Context .. 9

I.2 Research Hypothesis ... 10

I.3 Research Goals .. 10

I.4 Research Methodology ... 11

I.5 Contributions ... 11

I.5.1 First line of research: State-of-the-art, problems and hypothesis 13

I.5.2 Second line of research: Testing ... 13

I.5.3 Third line of research: Debugging ... 14

I.5.4 Fourth line of research: Operations .. 15

I.5.5 Other Divulgation related to the Thesis .. 16

I.5.6 Projects and Research Management .. 17

I.6 Thesis Organization ... 18

II BACKGROUND ... 21

II.1 MapReduce Processing Model .. 21

II.2 Planning of the Mapping Study ... 23

II.2.1 Research Questions ... 23

II.2.2 Search Process ... 24

II.2.2.1 Search Terms ... 25

II.2.2.2 Data Sources .. 26

II.2.2.3 Study Selection .. 26

II.2.3 Data Extraction .. 27

II.2.4 Data Analysis ... 28

II.3 Conducting the Mapping Study ... 29

II.4 Results ... 32

II.4.1 Primary Studies ... 32

II.4.1.1 Performance testing and analysis ... 33

II.4.1.2 Functional testing .. 35

II.4.2 Analysis .. 36

II.4.2.1 RQ1 Why is testing performed in MapReduce programs? 36

II.4.2.2 RQ2 What testing is performed in MapReduce programs? 39

II.4.2.3 RQ3 How is testing performed in MapReduce programs? 39

II.4.2.4 RQ4 By whom, where and when is testing performed in MapReduce

programs? ... 41

II.4.3 Summary ... 42

II.5 Discussion of Results ... 45

II.6 Limitations of the Mapping Study ... 47

II.7 Summary ... 48

III TESTING ... 51

III.1 Background of Design Faults in MapReduce ... 51

III.2 Related Work ... 54

III.3 MRTEST: Automatic MapReduce Testing Technique .. 55

III.3.1 Generation of Infrastructure Configurations for Testing 55

III.3.2 Execution of Test Cases ... 59

III.3.3 Test Oracle... 60

III.4 Experiments... 61

III.4.1 Effectiveness Experiments .. 62

III.4.1.1 Effectiveness: Setup .. 62

III.4.1.2 Effectiveness: Results and Discussion ... 63

III.4.2 Efficiency Experiments .. 66

III.4.2.1 Efficiency: Setup .. 66

III.4.2.2 Efficiency: Results and Discussion ... 67

III.4.3 Discussion of Results ... 70

III.5 Conclusions ... 71

IV DEBUGGING .. 73

IV.1 Debugging Framework: MRDebug .. 74

IV.2 Fault localization ... 75

IV.2.1.1 Fault Localization in MapReduce applications .. 75

IV.3 Input reduction.. 78

IV.3.1.1 Genetic Algorithm ... 78

IV.3.1.2 Delta Debugging .. 81

IV.4 Experiments... 82

IV.4.1 Fault Localization experiments.. 82

IV.4.1.1 Fault Localization experiment: setup .. 82

IV.4.1.2 Fault Localization experiment: results .. 84

IV.4.2 Input Reduction experiments .. 89

IV.4.2.1 Input Reduction experiments: setup ... 90

IV.4.2.2 Input Reduction experiments: results ... 90

IV.4.3 Discussion .. 92

IV.5 Related Work ... 94

IV.6 Conclusions ... 96

V OPERATIONS .. 97

V.1 Background and Related Work ... 97

V.2 Ex Vivo Testing .. 98

V.3 MrExist: Ex Vivo Testing Framework for MapReduce Applications 99

V.3.1 Parser .. 101

V.3.2 Instrumentation .. 101

V.3.3 Sampling .. 101

V.3.4 Testing ... 102

V.3.5 Test oracle ... 103

V.3.6 Probe ... 104

V.4 Case Study ... 104

V.5 Conclusions ... 105

VI FINAL REMARKS ... 107

VI.1 Summary of Research Questions .. 107

VI.2 Conclusions ... 110

VI.3 Future Work .. 111

VII CONSLUSIONES Y TRABAJO FUTURO .. 113

VIII APPENDICES .. 115

VIII.1 High-impact Journals and Conferences used for the Mapping Study 115

VIII.2 Other Journals and Conferences used for the Mapping Study 118

VIII.3 Primary Studies ... 120

REFERENCES .. 125

In memoriam of my grandmother

ACKNOWLEDGEMENTS

First and foremost, I would like to express my special thanks to my supervisors Claudio de la Riva

and Javier Tuya for all continuous support and dedication during the years of the thesis degree

not only in the research, but also in academic and my career. I am grateful to my other colleagues

of the research group GIIS (Software Engineering Research Group) who gave me the opportunity

to discuss the research contributions and help me to improve my research skills.

Besides the researchers of my university, I also would like to thanks to the SEDC research group

(Software Engineering and Dependable Computing Laboratory) to gave me the opportunity to

access their laboratory at Pisa (Italy). My humble thanks to Antonia Bertolino for all valuable

guidance in our collaborations that improved my skills, and also to provide me the opportunity

to work together.

My special thanks to my family for provide me both education and support along my whole life.

Among all of my family members, I want to highlight my mother, father, brother together with

his wife, and my nieces.

Last but not the least, I would like to thank Laura for all advises provided me during the last years

that makes me grow personally, and also to for being always there whenever I needed her.

This work has been performed under the research projects TIN2013-46928-C3-1-R, funded by

the Spanish Ministry of Economy and Competitiveness; GRUPIN14-007, funded by the

Principality of Asturias (Spain); TIN2016-76956-C3-1-R, funded by the Spanish Ministry of

Science and Technology; the Severo Ochoa pre-doctoral grant BP16215; and ERDF Funds.

ABSTRACT

Big Data programs are those that analyse the information using new processing models to

overcome the limitations of the traditional technology due the volume, velocity or variety of the

data. Among them, MapReduce stands out by allowing for the processing of large data over a

distributed infrastructure that can change during runtime due the frequent infrastructure

failures and optimizations. The developer only designs the program, whereas the execution of

its functionality is managed by a distributed system, such as the allocation of the resources and

the fault tolerance mechanism, among others. As a consequence, a program can behave

differently at each execution because it is automatically adapted to the resources available at

each moment. This non-deterministic execution makes both software testing and debugging

difficult, specially for those MapReduce programs with complex design. Despite both

performance and functionality are important, the majority of the research about the quality of

the MapReduce programs are focused on performance. In contrast, few research studies are

about functionality although several MapReduce applications fail regularly due a functional

fault. Testing and debugging these faults are important, specially when the MapReduce

programs perform a critical task.

This thesis aims to both testing and debugging the MapReduce programs with new approaches

to detect and understand those functional faults caused by the wrong design of the program.

These design faults not only depend on the input data, but they may be triggered sometimes

and masked other times because the execution is non-deterministic due a distributed

infrastructure with automatic optimizations. To detect these faults, the thesis proposes a testing

technique that executes each test case in different configurations and then checks that the

executions generate always similar outputs. The technique generates the configurations with

Random testing, and Partition testing together with Combinatorial testing to simulate the non-

determinist executions that could happen in a production environment. This technique is also

automated by using a test execution engine that is able to detect these faults using only the test

input data, regardless of the expected output.

Once the design faults are detected, the thesis proposes an automatic debugging framework to

locate the root cause of the fault and isolate the data that trigger the failure. The root cause

of the fault is automatically located through a spectrum-based technique that analyses

statistically the common characteristic of the executions that trigger the fault against those

characteristics that masked the fault. The data of the test case are reduced to improve the fault

understanding through delta debugging and search-based techniques that iteratively reduce the

data at the same time that the new data still trigger the failure. The debugging framework

proposed in the thesis, also allows the inspection of the distributed execution through the

common debugging utilities like breakpoints and watchpoints.

The previous testing and debugging techniques can also be used in operations. This thesis

proposes an autonomous approach to detect design faults in MapReduce programs executed

in production environment. This approach uses the runtime data as test input data in order to

detect the design faults in operations.

These techniques are evaluated through controlled experiments using real-world MapReduce

programs. The results show that the techniques proposed are able to test and debug the

MapReduce programs automatically in few seconds. The testing technique detects the majority

of the design faults of the MapReduce programs. Once the faults are detected, the fault

localization technique usually locates the root cause of the design fault, and the reduction

technique isolates the majority of the input data that triggers the failure to improve the fault

understanding. In the reduction technique, the delta debugging technique reduces the data in a

few seconds, in contrast the search-based approach is more time consuming but also reduces

more data.

As conclusions, the traditional testing techniques are not able to detect these design faults and

the MapReduce applications must be tested with new approaches like those proposed in this

thesis. Once the design fault is detected, the debugging techniques help to understand this fault,

but the traditional debugging techniques are broadly focused on the failures caused by the code

instead of those caused by a wrong design like in the MapReduce programs. From the point of

view of functional design faults, the MapReduce applications must be both tested and debugged

with new approaches like those proposed in this thesis.

RESUMEN

Los programas Big Data son aquellos que analizan información utilizando nuevos modelos de

procesamiento que superan las limitaciones de la tecnología tradicional en cuanto al volumen,

velocidad y variedad de los datos procesados. Entre estos, se destaca MapReduce que permite

procesar grandes cantidades de datos en una infraestructura distribuida que puede cambiar

durante la ejecución debido a los frecuentes fallos en la infraestructura y las optimizaciones. El

desarrollador sólo diseña el programa, mientras que la ejecución de su funcionalidad es

gestionada por un sistema distribuido, tales como asignación de recursos y el mecanismo de

tolerancia a fallos, entre otros. Como consecuencia, un programa puede comportarse diferente

en cada ejecución porque se adapta automáticamente a los recursos que estén disponibles en

cada momento. Esta ejecución no determinista dificulta las pruebas del software y la

depuración, especialmente para aquellos programas MapReduce con un diseño complejo. A

pesar de que tanto el rendimiento y la funcionalidad son importantes, la mayoría de

investigación sobre la calidad de los programas MapReduce se centra en rendimiento. Por el

contrario, hay pocos estudios sobre funcionalidad a pesar de que varias aplicaciones MapReduce

fallan con regularidad debido a defectos funcionales. Probar y depurar estos defectos es

importante, especialmente cuando los programas MapReduce realizan tareas críticas.

Esta tesis tiene como objetivo las pruebas y la depuración de programas MapReduce a través de

nuevos enfoques para detectar y entender los defectos funcionales causados por un incorrecto

diseño del programa. Estos defectos de diseño no sólo dependen de los datos de entrada, sino

que unas veces pueden enmascararse y otras producirse por ejecutarse no deterministamente

debido a la infraestructura distribuida con optimizaciones automáticas. Para detectar estos

defectos, la tesis propone una técnica de prueba que ejecuta cada caso de prueba con

diferentes configuraciones y que comprueba que esas ejecuciones generen siempre salidas

similares. La técnica genera las configuraciones mediante Random testing, y Partition testing

junto Combinatorial testing para simular las ejecuciones no deterministas que podrían ocurrir

en un entorno de producción. Esta técnica está también automatizada utilizando un motor de

ejecución de pruebas que es capaz de detectar estos defectos utilizando sólo los datos de

entrada de las pruebas independientemente de su salida esperada.

Una vez que se detecta el defecto, la tesis propone un framework automático de depuración

para localizar la casusa raíz del fallo y aislar los datos que causaron el fallo. La causa raíz del

fallo es automáticamente localizada a través de una técnica spectrum-based que analiza

estadísticamente las características que tienen en común aquellas ejecuciones que causan el

fallo y aquellas características que lo enmascaran. Los datos del caso de prueba se reducen para

mejorar el entendimiento del fallo utilizando delta debugging y una técnica guiada por búsqueda

que iterativamente reducen los datos a la vez que estos nuevos datos siguen causando el fallo.

El framework de depuración propuesto en la tesis también permite la inspección de la ejecución

distribuida a través de las habituales utilidades de depuraciones como los breakpoints y los

watchpoints.

Las anteriores técnicas de pruebas y depuraciones también pueden ser utilizadas en operación.

La tesis propone un enfoque autónomo para detectar los defectos de diseño de los programas

MapReduce que se están ejecutando en el entorno de producción. Este enfoque utiliza los

datos que se están procesando en tiempo de ejecución en producción como entradas de los

casos de prueba para detectar defectos de diseño en operaciones.

Estas técnicas son evaluadas mediante experimentos controlados utilizando programas

MapReduce reales. Los resultados muestran que las técnicas propuestas son capaces de probar

y depurar los programas MapReduce automáticamente en pocos segundos. La técnica de prueba

detecta la mayoría de los defectos de diseño de los programas MapReduce. Una vez que los

defectos son detectados, la técnica de localización de defectos localiza habitualmente la causa

raíz del defecto, y la técnica de reducción aísla la mayoría de los datos que causan un fallo para

mejorar el entendimiento del defecto. En la técnica de reducción de datos, la técnica delta

debugging reduce los datos en pocos segundos, por el contrario, el enfoque guiado por

búsqueda consume más tiempo pero también reduce más los datos.

Como conclusiones, las técnicas tradicionales de pruebas no son capaces de detectar estos

defectos de diseño y las aplicaciones MapReduce deben ser probadas con enfoques nuevos

como los propuestos en esta tesis. Una vez que el defecto de diseño es detectado, las técnicas

de depuración ayudan a entender el fallo, pero las técnicas de depuración tradicionales cubren

ampliamente los fallos causados por el código en lugar de aquellos causados por un incorrecto

diseño como los de los programas MapReduce. Desde el punto de vista de los defectos de

diseño funcionales, las aplicaciones MapReduce deben ser tanto probadas como depuradas

con nuevos enfoques como los que se proponen en esta tesis.

CHAPTER I - INTRODUCTION 9

I INTRODUCTION

I.1 RESEARCH CONTEXT

In the last decades the volume of data generated by companies has grown exponentially

expecting to increase by 300 times from 2005 to 2020 [1]. This grow, not only in size, but also in

complexity, arise several challenges to storing, transporting and analysing such information. To

overcome these challenges, novel technologies are being created under the Big Data paradigm

[2]. Their rise allows large scale analysis of data, from social web interactions to industrial sensor

data, that can improve social and business performance.

The adoption of and interest in these technologies/paradigms has increased over the last few

years to the extent that several Fortune 1000 enterprises consider Big Data critical for business

[3]. Despite the importance of these applications, some studies predicted that 60% of Big Data

projects fail to go beyond piloting and would be abandoned in 2017 [4]. There are several

obstacles and challenges in this paradigm. Big Data involves at the same time several fields such

as data science to analyse the data, information technology to make it possible in a scalable way

through new tools and technology beyond the state-of-the-art, and business science to find

value from the analysis. These transversal skills are difficult to find in Big Data and in future

years a shortage of experts is expected [5]. The lack of skills is also currently one of the main

concerns [6]–[8] and causes that several companies are able to capture the data but not to

process them [9]. Another obstacle is the poor data quality [10] that it is among the main

concerns in Big Data [6]. Dealing with these complex data to integrate and process them is a

challenge [11] and could incur in large costs. In U.S. economy the bad data cost around 3.1$

trillion per year [12] together with other derivate problems as for example the 6.8 billion of

email pieces that could not be sent during 2013 by USPS (U.S. Postal Service) due to data quality

issues among other problems in the address information [13]. The previous concerns and

challenges, among other technological issues [7], [14], [15], can lead the Big Data projects to

failures that impact both business and society.

The MapReduce processing model [16] stands out among Big Data applications. It is a key

technology very broadly used by organizations [17] and implemented in several mature

frameworks [18], [19], such as Hadoop [20], Flink [21], [22] and Spark [23], [24], among others.

Because it is so widely adopted, the quality of MapReduce programs is important, especially for

those employed in critical sectors as such as health (DNA alignment [25]) and security (image

processing in ballistics [26]). An analysis over several months at Yahoo! indicates that around 3%

of MapReduce programs are not finished [27], whereas another broader study places this

percentage between 1.38% and 33.11% [28]. A study of 507 programs in production reveals at

least 5 different kinds of faults [29] that are caused by the incorrect design of MapReduce

programs. Therefore, this thesis is focused to address these functional faults that are caused by

incorrect design.

These types of faults include, but are not limited to, race conditions, computations with

unavailable data because the distributed system allocates them to another computer, or

automatic optimizations that remove data that are relevant to calculating the output. These

faults are difficult to detect because they depend not only on the data, but also on how these

data are executed in the large distributed architecture: parallel executions, re-executions of

some part of the data and optimizations, among others. In general, these non-deterministic

Section I.2 - Research Hypothesis 10

faults are prone to be masked in development/testing environments and go on to fail in more

aggressive environments such as the production environment, thereby generating incorrect

outputs or causing the program to crash. The distributed nature of these design faults

complicates also the debugging. The localization of the root cause of the fault is complex

because not only involves the code, but the design of the program. Then the developer could

have difficulties to both understand and fix these non-deterministic design faults.

There are several approaches to assess quality, and software testing is one of the most

commonly used. According to the ISO/IEC/IEEE 29119-1:2013 standard [30], software testing

aims to provide information relating to program quality and the potential impacts/risks of poor

quality. Software testing research has evolved in recent years [31], but there are several

challenges related to the testing of programs in cloud and adaptive architectures [32].

I.2 RESEARCH HYPOTHESIS

This thesis focuses on the quality of the MapReduce programs, especially in testing and

debugging. The research performed is based in the following hypothesis:

H1. The MapReduce applications have specific characteristics that another kind of

applications do not have, such as delegate their execution to a framework that handles

the massive execution splitting the datasets along several servers, allocating resources

in parallel, or re-executing of part of the program in case of infrastructure failures. These

characteristics in conjunction are not broadly covered by the state-of-the-art testing

techniques, and the MapReduce applications must be tested with new approaches.

H2. The functional failures of the MapReduce applications that are wrongly designed entail

the execution of the data concurrently in several servers in non-deterministic way.

These failures are not just caused by the code, but by the design. The traditional

debugging techniques are broadly focused on the failures caused by the code but not

on those caused by the wrong design, then the MapReduce applications must be

debugged with new approaches.

I.3 RESEARCH GOALS

The general goal of this thesis is to enhance the state-of-the-art of the software testing and

debugging in the MapReduce field with experimentation and pragmatic basis. This goal is divided

in the following sub-goals:

1. Determine the state-of-the-art and the current quality problems of the Big Data

programs that are executed through the MapReduce processing model.

2. Develop new testing techniques to address the design of MapReduce applications that

are executed in scalable way under both distributed and heterogeneous large

infrastructures.

3. Design new debugging techniques that provides an easy understanding of the complex

faults of distributed MapReduce applications.

4. Integrate and automate both the testing and debugging activities in a general quality

process that can be applied in laboratory (pre-production) or during runtime

monitoring the operations (production).

5. Evaluate the effectiveness and efficiency of the testing and debugging techniques

proposed.

Section I.4 - Research Methodology 11

I.4 RESEARCH METHODOLOGY

To achieve the previous goals, the thesis was planned according to the below research and

engineering methodologies/practices:

• Systematic Literature Review [33] (systematic mapping study [34]): This kind of studies

are focused to extract evidences through the analysis of the relevant literature. In

Chapter II, the state-of-the-art of the software testing in the MapReduce applications is

defined through the revision and classification of the literature applying a strict protocol

to avoid bias.

• Action research [35]: This methods pursue to join the scientific theory with the industrial

practice through reflection feedback. In this thesis, the academic research is performed

and discussed together with industrial organizations in order to frame their real

problems. Some programs used to validate the research comes from the industry.

• Experimentation: The contributions of the thesis are validated with experiments [36]

using the usual techniques of software engineering field through real-world programs.

I.5 CONTRIBUTIONS

The main contribution of the thesis is the devise and automatization of both testing and

debugging techniques in the MapReduce field. This main contribution is characterized in the

following contributions:

C1. Analysis of the state-of-the-art, challenges and gaps of software testing in the

MapReduce application by means of systematic mapping study of the literature

evidences.

C2. Testing technique to automatically detects the design faults of the MapReduce

application using input partitioning, combinatorial and random techniques, and

metamorphic testing.

C3. Debugging technique to automatically localize the root cause of the design faults in

MapReduce applications through spectrum-based fault localization approach.

C4. Debugging technique to automatically isolate the data that triggers the design faults of

the MapReduce application using Delta debugging and a search-based technique based

on genetic algorithm.

C5. Automatization and integration of both testing and debugging techniques in a tool that

support offline testing in laboratory.

C6. Automatization and integration of both testing and debugging techniques in an

autonomous system that performs testing-debugging without human intervention in

production taking real data at runtime.

C7. Experimentation with real-world programs of both testing and debugging techniques.

These contributions are tackled in four nested lines of research. The first line is focused on the

state-of-the-art to hypothesize about quality problems of MapReduce programs and how can be

alleviated through research in both testing and debugging fields (C1). Then the second and third

lines of research aboard testing (C2, C5, C7) and debugging (C3, C4, C7), respectively. Finally, the

fourth line of research is focused on the integration of our work to be used not only in

laboratory, but also on production in autonomous way (C6).

Section I.5 - Contributions 12

Despite the four line of research are mature with several publications, the ongoing work of the

debugging is not yet published. An early version of the debugging techniques is published in two

national conferences, but the last version is finished aimed to be published in a JCR journal. The

remainder contributions are fully published in both journals and conferences, and they are also

divulgated at different venues as Fig. 1 summarizes.

This work was done in collaboration with the Institute of the National Research Council of Italy

(CNR-ISTI), and additionally with the University of Castilla-La Mancha of Spain (UCLM). These

collaborations were done through periodical videoconferences and visits. Morán visited UCLM

one week, and CNR-ISTI during two internships of three months each one.

The contributions of the thesis were also divulgated in different forums through posters and

talks to discuss the vision of the research goals with another researchers that provides feedback.

As a result, several tools were developed to support and automatize the research in all

processes.

Fig. 1 Summary of the thesis research and divulgation

Year 0
(Sept. 2014)

Year 1
(Sept. 2015)

Year 2
(Sept. 2016)

Year 3
(Sept. 2017)

Year 4
(Sept. 2018)

January
2019

Journal JCR
Other journal

International conference
International workshop

National conference
Regional conference

Masther thesis
Book

15 publications,
all as first author

2 publications
1 publication

1 publication
3 publications
5 publications
1 publication
1 publication

4 tools
developed

MRFlow
MRTest
MRDebug
MrExist

Other divulgation
related to thesis

5 posters

4 talks in summer schools

1 publication
Collaboration with 2 institutions

6 months of
research internship

UCLM (Spain)
CNR-ISTI (Italy)

CNR-ISTI (Italy)

Line of research 1
State-of-the-art

Problems
Hypothesis

Line of research 2
Testing

Line of research 3
Debugging

Line of research 4
Operations

Data generation
integration

TIN2013-46928-C3-1-R TIN2016-76956-C3-1-R
GRUPIN14-007Projects and research

management
BP16215CNR (Italy) CNR (Italy)

Heur

Research projects funded by:
TIN2013-46928-C3-1-R
TIN2016-76956-C3-1-R

The Spanish Ministry

The Principality of Asturias GRUPIN14-007

Participation in 3
research projects

1 research grant

1 research network

Section I.5 - Contributions 13

I.5.1 First line of research: State-of-the-art, problems and hypothesis

The first line of research has the following 4 publications:

• JSEP 2019 [37] (Q3): Morán, J., de la Riva, C., Tuya, J. “Testing MapReduce
programs: A systematic Mapping Study”. Journal of Software: Evolution
and Process, 2019.

• BIGR&I 2014 [38]: Morán, J., de la Riva, C., Tuya, J. “MRTree: Functional
testing based on MapReduce’s execution behaviour”. International
Symposium on Big Data Research and Innovation, 380-384, 2014.

• JISBD 2014 [39]: Morán, J., de la Riva, C., Tuya, J. “Pruebas funcionales en
programas MapReduce basadas en comportamientos no esperados”.
Jornadas de Ingeniería del Software y Bases de Datos, 2014.

• MT 2014 [40] (industrial prize): Morán, J., de la Riva, C. “Pruebas para
sistemas con procesamiento y transformación de datos en paralelo”.
Master thesis dissertation, University of Oviedo, 2014.

We revised rigorously the literature about software testing in MapReduce applications

summarizing the state-of-the-art, problems and gaps through systematic mapping study [37].

Among other findings, we observed gaps in the functional characteristic of the program quality.

There are evidences that both performance and functional characteristics are relevant in

MapReduce programs, but the majority of efforts are focused on performance and few in

functional point of view. Then this thesis is focused to embrace this gap providing evidences,

techniques, results and tools that mitigate the functional faults of MapReduce programs through

testing and debugging.

The general testing techniques can detect some faults of the MapReduce applications, but are

unsuitable to detect those other faults that are specific of the processing model. Some of these

faults are caused by the wrong design of the MapReduce application. The developer designs the

program at high level using some functionalities such as Map, Reduce or Combine. Then the

execution of the program is automatically managed by the framework, typically Hadoop, Spark

or Flink. The programs must be designed accordingly to support all possibilities proposed at

runtime by the framework and the environment, such as different parallelization degrees, re-

execution of some parts due infrastructure failures, or optimizations to avoid net bottlenecks

removing some irrelevant data. We identified and classified these design faults [38], [39] aimed

to approach them through testing in the second research line.

With this classification of design faults, we published a master thesis [40] that, despite is focused

on research, received an industrial prize.

I.5.2 Second line of research: Testing

The second line of research is focused on these design faults through testing and has the

following 4 publications:

• IEEE TR 2018 [41] (Q1): Morán, J., Bertolino, A., de la Riva, C., Tuya, J.
“Automatic Testing of Design Faults in MapReduce Applications”. IEEE
Transactions on Reliability, vol. 67, no. 3, pp. 717-732, 2018.

• ASTESJ 2017 [42]: Morán, J., Rivas, B., Riva, C., Tuya, J, Caballero, I.,
Serrano. Configuration/Infrastructure-aware testing of MapReduce
programs. Advances in Science, Technology and Engineering Systems
Journal, vol. 2, no. 1, pp. 90-96, 2017.

Section I.5 - Contributions 14

• BIGR&I 2016 [43]: Morán, J., Rivas, B., de la Riva, C., Tuya, J, Caballero, I.,
Serrano, M. “Infrastructure-Aware Functional Testing of MapReduce
programs”. 2016 IEEE 4th International Conference on Future Internet of
Things and Cloud Workshops (FiCloudW), Vienna, 2016, pp. 171-176.

• JISBD 2016 [44]: Morán, J., de la Riva, C., Tuya, J. “Generación y Ejecución
de Escenarios de Prueba para Aplicaciones MapReduce”. Jornadas de
Ingeniería del Software y Bases de Datos, 2016.

The design faults of the MapReduce programs are difficult to test because the same data could

yield sometimes success and other failures depending on the execution (parallelism,

optimizations and others). This execution is very difficult to control and the faults trend to be

masked during laboratory tests because the infrastructure is not as aggressive as the production

environment. At first point we explored different ways to execute the data in thoroughly

possible situations to check if the program fails or not regardless of the execution [42]–[44].

Finally, we devised a testing technique that automatically detect automatically the design faults

given only the data under test [41]. This technique does not execute the program under

thoroughly situations, but on those infrastructure configurations that are relevant using input

space partitioning, random and combinatorial testing. Then the faults are automatically

detected by means of metamorphic testing [45] when the same data do not yield to equivalents

outputs in the different infrastructure configurations. As a result, a tool called MRTest was

developed:

• MRTest: a xUnit testing tool that detects automatically the design faults
of the MapReduce applications simulating the controlled execution of
different infrastructure configurations.

With this technique and tool, the design faults of the MapReduce programs can be automatically

detected. These faults are manifested sometimes and masked in others in non-deterministic

way. Then the root cause of the fault is difficult to both localize and understand. The common

debugging techniques are not suitable for these faults because are focused on code and not

neither on infrastructure configurations nor design level.

I.5.3 Third line of research: Debugging

The third line of research is focused on debugging these design fault and has the following 2

publications:

• JISBD 2018 [46]: Morán, J., de la Riva, C., Tuya, J. “Automatización de la
localización de defectos en el diseño de aplicaciones MapReduce”.
Jornadas de Ingeniería del Software y Bases de Datos, 2018.

• JISBD 2017 [47]: Morán, J., de la Riva, C., Tuya, J., Rivas, B. “Localización
de defectos en aplicaciones MapReduce”. Jornadas de Ingeniería del
Software y Bases de Datos, 2017.

The root cause of the design faults can be obtained analysing the characteristics that have in

common both the infrastructure configurations that produce a failure and those that success.

An initial approach to obtain the root cause of the faults is published with a spectrum-based

fault localization technique [46], [47]. The last version of this technique including the controlled

experiment is not yet published.

The previous technique is able to localize automatically the characteristics of the infrastructure

configurations that produces the failure. However, the faults are still difficult to understand due

Section I.5 - Contributions 15

the distributed flow of the data. In order to improve the understanding of the faults, we devised

a technique that isolates the data that are relevant to trigger the fault removing the remainder

of the data. This technique uses a search-based approach with delta debugging [48], [49] and a

genetic algorithm [50], [51]. This technique is not yet published.

To automatize the localization of the faults and the isolation of the data, we developed a tool

that also support the other typical debugging commodities such breakpoints and watchpoints:

• MRDebug: a framework to debug the MapReduce programs focused on
design faults. The frameworks automatically localizes the root cause of the
faults and reduces the data isolating those that are relevant to trigger the
failure, then the developer can use breakpoints, watchpoints and the
common debugging toolkit.

The majority of this research line is not yet published. We are writing a paper that includes all

of our debugging research with controlled experiments aimed to be published in JCR journal.

Both, the testing and debugging, are done automatically based only on the test input data. Then

the techniques can be used in production taking advantage of the production data.

I.5.4 Fourth line of research: Operations

The fourth line of research is focused on the operations and generation/selection of the data

that can be used during the testing and debugging of the MapReduce programs. This research

line has the following 3 publications:

• QRS 2017 [52]: Morán, J., Bertolino, A., de la Riva, C., Tuya, J. "Towards Ex
Vivo Testing of MapReduce Applications," 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), Prague,
2017, pp. 73-80.

• A-TEST 2015 [53]: Morán, J., de la Riva, C., Tuya, J. “Testing data
transformations in MapReduce programs”. 6th International Workshop
on Automating Test Case Design, Selection and Evaluation, 20-25, 2015.

• JISBD 2015 [54]: Morán, J., de la Riva, C., Tuya, J. “Pruebas basadas en flujo
de datos para programas MapReduce”. Jornadas de Ingeniería del
Software y Bases de Datos, 2015.

The data of the test cases can be generated manually using a general-purpose testing technique.

We adapted the data flow testing technique [55] to the MapReduce processing model

considering the transformations of the data in the infrastructure configurations [53], [54]. This

technique is automatized in a tool called MRFlow:

• MRFlow: a tool that indicates the test coverage items to test the programs
based on data-flow testing technique adapted to MapReduce.

The testing and debugging techniques only need data to be executed, and in Big Data field there

are a lot of data. Then these techniques can take advantage of the runtime data. It is not possible

to perform testing/debugging with all huge production data, and we devise a technique to

extract and cache samples of the data to the laboratory at runtime. Then when a user executes

a program in production, the tests of the program are performed in the laboratory in

autonomous way without human intervention. As a result, a system called MrExist was

developed:

Section I.5 - Contributions 16

• MrExist: an autonomous system that detects the execution of a
MapReduce program in the production cluster and performs
automatically testing/debugging in laboratory taking data from runtime.

I.5.5 Other Divulgation related to the Thesis

The research topics of the thesis were divulgated and discussed with other researchers at the

following venues:

Doctoral workshop:

• JDUO 2017: Morán, J. “Técnicas de Prueba Funcionales para Nuevos
Paradigmas de Procesamiento Masivo de Datos”. VI Jornadas Doctorales
de la Universidad de Oviedo, 2017.

Posters:

• JSD 2018: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques
for new massive data processing paradigms”. Jornada seguimiento
doctorado. Universidad de Oviedo, 2018.

• JDUO 2017b: Morán, J. “Functional testing techniques for new massive
data processing paradigms”. Poster VI Jornadas Doctorales de la
Universidad de Oviedo, 2017.

• JSD 2017: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques
for new massive data processing paradigms”. Jornada seguimiento
doctorado. Universidad de Oviedo, 2017.

• JSD 2016: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques
for new massive data processing paradigms”. Jornada seguimiento
doctorado. Universidad de Oviedo, 2016.

• JSD 2015: Morán, J., de la Riva, C., Tuya, J. “Functional testing techniques
for new massive data processing paradigms”. Jornada seguimiento
doctorado. Universidad de Oviedo, 2015.

Talks in summer schools:

• HSST 2017: Morán, J. “Automatic Functional Testing of MapReduce
Applications”. 7th Halmstad Summer School on Testing, 2017.

• TAROT 2016: Morán, J. “Software Testing in MapReduce applications”.
11th International Summer School on Training And Research On Testing,
2016.

• SS-SBSE 2016: Morán, J. “Functional testing of Big Data programs using a
combinatorial algorithm”. 1st International Summer School on Search-
Based Software Engineering, 2016.

• TAROT 2015: Morán, J. “Functional Testing of MapReduce programs”.
11th International Summer School on Training And Research On Testing,
2015.

Some of the divulgation were about the general lines of the thesis research, but in other cases

were specific ongoing work to obtain feedback from the research community.

The thesis is focused on the detection and understanding of the design faults in MapReduce

programs. This approach is reactive because analyse a program already implemented, but the

design faults can also be avoided in proactive way during implementation. Then Morán

Section I.5 - Contributions 17

published a book to explain, in practical way, different design patters that can be used to

implement MapReduce programs aimed to foster good practices during the design.

Book:

• VIU 2018: Morán, J. “Métodos para extracción, procesamiento y
almacenamiento de datos masivos desde Internet”. Valencia International
University, 2018.

I.5.6 Projects and Research Management

The work of this thesis is not done only by one person, but by the collaboration of the University

of Oviedo with other 2 organizations: mainly with Institute of the National Research Council of

Italy (CNR-ISTI), and additionally with University of Castilla-La Mancha (UCLM). The UCLM

collaborates in the initial steps of the testing and debugging techniques, whereas the CNR-ISTI

collaborates in the controlled experiments of testing/debugging in both laboratory and

production environments.

The collaborations were coordinated through frequent videoconferences, visits and internships.

Morán visited UCLM during a week and also met the team members each year in national

conferences. During this visit, the collaborators discussed different approaches of the testing

technique to be designed, and how to tackle the functional faults of the MapReduce programs.

In the collaboration with CNR-ISTI, Morán visited Italy twice in internships of three months each

one. During the first internship, the collaborators designed and validated the testing technique

proposing different approaches. In the second internship, the debugging technique of

localization was mature, and the data isolation were devised with different approaches.

Both collaborations, UCLM and CNR-ISTI, continue in this research lines through

videoconferences and future visits/internships.

Internships and collaborations:

• CNR-ISTI (Italy): Lines of research 2, 3 and 4 (IEEE TR 2018 [41] and QRS
2017 [52]).

• UCLM (Spain): Lines of research 2 and 3 (ASTESJ 2017 [42], BIGR&I 2016
[43] and JISBD 2017 [47]).

Other collaborations are done through the specialized research networks. During this thesis,

Morán become a member of the HEUR research network that is focused on meta-heuristics.

Research network:

• HEUR: network about meta-heuristics and used in the third line of
research.

During the thesis, Morán was member of three research projects aligned with the topics of the

research, two leaded by Tuya and other leaded by De la Riva.

Research projects:

• TIN2013-46928-C3-1-R: Research project funded by the Spanish ministry
about software testing in Big Data.

• TIN2016-76956-C3-1-R: Research project funded by the Spanish ministry
about software testing in both Big Data and mobile.

• GRUPIN14-007: Research project funded by the Principality of Asturias
about software testing.

Section I.6 - Thesis Organization 18

This thesis was also supported by a pre-doctoral grant.

Grant:

• BP16215: Severo Ochoa pre-doctoral grant.

I.6 THESIS ORGANIZATION

The lines of research and organization of the chapters are summarized in Fig. 2. This first chapter

is about the thesis research plan. The second chapter defines the state-of-the-art and the

problem statement about functional design faults in the MapReduce programs (first line of

research). Then the third chapter describes how to detect these faults through software testing

technique (second line of research). In the fourth chapter, debugging techniques are detailed to

localize and understand the root cause of the faults (third line of research). Then the fifth

chapter particularized both the testing and debugging techniques to be executed autonomously

during operations (production) taking advantage to the runtime data (fourth line of research).

The conclusions and future works are summarized in the sixth chapter. Finally, the seventh

chapter contains the appendices of the thesis.

This thesis is structured with the following chapters:

Chapter I “Introduction”: Contains the introduction of the thesis including the research

context, hypothesis, goals, methodologies and contributions.

Chapter II “Background”: Defines the state-of-the-art by means of systematic mapping

study aimed to find evidences in the literature of software testing in the

MapReduce programs. This chapter also defines the problematic in which this

thesis is focused, that is the design faults of the MapReduce programs.

Chapter III “Testing”: Describes the testing technique defined to detect automatically the

design faults of the MapReduce programs. This technique executes the same

program simulating different environments generated through input space

partitioning, combinatorial and random testing. Then the outputs of these

different executions are analysed with metamorphic testing to detect the

faults. This testing technique is validated with controlled experiments in real-

world programs.

Fig. 2 Summary of the thesis lines of research and organization

Testing Debugging Operations
(fix)

101
 10
01

Hypothesis Goals Research methodology

Background

Research context

Future work

Chapter I

Chapter II Chapter III Chapter IV Chapter V Chapter VI

Section I.6 - Thesis Organization 19

Chapter IV “Debugging”: Details the debugging techniques defined to both localize and

isolate the data that trigger the failure aimed to enhance the understanding of

the fault. The majority of debugging techniques are focused on the code, but

these design faults are caused by the structuration and not by the code. Then

the debugging techniques are adapted to focus on the design by means of (1)

spectrum-based fault localization to localize automatically the root cause of the

fault in the design, and (2) delta debugging and search-based algorithm to both

isolate and reduce the data that trigger the design failure. These debugging

techniques are integrated in a framework that also support the common

debugging toolkits. The techniques are validated with controlled experiments

in real-world programs.

Chapter V “Operations”: Particularized the previous testing and debugging techniques to

be used autonomously during the operations taking runtime data as test data.

The previous testing and debugging techniques can be executed automatically

providing only the input data of the test cases. In the field of Big Data, there are

a lot of data in production. Then these techniques can be executed in

autonomous way taking directly the data from production to detect design

faults during runtime. This technique is defined with Ex Vivo approach that

consist to take the data from production environment, but executing the tests

outside in laboratory to inquire the quality of the program that is executed in

production.

Chapter VI “Final remarks”: Summarizes the conclusions of the thesis and the future work

by means of new research line focused not only to detect the faults

automatically during runtime, but to fix the programs with self-adaptation

approach and PDCA methodology.
.

Chapter VII “Appendices”: Contains the appendices of the thesis.

CHAPTER II - BACKGROUND 21

II BACKGROUND

This chapter summarizes the broad related work analysing the state-of-the-art of software

testing for MapReduce programs through a systematic mapping study. The majority of this

chapter is published in JSEP 2019 [37]. Section II.1 introduces MapReduce together with the

main challenges from the testing point of view. The research questions are proposed in Section

II.2 together with the systematic steps planned to answer them. The execution of these steps

(conducting) is described in Section II.3. The answers to research questions and other results are

detailed in Section II.4. These results are discussed in Section II.5. The confidence of the results

obtained from both planning and conducting is enumerated in Section II.6. Finally, Section II.7

contains a summary.

II.1 MAPREDUCE PROCESSING MODEL

MapReduce programs [16] divide one problem into several subproblems that are executed in

parallel over a large number of computers. The programs have two principal functions: (1) Map,

that analyses parts of the input data and classifies them into subproblems, and (2) Reduce, that

solves each of these subproblems. The data processed by these functions are handled internally

in the form of <key, value> pairs. The “key” is the identifier of each subproblem and the value

contains information that the subproblem needs to solve. To illustrate MapReduce, let us

imagine a program that calculates the average temperature per year. This problem could be

divided into one subproblem per year, then each subproblem only solves the average

temperature in one year. In this program, the “key” is the year because it identifies each

subproblem, whereas the “value” is the temperature of this year because this information is

needed to solve the subproblem. Fig. 3 details a distributed execution of the program analyzing

the years 2000-2003. Firstly, the Map function receives the data pertaining to years and

temperatures and creates the <key, value> pairs with <year, temperature>. For example, <2000,

3°> means that 3° is needed to solve the subproblem that calculates the average temperature

of 2000. Then the Reduce function receives from all Maps one year with all of its temperatures,

and calculates the average. For example, if one Reduce function receives the data that in the

year 2000 there were 3° and 1° temperatures, that is <2000, [3°, 1°]>, then the average

temperature for the year is 2°.

The programs are executed by a framework that automatically manages the resource allocation,

the re-execution of one part of the program in case of infrastructure failures, and the scheduling

of all executions, among other mechanisms. The data analyzed could be stored in several

distributed sources, such as non-relational databases and distributed file systems.

The integration of all of these technologies in the MapReduce program stack presents a

challenge for developers and testers. Some technologies do not scale well, do not support

Fig. 3 Example of the MapReduce program that calculates the average temperature per year

Reduce

Reduce

Reduce

<2001, [5º]>

<2003, [3º]>

<2000, [3º, 1º]>
<2002, [4º]> <2000, 2º>

<2001, 5º>

<2003, 3º>

<2002, 4º>

Map

Map

<2000, 3º>
<2002, 4º>

<2001, 5º>
<2000, 1º>

<2003, 3º>

2000, 3º

2002, 4º

2000, 1º

2001, 5º

2003, 3º

Section II.1 - MapReduce Processing Model 22

indexing, or do not support ACID transactions, among others issues. Another challenge is the

implementation of the data model in the program. MapReduce can analyze raw data without a

data model (schema-less or unstructured) because the modelling of the data is codified in the

program (schema-on-read). When considering the large data scale, it is difficult to establish a

model for all data and there are several issues related to poor data quality, such as missing data,

noise or incorrect data. Another problem is that new raw data are continuously generated and

the data model could change over time, and then the program would need some changes.

The balance and the statistical properties of the data can also change over time and they can

affect the program, especially if there are performance optimizations in the code based on data

property assumptions. For example, suppose that in the program that analyzes the average

temperature per year, the last two years contain 80% of the data. In this case there could be at

least two issues: (1) performance problems if these two years are analyzed in the same

computer, and (2) memory leaks or resource issues due to the high quantity of data analyzed by

one computer. A further challenge is the type of processing implemented; originally MapReduce

analyzed the data only in batches, but nowadays there are streaming or iterative approaches,

among others. For example, the temperature sensors create streams of data, and so the

calculation of the average temperature is more efficient using a streaming approach, but it is

more difficult to implement and not all programs could be processed in this way. In some

domains it is better to change the <key, value> approach to another that permits better

modeling of the program, such as Pangool [56], that uses tuples, or more complex structures

like graphs [57].

In the main framework of MapReduce, Hadoop, there are a lot of configuration parameters that

could affect the execution in terms of resources, data replications and so on. More than 25 of

these parameters are significant in terms of performance [58]. The developer does not know

the resources available when the program is deployed because the cluster continuously changes

(new resources adding to scale or infrastructure failures [59]), and this also makes the optimal

configuration difficult. There are other advanced functionalities of MapReduce that could

optimize the program, such as for example the Combine function. The problem is that if these

functionalities are not well established there could be some side effects, such as incorrect

output.

In Big Data there are also other testing issues related to the ethical use of data. Different security

procedures and policies should be considered in MapReduce programs throughout the data

lifecycle. For example, the analysis of some data could be forbidden in the next season due to

agreements with the data provider or due to legal issues. In other cases, the data should be

anonymized or encrypted, especially any sensitive data.

Several generic tools are used in the industry to test MapReduce programs, such as JUnit [60]

with mocks. In order to facilitate the testing of MapReduce programs, MRUnit [61] runs the unit

test cases without a cluster infrastructure. Another approach is MiniCluster [62] that simulates

a cluster infrastructure in memory, or Herriot [63] that interacts with real infrastructure allowing

finer-grained control, for example by the injection of computer failures that alter the execution

of the program. There are different types of infrastructure failures that affect test execution and

several tools simplify their injection such as AnarchyApe [64], ChaosMonkey [65] or Hadoop

Injection Framework [66]. The remainder of this chapter analyses and summarizes the efforts of

the research studies that are focused on covering the issues related to testing MapReduce

applications.

Section II.2 - Planning of the Mapping Study 23

II.2 PLANNING OF THE MAPPING STUDY

This mapping study aims to characterize the knowledge of software testing approaches for

MapReduce programs through a study of the exisiting research literature. To avoid bias, the

planning of the mapping study describes several tasks based on the guidelines from Kitchenham

et al. [67]:

1. Formulation of the research questions (Subsection II.2.1).

2. The search process to extract the significant literature (primary studies) to answer the

research questions (Subsection II.2.2).

3. Data extraction to obtain the relevant data from the literature (Subsection II.2.3).

4. Data analysis to summarize, mix and put the data into context to answer the questions

(Subsection II.2.4).

These tasks are planned and then conducted independently as described in Fig. 4. The execution

(conducting) of the mapping study is summarized in Section II.3.

II.2.1 Research Questions

The research questions are formulated to cover all of the information about software testing

research in the context of MapReduce programs with different points of view. This chapter

formulates the research questions based on the 5W+1H model [68], [69], also known as the

Kipling method [70]. This method is used in other systematic reviews of software engineering

[71] and answers the questions: Why, What, How, By whom, Where and When.

The research questions of this mapping study are:

RQ1. Why is testing performed in MapReduce programs?

RQ2. What testing is performed in MapReduce programs?

RQ3. How is testing performed in MapReduce programs?

RQ4. By whom, where and when is testing performed in MapReduce programs?

Fig. 4 Steps of systematic mapping study

Reseach
questions

Search
process

Primary studies

Data
extraction

Data
analysis

Data ResultsAnalysis

Planning

Conducting
each task

Fig. 5 Search process to obtain the primary studies in the mapping study

testing
MapReduce qualityHadoop

BugSearch terms validation

Journals (JCR)
Conferences (CORE)

Electronic
databases

Other Journals
and Conferences

Expert
opinions

Potential primary studies

Data sources

...
...

Study
selection

Primary studies

Planning

Results for
each task

Section II.2 - Planning of the Mapping Study 24

II.2.2 Search Process

The mapping study answers the research questions by analyzing the series of studies that

contain relevant information about these questions. These studies are called primary studies

and are obtained through the tasks described in Fig. 5. First, the search terms (set of several

words/terms) related to software testing and MapReduce are searched for in different data

Table 1 MapReduce technology-related terms (population)

Technology Terms and years of creation

Field Big Data, Massive data, Large data

Data processing Hadoop (2006)

- Batch MapReduce (2004)

- Iterative Spark (2013), Tez (2013), Stratosphere (2010), Dryad (2007), Flink (2014)

- Streaming Storm (2011), S4 (2010), Samza (2013)

- Lambda Lambdoop (2013), Summingbird (2013)

- BSP Giraph (2013), Hama (2011)

- Interactive Drill (2012), Impala (2012)

- MPI Hamster (2011)

Testing MRUnit (2009), Junit (1998), Mock, MiniMRCluster (2006),

MiniYarnMRCluster (2012), Mini cluster (2007), QuerySurge (2011)

Security Sentry (2013), Kerberos (2007), Knox (2013), Argus (2014)

Resource Manager Yarn (2012), Corona (2012), Mesos (2009)

MapReduce abstraction Pig (2008), Hive (2010), Jaql (2008), Pangool (2012), Cascading (2010),

Crunch (2011), Mahout (2010), Data fu (2010)

Yarn frameworks Twill (2013), Reef (2013), Spring (2013)

Yarn integration Slider (2014), Hoya (2013)

Data integration Flume (2010), Sqoop (2009), Scribe (2007), Chukwa (2009), Hiho (2010)

Workflow Oozie (2010), Hamake (2010), Azkaban (2012), Luigi (2012)

Coordinator Zookeeper (2008), Doozerd (2011), Serf (2013), Etcd (2013)

SDK Hue (2010), HDInsight (2012), Hdt (2012)

Serialization Sequence File (2006), Avro (2009), Thrift (2007), Protobuf (2008)

Cluster Management Ambari (2011), StackIQ (2011), Whte elephant (2012), Ganglia (2007),

Cloudera manager (2011), Hprof (2007), MRBench (2008), HiBench

(2010), GridMix (2007), PUMA (2012), SWIM (2011)

Filesystem HDFS (2006), S3 (2006), Kafka (2011), GFS (2003), GPFS (2006), CFS (2013)

Other storage HBase (2008), Parquet (2013), Accumulo (2008), Hcatalog (2011)

Cluster deployment Big top (2011), Buildoop (2014), Whirr (2010)

Data Lifecycle Falcon (2013)

Section II.2 - Planning of the Mapping Study 25

sources (journals, conferences and electronic databases). The papers that match these searches

together with other studies recommended by experts constitute the potential primary studies.

Finally, these studies are filtered as part of study selection in order to obtain only the studies

that contain information which answers the research questions. In the following subsections

each of the planning steps is described in detail.

II.2.2.1 Search Terms

The search terms are obtained from the three points of view proposed by Kitchenham et al. [67]:

population, intervention and outcome. In this mapping study the population refers to the

technologies and areas related to MapReduce, whereas the intervention and outcome refer to

the software testing methods and the improvements obtained through software testing.

The search terms of this mapping study follow the chain “MapReduce technology related terms

AND Quality related terms” where:

• The MapReduce technology related terms correspond with population and are

enumerated in Table 1 with synonyms. The selection of the search terms is difficult when

technologies are relatively new because the terminology is not well-established [33].

The Big Data paradigm and the MapReduce processing model are surrounded by a lot

of buzzwords like other fields such as Cloud computing. In order to obtain the maximum

Table 2 Quality-related terms (outcome and intervention)

Quality characteristics Terms

Functional suitability Functionality, functional, suitability, suitable, correctness, correctable,

accuracy, accurate, compliance, compliant, appropriateness, appropriate

Performance efficiency Performance, performable, efficiency, efficient, time-behaviour, resource

utilization

Compatibility Compatibility, replaceability, replaceable, coexistence, interoperability,

interoperable

Usability Recognizability, recognizable, learnability, learnable, operability, operable,

ease of use, helpfulness, helpful, attractiveness, attractive, attractivity,

technical, accessibility, accessible

Reliability Reliability, reliable, availability, available, fault tolerance, recoverability,

recoverable

Security Security, secure, safety, confidentiality, confidential, integrity,

nonrepudiation, accountability, accountable, authenticity, authenticable

Maintainability Maintainability, maintainable, modularity, modular, reusability, reusable,

analyzability, analyzable, changeability, changeable, modification,

modifiable, stability, stable, testability, testable

Portability Portability, portable, adaptability, adaptable, transferability, transferable,

installability, installable, effective, effectiveness

Other terms Testing, assert, assertion, check, checking, test, test case, validate,

validation, verify, verification, bug, defect, fault, failure, error, quality, risk,

evaluation

Section II.2 - Planning of the Mapping Study 26

relevant literature and avoid missing some primary studies due to buzzwords and

jargon, a thorough search is performed considering the MapReduce and Big Data related

technologies enumerated in Table 1.

• Quality related terms correspond with the Quality (sub)characteristics of ISO/IEC

25010:2008-2011 [72] and ISO/IEC 9126-1:2001 [73] and their synonyms (outcome),

together with other testing terms (intervention). Both are enumerated in Table 2.

This chapter plans a wide search with 9384 combinations of terms in the paper title, obtained

by 92 MapReduce technology-related terms and 102 quality-related terms.

II.2.2.2 Data Sources

The potential primary studies may be found in different data sources. This mapping study

searches for the studies in the following data sources, grouped in four categories:

a) High-impact journals and conferences. The potential studies are obtained through DBLP

[74] with the search terms in 31 JCR journals [75] and 53 CORE conferences [76]

enumerated in Appendix VIII.1. The journals and conferences selected are related to the

software testing or Big Data.

b) Electronic databases. The search terms are queried in IEEE Xplore [77], ACM Digital

Library [78], Scopus [79], Ei Compendex [80] and ISI Web of Science [81], that are

employed in other mapping studies of software testing [82] and recommended by

Kitchenham et al. [83].

c) Other journals and conferences. Relatively new topics like MapReduce and Big Data are

more likely to be published in specialized workshops/conferences [33]. The non-JCR

journals and non-CORE conferences related to software testing or Big Data could be a

good source of potential

II.2.2.3 Study Selection

Study selection is more difficult in systematic mapping studies than in systematic reviews [83].

Some potential primary studies obtained from the data sources might not contain information

about software testing in the MapReduce programs. In this mapping study a series of filters

selects only the studies that contain relevant information that answers the research questions.

The potential primary studies that do not pass the filters are excluded, and the remainder make

up the primary studies used to answer the research questions. The filters consist of the following

exclusion criteria applied in the following order:

C1) Exclusion filter by year. A potential primary study is excluded when the publication year

is before the MapReduce paper (2004) or before the creation of technologies/fields

expressed in the search terms of Table 1.

C2) Exclusion filter by area. Potential primary studies are excluded when their research is

not about Computer Science or Information systems.

C3) Exclusion filter by field. Potential primary studies are excluded when they do not contain

Big Data information.

C4) Exclusion filter by topic. The final filter only includes the studies about software testing

in the MapReduce programs; the remainder are excluded.

Section II.2 - Planning of the Mapping Study 27

For example, the last filter excludes papers focused on software testing of the underlying

technology such as the distributed system Hadoop, cloud computing, net or operative system,

among others. Despite the normal execution of MapReduce programs depends on all these

technologies, usually they are mature enough and the developer/tester is only focused on the

MapReduce application. Some papers that have been excluded are intended to improve the

performance of Hadoop through infrastructure failure forecasting [84] or to inject infrastructure

failures in a distributed file system [85], among other examples that also do not test the

MapReduce applications. Some other papers employ the MapReduce and Big Data capabilities

to speed up testing in other non-MapReduce programs. For example, [86], [87] are frameworks

to perform unit testing and mutation testing in general programs taking advantage of the

parallel capabilities of the MapReduce processing model.

II.2.3 Data Extraction

The relevant information from the primary studies is extracted through a template divided in

two parts. The first part is in general based on checklists of international standards related to

the research questions, and the second part is focused on other data that could be interesting

to analyze. The data extracted for answering the research questions are:

RQ1 “Why is testing performed in MapReduce programs?” Extraction of the arguments

employed in the primary study to perform testing in MapReduce programs.

RQ2 “What testing is performed in MapReduce programs?” The data are extracted following

two checklists that characterize the type of testing performed in each primary study: a checklist

of the 31 ISO/IEC 25010:2011 Quality (sub)characteristics [72], and a checklist of the 17

ISO/IEC/IEEE 29119-4:2015 Quality-Related Types of Testing [88].

RQ3 “How is testing performed in MapReduce programs?” The data are extracted by following

a checklist of the 11 ISO/IEC/IEEE 29119-1:2013 Annex A: Test activities [30], together with a

checklist of test areas as follows: Testing specific to MapReduce programs, Testing not specific

to MapReduce programs (other technologies/paradigms can be tested), Unclear and Not

applicable. In addition, the following information about the tools used for testing is extracted:

Does the study include the creation of a specific tool or use an existing tool? Is the tool based

on another tool? Is the tool available? For example, if the tool is accessible via the Internet or

with some type of open source license.

RQ4 “By Whom, where and when is testing performed in MapReduce programs?” The data are

extracted following three checklists focused on the roles, the lifecycle and the test level. The

first checklist contains the following roles: Manager, Analyst, Architect, Tester, Test manager,

Test strategist, Other stakeholders, Unclear and Not applicable. These test roles are described

Fig. 6 Test levels based on ITSQB and adapted to MapReduce

MapReduce

System testing

Acceptance testing

Other modules:
• MapReduce
• Hadoop
• Other
• Nothing

Other modules:
• MapReduce
• Hadoop
• Other
• Nothing

Integration MapReduce testing Integration testingIntegration testing

Map Reduce

Unit testing Unit testing

Section II.2 - Planning of the Mapping Study 28

in the ISO/IEC/IEEE 29119-1:2013 Annex E [30]. The second checklist contains the 6 ISO/IEC

12207:2008 Software Implementation lower level Processes [89] and the 11 ISO/IEC 12207:2008

System Context Technical processes [89]. The third checklist is based on ISTQB test levels [90]

and adapted to MapReduce with two changes represented in Fig. 6: (1) Unit testing is divided

into “Unit testing in Map function” and “Unit testing in Reduce function”, and (2) “Integration

testing” is for the integration of the MapReduce program with other modules, whereas

“Integration MapReduce testing” is for the integration between Map and Reduce functions.

Other data are extracted in the mapping study because they may be interesting when

characterizing the results and obtaining new findings. These data are extracted in a checklist

with the following information about the research validation of the studies:

a) The different types of validation summarized by Mary Shaw [91]: Analysis, Evaluation,

Experience, Example, Persuasion and Blatant assertion.

b) Other characterizations of the research: Validation with external programs, Validation

with own programs, Another type of validation, Without validation, Unclear, Other and

Not applicable.

II.2.4 Data Analysis

The data extracted from the primary studies are analyzed in order to answer the research

questions. In empirical software engineering there are several methods [92] based on different

approaches according to the type of data or research questions, among other things. In this

mapping study the analysis is performed using (1) thematic analysis [93] to answer RQ1, and (2)

meta-ethnography [94] for the remaining research questions. These methods are focused on

qualitative data but analyze the data in a different way.

The thematic analysis method is selected to respond to RQ1 (Why is testing performed in

MapReduce programs?) because it extracts a taxonomy of the reasons for testing from the

primary studies. Then RQ1 is answered by a frequency analysis of these reasons for testing. This

thematic analysis is performed with a grounded approach [95] that consists of the following

steps:

1. Reading of the primary studies.

2. Extraction of the segments/phrases that include the reasons for testing.

3. Creating a group of labels for each previous segment/phrase based on the type of reason

for testing.

4. Refining all labels several times until a few labels are obtained that compose a taxonomy

of the reasons for testing.

5. Frequency analysis of the reasons for testing employed in the primary studies based on

the previous taxonomy.

Meta-ethnography is selected to answer research questions RQ2 to RQ4 because it transforms

the data from the primary studies into a more easily analyzable shared context. This method is

employed in software engineering [96] and translates all primary studies on data under several

facets that contain the checklists described in the data extraction (Subsection II.2.3). Once the

data are extracted from the primary studies in these checklists, the research questions are

answered by a frequency analysis. This mapping study follows the 7 steps proposed by Noblit et

al. [94]:

Section II.3 - Conducting the Mapping Study 29

1. Getting started. The topic under analysis is software testing of the MapReduce programs

and is well studied through mapping study.

2. Deciding what is relevant to the initial area of interest. All primary studies are important.

3. Reading the studies. The primary studies are read in order to extract the relevant data.

4. Determining how the studies are related. Primary studies could contain related concepts

or very different concepts. The relationship between these concepts is established

through the checklists of the data extraction of Subsection II.2.3.

5. Translating the studies into one another. The primary studies are translated into

relevant data according to the unified checklists of Subsection II.2.3.

6. Synthesizing translations. This mapping study creates more general concepts by the

answers of research questions. RQ2 is answered by a frequency analysis of their two

checklists, whereas both RQ3 and RQ4 are answered through their three checklists

described in Subsection II.2.3.

7. Expressing the synthesis. The research questions are answered and discussed in Section

II.4 following the previous steps of the mapping study.

II.3 CONDUCTING THE MAPPING STUDY

This section describes how each step of the systematic mapping study was conducted and how

all problems were overcome. The planning of the systematic mapping study was refined by the

three authors after several iterations.

Search terms: In the first instance, a small number of specific search terms such as MapReduce

and Big Data were defined, but some relevant literature did not match with this search. For

example, Hadoop is a distributed system that supports the execution of MapReduce programs

and non-MapReduce programs, but there are several papers that use Hadoop and MapReduce

words interchangeably. Other relevant papers do not include the word MapReduce in the title,

but do contain other words related to the MapReduce/Big Data ecosystem like Hive, PIG or

Spark. Finally, we refined the research method by adding more search terms in order to obtain

the maximum amount of relevant literature.

Data sources: The data sources were also refined several times, especially the journals and

conferences/workshops. Initially, we planned to analyze only the top journals and conferences

such as ICSE. However, we observed that the relevant literature of software testing in

MapReduce were not published at all in these journals and conferences. Finally, we added more

journals and conferences/workshops that might contain relevant literature using both SEWORLD

[97], DBLP [74] and our research experience. We added both JCR/CORE and non-JCR/non-CORE

venues because a significant number of primary studies are published in this heterogeneity of

venues, as we discuss in Section II.4.

Study selection: For each data source, one author developed queries using the large number of

search terms. This search was difficult to carry out because the software engineering search

engines did not adequately support the mapping studies searches [98]. To avoid this problem,

we created a program that splits the 9384 combinations of search terms in 2346 searches and

simulates a human performing these requests. The potential primary studies were obtained over

a period of approximately two months in order to avoid bans in the search engines due to a high

number of requests. After some months we tried to use this program in another mapping study,

but the program was obsolete due internal changes in the search engines. As other researchers

Section II.3 - Conducting the Mapping Study 30

have noted, we also observe that digital search engines are not well-suited to complex searches

[83].

After two months of both automatic and manual searches in 2311 proceedings/volumes (624

from JCR/CORE venues and 1687 from non-JCR/non-CORE venues), in July 2016 we obtained

more than 100000 studies represented in Fig. 7. Then we removed those that were retrieved

several times across different data sources, obtaining thereafter more than 70000 potential

primary studies. The majority of these studies were clearly non-relevant for this mapping study

because they were not focused on software testing in the MapReduce programs. Following some

practices of other systematic reviews of both social science [99] and software engineering [100],

those studies that were clearly non-relevant were filtered out by only one of the authors,

whereas those studies that were potentially relevant were filtered in parallel by two of the

authors. The first filter was applied by only one of the authors because it only excludes those

studies that are either published before MapReduce or before the technology that matches the

query. For example, there were several studies excluded in the first filter because despite the

fact that they were retrieved by the words “testing” and “pig”, they were published before the

Apache Pig technology (2008) was developed. These studies were usually concerned with testing

pigs (the animals) rather than Pig (the software). The majority of studies could be

excluded/selected after only reading the title, but in other cases the author needed to read the

abstract or the whole paper, in particular when considering the last filters. After the first filter,

there were still more than 14000 potential primary studies in consideration.

The second filter excludes those studies that are not related to either computer science or

information systems. This filter was also applied by only one author because the studies

excluded are clearly non-relevant, such as those about testing pigs (the animals) published after

Fig. 7 Study selection of the primary studies

High impact journals

and conferences

Electronic

databases

Other journals

and conferences

Expert

opinions

Remove
Duplicates

332 studies

291 studies

261 studies

193 studies

325 studies
C1

C2

C3

C4

Remove
Duplicates

116.540 studies

14.205 studies

1466 studies

1287 studies

77.006 studies

Remove
Duplicates

179 studies

169 studies

150 studies

139 studies

179 studies
C1

C2

C3

C4

C1

C2

C3

C4

Remove
Duplicates

37 studies

37 studies

37 studies

36 studies

37 studies
C1

C2

C3

C4

6 studies 43 studies 5 studies 22 studies

76 studies
Remove Duplicates

Remove old versions

65 studies

54 primary studies

Journals (JCR)
Conferences (CORE)

Other journals and
confererences

Web of Science, Scopus,
IEEE explore, ACM DL,

Engineering Village

Search terms Experts

C1: Year
C2: Comp. Science & Information systems
C3: Big Data related
C4: MapReduce quality

Section II.3 - Conducting the Mapping Study 31

2008. After the second filter was applied, there were still more than 1500 potential studies. The

third filter excludes those studies that are not related to the Big Data field. This filter was applied

by one author and excluded a few studies, some of which are about “cascading failures” in

computer science models or databases that are clearly unrelated to the Big Data field. After

applying the third filter, there remained more than 1300 potential primary studies.

The fourth filter obtains those studies focused on software testing in the MapReduce processing

model. This filter and the selection of the primary studies were almost completely applied by

two of the authors and the disagreements were discussed by all authors. In the first instance

one of the authors excluded 334 studies that are non-relevant because are related to Big Data

Analytics. The remaining studies, numbering 1043, were related to Big Data Engineering and

were filtered independently by two of the authors until the primary studies to be used in this

chapter were obtained. Both authors agreed on 1002 studies: 50 of them passed the filter and

were selected as primary studies, and the other 952 did not pass the filter. In contrast, both

authors disagreed on 41 studies: one of the authors considered that 35 of them should pass the

filter and be selected as primary studies, whereas the other author considered that the other 6

studies should also pass the filter and be selected as primary studies. Despite 96% agreement

between both authors, we applied the Kappa coefficient to statistically measure the inter-rater

agreement [101]. We obtained 0.69 as a Kappa coefficient with [0.60-0.78] as a 95% confidence

interval. This is usually interpreted as substantial [101] or moderate [102] agreement between

both authors during the selection of the primary studies. The 4% disagreement (representing 41

studies) were discussed and analyzed by the three authors until total agreement of the primary

studies to be used in this chapter was achieved. The majority of disagreements were caused by

an initial incorrect definition of the systematic mapping study plan because one author

considered that studies about software testing in Hadoop system should be considered as

primary studies, and the other author did not. We refined the plan indicating that the primary

studies are only those about software testing in the MapReduce processing model and not those

about software testing in other technologies or frameworks that do not comprise MapReduce.

Other disagreements happened because one of the authors did not consider those papers about

software testing in MapReduce abstractions like Pig and Hive as primary studies. There were

other disagreements, for example those papers that instead of testing are related to debugging.

After all authors had discussed and resolved the disagreements, 65 studies passed the filter.

Some of these studies are the continuation of the same research, such as a conference paper

with an improvement published in a journal. The old versions of the studies were excluded

keeping only the latest study. There were several papers from the HP Labs team, but we

considered that only three of them are considered primary studies because these studies were

distinct from each other. As Section II.4 discussed, one of them [103] is focused on obtaining the

execution time with microbenchmarks, whereas the other [104] is focused on the cloud cluster

using different techniques, and the final study [105] is focused on Pig queries. Finally, 54 unique

studies were selected as primary studies.

Data extraction: In order to perform the data extraction, each one of these 54 primary studies

were read at least once by two of the authors. Despite the guidelines from Kitchenham et al.

[67] which suggest that at least two researchers extract the data independently, other

researchers consider it practical that one author extracts the data and the other author checks

the extraction [98]. This last practice is applied in software engineering by other systematic

reviews [106] and we also extracted the data in similar way. One of the authors extracted the

data from the primary studies, another author checked the extraction, and the doubts were

discussed and resolved by the three authors.

Section II.4 - Results 32

Data analysis: Once the data were extracted, all authors discussed the interpretations and

potential results. Then the three authors started to write the findings and the report.

The current systematic mapping study took a lot of time despite not being the first conducted

by our research group. The time consumed is one of the main criticisms of systematic reviews

[83] .We specifically expended more time in: (1) creation and execution of a program to support

the high number of search queries, (2) selection of the primary studies from a large amount of

literature, (3) extraction of the data from each primary study, and (4) refinement of the research

method. We performed the systematic mapping study two times, initially in 2015 and finally

updated with the literature of 2016.

II.4 RESULTS

The results were obtained through the execution (conducting) of the systematic mapping study

that answers the research questions. The primary studies are summarized in Subsection II.4.1.

From these, the data were extracted, and the analysis is developed in Subsection II.4.2

answering the research questions. Other results that do not answer the research questions but

remain relevant in characterizing the state-of-art of software testing in MapReduce applications

are summarized in Subsection II.4.3. Finally, the general results are discussed in Subsection II.5.

II.4.1 Primary Studies

In this chapter, there are 54 primary studies that are derived from more than 70000 potential

studies obtained though the search process detailed in Fig. 7. These primary studies are detailed

in Appendix VIII.3 with the year of publication, type of contribution and a summary of their

contents.

The MapReduce processing model was described in 2004, but the software testing efforts in this

field according to the primary studies only started in 2010 with only 1 study and after six years

and six months the number of primary studies had increased to 54. Table 3 summarizes the

frequencies of these primary studies over time and reveals that the research efforts of the topic

may have grown because after 2013 the attention increases.

The different types of validations employed in the research are summarized in Table 4. The

majority of the studies validate their research through examples (41%) or experience (35%). In

76% of the studies, the validation is carried out by applying the testing research in a program(s),

but in 11% of the primary studies the research is not validated.

Testing in Big Data has opened up new challenges [107], especially in the understanding of the

data and its complex structures [108]. Gudipati et al. [109] establish a classification of testing in

the Big Data field. This study includes the validation of the MapReduce process together with

other non-functional characteristics like performance and failover. All of these characteristics

are among the main challenges in Big Data testing [108] . In order to overcome these challenges

Table 3 Frequency of the primary studies over time

Statistics 2010 2011 2012 2013 2014 2015

2016 until

July

Frequency 1 (2%) 7 (13%) 4 (7%) 19 (35%) 12 (22%) 10 (19%) 1 (2%)

Absolute frequency 1 (2%) 8 (15%) 12 (22%) 31 (57%) 43 (80%) 53 (98%) 54 (100%)

Section II.4 - Results 33

though software testing, it is recommended to deploy a distributed environment like

production, preferably in the cloud [109], [110].

Software testing can be performed in different dimensions and some authors suggest addressing

the three Vs of Big Data (Volume, Velocity and Variety). In the case of high Volume, it could be

difficult to check whether the test case output is the output expected, and the use of automatic

tools can be helpful [109]. In the case of Variety such as semi-structured or un-structured data,

it can be helpful to transform them in a structured way [109]. To test the Velocity, it is

recommended to design performance tests [109]. In addition to Volume, Variety and Velocity,

other authors suggest considering the Veracity through data cleaning and normalization [110].

Those four Vs have an impact not only on the program execution, but also on the performance

tests [111]. Zhenyu Liu [111] classifies the performance testing in Big Data as: (1) concurrent

test (the impact of multiple users and applications in concurrency), (2) load testing (realistic data

loads to analyze the response of the program), (3) stress test (testing under extreme data), and

(4) capacity test (the analysis of the resources that can be used).

The majority of the primary study papers are focused on capacity and load testing. These studies

are summarized in Subsection II.4.1.1, whereas those primary studies that are more related to

the functionality are described in Subsection II.4.1.2.

II.4.1.1 Performance testing and analysis

In the primary studies, performance analysis is mainly addressed by the simulation of program

executions, or by evaluation of a performance prediction model. These prediction models

characterize performance based on different kinds of input parameters. The model of Song et

al. [112] predicts the execution time given some characteristics about both the input dataset,

the program functionality and the programming cluster. In addition, other models obtain the

execution time by also considering the file system [113]. The prediction models can have

different goals beyond the execution time, for example the Yang et al. model [114] helps to

obtain the values of the input parameters that achieve the best execution time. The tester varies

the input parameters (the network or the locality of the data, among others) and then analyzes

the impact in performance.

Performance can be predicted by using a stochastic approach, for example by Stochastic

PetriNets [115]. Another stochastic model [116] also considers the MapReduce tasks that are re-

executed due to frequent failures. The performance of MapReduce and Big Data applications

can also be evaluated through large scale stochastic models by Mean Field Analysis [117].

Table 4 Number of primary studies per type of validation

 Number of studies

Analysis 7 (13%)

54

(100%)

Evaluation 0 (0%)

Experience 19 (35%)

Example 22 (41%)

Persuasion 0 (0%)

Blatant assertion 6 (11%)

With

validation

Over

programs

External programs 30 (56%)
41 (76%)

47 (87%) 54

(100%)

Own programs 12 (22%)

Other validation 8 (15%)

Without validation 6 (11 %)

Section II.4 - Results 34

While some models predict performance by analyzing the execution time of several samples

[118] or considering previous executions [103], other models consider some specific

characteristics of the MapReduce execution. The Vianna et al. model [119] considers the

influence over the performance of MapReduce tasks that are executed in parallel. The network

is another issue that can cause bottlenecks in MapReduce programs and several models consider

the network in order to predict the performance [120], [121]. Others also consider the task

failures and I/O congestion [122].

Together with the network, memory can cause performance issues, especially in iterative

programs or those with high I/O operations. The performance of the shared-memory

computation programs can be predicted with the Tanzil et al. model [123], whereas in those

programs with Remote Direct Memory Access, the Wasi-ur-Rahman et al. model [124] can be

used. Apache Spark 3 programs process the data using distributed memory abstraction and their

performance can be predicted by a model that executes a sample of data [125].

The cluster that executes MapReduce programs can also influence performance, especially

when this cluster is formed by a heterogenic infrastructure. In these clusters, the Zhang et al.

model [104] predicts performance within the bounds of upper and lower execution time.

Another model that can predict the performance in these clusters employs the machine learning

technique Support Vector Machine [126]. There are several clusters deployed in the cloud to

obtain several advantages in terms of elasticity and cost. For programs executed in these

clusters, performance can be predicted modeling the systems with Layered Queueing Network

[127]. In the case of I/O intensive programs in the cloud, performance can be predicted using a

CART (Classification And Regression Tree) model [128]. When the programs executed in the

public cloud have deadline requirements to satisfy, performance can be predicted with the

Locally Weighted Linear Regression model considering the previous execution and the data

executed in parallel [129]. For those programs that are not only executed in a public cloud, but

in a hybrid cloud, their performance can be predicted with the Ohnaga et al. model [130].

Several frameworks transform queries into MapReduce jobs, such as Hive [131] and Pig [132].

The execution time of the Hive SQL-like queries may be forecast using multiple linear regression

to predict the execution time of all the MapReduce jobs generated from these queries [133].

The multiple regression analysis can be also used to predict the execution time of the join

queries in Pig programs [134]. In contrast, the Zhang et al. model [105] predicts the performance

of Pig programs considering the previous executions.

In addition to the prediction models, the testers can simulate the execution of the programs to

analyze their performance in a fine-grained way. As with the prediction models, the simulators

also consider characteristics about the input dataset, the program functionality, the

programming cluster and the file system [135]. The MRPerf simulator [136] considers the inter

and intra rack interactions over network using ns-2, and can be combined with other simulators,

such as DiskSim. The Chauhan et al. simulator [137] is based on MRPerf but including, among

others elements, some random time due to operating system scheduling and network

communication delays.

The execution time of MapReduce programs can also be obtained using the modelling language

proposed by Barbierato et al [138]. The tester can also monitor the execution of MapReduce

programs and test cases, obtaining charts to evaluate performance and potential bottlenecks

[139]. Villalpando et al. [140] propose a model for the Big Data application establishing a

Section II.4 - Results 35

relationship between performance and reliability measures based on the international standard

of quality ISO/IEC 25010 [72].

Despite there being several research lines concerned with predicting the execution time, there

is no comprehensible comparison between them. In general, these studies are evaluated only

with a few different case studies. The scientific contribution of these prediction models can be

improved with empirical evaluation against other models using a standardized benchmark.

The main difference between these models is not just the technique/approach employed, but

also the parameters used by the model. Different characteristics of the input dataset, program

functionality, programming cluster and file system are considered as parameters, for example:

size of data or number of <key, value> pairs (input dataset), complexity or overhead of Map

(program functionality), number of CPU cores or racks (programming cluster), and number of

HDFS replicas or the data transfer time for an HDFS block (file system).

There are a lot of different parameters, but there is no clear indication of which parameters have

more influence on performance. The contribution of the performance prediction studies can be

improved evaluating which parameters really influence performance and which do not. Then

the prediction models can be designed with a more standardized subset of parameters that have

a notorious influence on performance.

II.4.1.2 Functional testing

Misconfiguration is one of the most common problems that lead to memory/performance issues

in MapReduce [141]. However, according to the empirical study by Ren et al. [28], users rarely

tune the configuration parameters that are related to performance. Users usually only turn the

configuration parameters that are related to failures [28]. Another empirical study analyzes 200

production failures and determines that the majority of failures are related to the data, and only

1.5% are related to the performance (out of memory) [142]. In production there are several

programs that do not finish their execution; Kavulya et al. [27] indicate that around 3% of

programs have this problem, and a broader study indicates this percentage falls between 1.38%

and 33.11% [28].

An analysis of 507 programs indicates at least 5 different kinds of faults caused by the non-

deterministic execution of the MapReduce [29]. The current thesis is focused in these faults.

Camargo et al. [143] classify the specific faults of MapReduce, whereas our initial work [38]

classify those caused by the non-determinism execution. Chen et al. [144] propose a formal

approach to detect these faults caused by non-determinism. In contrast, Csallner et al. [145]

employs symbolic execution to check the program under test. Another technique to detect the

faults caused by non-determinism dynamically checks the properties of the program under test

with random data [146]. One of the reasons for the non-deterministic execution is the tolerance

of infrastructure failures. There are several studies that propose to inject infrastructure failures

in the test case design [147]. Failure Scenario as a Service (FSaaS) [148] injects infrastructure

failures into a cluster deployed in the cloud.

Several testing techniques are devised in order to generate test inputs aimed at detecting

functional faults, such as those caused by nondeterministic execution or other semantic errors.

The MRFlow testing technique [53] generates the test coverage items that can be used to

generate test inputs based on the data-flow technique adapted to the MapReduce processing

model. Another technique to generate data of the test cases employs a bacteriological algorithm

aimed to kill some semantic mutants specific to MapReduce which varies both the number of

Section II.4 - Results 36

the Reducers and the existence (or not) of the Combiner functionality [149]. In those Big Data

ETL (Extract, Transform and Load) programs that integrate several technologies (MapReduce,

Pig, Hive, among others), a subset of representative data for test can be obtained from the

dataset through input space partition together with constraints [150]. In dataflow programs like

Pig, the test inputs can be generated using dynamic-symbolic execution in the control-flow

graph of the program [151].

Other kinds of checks can be performed in MapReduce programs. Dörre et al. [152] propose an

automatic checker that statically detects incompatibilities between the types of the <key, value>

pairs processed by MapReduce programs. Rabkin et al. [153] statically analyze the configuration

parameters used by different frameworks, including Hadoop. The MapReduce developers and

testers should analyze the configuration parameters used because 17% of Hadoop options are

not documented and 6% are not used in the code. The main Big Data frameworks can be

affected in the same way as Hadoop because these issues are common in open-source programs

[153]. The correctness of MapReduce programs can also be verified formally through proofs

modelling the specification as Coq functions [154].

II.4.2 Analysis

The primary studies contain the answers to the research questions, but this information is

hidden inside them. The analysis obtains valuable information in order to answer the research

questions based on the data extracted from the primary studies. The data were extracted

following the template defined in Subsection II.2.3 and then analyzed by the methods described

in Subsection II.2.4. In the following subsections the primary studies are analyzed, classified and

summarized in order to obtain the answer to each research question systematically.

II.4.2.1 RQ1 Why is testing performed in MapReduce programs?

MapReduce programs are tested for several reasons. A model/taxonomy of these reasons were

obtained by applying the thematic analysis method to the primary studies, as described in

Subsection II.2.4. The reasons for testing obtained are:

• Performance related: issues derived from the performance goals, service level

agreements, size of the data, performance under infrastructure failures and

prediction/analysis/optimization of performance.

• Failure related: the specific faults of MapReduce programs and the number of programs

that fail in production.

• Improper use: not all programs fit correctly in the MapReduce processing model.

• Data related: the challenges related to schema-less data and poor data quality.

• Configuration related: the misconfiguration of the infrastructure or program parameters

may produce a failure.

• Time related: the programs may fail after a long time of resource usage.

• Cost related: testing can be carried out in order to reduce the cost of development,

resource utilization and so on.

• Other: the reasons that do not fall in another category of the model/taxonomy of the

reasons but do not constitute a new category of reasons.

For each of the above categories of reasons for testing, Table 5 indicates the number of primary

studies that details these reasons. Note that a primary study can contain one or more reasons

Section II.4 - Results 37

for testing. In Table 5, each reason for testing is also classified based on the degree of formality

of the evidence in accordance with the following types: reasons with formal evidence and

reasons with informal evidence.

Reason with formal evidence: the reason for testing is detailed in the primary studies empirically

or with some rigorous evidence of this reason to test. For example, if one paper performs an

extensive analysis of several programs and detects that testing is necessary because a lot of

programs crash in production, this would be considered a reason with formal evidence.

Reason with informal evidence: the reason for testing is not clearly explained or not detailed in

the primary studies due to the absence of rigorous analysis of the evidence for this reason to

test. For example, if a paper indicates that the testing is necessary because the developers do

not know how to configure the performance parameters of MapReduce programs, this would

be considered a reason with informal evidence.

The most frequent type of reason for testing is “performance related”, being described in 30

primary studies and representing 49% of the total reasons given in all primary studies, followed

by “failure related” with 14%, “data related” with 12%, and “cost related” with 8% of the total

number of reasons. Considering the formal evidence of the testing reasons, “performance

related” is also the main reason in the primary studies with 6% of the total reasons (5 of formal

evidence out of a total of 17 of formal evidence), followed by “failure related” and “improper

use” with 4% of total reasons (3 of formal evidence out of a total of 17 of formal evidence).

In the model/taxonomy obtained through the analysis of the primary studies, the 41

“performance related” reasons for testing were sub-divided in the following sub-categories of

reasons:

• Optimization/improvement of application performance: testing is aimed at the

improvement of program performance.

• Analysis of application performance: understanding of performance to detect

bottlenecks, among other issues.

• Influence of the infrastructure on application performance: whereas MapReduce

applications can be designed without considering the infrastructure, program

performance is influenced by the production infrastructure.

Table 5 Number of primary studies per type of reason for testing

Types of reasons
Number of

papers

Number of formal

reasons

Number of informal

reasons

Number of

total reasons

Performance related 30 5 (6%) 36 (43%) 41 (49%)

Failure related 11 3 (4%) 9 (11%) 12 (14%)

Improper use 2 3 (4%) 1 (1%) 4 (5%)

Data related 9 2 (2%) 8 (10%) 10 (12%)

Configuration related 3 2 (2%) 1 (1%) 3 (4%)

Time related 2 2 (2%) 0 (0%) 2 (2%)

Cost related 7 0 (0%) 7 (8%) 7 (8%)

Other 4 0 (0%) 4 (5%) 4 (5%)

 17 (20%) 66 (80%) 83 (100%)

Section II.4 - Results 38

• Influence of dataset on application performance: in the same way that the infrastructure

impacts performance, the dataset used in production also make an influence.

• Fulfill SLA or performance goals: the reason for testing the program is to fulfill service

level agreements or other performance goals such as deadlines.

• Other: the reasons that do not fall in another sub-category of the model/taxonomy of

the performance reasons but do not constitute a new sub-category of reasons.

For each one of the above sub-categories of testing that are related to performance, Table 6

indicates the number of the primary studies and their reasons for testing.

From the 41 “performance related” reasons for testing, the most frequent are focused on the

analysis (27% of “performance related” reasons) and optimization of performance (27% of

“performance related” reasons), followed by the fulfillment of performance goals (24% of

Table 6 Number of primary studies per type of performance-related reason

Types of “performance

related” reasons

Number

of papers

Number of

formal reasons

Number of informal

reasons

Number of

total reasons

Optimization/improvement

of application performance
11 0 (0%) 11 (27%) 11 (27%)

Analysis of application

performance
11 0 (0%) 11 (27%) 11 (27%)

Influence of infrastructure

in application performance
4 3 (7%) 2 (5%) 5 (12%)

Influence of dataset in

application performance
2 0 (0%) 2 (5%) 2 (5%)

Fulfill SLA or performance

goals
10 2 (5%) 8 (20%) 10 (24%)

Other 2 0 (0%) 2 (5%) 2 (5%)

 5 (12%) 36 (88%) 41 (100%)

Table 7 Number of primary studies per ISO/IEC 25010:2011 Quality (sub)characteristic

 Number of studies

ISO 25010:2011

System/software

product quality

Functional

suitability

Functional Completeness 2 (4%)
14

(26%)

46 (85%)

Functional correctness 14 (26%)

Functional appropriateness 2 (4%)

Performance

efficiency

Time-behaviour 32 (59%)
35

(65%) Resource utilisation 14 (26%)

Capacity 1 (2%)

Reliability

Maturity 1 (2%)

3 (6%)
Availability 1 (2%)

Fault tolerance 1 (2%)

Recoverability 3 (6%)

Other studies
Characterization studies 4 (7%)

8 (15%)
Overview of testing 4 (7%)

Section II.4 - Results 39

“performance related” reasons). The remainder of reasons for testing related to performance

analyze the influence of the infrastructure (12% of “performance related” reasons) and the

dataset (5% of “performance related” reasons), followed by other issues (5% of “performance

related” reasons).

Of all the reasons for testing the programs, only 20% are based on formal evidence, and the

remaining 80% are based on informal evidence. Regardless of the formality of evidence, the

reasons for testing MapReduce programs most frequently described in the primary studies

include “performance related”, especially for the analysis, optimization and fulfillment of

performance goals. The least commonly cited reasons for testing are “time related”,

“configuration related”, “improper use” and “other”.

II.4.2.2 RQ2 What testing is performed in MapReduce programs?

The planning of Subsection II.2.4 proposes a meta-ethnography [94] to answer this research

question. The data extracted from each primary study is categorized against two facets in order

to answer RQ2:

a) Quality (sub)characteristics for each study according to the ISO/IEC 25010:2011 [72]

represented in Table 7.

b) Quality-Related Types of Testing proposed in each study based on ISO/IEC/IEEE 29119-

4:2015 [88] and summarized in Table 8.

The majority of efforts are focused on “performance efficiency”, accounting for 65% of the

studies, then on “functional suitability” with 26% of the studies, and finally on “reliability” with

6% of the studies. Regarding the type of testing, 59% apply “performance-related testing”, 22%

employ “functional testing” and 4% use “backup/recovery testing”.

The results obtained through the combination of both facets are more or less those expected:

“performance-related testing” is related to “performance efficiency” characteristics, the

“functional testing” to “functional suitability”, and “backup/recovery testing” to “reliability”.

II.4.2.3 RQ3 How is testing performed in MapReduce programs?

This research question is answered through the meta-ethnography [94] proposed in Subsection

II.2.4. In order to answer RQ3, the primary studies were analyzed considering three facets:

a) Testing methods/techniques are summarized in Table 9 according to the test activities

proposed in Annex A of ISO/IEC/IEEE 29119-1:2013 [30].

b) Dependency between the primary studies and the MapReduce processing model is

depicted in Table 10. This table describes whether the testing methods, techniques or

studies are specific to MapReduce or could be applied to other paradigms/technologies.

Table 8 Number of primary studies per ISO/IEC/IEEE 29119-4:2015 Quality-Related Type of Testing

 Number of studies

ISO/IEC/IEEE 29119-4:2015

Types of testing

Performance-Related Testing 32 (59%)

44 (81%) Functional Testing 12 (22%)

Backup/Recovery Testing 2 (4%)

Other studies
Characterization studies 5 (9%)

10 (19%)
Overview of testing 5 (9%)

Section II.4 - Results 40

c) Tools created or used in the primary studies to perform software testing are

characterized in Table 11.

The majority of the papers (74%) focus on testing only the MapReduce-specific parts of the

program. These programs have challenges related to performance issues and the correct

operation of the program under parallel architecture. These issues among others are tested

mainly by “evaluation”, according to 48% of the studies and “simulation” in 17% of the studies.

Other testing activities are used to a lesser degree, such as “structure based” in 7% of the studies

or static analysis in 6% of the studies.

More than half of the studies (65%) do not create or use testing tools in their research. There

are in total 19 tools, where 11 are based on other software testing related tools, and only 5 are

freely available on the Internet with an open source license.

Table 9 Number of primary studies per ISO/IEC/IEEE 29119-1:2013 Test activity of Annex A

 Number of studies

ISO/IEC/ IEEE

29119-1:2013

Annex A: Test

activities

V&V analysis
Evaluation 26 (48%)

29 (54%)

43 (80%)

Simulation 9 (17%)

Te
st

in
g

Dynamic

testing

Structure based 4 (7%)

7

(13 %)
12 (22%)

Specification based 1 (2%)

Experienced based 1 (2%)

Other 1 (2%)

Static

testing

Static analysis 3 (6%)
5 (9%)

Other 3 (6%)

Formal

methods

Model checking 1 (2%)
2 (4%)

Proof of correctness 1 (2%)

Other studies
Characterization studies 6 (11%)

11 (20%)
Overview of testing 5 (9%)

Table 10 Number of primary studies per test area covered

 Number of studies

Specific of MapReduce 40 (74%)
50 (93%)

Not specific of MapReduce 10 (19%)

Other studies Characterization studies 4 (7 %)

Table 11 Number of primary studies per tool created in their research

 Number of studies

Tool created

or used

Based on other
Tool available 3 (6%)

11 (20%)
19

(35%)

Tool not available 8 (15%)

Not based on other tools
Tool available 2 (4%)

8 (15%)
Tool not available 6 (11%)

No tool created or used 35 (65%)

Section II.4 - Results 41

II.4.2.4 RQ4 By whom, where and when is testing performed in MapReduce programs?

The planning of the mapping study described in Subsection II.2.4 proposes a meta-ethnography

[94] to answer the research question through three facets:

a) The different roles that participate in the testing efforts of the MapReduce programs,

described in Table 12.

b) Test levels summarized in Table 13 that contains a characterization of ISTQB test levels

[90] adapted to the MapReduce processing model according to Fig. 6.

c) The development cycle phase according to the Software Implementation lower level

Processes and System Context Technical Processes of ISO/IEC 12207 [89] described in

Table 14.

Table 12 Number of primary studies per role

 Number of studies

Roles
Tester 45 (83%)

49 (91%)
Developer 5 (9%)

Other studies Characterization studies 5 (9%)

Table 13 Number of primary studies per ISTQB test level

 Number of studies

Levels of

testing in

ISTQB

Unit testing
Unit testing Map 16 (30%)

19 (35%)

44 (81%)

Unit testing Reduce 19 (35%)

Integration MapReduce testing 35 (65%)

Integration testing 4 (7%)

System testing 2 (4%)

Acceptance testing 0 (0%)

Other

studies

Characterization studies 5 (9%)
10 (19%)

Overview of testing 5 (9%)

Table 14 Number of primary studies per ISO/IEC 12207:2008 Software Implementation Lower Level Process and
System Context Technical Process

 Number of studies

ISO/IEC 12207:2008 Software

Implementation lower level

Processes

Software Construction Process 3 (6%)

48 (89%)
Software Qualification Testing Process 47 (87%)

ISO/IEC 12207:2008 System

Context Technical processes

Implementation Process 3 (6%)

48 (89%) System Qualification Testing Process 47 (87%)

Software Operation Process 1 (2%)

Other studies
Characterization studies 5 (9%)

6 (2%)
Overview of testing 1 2%)

Section II.4 - Results 42

As expected, the main player for testing the MapReduce programs is the tester, as per 83% of

the studies, and then the developer according to 9% of the studies. Almost all primary studies

(87%) describe testing efforts in the “Software/System Qualification Testing Process” compared

with 6% which focus on “Software Construction or the Implementation Process”. In these

processes, the studies cover in more detail the specific MapReduce parts of the program (Map

and Reduce functions) instead of the other parts. The majority of the research efforts in 65% of

the studies focus on the integration testing between Map and Reduce functions, and then 35%

of the studies cover unit testing at the Map or Reduce functions. To a lesser extent, the testing

efforts are oriented towards the parts of the program that could not contain MapReduce

functions: 7% of the studies consider integration testing between the MapReduce functions with

other parts of the program, and 4% of the studies relate to testing the system. All testing levels

are covered by the primary studies except for acceptance testing.

From these results, it appears that the fulfillment of the contract or user requirements tested in

the acceptance testing level is not greatly affected by the existence of MapReduce functions in

the system. Despite the fact that Big Data programs can contain a composite of several

technologies/programs, testing research efforts focus on testing the MapReduce functions in

isolation from the rest of the system. Few studies consider that a Big Data program can contain

MapReduce functions together with other technologies. Regardless of the test level, the testing

described in the primary studies is mainly performed in the Software/System Qualification

Testing Process.

II.4.3 Summary

The research questions of Subsection II.2.1 were answered through the primary studies, data

extraction and data analysis. A summary is presented below:

RQ1. Why is testing performed in MapReduce programs? There are at least seven reasons for

testing the MapReduce programs. The most frequent reasons are based on performance issues

(to analyze, optimize and fulfill performance goals), the existence of several or specific failures,

the type and quality of the data processed by these programs, and testing to predict the

resources required and efficiently select the resources to be used. To a lesser degree, the other

reasons for testing are the improper use of the processing model or technology, program

misconfiguration or failures after a long period of executions.

RQ2. What testing is performed in MapReduce programs? The majority of the research efforts

in testing the MapReduce programs focus on the analysis of performance, and to a lesser extent

the functional aspects of MapReduce programs.

RQ3. How is testing performed in MapReduce programs? Mainly by evaluation and simulation.

In both cases testing is focused specifically on the MapReduce functions and does not consider

other parts of the program. Several tools are used to perform testing, but few are available on

the Internet.

RQ4. By whom, where and when is testing performed in MapReduce programs? Testing is

mainly performed by the tester in the Software/System Qualification Testing Process and major

efforts focus on the MapReduce program (unit and integration testing between Map and Reduce

functions).

The analysis of several features about the primary studies reveals, in addition to the answers to

the research questions, other findings which are analyzed below.

Section II.4 - Results 43

The relation between the reasons for testing the programs and the type of testing employed in

each study is displayed in Fig. 8. According to Table 8, 59% of the studies focus on performance

testing (RQ2), which is very important because MapReduce applications analyze large quantities

of data. From RQ1 the reasons for testing the programs are obtained and 58% of these reasons

are related to performance (48 reasons of a total of 85 according to the left side of Fig. 8). The

reasons for performance testing and the number of studies that test performance are aligned.

However, according to Table 8, the studies related to functionality only represent 22% of all

studies even though 42% of the reasons for testing are related to functionality (35 reasons of a

total of 85 according to the left side of Fig. 8). There are more reasons for testing functionality

than there are studies about functionality, which can indicate a challenge in the functionality

testing to cover these reasons and improve the quality evaluation of the MapReduce

applications. The current thesis is focused on these functional faults through testing (Chapter

III), debugging (Chapter IV) and operations (Chapter V).

The main test activities in RQ3 are evaluation (seen in 48% of the studies) and simulation (seen

in 17%). These two activities are the most frequent because the majority of studies are focused

on performance testing (59% according to RQ2). Fig. 9 characterizes the test activities (RQ3) and

test levels (RQ4) regarding different types of testing (RQ2). The test levels in each type of testing

are more or less similar to the answer to RQ4: the principal efforts are at the integration testing

level of Map and Reduce functions and to a lesser degree at unit level. However, the test

activities are different depending on the type of testing: performance testing employs

evaluation and simulation to predict the time of execution and resources required, but

functionality testing performs a variety of different test activities considering specific

characteristics of the MapReduce processing model (static testing, structure based, formal

methods, experience based and specification based).

The majority of the studies are published in conferences (76%) and there are a few studies

published in a high-impact journal (13%). Despite the fact that the number of research lines of

Fig. 8 Number of reasons for testing and primary studies per type of study

5 4

2

4 3 3

7

4 33 4

2

3

4

Backup

Recovery Testin
g

Functio
nal

Testin
g

Perfo
rm

ance

related Testin
g

Characteriz
atio

n

study
Overview

of te
stin

g

Type of study

Reasons for testing according

to the type of study

5

4 3

7

2 25 1

4Other

Improper
use

Configuration
related

Performance
related

Data
related

Cost
related

Time
related

Failures
related

Backup

Recovery Testin
g

Functio
nal

Testin
g

Perfo
rm

ance

related Testin
g

Characteriz
atio

n

study
Overview

of te
stin

g

Type of study

Number of studies which try to cover a reason

for testing and classified by the type of study

1

11

11

1 1

1

1 Functionality related

Performance related

Section II.4 - Results 44

testing in MapReduce is growing, the validation of these approaches is still simply through

experience or case studies focusing on only a few programs, which are sometimes created by

the researcher. According to Table 4, 11% of studies are not validated, 41% are validated with

examples and 22% employ programs created by the researcher to validate their own work. The

research contribution of testing papers can be improved using controlled experiments with a

standard benchmark, especially when considering the performance prediction techniques that

in general are not validated against other techniques. As noted in Subsection II.4.1, performance

prediction techniques employ a lot of different characteristics/parameters of the input dataset,

program functionality, programming cluster and file system. In consequence, there is no clear

intuition of which parameters have more influence in performance. The researchers can

improve the testing techniques with both an accurate analysis of the parameters that have more

impact in performance and rigorous experimentation using other testing techniques as a

baseline.

This chapter analyzed 54 studies in detail, obtained through a wide search that resulted in 1377

Big Data studies by applying a filter (C4), in which only the studies that address software testing

of MapReduce applications pass. Of these 1377 Big Data studies, 1043 are about Big Data

Engineering and 334 about Big Data Analytics. Table 15 classifies the Big Data Engineering

studies based on the research topic in order to characterize the research efforts. This

classification reflects the research efforts to boost the Big Data Engineering field because 44.1%

of the studies improve the technology, 18.31% analyze the technology through studies and

surveys, 9.01% create new technologies to manage and analyze data, and 6.62% are focused on

the state-of-the-art and challenges. Despite the challenges of testing in the Big Data area [108],

[110], there are few research lines which focus on testing Big Data programs in general and

MapReduce programs in particular.

The most relevant findings of this mapping study are enumerated in Table 16 and discussed in

the next Section.

Fig. 9 Number of primary studies per test activity and test level according to the type of testing

1 1

1 1 2 3 1 3 1

1 1 926

M
od

el
ch

ec
ki

ng
P
ro

of
 o

f

co
rr
ec

tn
es

s
S
ta

tic
an

al
ys

is
O

th
er

 s
ta

tic
te

st
in

g
S
pe

ci
fic

at
io

n
ba

se
d

S
tru

ct
ur

e
ba

se
d

E
xp

er
ie

nc
ed

ba
se

d
O

th
er

 d
yn

am
ic

te
st

in
g

E
va

lu
at

io
n

S
im

ul
at

io
n

Test activities

Test activities according to the type of testing

2

3 6 6 2

13 14 28 2 2

Backup/Recovery
Testing

Functional
Testing

Performance
Related Testing

U
ni

t t
es

tin
g

M
ap

 U
ni

t t
es

tin
g

R
ed

uc
e

In
te

gr
at

io
n

M
ap

-

R
ed

uc
e

te
st

in
g

 In
te

gr
at

io
n

te
st

in
g

S
ys

te
m

te
st

in
g

Test level

Test levels according to the type of testing

Section II.5 - Discussion of Results 45

II.5 DISCUSSION OF RESULTS

This Section discusses the main findings obtained in the current systematic mapping study and

enumerated in Table 16. Despite the recent interest in Big Data through several studies

published to improve/study the underlying technology, few of them are focused on software

testing [Finding 1]. Researchers not only have opportunities in software testing for Big Data

programs, but also for MapReduce applications. Although MapReduce is one of the processing

models most frequently used in Big Data, the programs are usually formed by the integration of

a stack/pipe of different technologies. In contrast, the majority of research about software

testing is only focused on the Map/Reduce code, without considering the code of other

technologies of the Big Data stack [Finding 2]. The testing techniques are usually similar to those

employed in general purpose software, and so the researchers should adapt other general

testing research to MapReduce considering the specific characteristics of the processing model.

The majority of studies about software testing in MapReduce applications are focused on

performance using verification and validation test activities such as simulation or evaluation

[Finding 3]. These tests are usually done to predict/forecast/analyze performance through

models that use several parameters characterizing both the program functionality, the

programming cluster and the file system [Finding 4]. Since each of these models employs

Table 15 Number of Big Data engineering studies in the last filter of the mapping study

 Number of studies

Improvements

of technology

Performance 121 (11.6%)

460

(44.1%)

1043

(100%)

Security 81 (7.77%)

Data acquisition, storage and extraction 45 (4.31%)

Fault tolerance and availability 42 (4.03%)

Energy 42 (4.03%)

Improvements outside of Hadoop 35 (3.36%)

Scheduling 34 (3.26%)

MapReduce model 14 (1.34%)

Different frameworks 10 (0.96%)

Other improvements 36 (3.45%)

Studies/Surveys
General quality in Big Data 171 (16.4%) 191

(18.31%) Other 20 (1.92%)

Software testing
For MapReduce programs 64 (6.14%) 103

(9.88%) For non-MapReduce programs 39 (3.74%)

Big Data in the cloud 101 (9.68%)

New frameworks
New Hadoop frameworks 85 (8.15%) 94

(9.01%) Other new Frameworks 9 (0.86%)

State-of-the-art and challenges 69 (6.62%)

Debug 6 (0.58%)

Other 19 (1.82%)

Not applicable (Big Data Analytics) 334

Section II.5 - Discussion of Results 46

different heterogeneous parameters, then it is difficult to understand which are the ones that

really affect performance, as well as the real weight/influence that these parameters have in

performance. Performance testing research could be improved by means of both an analysis of

the parameters used by other researchers, and rigorous experimentation using other models as

a baseline.

According to the research lines, the main reason for testing MapReduce applications is

performance [Finding 5]. Also the majority of the testing techniques for MapReduce applications

are related to performance, as expected. The research lines also suggest that functionality is

another of the relevant reasons to test MapReduce applications, but the actual number of

functional testing techniques is low [Finding 6]. Researchers may have opportunities to devise

new functional testing techniques considering the specific characteristics of MapReduce

programs such as distributed execution and scalability, among others. The functional testing

techniques of MapReduce programs involve different test activities, which include structure-

Table 16 Findings of the mapping study

Id Finding

1 Despite several studies that are aimed at both improving and studying the state-of-art of
Big Data technology, there are in comparison few research lines focused on software
testing of the Big Data programs [Subsection II.4.3]

2 The majority of testing research in MapReduce applications is focused on either Map or
Reduce or the integration of both, and cannot be applied to other processing models
because they are specifically designed for MapReduce [Subsections II.4.2.3 and II.4.2.4]

3 The majority of research is about performance testing, and, to a lesser degree, functional
testing [Subsection II.4.2.2]. This research is about verification and validation analysis,
and, to a lesser degree, about dynamic testing [Subsection II.4.2.3]

4 The prediction/analysis models employed in performance testing use different numbers
of heterogeneous parameters based not only on the MapReduce program functionality,
but also on the cluster infrastructure, file system and data [Subsection II.4.1.1]

5 The most frequent reasons for testing the MapReduce programs are based on
performance issues (analyze, optimize and fulfill performance goals), existence of several
and specific failures, the type and quality of the data processed by these programs, and
testing to predict and efficiently select the resources [Subsection II.4.2.1]

6 There are several rigorous reasons for testing the functionality of MapReduce
applications, such as the percentage of programs that fail in production or the improper
use of both functional semantics and data, but there are not many research efforts
focused on this line of interest [Subsection II.4.3]

7 Whereas performance testing is done by simulation and evaluation, functional testing
employs different test activities, such as static testing and structure-based testing
[Subsection II.4.3]

8 As expected, testing research is focused on the software qualification process to help the
tester [Subsection II.4.2.4]

9 The majority of research neither creates nor uses a tool for testing MapReduce programs
[Subsection II.4.2.3]

10 Software testing research focused on MapReduce applications is usually published in
conferences, and furthermore it is usually published without a strong validation, using
only some case studies instead of rigorous empirical experiments [Subsection II.4.3]

Section II.6 - Limitations of the Mapping Study 47

based, static analysis and formal methods [Finding 7]. The researchers should adapt the

dynamic/static/formal testing techniques of general-purpose software (data-flow,

combinatorial or mutation testing, among others) to MapReduce considering the specific

characteristics of the programming model. In the current thesis, Section I describes a functional

testing technique for MapReduce programs based on Random testing [155], and Partition

testing [156] together with Combinatorial testing [157], [158].

Regardless of performance or functionality, the majority of testing is aimed at helping the tester

in the software qualification process [Finding 8] without tools [Finding 9]. The contributions of

researchers could not only help the testers, but could also help the final users providing

automatic tools to support the design of test cases, and monitoring tools to analyze failures

produced at runtime in production. In the current thesis, Chapter III describes a technique to

detect faults for MapReduce programs during the runtime in production, and Chapter IV support

their debugging.

The majority of studies about software testing in MapReduce applications are published in

conferences and evaluated with some case studies [Finding 10]. Researchers could improve both

visibility and quality by means of rigorous experiments based on a benchmark of MapReduce

programs that can expose functional/performance failures, such as SWIM [159], GridMix [160],

SparkBench [161], BigBench [162] or TPCx-BB [163]. The current thesis is focused on design

faults, but there is no a known benchmark for MapReduce programs that contains design faults.

Then the thesis is evaluated with real-world programs obtained from both Internet and

organizations that are interested in the quality of their MapReduce programs.

II.6 LIMITATIONS OF THE MAPPING STUDY

Despite the fact that both the planning and the execution (conducting) of this mapping study

aimed to avoid bias, some limitations and researcher decision biases could exist [164].

• The results are limited by the academic context because the data sources are focused

on the research field. Bias could be generated if the research papers do not represent

the reality and motivations of software testing in MapReduce programs.

• Following some practices from social science [99] and software engineering [100], the

selection of the primary studies was performed by one author for those papers that are

clearly non-relevant. In contrast, two authors selected the primary studies

independently from 1043 studies that had more chances to be relevant. Both authors

agreed in 96% of studies and obtained a substantial/moderate agreement with 0.69 as

a Kappa coefficient and [0.60-0.78] as 95% confidence interval.

• Despite the authors not finding quality problems in the primary studies, the quality of

these studies was not formally evaluated. The same issue occurs in the majority of the

systematic mapping studies [100] because quality assessment is usually not required

[33].

• The data extraction was performed by one author and checked by another author. This

practice is used in other systematic reviews [106] and some researchers consider it more

practical than when data is extracted by several authors [98].

• Further bias occurs if some research questions cannot be properly answered through

the checklist of the data extraction. In order to minimize this bias, the majority of these

checklists are based on the international standards.

Section II.7 - Summary 48

• Another less important potential bias could occur during the search process if some

primary studies are not found with the search terms or expert opinions. In order to

minimize bias, a thorough search is performed in several databases, journals,

conferences and experts.

In order to avoid bias in the results, all steps are reviewed and some countermeasures are taken

in research questions, the search process, data extraction and data analysis:

1. Research question: created by the Kipling method [70] instead of ad-hoc.

2. Search process:

Search terms: the use of a large number of terms could improve the search process by

obtaining more potential primary studies. Some authors encourage the use of several

short queries instead of long queries [165]. This mapping study searches for a

combination of 92 MapReduce related terms and 102 testing terms obtained from

ISO/IEC 25010:2011 Quality (sub)characteristics [72] 44 with synonyms obtained

through Kitchenham et al. [67] points of view.

Data sources: this study searched 5 electronic databases recommended by Kitchenham

et al. [83] and 2311 proceedings/volumes related to software testing of MapReduce

programs. The other data source taken into account is the opinions of experts in the

field in order to minimize the bias by adding primary studies that could not be found by

the previous search.

Study selection: this mapping study excludes non-relevant studies based on 4 filters.

These filters were reviewed in order to obtain the relevant studies.

3. Data extraction: the majority of the data extracted are based on checklists, in some cases

obtained from international standards and in others created or adapted to the MapReduce

processing model.

4. Data analysis: the methods used in this chapter are employed in software engineering [92].

II.7 SUMMARY

The number of studies on software testing of MapReduce programs has increased during recent

years. A characterization was carried out based on 54 research studies obtained from more than

70000 potential papers. The testing tasks in these programs are normally performed by the

tester in the Software/System Qualification Testing Process due to a combination of the

following 7 reasons: performance issues, potential failures, issues related to the data such as for

example data quality, the reduction of the cost in resources, misconfigurations, improper use of

the technology, time problems or other issues. These reasons for testing assume that both

functional and performance testing are necessary, but the studies employ different approaches:

functional testing considers different aspects of the program (such as specification and

structure) while performance testing is more focused on simulation and evaluation. The current

body of research focuses on performance testing, while there is a challenge in functional testing

due to the importance of this line of research and the lack of research efforts. The current thesis

is motivated on this challenge and focused on the functional faults caused by the wrong design

of MapReduce programs.

The main goal of performance testing in MapReduce studies is to predict the execution time and

the resources required to efficiently execute the programs and satisfy the agreements. From the

Section II.7 - Summary 49

functionality point of view, the goal of the studies is to detect faults considering the specific

characteristics of the MapReduce processing model. Regardless of the type of testing, the

majority of efforts are specific for the MapReduce technology at unit and integration level of the

Map and Reduce functions. This situation may indicate a challenge in the integration of

MapReduce programs with other programs, especially other Big Data stack technologies.

The research into software testing in MapReduce programs is mainly validated with example

programs. There is scope to evolve with better validations and thus improve the research

impact. Despite the lack of maturity, several studies create tools to support testing, but few are

available on the Internet for users or other researchers. In Big Data there are few research

studies related to software testing in comparison to the number of research efforts focused on

improving the technology, which indicates new opportunities in software testing of Big Data in

general, and MapReduce in particular.

The next chapters of the thesis are focused on both software testing and debugging of functional

faults of the MapReduce programs caused by wrong design. The techniques proposed are

automatized in tools and also evaluated through controlled experiments.

CHAPTER III - TESTING 51

III TESTING

The MapReduce programs can have different kind of functional faults. A study of 507 programs

in production reveals at least 5 different kinds of faults that are caused by a wrong design of

MapReduce programs [29]. Other researchers identify and classify more of such design faults of

the MapReduce applications [38], [143]. In this chapter we propose new testing techniques to

address these functional faults that are caused by incorrect design. These types of faults include,

but are not limited to, race conditions, computations with unavailable data because the

distributed system allocates them to another computer, or automatic optimizations that remove

data that are relevant to calculating the output. These faults are difficult to detect because they

depend not only on the data, but also on how these data are executed in the large distributed

architecture (infrastructure configuration): parallel executions, re-executions of some part of

the data and optimizations, among others. In general, these non-deterministic faults are easy to

mask in development/testing environments and go on to fail in more complex environments

such as the production environment, thereby generating incorrect outputs or causing the

program to crash.

In order to detect the design faults of the MapReduce programs, this chapter proposes a testing

technique that executes the test case under the relevant and representative infrastructure

configurations. The majority of this chapter is published in IEEE TR 2018 [41]. Section III.1

introduces the faults of the MapReduce applications caused by a wrong design. Related work is

then discussed in Section III.2. The testing techniques proposed and the automatization

(MRTest) are defined in Section III.3. The experiment is performed and discussed in Section III.4.

Finally, the conclusions and future work are detailed in Section III.5.

III.1 BACKGROUND OF DESIGN FAULTS IN MAPREDUCE

MapReduce programs process large datasets distributed over several computers using the

"divide and conquer" principle. In its simplest form, the MapReduce developer needs to

implement only two components: the Mapper that splits one problem into several subproblems

(Divide), and the Reducer that solves these subproblems (Conquer). During the execution,

several instances of Mapper analyse the dataset in parallel and send to each subproblem the

data needed to be solved. After all Mappers are executed, several instances of the Reducer are

executed in parallel to solve the subproblems. Internally, the data are codified as <key, value>

pairs, where the key is an identifier of a subproblem, and the value contains all the information

that is needed to solve the subproblem. The developer designs the business logic based on the

<key, value> pairs emitted from Mappers to Reducers. Finally, the output is a series of <key,

value> pairs obtained through the deployment and execution of Mappers and Reducers over a

distributed infrastructure.

More generally, a MapReduce program can be designed with more components. For example, a

Combiner can be implemented to improve the performance by reducing the data exchanged

between Mappers and Reducers. The Combiner is executed right after the Mapper with the aim

of removing the <key, value> pairs that are irrelevant to solving the subproblem. The

MapReduce applications can also be designed with other components such as, for example, the

Partitioner that determines which Reducer analyses which <key, value> pair, the Sorter that

controls the order of <key, value> pairs, and the Grouper that aggregates the values of each key

before they are passed to the Reducer.

Section III.1 - Background of Design Faults in MapReduce 52

Distributed systems such as Hadoop execute the MapReduce programs in a non-deterministic

way based on runtime factors, such as the resources available, observed infrastructure failures

and other dynamic optimizations. Nevertheless, the same program with the same input data

when executed in different infrastructure configurations should obtain the correct output.

However, this is not always the case: in our first work in the second line of research [38] we

identified and classified several design faults that are raised in some infrastructure

configurations but masked in others. Despite the fact that some authors suggest that the parallel

programming must be deterministic by default (unless the developer explicitly indicates non-

determinism) [166], this is not the case with these distributed systems.

To illustrate MapReduce and its executions, let us suppose the computation of the average

temperature per year given a large dataset containing several years with their observed

temperatures. This program can be designed in different ways. We suppose that the developer

makes the following decisions. The problem of average temperature per year is divided into

several subproblems where each subproblem calculates the average temperature of one year

only (Decision 1). Then each subproblem is composed of one year with all temperatures of this

year (Decision 2), and it is solved with the temperature average (Decision 3). The program

includes a Combiner to improve the performance (Decision 4). With the foregoing decisions, the

Mappers receive a subset of temperature data and emit <year, temperature of this year> pairs.

Then the distributed system aggregates all values per key, that is, each subproblem grouped

with all the data that needs to be solved. Therefore, the Reducers receive subproblems like

<year, [all temperatures of this year]> and calculate the average temperature. After the Mapper,

the Combiner can be executed, aimed at removing the irrelevant temperatures, and emitting

their average.

The distributed system can execute the previous program in different ways, based on the

runtime infrastructure configuration. For example, Fig. 10 shows three different executions with

the following input: year 1999 with 4°, 2° and 3°; and year 2000 with 5°. Regardless of the

infrastructure configuration, the program must obtain the right output: 3° as average in 1999,

and 5° in 2000. The first configuration is the simplest with one Mapper, one Combiner and one

Reducer. The Mapper analyses all temperatures and encodes them as <year, temperature>.

Then the temperatures are grouped per year and sent to the Combiner that pre-calculates the

average temperatures, and finally to the Reducer that obtains the correct output.

Fig. 10 Execution of MapReduce program that calculates the average temperature per year

Mapper

<1999, 4º>
<1999, 2º>
<1999, 3º>
<2000, 5º>

<1999, [4º, 2º, 3º]>
<2000, [5º]>

Combiner Reducer

<1999, [3º]>
<2000, [5º]>

<1999, 3º>
<2000, 5º>

Mapper

<1999, [2º,3º]>
<2000, [5º]>

Combiner
Reducer

<1999, [2.5º, 4º]>
<2000, [5º]>

<1999, 3.25º>
<2000, 5º>Mapper Combiner

<1999, [4º]>

Same input Different infrastructure configuration Different output

Mapper

<1999, 4º>
<1999, 2º>
<1999, 3º>
<2000, 5º>

<1999, [4º, 2º]>

<1999, [3º]>
Reducer

Reducer
<2000, 5º>

<1999, [3º,3º]>

<2000, [5º]>

<1999, 3º>

<2000, 5º>

<1999, 4º>
<1999, 2º>
<1999, 3º>
<2000, 5º>

x2

x2

Combiner

Combiner

Section III.1 - Background of Design Faults in MapReduce 53

Depending on the runtime resources, the distributed system can execute the program

automatically in more complex configurations. As we detail in Section IV, the configurations can

have, among other things, a different number of Mappers and other automatic optimizations.

For example, the second configuration of Fig. 10 is more complex than the first, employing one

Mapper, two Combiners and two Reducers, also obtaining the correct output. We assume that

the first Combiner receives the temperatures 4° and 2° of the year 1999, and emits their average,

3°. The second Combiner receives year 1999 with 3° and emits it, whereas the year 2000 with 5°

is passed directly from Mapper to Reducer. After the Mappers and Combiners are executed, one

Reducer analyses the temperatures of the year 1999 and another Reducer the year 2000.

Eventually, this configuration also obtains the correct output.

In contrast, the third configuration that executes two Mappers, one Combiner per Mapper, and

one Reducer does not obtain the right output. This execution obtains 3.25° as the average of

1999 rather than 3° due to a design fault. The developer makes some incorrect design decisions,

among them, the use of <year, temperature> pairs and the Combiner to optimize the program.

Both decisions are incompatible in this program because the Combiner replaces the

temperatures locally available in each computer with their average, and then the Reducer

cannot calculate the global average using only the local averages.

Although this program has a simple business logic, several developers make the previous

incorrect design decisions to obtain the average temperature per year, as in the programs [167],

[168]. The developer can fix the program by removing the Combiner, but this solution is not

optimised. A better program design codifies the data as <year, {sum of temperatures, number

of temperatures}> and uses a Combiner to update both the sum and number of temperatures

[169].

A sample of a more subtle design fault is in the recommendation system Open Ankus [170]. The

users assign points to a series of books, and then the system tries to forecast the points assigned

for new books. The design fault is triggered during the calculation of the error between the user

assignment and the system prediction. Fig. 11 depicts the execution of the program with the

points assigned by Alice to the book Don Quixote and correctly predicted by the system. The

first configuration with one Mapper for the predictions and one Mapper for the assignments

obtains the correct output (the system predicts the result correctly). In contrast, when several

Mappers for assignment are executed in parallel, the output of this program could potentially

be faulty, depending on both the order of execution and how the data is distributed in parallel.

For example, the program can be executed as in the second configuration of Fig. 11 obtaining

the incorrect result that the system prediction is wrong.

When the business logic tends to be more complex, as in machine learning programs, it can be

difficult for the developer to make the right design decisions, and the program may be prone to

side-effects. An incorrect design in the MapReduce program may cause a failure in one of the

different ways in which the distributed systems can execute the program. These design faults

are difficult to detect during testing because they may depend on dynamic execution contexts.

Thus they can be missed in the laboratory, but are then triggered in aggressive environments,

such as a production environment with a mix of large data and infrastructure failures. When

these aggressive situations happen, the distributed systems manage the execution with

different mechanisms, such as re-executing part of the program or performing some

optimizations that can reveal design faults. To avoid incorrect outputs in production, it is

desirable to detect these program faults in the early stages of the development process.

Section III.2 - Related Work 54

III.2 RELATED WORK

Software testing is among the most commonly used software quality-assurance techniques

[171]. In recent years, this field has seen great progress [31], but concerning the testing of Big

Data applications, there remain several challenges according to the previous chapter. In this

domain, most works focus on performance testing, but, functional testing is also important to

avoid incorrect outputs. In this chapter we address functional testing.

As seen in the earlier examples, some faults depend on how distributed systems execute the

programs according to the infrastructure configurations. If the program generates incorrect

outputs in some configurations and the expected output in others, then the program has a

design fault. A study of 507 MapReduce programs in production reveals at least 5 different kinds

of design faults [29]. To detect them, Csallner et al. [145] and Chen et al. [144] use testing

techniques based on symbolic execution and model checking. Other authors [38], [143]

identified and classified other design faults that depend upon the infrastructure configurations.

This chapter proposes a test approach to detect such faults in the test environment by using a

simulation of the infrastructure configurations based on combinatorial strategies.

The production environment is composed of a large distributed infrastructure that over time

exposes several failures [59]. In order to test in the same conditions as production, several

research lines propose to inject infrastructure failures [85], [148] during testing, and several

tools have been implemented to support their injection [64]–[66]. For example, Marynowski et

al. [147] propose creating the test cases by specifying which computers fail and when. While

some of the design faults can be detected by injecting infrastructure failures, others require a

fine-grained control of the distributed system and the underlying large infrastructure. In the

production environment it is difficult to control the execution of the test cases because at the

same time other programs consume the resources of the computers and other infrastructure

failures can happen that are beyond the tester’s control. This chapter does not inject failures,

but simulates the different infrastructure configurations in a test environment, thereby

obtaining fine-grained control and reproducibility of the tests.

Several research lines propose generating the test input data through different approaches:

using a bacteriological algorithm [149], or with input domain analysis together with

combinatorial testing [172]. Unlike these testing techniques, this chapter does not focus on the

generation of the test input data, but on simulating their execution in the infrastructure

Fig. 11 Execution of a recommendation system in MapReduce

Mappper
prediction

Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Reducer

Alice -> Don Quixote
Prediction Assignment

0 0
10 10

Alice->Don Quixote

Mapper
assignment

<Alice-> Don Quixote, [
 Prediction: 0,
 Prediction: 10,
 Assignment: 0,
 Assignment: 10]>

Mapper
prediction

Prediction: 0
Prediction: 10

Assignment: 0

Assignment: 10

Reducer

Alice -> Don Quixote
Prediction Assignment

0 10
10 0

Alice->Don Quixote

Mapper
assignment

Mapper
assignment

<Alice -> Don Quixote, [
 Prediction: 0,
 Prediction: 10,
 Assignment: 10,
 Assignment: 0]>

Same input Different infrastructure configuration Different output

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 55

configurations that are more likely to reveal the faults. As such, the technique of this chapter is

orthogonal to the above. The tester can use the previous approaches to obtain the test input

data and then execute the test cases with the techniques proposed in this chapter. As we have

shown, the same program and the same input data executed in different configurations might

produce different results so, apart from deriving a good test suite, the testing of MapReduce

applications also requires the derivation of the correct configuration.

Several tools have been proposed to design and execute test cases for MapReduce applications.

Herriot [63] allows the execution of the tests in a distributed infrastructure and at the same time

supports the injection of infrastructure failures. Another tool called MiniClusters [62] executes

the test cases in a distributed environment simulated in memory. For unit testing, MRUnit [61]

provides an adaptation of JUnit [60] to the MapReduce processing model. All the above test

tools only execute the test case in one infrastructure configuration and usually without

parallelization. In this chapter we devise a testing technique to generate and execute a

representative set of infrastructure configurations that could occur in production and as a whole

is more likely to reveal design faults. It is automated by means of an MRUnit extension, as

described below.

III.3 MRTEST: AUTOMATIC MAPREDUCE TESTING TECHNIQUE

In this section, we describe the test execution engine we propose called MRTest. Given a test

input data, MRTest automatically generates the configurations aimed at revealing design faults

(Subsection III.3.1), then executes the test case in these configurations (Subsection III.3.2), and

finally checks if the program is faulty or not (Subsection III.3.3).

III.3.1 Generation of Infrastructure Configurations for Testing

This chapter proposes an automatic technique that, given test input data, generates a different

number of configurations to test the programs. Then the faults are revealed when a failure

occurs in one of these configurations. Ideally, these faults are detected executing all possible

configurations, and as initial work we proposed to generate these thorough number of

configurations (MRTest-Thorough), but the approach exposed limitations because it takes a

long time and only supports a small volume of test input data [42]. In order to overcome these

problems, the thesis proposes other two techniques reducing the number of configurations

generated while maintaining the fault detection effectiveness: the two techniques use Random

Testing [155] (MRTest-Random) and Partition Testing (Equivalence Partitioning [156] with

Combinatorial Testing [157], [158]) (MRTest-t-Wise).

The first technique, MRTest-Random, generates the configurations randomly from all valid

configurations. The tester indicates the number of configurations wanted, and MRTest-Random

generates them randomly.

The second technique, MRTest-t-Wise, divides the set of all valid configurations into several

partitions with similar behaviour and applies a combinatorial strategy to generate the

configurations under test. In software testing, depending on the failure probability [173],

Random testing can be as effective as Partition testing [174] and can be a feasible option [175].

In other circumstances, Partition Testing can be more effective than Random Testing [176]. As

we discuss in Section V, our experiments show that both techniques MRTest-Random and

MRTest-t-Wise can be effective in revealing MapReduce faults, but MRTest-t-Wise is significantly

better. The latter testing technique is schematically represented in Fig. 12 and described below

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 56

in three parts: (1) Division of the set of all valid configurations, (2) Combination strategy, and (3)

Generation of the configurations.

Division of the set of all valid configurations: The set of all valid configurations is divided based

upon the following parameters and constraints that are also represented at the top of Fig. 12:

Mapper:

P1) Number of Mappers: 1 or >1. The program in production can be executed with one

Mapper (1) that analyses the entire dataset, or alternatively with several Mappers that

analyse different parts of the dataset in parallel (>1).

P2) Data processing order of the inputs: data are processed in the same order as they are

encountered in the input (same), or in a different order (different). The MapReduce

processing model does not guarantee that the data will be processed in the same order

as they are stored in the input.

P3) Distribution of the input data in the Mappers: data equally distributed in the Mappers

(equal) or not equally distributed (non equal). The Mappers process different subsets of

input data: there could be configurations with an equal number of data in each Mapper,

or with a different number of data.

Combiner:

Fig. 12 MRTest-t-Wise testing technique

P3: Distribution of the

input data in the Mappers

P8: Number

of Reducers

1 >1 Same Different Equal Non equal 1 >10 Equal Non equal 0 >0 1 >1 1 >1

P7: Iterative

executions of Combiner

P1: Number of Mappers
P2: Data processing order

of the inputs

P4: Number of Combiners

P5: Distribution of Mapper output in Combiners

P6: Data directly from Mapper to Reducer

Test coverage
items

1
2
3

Infrastructure configuration

Mapper
parameters

Combiner parameters
per Mapper

Reducer
parameters

1
2

Program
with

Combiner

Without
Combiner

1
2
3
4
5
6
7
8
9

10
11

Program
with

Combiner

1
2
3
4
5
6

Program
without

Combiner

Constraints
C1: IF P1 = 1 THEN P2 = same & P3 = equal
C2: IF P4 = 0 THEN P5 is NA & P6 >0 & P7 is NA
C3: IF P4 = 1 THEN P5 = equal

1
-W

is
e

2
-W

is
e

(NA = Not Applicable)

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 57

P4) Number of Combiners per Mapper: 0, 1 or >1. Each Mapper can execute one Combiner

(1), several Combiners (>1) or can emit the data directly to Reducer (0).

P5) Distribution of Mapper output in Combiners: data equally distributed in Combiners

(equal) or not equally distributed (non equal).

P6) Data directly from Mapper to Reducer: 0 or >0. All data emitted by Mappers can be pre-

processed by the Combiner functionality (0), or in contrast some data can pass directly

from Mapper to Reducer without executing the Combiner functionality (>0).

P7) Iterative executions of Combiner: 1 or >1. The output of the Combiner can be executed

iteratively by the Combiner several times (>1) or only once (1).

Reducer:

P8) Number of Reducers: 1 or >1. The program can be executed in production with one

Reducer that solves all subproblems (1) or with several Reducers that solve the

subproblems in parallel (>1).

For example, the configuration at the bottom of Fig. 10 is characterized by the following

parameters:

• P1 is >1: There are two Mappers.

• P2 indicates a different order: The input data is executed in a different order than they

are stored in the input. The 4° temperature is executed after 2°, but in the input the

temperature 4° is before 2°.

• P3 indicates a non-equal distribution of the data in Mappers: Each Mapper has a

different number of input data. One Mapper has 1 register and the second has 3

registers.

• P4 is 1: Each Mapper only executes one Combiner.

• P5 indicates an equal distribution of the Mapper output in its Combiners. Each Mapper

only has one Combiner that receives all its data, then the output of the Mapper is equally

distributed in its Combiner.

• P6 is 0: There are no data that pass directly from the Mapper to the Reducer without the

Combiner.

• P7 is 1: The Combiners are not executed iteratively several times, they are executed only

once.

• P8 is 1: There is only one Reducer.

The configurations under test are obtained by a combination of the previous parameters.

However not all combinations make sense, and to prevent non-meaningful combinations, we

have derived the following constraints that descend from the MapReduce processing model:

• When the number of Mappers (P1) is 1, then: (a) Data processing order of the inputs

(P2) is the same order as they are in the input, and (b) Distribution of the input data in

the Mappers (P3) is equally distributed.

• When the number of Combiners (P4) is 0, then: (a) the distribution of the data in the

Combiners (P5) is not applicable, (b) the Data directly from the Mapper to the Reducer

(P6) is >0, and (c) the iterative executions of the Combiner (P7) is not applicable.

• When the number of Combiners (P4) is 1, then the data in the Combiners (P5) are equally

distributed.

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 58

Combination strategy: Deriving all possible combinations of previous parameters is expensive

and the t-Wise strategy (also known as t-Way) is applied [88], [157]. Instead of combining all the

values of all parameters, t-Wise [177] combines only the values of all subsets of t parameters.

For example, 1-Wise (each use) [178] requires that all values of each parameter appear in at

least one test case, whereas 2-Wise (pairwise) requires that the combination of all values per

pair of parameters appears in at least one test case. 2-Wise has been shown to be almost as

good as all combinations of parameters [179] at detecting failures, but employing much fewer

resources in terms of time and cost [180].

The MRTest-t-Wise technique generates the configurations covering the t-Wise combinations of

the previous parameters and constraints. Fig. 12 details the configurations that must be covered

(test coverage items) for 1-Wise and 2-Wise strategies. Each row of the figure represents a test

coverage item that should be covered with a configuration that satisfies the parameters

indicated by dots. The 1-Wise technique requires the generation of 3 configurations (test

coverage items) when the program implements a Combiner, and 2 configurations in the other

case. The 2-Wise is a more thorough combination, requiring 11 configurations for programs with

a Combiner, and 6 when the program does not implement a Combiner.

Generation of configurations: The configurations can be created manually to cover each test

coverage item of the t-Wise selected, but the MRTest-t-Wise technique generates these

configurations automatically. The following pseudo-code describes how the configurations are

generated:

Input: t-Wise (testing technique selected, i.e. 2-Wise)

 sut (software under test)

Output: Configurations that cover t-Wise in sut

(1) Configurations ← ∅

(2) tcis ← Get all test coverage items of the t-Wise

(3) ∀ tci ∈ tcis

(4) | Configuration ← ∅

(5) | ∀ parameterToCover ∈ tci

(6) | | value ← obtain randomly a value that covers

parameterToCover in sut

(7) | | IF value exists:

(8) | | Configuration ← Configuration ∪ value

(9) | | ELSE //When there is no value to cover

 parameterToCover
(10) | | The actual configuration cannot cover the test

coverage item in sut, then backtracks trying to

| | generate again the configuration with other

| | values in previous parameters

| |_ [maximum τ times (threshold)]

(11) | IF Configuration covers the tci in sut:
(12) |_ Add Configuration to Configurations

(13) RETURN Configurations

In order to generate a configuration that covers each one of the test coverage items (1, 2, 3),

the MRTest-t-Wise covers the first parameter with random values, then the second, and so on

(4, 5, 6, 7, 8). For example, if the first parameter should be P1: >1, i.e., more Mappers, then a

random value is selected greater or equal to 2 to guarantee >1 Mappers, and so on with the

remainder of the parameters. Sometimes it can be impossible to cover one parameter because

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 59

the test input data add semantic constraints unknown until the values selected in the previous

parameters are executed (9, 10). For example, sometimes it is impossible to obtain a

configuration with >1 Reducers because the test input data always lead to one Reducer. In these

cases MRTest-t-Wise uses a backtracking approach. First it fulfils randomly the first parameter

(4, 5, 6), then it executes the part of the program affected by this parameter (7, 8) and tries to

cover the second, and so on. When the generator discovers at runtime that one parameter

cannot be covered, then it backtracks, changing the value of previous parameters (9, 10). For

example, a configuration can be created with 2 Mappers (P1 >1) but three input data cannot be

equally distributed in them (it is impossible to cover P3 with equal distribution), then the

generator backtracks changing the configuration to three Mappers (it maintains P1 >1 but

changes randomly its value), and finally the three data items can be distributed equally in the

Mappers. A threshold is set to prevent the generator from performing indefinitely or from

backtracking for too long. When the threshold is overcome, then the technique does not create

the configuration and the test coverage item is not covered (11, 3). By default, the threshold is

15 backtracks because we observed that usually when this number is exceeded then it is

infeasible to cover the test coverage item, regardless of the set of valid configurations. Finally,

those configurations that cover the test coverage items are generated (11, 12, 13).

III.3.2 Execution of Test Cases

In order to detect design faults, MRTest executes each test case in different configurations using

one of the techniques described in the previous section (MRTest-Random, MRTest-t-Wise and

MRTest-Thorough). Then MRTest checks systematically that all configurations lead to equivalent

outputs.

Given a test case with input data and, optionally, the expected output, the MRTest test

execution engine is described in Fig. 13. First, MRTest executes the test input data in the base

configuration (1), that is the simplest configuration with one Mapper, one Combiner and one

Reducer without parallelization. Next, new configurations are iteratively generated (2,3) and

executed (4) for a given testing technique selected by the tester: MRTest-Thorough, MRTest-t-

Wise or MRTest-Random. The output obtained executing each configuration is checked against

the output of the base configuration (5), revealing a fault if these outputs are not equivalent (6).

Then MRTest can reveal faults with only the test input data, but the tester can optionally declare

Fig. 13 MRTest test execution engine

Input data

Are all
config.
tested?

base configuration

Run config.
base

output

Run config.

Output

 Are they
 equivalent?

No

Yes

No

Expected output
(optional)

Are equals?

Yes

NoTest
case

M
R

T
e

st
: A

u
to

m
a

ti
c

T
e

st
 e

xe
cu

ti
o

n

(1)
(2)

(4)

(5)(6)

(7)

(8)

(9)

Yes
(3)

Generation of
new config.

Testing technique
Thorough

T-Way
Random

Better technique
More expensive

Section III.3 - MRTEST: Automatic MapReduce Testing Technique 60

the expected output. In this case, the output of the base configuration is also checked against

the expected output (7), detecting a fault when both are not equivalent (8, 9).

For example, let us revisit the program in Subsection III.1 that calculates the average

temperature per year. Fig. 1 describes the 1-Wise execution of a test case with the following test

input data: year 1999 with 4°, 2° and 3°; and year 2000 with 5°. Firstly, MRTest generates and

executes the base configuration (top of the figure) obtaining 3° as average in 1999, and 5° in

2000 (1, 2). Then MRTest generates and executes a configuration to cover the first test coverage

item of 1-Wise (middle of figure), and again obtains the same output (3, 4, 5). In contrast, when

it generates and executes the configuration of the third test coverage item (bottom of the

figure), it obtains 3.25° as average of 1999 instead of the 3° obtained in the base configuration

(3, 4, 5). Then MRTest automatically reveals a fault because the two outputs are different (6).

We discuss further the oracle used in MRTest in the following subsection.

The test execution engine MRTest was implemented based on MRUnit library [61] maintaining

its API and including new functions to indicate the testing technique to be used. This library is

used to execute each configuration. In MRUnit, the test cases are executed with the base

configuration, but this library is extended to generate other configurations and enable

parallelism supporting the execution of several Mapper, Combiner and Reducer tasks. This test

execution engine employs randomness to generate the configurations, but also supports

pseudorandom numbers, also called seeds, to guarantee that the execution of the test case is

reproducible in a deterministic way.

III.3.3 Test Oracle

In software testing, the mechanisms that determine if the test reveals a fault or not are called

test oracles [181]. There are some properties that characterize the efficacy of the test oracles

[182], [183]. As discussed, if a design fault is present, the same program executed under

different configurations can lead to different outputs. Based on this observation, the MRTest

execution engine can reveal faults automatically even without knowing the expected output. It

employs an automatic partial-oracle [181] that is derived from the program executions [184]

using metamorphic testing [45]. Given a test case (original test case), metamorphic testing

generates new test cases varying the original test case (follow-up test cases) to detect faults in

a relationship amongst them (metamorphic relationship).

According to the software testing standard [30], a test case not only uses the test input, but also

other test data that specify requirements for the test, such as databases, or configuration in the

case of MapReduce programs. MRTest intends to detect those design faults that not only depend

on specific test input, but also on specific configurations. For these faults, the test case must be

designed with both the test input and the configuration in mind. MRTest receives the test input

and then the metamorphic testing is focused in the relationships between the potential

configurations. Given the test input, MRTest executes these test input data on the base

configuration (original test case). Then MRTest generates the follow-up test cases maintaining

the original test input but, but providing each one with different configurations. Finally, MRTest

checks that both original and follow-up test cases lead to an equivalent output (metamorphic

relationship). Whereas the metamorphic testing techniques usually generate the follow-up test

cases by varying the test input, our approach generates the follow-up test cases by maintaining

the test input but varying the configuration of the system under test.

Section III.4 - Experiments 61

MRTest can also be employed when the expected output is previously unknown or costly to

obtain, as occurs in several machine learning programs [185]. Fig. 14 describes how the MRTest

oracle can detect faults when given only the input data. The original test case is the test input

data executed in the base configuration (1 Mapper, 1 Combiner, 1 Reducer). Then MRTest

generates and executes several configurations using the testing techniques described in the

previous sections (follow-up test cases). Finally, it checks if their outputs are equivalent

(metamorphic relationship), and if they are not then a potential fault is automatically detected.

 According to the study of Segura et al. [186] the number of metamorphic papers will increase

in years to come, but to date 49% employ the metamorphic testing capabilities in different

problem domains, and only 2% present a tool. In our case, the testing technique of this chapter

not only defines and automatizes the metamorphic relationship to the MapReduce domain, but

it also develops a tool that detects faults easily with only the test input data.

III.4 EXPERIMENTS

The goal of these experiments is the evaluation of how, using different configurations in the

execution of the test cases, the effectiveness in failure detection could be improved without

significantly decreasing efficiency. The approach proposed in this chapter, MRTest, executes the

MapReduce test cases under several configurations, whereas the usual test execution engines,

for example MRUnit, only execute them under a simple configuration. In the experiments,

MRTest and MRUnit are compared in order to answer the following research questions:

RQ5. Do the test execution engines detect more failures when the MapReduce test cases

are executed in different configurations?

RQ6. How expensive is the execution of the test cases in several different configurations?

The research questions are focused respectively on the effectiveness and efficiency during

testing of the MapReduce programs. Depending on the field, the aptness of a technique can be

referred to using different terms, for example: “effectiveness” for software testing techniques

[187], “performance” for localization techniques [188], or “accuracy” for the classification

techniques of machine learning [189]. In this chapter, we use the term “effectiveness” regarding

the quantity of failures detected, and “efficiency” regarding the execution time employed by the

techniques. The planning and the results of the related experiments are presented in the next

two subsections, and the discussion of the experiments together with the limitations in

Subsection III.4.3.

Fig. 14 Metamorphic oracle of MRTest

Are
they equivalent?

Test input data

Config. 1

Config. 2
...

Output 1

Output 2
... Yes

No

Generator Execution
Automatic

oracle
Input Output

Original and follow-up test cases Metamorphic relationship

Section III.4 - Experiments 62

III.4.1 Effectiveness Experiments

The goal of the effectiveness experiments is the assessment of how many failures are detected.

Following the Basili et al. [190] template, the goal is: Analyze the test case execution engines

(MRUnit and MRTest) for the purpose of evaluation with respect to their respective effectiveness

in detecting failures due to a program design fault against the MapReduce processing model

from the point of view of the tester and developer in the context of Big Data applications. The

planning of the experiments is described in Subsection III.4.1.1 and their results are reported in

Subsection III.4.1.2.

III.4.1.1 Effectiveness: Setup

In this experiment, 8000 different test cases from 4 real world programs are executed in MRUnit

and MRTest in order to analyse their capability to detect failures. Each one of the 4 programs

has a known design fault that is only revealed in some of the potential configurations and

masked in others. The programs used, including a summary of the functionality and the cause

of the faults, are:

1. Open Ankus [170]: A recommendation system that predicts for each user the items that

could be of interest to them (films, books, cities, and so on), based on choices of other

users and their similarities to the user in question. This program could fail when the data

of each user-item is split and parallelized.

2. Data quality analysis [191]: Measure of the quality of data interchanged between

companies, based on international standards. This program did not correctly track the

measurements and they could be incorrectly assigned due the parallel execution. The

production version of this program has removed the fault.

3. Movie analysis [192]: Statistics analysis of movies, based on the ratings of users. This

program is implemented with an incorrect Combiner.

4. Data cleaner Knn analysis [193]: Knn machine learning algorithm to clean text data,

based on the number of transformations, insertions and removals of incorrect letters in

the words of the text. This program fails when one Mapper needs data that are not

locally available because it is assigned to another Mapper.

For each program, 2000 test cases that contain data able to trigger the faults are executed in

MRUnit and MRTest with different modes. The test cases are generated iteratively with random

data until we have 2000 test cases that are able to trigger the fault. Because the program faults

are known, all of the potential test cases are automatically analysed in order to check if the data

can generate incorrect outputs under at least one configuration of the MapReduce

configurations. For example, the program described in Section III.1 that calculates the average

temperature of each year, has a design fault that is not revealed by all inputs. We can

automatically check if an input data is able to trigger the fault because the failure is only raised

when the average of temperatures is different to the global average of local averages.

The population of the experiment is composed of all test cases with data able to trigger these

faults in some configurations. Each of these test cases is then taken as the experimentation unit,

and the observation is whether the test execution engines detect a failure or mask the fault.

The dependent variable or response variable is the rate of failures detected by the different

execution engines, which are the independent variable. The baseline is MRUnit and the

treatments are MRTest executed in the following modes:

Section III.4 - Experiments 63

• 1-Wise: Based on the test coverage items proposed in MRTest-1-Wise algorithm,

executes 3 or 2 configurations depending on whether the program has a Combiner or

not, respectively.

• 2-Wise: Based on the test coverage items proposed in MRTest-2-Wise algorithm,

executes 11 or 6 configurations depending on whether the program has a Combiner or

not, respectively.

• 0-Random that executes randomly one configuration (MRTest-Random), in order to

compare fairly with MRUnit that also executes one configuration (one Mapper, one

Combiner and one Reducer).

• 1-Random in order compare fairly with 1-Wise. Executes 3 or 2 configurations

depending if the program has a Combiner or not, respectively.

• 2-Random in order to compare fairly with 2-Wise. Executes 11 or 6 configurations

depending if the program has a Combiner or not, respectively.

MRTest-thorough is not analysed in the experiments due to its limitations, such as only

supporting a small amount of test input data or taking a long time to execute a test case. There

are other elements that could affect the experiment and are treated as blocking factors:

• The size of the test input data could affect the rate of failures detected, so two sizes of

data are considered: a small size (between 1 and 10 <key, value> pairs) and a larger size

for functional testing purposes (between 11 and 35 <key, value> pairs).

• The generation of the configurations in MRTest is based on some pseudorandom

functionality that could introduce noise in the failure rate. During the experiments, the

different test engines employ the same pseudorandom number generated also in a

pseudorandom way.

In the experiments two sampling methods are used: consecutive sampling to select the

MapReduce programs and random sampling to select the test cases. Ideally the subject

programs should be selected randomly, but as in the case in many software engineering

experiments, this is not viable [194]. As such 4 real world programs that contain a known fault

are selected instead.

As stated above, for each one of these programs, 2000 test cases that contain data able to trigger

the fault are generated randomly. We grouped them in trials of 100 test suites with 20 test cases

each: 50 test suites contain test cases with input data between 1 and 10 <key, value> pairs, and

the other 50 test suites between 11 and 35 <key, value> pairs due to a pre-established blocking

factor. All of these test suites are executed in the baseline (MRUnit) and the five treatments

(MRTest), and then the rate of the failures detected is observed. This type of experiment design

is called “within subject design with post-test”.

In these experiments, the effectiveness is measured by the percentage of failures detected per

test suite. Then the effectiveness of the execution engines is compared via the statistic test

Wilcoxon Sign Rank Test. This non-parametric statistic test analyses if there are significant

differences based on the medians, then the null hypothesis is defined as H00:

median(Effectiveness)MRUnit = median(Effectiveness)MRTest

III.4.1.2 Effectiveness: Results and Discussion

Table 17 summarizes the number of test cases which detect a failure by each test execution

engine (MRUnit and MRTest) during the experiments. This table shows that design faults against

Section III.4 - Experiments 64

the MapReduce processing model are not detected in general by MRUnit, whereas MRTest

approaches are able to detect them. The number of test executions that detect a failure by

MRUnit is almost 0% whereas even considering the weakest MRTest approach, 0-Random, more

than 15% of the test cases detect a failure; the strongest MRTest approach, 2-Wise, catches a

failure in more than 60% of test cases. In general terms, 1-Wise and 1-Random detect more

failures than MRUnit, and finally 2-Wise and 2-Random detect the majority of failures, regardless

of the number of <key, value> pairs in the input data. In all approaches, the execution time of

Table 17 Effectiveness of failure detection of 100 test suites of 20 test cases for each one of the 4 real world
programs with fault

Program Treatment

[1-10] <key, value>

pairs

[11-35] <key,

value> pairs
Total

N
u

m
b

er
 o

f
te

st

ca
se

s
th

at

d
et

e
ct

 a
 f

ai
lu

re

Ef
fe

ct
iv

en
es

s

N
u

m
b

er
 o

f
te

st

ca
se

s
th

at

d
et

e
ct

 a
 f

ai
lu

re

Ef
fe

ct
iv

en
es

s

N
u

m
b

er
 o

f
te

st

ca
se

s
th

at

d
et

e
ct

 a
 f

ai
lu

re

Ef
fe

ct
iv

en
es

s

Open

Ankus

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 307 0.30 293 0.30 600 0.30

1-Wise 490 0.50 302 0.30 792 0.40

1-Random 513 0.50 479 0.50 992 0.50

2-Wise 754 0.75 620 0.60 1374 0.70

2-Random 898 0.90 861 0.85 1759 0.90

Data

quality

analysis

MRUnit baseline 1 0.00 3 0.00 4 0.00

0-Random 773 0.75 900 0.90 1673 0.85

1-Wise 816 0.80 954 0.95 1770 0.90

1-Random 925 0.95 984 1.00 1909 0.95

2-Wise 994 1.00 1000 1.00 1994 1.00

2-Random 992 1.00 1000 1.00 1992 1.00

Movie

analysis

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 169 0.15 183 0.20 352 0.15

1-Wise 562 0.55 395 0.40 957 0.48

1-Random 378 0.35 328 0.30 706 0.35

2-Wise 952 0.95 861 0.85 1813 0.90

2-Random 694 0.70 534 0.53 1228 0.63

Data

cleaner

Knn

analysis

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 876 0.75 946 0.95 1822 0.90

1-Wise 983 0.80 1000 1.00 1983 1.00

1-Random 978 0.95 997 1.00 1975 1.00

2-Wise 1000 1.00 1000 1.00 2000 1.00

2-Random 1000 1.00 1000 1.00 2000 1.00

Section III.4 - Experiments 65

each test case is reasonable, being in the order of a few milliseconds/seconds. As we explain in

detail in the following subsections, the majority of the test cases take less than 1 second to be

executed in MRTest, regardless of the approach employed.

During the experiments, MRUnit only detects 4 faults out of 8000, having an effectiveness of 0

in Table 17 due to rounding to two decimal places. These faults are detected because MRUnit

sorts the <key, value> pairs when the base configuration is executed and sometimes this change

is enough to detect the faults. The execution of the test cases under different configurations can

reveal design faults whereas the execution under one configuration could mask them, as occurs

in MRUnit. Fig. 15 shows for each program the differences between the tests execution engines

in terms of the effectiveness (percentage of failures detected per test suite). This figure uses a

violin plot that shows the probability density function and gives a reference with a boxplot. The

best testing techniques at detecting failures are 2-Wise and 2-Random, followed by 1-Random

and 1-Wise, then 0-Random, and finally MRUnit, which hardly detects any design failures.

According to the Wilcoxon Sign Rank Test, all MRtest approaches are significantly better at

detecting failures than MRUnit.

In order to compare the best approaches, the Wilcoxon Sign Rank Test is also applied in each

program between 2-Wise and 2-Random. Considering the Data Quality Analysis and Data

Cleaner Knn Analysis programs, there is no significant difference between 2-Wise and 2-Random

(p-value[1-10]=0.69, p-value[11-35]=1, p-value[1-10]=1 and p-value[11-35]=1, respectively), for the Open

Ankus program 2-Random is better (p-value[1-10]=2.7e-09 and p-value[11-35]=2.8e-09) and for the

Movies Analysis program 2-Wise is better (p-value[1-10]=3.7e-10 and p-value[11-35]=3.8e-10).

Fig. 16 shows the aggregation of the data for the 4 programs, 2-Wise being the best approach in

detecting failures with a significant difference compared with 2-Random (p-value=0.0043).

Fig. 15 Distribution of percentage of failures detected per test suite in each program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
ti
v
e

n
e

s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Open Ankus program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
ti
v
e

n
e

s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Data quality analysis program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
ti
v
e

n
e

s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Movie analysis program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
ti
v
e

n
e

s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Data cleaner knn analysis program

Section III.4 - Experiments 66

In terms of failure detection effectiveness, all MRTest approaches are better than MRUnit, with

2-Wise and 2-Random standing out, followed by 1-Random and 1-Wise, and finally 0-Random.

III.4.2 Efficiency Experiments

The goal of the efficiency experiment is the assessment of how much time is spent during the

execution of the test cases. Following the Basili et al. [190] template the goal is: Analyze the test

case execution engines (MRUnit and MRTest) for the purpose of evaluation with respect to their

efficiency in executing the test cases of the MapReduce programs from the point of view of the

tester and developer in the context of Big Data applications. The planning of the experiments is

described in Subsection III.4.2.1 and their results in Subsection III.4.2.2.

III.4.2.1 Efficiency: Setup

In this experiment, 16000 different test cases from 8 real world programs are executed in

MRUnit and MRTest in order to analyse the execution time expense per test case. Half of these

programs have design faults and their test cases are re-used from the previous experiment, the

other 4 programs have no known faults and their functionality is summarized below:

5. Graph clustering [195]: Algorithm to cluster the connected nodes in graphs.

6. Phonetic analysis [193]: Algorithm to clean text data based on the similarities and

differences between the phonetic pronunciation.

7. Goldstein analysis [196]: Measure of the conflicts and cooperation between countries

based on the Goldstein code.

8. Restaurant analysis [197]: Finds restaurants by cuisine located in safe/unsafe zones in

New York.

For each of these programs, 2000 test cases are generated randomly and executed in MRUnit

and MRTest with different modes. The population is composed by all possible test cases of the

MapReduce programs, and each one is the experimentation unit. All test cases are executed in

order to analyse the execution time (observation). As in the previous experiment, sets of 20 test

cases constitute the test suites that are executed in 6 test engines.

Fig. 16 Distribution of percentage of failures detected per test suite (effectiveness) in all programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Treatment

E
ff

e
c
ti
v
e

n
e

s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness for all programs

2-Random1-Random0-RandomMRUnit

baseline
2-Wise1-Wise

Section III.4 - Experiments 67

The dependent variable or response variable is the execution time of the test case by the

different execution engines (independent variable). The baseline is MRUnit and the treatments

are MRTest executed in the same way as the previous experiment: {0,1,2}-Random, {1,2}-Wise.

In this experiment, there are other variables that could affect the results and they are treated

as blocking factors (note that the first two factors were also considered in the previous

experiments):

• The size of the input data affects the execution time. The following number of <key,

value> pairs are considered during the experiments: between 1 and 10, and between 11

and 35.

• The pseudorandom functionality of the MRTest could introduce noise. To avoid it, the

same pseudorandom numbers are used in the MRTest and are generated in a

pseudorandom way.

• MRTest executes the test cases with different configurations until a failure is detected

or the maximum number of configurations of the approach is reached. Therefore, the

execution time can be different whether the program has a fault or not. In this

experiment two types of programs are considered: 4 programs with faults reused from

the previous experiment and 4 programs without known faults described in this section.

• The execution time could depend on the resources of the computer. All test cases are

executed in a commodity computer with a CPU Intel Core i5, 3.20GHz Windows 10 x64,

and Java 1.8 with memory generated dynamically up to 250MB.

In order to detail the differences in the execution time, this experiment analyses descriptive

statistics: a regression model of the execution time in terms of the number of input <key, value>

pairs.

As in the previous experiment, the sampling methods are consecutive sampling of 8 real world

programs and random sampling for the test cases. The number of trials per program is again

100 test suites of 20 test cases divided in two sizes of input data: from 1 to 10 <key, value> pairs,

and from 11 to 35 <key, value> pairs. Each of these test suites is executed in the MRUnit

(baseline) and MRTest with different parameters (treatments). This type of experiment design

is called “within subject design with post-test”.

III.4.2.2 Efficiency: Results and Discussion

MRUnit is the most efficient approach because it only executes one Mapper, one Combiner and

one Reducer, whereas MRTest executes several of these configurations in order to reveal more

faults simulating a production environment. Table 18 summarizes the average execution time

of test cases in programs with and without known design faults. MRTest executed in 2-Wise

mode is a better approach for detecting failures than Random, but it usually takes longer. In the

test cases executed during the experiments, MRUnit takes, on average, a few milliseconds to

execute a test case, whereas MRTest usually takes a few milliseconds-seconds, depending on

the program and the data that are received. When the program has a fault and MRTest detects

it, the execution time is quite similar to MRUnit (x2 or x3) because MRTest finishes after the

execution of few configurations. In the case that MRTest does not detect a fault, the execution

time on average increases by x200 or x400 from MRUnit, but it remains in the order of

milliseconds-seconds per test case.

Section III.4 - Experiments 68

Given a program, there are several test cases that take more time than others, especially when

{1,2}-Wise does not cover the test coverage items after trying to generate several

configurations. The most expensive test case takes 4.5 minutes for the previous reasons, but in

general the test cases are executed in milliseconds or a few seconds, depending on the program

functionality and the input received. As Fig. 17 depicts, 75% of the test cases are executed in

less than 1 second and 90% in less than 4 seconds.

Table 18 Average execution time of test case through 100 test suites of 20 test cases for each one of the 8 real world
programs, in milliseconds

Input

size Treatment

Programs with known faults Programs without known faults

O
p

en
 A

n
ku

s

D
at

a
q

u
al

it
y

an
al

ys
is

M
o

vi
e

A
n

al
ys

is

D
at

a
cl

ea
n

er

K
n

n
 a

n
al

ys
is

G
ra

p
h

cl
u

st
e

ri
n

g

P
h

o
n

et
ic

an
al

ys
is

G
o

ld
st

ei
n

an
al

ys
is

R
e

st
au

ra
n

t

an
al

ys
is

[1
-1

0
]

<k
ey

, v
al

u
e>

 p
ai

rs
 MRUnit baseline 51.0 50.9 53.0 54.4 4.9 3.7 3.3 3.8

0-Random 69.0 69.2 75.1 64.4 193.4 44.1 8.7 7.5

1-Wise 84.2 94.3 1780.7 80.2 769.9 131.6 21.4 33.3

1-Random 72.2 72.4 89.2 65.0 501.7 73.2 13.3 11.5

2-Wise 149.9 145.0 2248.9 70.6 5140.7 384.3 74.8 563.1

2-Random 77.4 73.5 140.0 64.7 1855.1 195.0 33.9 27.1

[1
1

-3
5

]

<k
ey

, v
al

u
e>

 p
ai

rs
 MRUnit baseline 51.8 50.6 55.3 78.8 7.7 4.8 5.4 5.3

0-Random 76.0 75.3 93.2 115.0 1183.7 283.7 19.4 16.6

1-Wise 85.5 104.8 139.4 152.2 3141.6 431.6 29.8 49.9

1-Random 84.0 78.9 157.7 117.4 3445.0 539.6 36.5 28.6

2-Wise 128.6 117.3 468.3 123.5 15013.0 1357.9 118.2 2282.4

2-Random 104.0 78.8 575.7 117.2 13161.2 1606.6 153.5 105.2

Fig. 17 Accumulated distribution of the test cases execution time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000

Execution time (ms)

P
e

rc
e

n
ta

g
e

 o
f

te
s
t

c
a

s
e

s

Execution time per percentage of test cases

Treatment
MRUnit baseline
0-Random
1-Wise
1-Random
2-Wise
2-Random

Section III.4 - Experiments 69

The execution time depends on several factors, but it increases according to the number of <key,

value> pairs in the test case. In Fig. 18 the trend of the execution time based on the number of

<key, value> pairs is described for the 4 programs with faults, and in Fig. 19 for the other 4

programs without known faults. This trend in general has more slope in 2-Wise, 1-Wise and 2-

Random because these approaches generate and execute more configurations. In these

approaches the execution time is more dispersed because it does not only depend on the

number of <key, value> pairs, but also on the program and on the data processed. In the case of

{1,2}-Wise, the execution time also depends on the non-covered test coverage items, because,

for example, in the most expensive test cases, MRTest takes a long time trying to generate values

that cover the configurations that cannot be covered. For this reason, the execution time of 2-

Wise in the Open Ankus and Data Quality analysis programs decreases according to the input

size. When these two programs receive a small amount of input data, the 2-Wise takes time

trying to cover the test coverage items. In some cases, 1-Wise is more expensive than 2-Wise

because the test coverage items are different. For example, in the Data cleaner Knn analysis

program, the second test coverage item of 1-Wise cannot be covered (it requires only one

Reducer and the program guarantees several) but the approach wastes time trying to cover it.

While MRUnit is not intended to detect these design faults, all approaches of the MRTest are

effective enough detecting them, particularly 2-Wise mode. These approaches take a few

milliseconds-seconds to execute the test cases and could be a reasonable alternative to detect

design failures before they are encountered in production.

Fig. 18 Execution time of the test cases of programs with known faults according to the number of <key, value>
pairs

Treatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baselineTreatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baseline

0

50

100

150

200

10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Data quality analysis

0

50

100

150

10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Data cleaner Knn analysis

0

250

500

750

1000

10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Movie analysis

0

100

200

10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Open Ankus

Section III.4 - Experiments 70

III.4.3 Discussion of Results

The experiments indicate that both test execution engines proposed in this chapter, MRTest-

Random and MRTest-t-Wise, are able to detect within an acceptable time a broad number of

failures that are caused by the non-deterministic executions of MapReduce programs. Of the

two, the MRTest-2-Wise is significantly better at failure detection, and takes an acceptable

amount of time to complete the tests as well. In contrast, the MRUnit test execution engine

employs less time but it hardly detects any of these types of failures. The remainder of this

subsection discusses the limitations of these experiments, including the internal, external and

construct threats of validity and their subcategories [194], [198], [199].

The internal threats are those issues regarding the causal relationship between independent

variables and dependent variables. One part of the experiments analyses the execution time,

but some noise can be introduced into the measurements by other operative system tasks

(Confounding effects of variables). To mitigate this problem, the experiments are executed in

the same computer without any other programs operating in the background.

The tool that automates the research, MRTest, can contain faults and other limitations. To

mitigate the potential faults of the tool, manual/automatic testing was performed mainly from

the functional and performance point of view. This tool may cause side-effects in the programs

that perform some communications with external services that are outside the testing context.

For example, when the program under test inserts data in an external database, MRTest can

perform the insertions for each of the configurations executed. When the external service is fully

controllable, then the tester can handle the side-effects inside the test cases.

Fig. 19 Execution time of the test cases of programs without known faults according to the number of <key, value>
pairs

Treatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baselineTreatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baseline

0

50

100

150

200

0 10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Goldstein analysis

0

5000

10000

15000

20000

0 10 20

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Graph clustering

0

1000

2000

0 10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Phonetic analysis

0

1000

2000

3000

0 10 20 30

Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Restaurant analysis

Section III.5 - Conclusions 71

The external threats are those issues that can affect the generalization of the results. The

subjects of this experiment are 16000 test cases randomly selected from 8 MapReduce programs

selected by consecutive sampling. Ideally, the programs should also be selected randomly, but

often this is not feasible in software engineering (Interaction of selection and treatment). For Big

Data programs, there is no benchmark of faults and industrial programs are not usually

available. This problem is mitigated by using some real-world applications, instead of using

programs with seeded faults (hand-seeded faults or mutation faults) that are prone to other

external threats [200], [201]. Therefore, there are other issues regarding seeded faults when

they are used to evaluate testing techniques. The hand-seeded faults are injected by the expert

and they are subjective, decrease the reproducibility of the experiments and are not

representative of real faults in terms of easy detection [202]. In contrast, mutation faults are

representative of the majority of faults, but this is not the case when the developer implements

an incorrect algorithm [203]. The faults pursued by this thesis fall into the previous category of

faults that are not possible to substitute with mutations. The faults that are the target of this

thesis are caused by incorrect design decisions that lead to the implementation of faulty

algorithms, completely different from those of the correct implementation. As such, the

injection of mutation faults is not a feasible way to evaluate the testing techniques of this

chapter.

The tool that automates the research, MRTest, does not fully support the testing of non-

deterministic programs (Applicability of results across different samples). This research proposes

the execution of the test case in different configurations and finally a metamorphic relationship

checks if their outputs are equivalent. The tool only checks if the outputs are equals or not, but

this is not enough for non-deterministic programs. To avoid this problem, the tester can

implement a function to check if two non-equal outputs are equivalent or not in the non-

deterministic program. There are also metamorphic relationships for non-deterministic

programs [204], [205].

Other results can be obtained if MRTest generates the configurations in a different way

(Applicability of results when technique is varied). The configurations are generated based on

the combination of different parameters, but there could be more parameters not considered

or better ways to generate the configurations such as, for example, using a search-based

approach.

The construct threats are those issues between the experiment and its underlying theoretical

concepts. The test execution engines proposed are only compared against MRUnit despite the

fact that there are other ways to automate the testing execution. In general, MRUnit is more

standardized and controllable when performing tests in the MapReduce applications.

One part of the experiment analyses the efficiency of the test execution engine based only on

the execution time measure, but there could be more measures not considered, such as memory

(Mono-operation bias). To mitigate this problem, the experiments were executed in a

commodity computer with few resources. The memory does not appear relevant because its

usage was low during the experiments. Furthermore, the tool that automates the research was

tested to avoid memory bottlenecks, and some memory leaks of MRUnit were removed.

III.5 CONCLUSIONS

The detection of design faults in MapReduce depends on the test input data and on the test

configurations, i.e. how the test data are executed in parallel. These design faults can be

Section III.5 - Conclusions 72

revealed in some executions and masked in others. Thus, although the application may appear

to work correctly in the test environment, this might not be the case when it is passed to

production because usually these faults are only revealed in aggressive environments. In this

chapter, we presented two black-box testing techniques that automatically detect these faults.

Given a set of test input data, the testing techniques simulate the execution in infrastructure

configurations aimed at revealing the faults, and check that all executions lead to equivalent

outputs. These testing techniques are automated in a test execution engine called MRTest.

We performed an empirical study to evaluate the effectiveness and efficiency of the testing

techniques proposed (MRTest-Random and MRTest-t-Wise) compared to the XUnit tool of

MapReduce programs (MRUnit). The results showed that our approaches are more effective in

detecting faults while still employing reasonable time. The results also showed that MRTest-t-

Wise based on Partition testing detects faults with a significantly lower fraction of tests than

MRTest-Random that is based on Random testing.

MRTest enables fine-grained control of the test case execution at the same time as it guarantees

its reproducibility in the same circumstances. The simulation of the test case in different

production environments can be carried out in a non-intrusive way and with few resources,

deploying MRTest on a commodity computer in the laboratory. Furthermore, the testing

techniques of this chapter are easy to use because they do not need the expected output to

reveal the faults, only the test input data.

CHAPTER IV - DEBUGGING 73

IV DEBUGGING

The previous chapter of the thesis proposes a testing technique to detect design faults

automatically in the MapReduce applications by analyzing the execution of the input data under

different infrastructure configurations. Once a design failure is detected, the developer will

debug the program to both locate and understand the fault, and fix the program. The design

faults of the MapReduce are difficult to debug because sometimes are masked and other times

are manifested in non-deterministic way. This chapter proposes a framework called MRDebug

aimed to help developers during debugging to locate automatically the root cause of the design

fault, and isolate automatically the data that trigger the failure.

The root cause of the faults is located through spectrum-based fault localization technique that

analyzes the execution of several configurations to extract a pattern of the characteristics that

Fig. 20 Automatic testing and debugging

Mapper

<1995, [7°, 9°, 7°, 10°]>
<1996, [1°, 3°, 2°, 5°]>
<1997, [8°, 6°]>
<1998, [5°]>
<1999, [4°, 2°, 3°]>

Combiner Reducer

<1995, 7°>
<1995, 9°>
<1995, 7°>
<1995, 10°>
<1996, 1°>
<1996, 3°>
<1996, 2°>
<1996, 5°>
<1997, 8°>
<1997, 6°>

<1998, 5°>
<1999, 4°>
<1999, 2°>
<1999, 3°>
<2000, 5°>
<2000, 10°>
<2001, 9°>
<2001, 8°>
<2002, 12°>
<2003, 13°>

<1999, 4°>
<1999, 2°>
<1999, 3°>

<1999, [4°]>

Combiner <1999, [4°, 2.5°]>
<1999, 3.25°>

Combiner

<1995, [8.25°]>
<1996, [2.75°]>
<1997, [7°]>
<1998, [5°]>
<1999, [3°]>

<2000, [5°, 10°]>
<2001, [9°, 8°]>
<2002, [12°]>
<2003, [13°]>

<2000, [7.5°]>
<2001, [8.5°]>
<2002, [12°]>
<2003, [13°]>

<1995, 8.25°>
<1996, 2.75°>
<1997, 7°>
<1998, 5°>
<1999, 3°>
<2000, 7.5°>
<2001, 8.5°>
<2002, 12°>
<2003, 13°>

Mapper
Combiner Reducer

Reducer

Reducer

Reducer

Combiner

Mapper Combiner

Mapper
Combiner

Combiner

<1995, 7°>
<1995, 9°>
<1995, 7°>
<1995, 10°>
<1996, 1°>
<1996, 3°>

<1996, 2°>
<1996, 5°>
<1997, 8°>
<1997, 6°>
<1998, 5°>
<1999, 4°>

<1999, 2°>
<1999, 3°>
<2000, 5°>

<2000, 10°>
<2001, 9°>
<2001, 8°>

<2002, 12°>
<2003, 13°>

<1995, [7°, 9°, 7°, 10°]>
<1996, [1°, 3°, 2°, 5°]>
<1997, [8°, 6°]>
<1998, [5°]>

<2000, [5°]>

<2000, [10°]>
<2001, [9°, 8°]>
<2002, [12°]>
<2003, [13°]>

<1996, [2.75°]>
<2000, [10°,5°]>

<1995, [8.25°]>
<2003, [13°]>

<1998, [5°]>
<1999, [4°, 2.5°]>
<2002, [12°]>

<1997, [7°]>
<2001, [8.5°]>

<1999, [4°]>

<1999, [2°, 3°]>

<1996, 2.75°>
<2000, 7.5°>

<1995, 8.25°>
<2003, 13°>

<1998, 5°>
<1999, 3.25°>
<2002, 12°>

<1997, 7°>
<2001, 8.5°>

Same input Different configuration Different output

TESTING

DEBUGGING

Input
Reduction:
isolates the
input that

produce the
failure

<1999, [2°,3°]> Breakpoints and watchpoints:
allows the inspection of how the

fault are propagated
Fault localization: indicates which characteristic
produces failure (the number of Combiners)+ +

Testing reveals automatically that a fault exist, but it is difficult to understand

Section IV.1 - Debugging Framework: MRDebug 74

usually triggers the failure and those that usually mask it. This root cause of the fault is an entry

point for the developer to understand the fault, but sometimes may not be enough because the

test cases process several data with concurrent interactions. To improve the understanding of

the fault, MRDebug also isolates/minimizes the data that are relevant to trigger the failure

removing these other data that are irrelevant to understand the fault through a search-based

algorithm (delta debugging or genetic algorithm).

The majority of this chapter is planned to be published in JCR journal, but the initial work is

published in JISBD 2018 [46]. Section IV.1 describes the MRDebug framework: Fault localization

(Section IV.2) and input reduction (Section IV.3). The experiments are detailed in Section IV.4.

The related work is described in Section IV.5, and finally the Section IV.6 contains the conclusions

of the chapter.

IV.1 DEBUGGING FRAMEWORK: MRDEBUG

Once the fault was detected through the testing technique of the previous chapter, the

debugging phase is started to help developers to understand both the failure and the fault. For

example, the fault of the program that calculates the average temperature per year (Section II.1)

is depicted in Fig. 20. The first configuration executed does not produces a failure, but the

configuration of the middle reveals a fault caused by a wrong design of the application. Despite

the test case has only 20 <key, value> pairs, this fault is difficult to both understand and fix. This

chapter describes the MRDebug framework that is intended to automatically debug the design

faults of the MapReduce applications as Fig. 21 summarizes. This framework is able to

automatically localize the root cause of the fault (Subsection IV.2), isolate the data trigger the

failure (Subsection IV.3), and provide the common debugging utilities.

As a result of debugging, the developer does not obtain the complex configuration that triggers

the fault like the middle of Fig. 20, but obtains a more simple configuration like in the bottom of

Fig. 20. The input reduction technique automatically minimizes the data that trigger the fault

making the wrong distributed processing easier to understand. The localization technique

automatically obtains the characteristic of the configuration that trigger the fault. Then the

developer can be focus just in one part of the program. Some studies suggest that developers

could be beneficed by the integration of debugging techniques [206]. Then to make the

debugging more practical, MRDebug also supports the common utilities like breakpoints or

watchpoints simulating the distributed execution.

Fig. 21 MapReduce testing and debugging framework

Input data FAULT DETECTION

Has the
program fail?

No

FAULT LOCALIZATION

Yes

1
2
3
4
5
6

 Suspiciousness
rank

Isolate data that
cause failure

DEBUG INSPECTION

Breakpoints
watchpoints

DEBUGGING (fault localization and understanding)TESTING (Chapter III)

INPUT REDUCTION

Section IV.2 - Fault localization 75

IV.2 FAULT LOCALIZATION

Fault localization techniques aim to locate the root cause of the fault. Among them, the most

used in research is the spectrum-based fault localization that analyzes the common

characteristics of the test executions that fail and their differences with those that success [207].

These techniques obtain the suspicious cause of the fault following a procedure with the

following four parts: (1) definition of the characteristics to be analysed (program spectra), (2)

generation of several test cases, (3) execution and monitoring of tests, and (4) analysis of the

characteristics executed.

The characteristic analysed are defined according a program spectra [208], [209] such as the

coverage of code, parts of the configurations or other resources. The suspicious cause of the

fault is obtained analyzing the characteristics covered by not only one test case, but a test suite

with different test cases. This analysis yields to different suspicious cause of the fault depending

on the quality of the test suite executed, such as the number of test cases [210], the variety of

executions [211] and coincidental masking of the faults in executions [212], [213]. The best test

cases generated/designed, the more chances to obtain the root cause of the fault.

From each test case executed, the fault localization techniques monitor the characteristics

covered to rank the most suspicious cause of the fault. This ranking is obtained analyzing the

similarity/distance from the vector that contains the failures of all test cases (failure) to the

vector of the coverage of each characteristic in all executions (characteristic covered). Those

characteristics that are covered during the failures and also not covered in the succeeded tests,

has more chances to be the root cause of the fault. That is, the characteristic that has more

suspiciousness to be the root cause of the fault is the one that has a vector of coverage more

similar to the failure vector. Then the technique uses a ranking metric to rank each characteristic

according to the suspiciousness (similarity). There are several ranking metrics based on binary

similarity measures and no one is the best in all domains of fault localization [214].

IV.2.1.1 Fault Localization in MapReduce applications

The fault localization techniques are usually focused on the source code. However, the root

cause of the fault is not always the source code, for example the localization techniques of

product lines localize the root cause of the faults in features sets instead of the source code

[215]. The same happens in the design faults of the MapReduce programs because the root

cause of the fault can be a characteristic of the distributed execution, such as the number of

Mappers executed in parallel or the optimizations in the Combiner.

A MapReduce application can be executed with a configuration that is composed by different

characteristics according to its design like the two executions of the top of Fig. 20. The first

configuration of the figure masked the failure and has the following characteristics, among

others: 1 Mapper, 1 Combiner and 1 Reducer. In contrast, the second configuration has other

characteristics that reveal the failure, among others: several Mappers, the data is not executed

in the same order as in the input, several Combiners, and several Reducers. The execution of the

MapReduce programs could success or fail depending on the characteristics of the configuration

executed (number of Mappers, execution order, distribution of data, and others detailed below).

Fig. 22 summaries the spectrum-based fault localization technique proposed. MRDebug

generates and analyzes the characteristics of the different configurations (Program spectra) to

obtain automatically the root cause of the fault. Given a configuration that fails, MRDebug

generates new configurations changing just one characteristic in order to analyze if this change

Section IV.2 - Fault localization 76

is able to commute the execution to fail/success (Generation of configurations). These

configurations are executed using MRTest as automatic testing technique (Chapter III) collecting

the characteristics covered (Execution and monitorization). Then the characteristics of the

configurations are analysed together considering the patterns of those that success and those

that fail. Finally, the technique obtains a ranking of the characteristics that are more likely to

cause the failures (Analysis of suspicious). This technique is detailed below.

Program spectra: The MapReduce design faults are caused by characteristics of the distributed

executions. Then the program spectra used is focused in these characteristics that were defined

in our previous testing technique [41] through input space partitioning: Number of Mappers (1

or >1), Data processing order of the inputs (Mappers executed in the same order as input or

different), Distribution of input data in Mappers (equally distributed or not equally), Number of

Combiners (0, 1, or >1), Distribution of the Mapper outputs in Combiners (equally distributed or

not equally), Data directly from Mapper to Reducer (0 or >0), Iterative executions of Combiner

(1 or >1), and Number of Reducers (1 or >1). In total, these 17 characteristics can be combined

in different configurations. In each execution, the technique collects the characteristics covered

to obtain the one that usually triggers the failure.

Fig. 22 Fault localization technique in MapReduce programs

...

...

...

...

Conf.

Test case
(failure)

Data

Generation of
configurations

Conf. 1
Conf. 2

Conf. n

Execution and
monitorization of

configurations

...

Analysis of
suspicious
(Ochiai,...)

1
2
3
4
5
6

suspiciousness
rank

Fig. 23 Generation of configurations during fault localization

...

M
C
C

R

M C

M
C
C

R
R
R

C
C

C
C
C

C

C

C
C

N

Usually, the configurations
that fail have several
Combiners, and those that
succeed have not Combiners

Pattern founded
(potential root cause of fault)

Several
Combiners

One
Reducer

Configuration that
fails in testing

C
C
C
C
C

Generation of
configurations

Mappers
executed in

the same
order as input

R

Do not
execute

Combiner

Characteristic changed

Execution and
monitorization of

configurations

Alaysis of
suspicious

Evidence
The number of Combiners
could trigger and mask the
failure

Section IV.2 - Fault localization 77

Generation of configurations: MRDebug starts with one execution/configuration and generates

more configurations with different characteristics aimed to provide enough information to

locate the root cause of the fault. The configurations are generated based on the Lewis

counterfactual theory of causality [216] like other fault localization techniques [217]. Then,

MRDebug modifies the configuration that failed in testing generating several new configurations

with just one characteristic change in order to analyse if this change is able to mask the fault or

continue with the failure. Fig. 23 summarizes the generation of these new configurations that

changes only one characteristic: varying the execution order of the Mappers, executing the

configuration with several Combiners, without Combiner, with one Reducer, and so on with one

characteristic changed to cover new characteristics. These new configurations that are close to

the configuration that fails aims to avoid the coincidental masking of the faults.

Execution and monitorization: The configurations generated in the previous step are executed

and the design failures triggered are collected. During the execution, MRDebug also tracks the

characteristics covered by each configuration.

Analysis of suspicious: Once the configurations are generated and executed, the characteristics

of these configurations are analysed to obtain those that are more prone to be covered when

the execution fails (Characteristic covered = TRUE, failure = TRUE) and those that usually are not

covered when the execution success (Characteristic covered = FALSE, failure = FALSE). MRDebug

supports the most common 52 ranking metrics [188], [207], [218].

Example: Fig. 23 depicts all procedures of the fault localization in the program that calculates

the average temperature per year starting with the configuration that causes the failure in the

middle of Fig. 20. This program fails because the Combiner calculates the average temperature

with the temperatures available locally, but Reducer is not able to obtain the global temperature

with the local temperatures. The configuration that triggers the failure is composed by the

following characteristics, among others: Mappers that are executed in different order than the

input data, some Mappers have one Combiner, other Mappers have several Combiners, and one

Reducer. Per each characteristic of this configuration, 5 new configurations are generated

varying (1) the order of the Mapper, (2) with several Combiners, (3) without Combiner, (4) with

one Reducer, and so on (Generation of configurations). Note that Fig. 23 only depicts 1 of the 5

configurations generated. Next, each configuration is executed to check if the characteristic

changed is able to mask the failure or still trigger it (Execution and monitorization). For example,

the first configuration changes the execution order of Mapper and obtains the same output

(failure regardless of the execution order), then the order of Mappers apparently does not

produce the failure. However, the third configuration changes the number of Combiner to 0 and

the output of the test cases change from failure (one-several Combiners) to success (zero

Combiners). This is an evidence that the number of Combiners is suspicious to cause failures: the

failure is triggered with several Combiners and masked with zero Combiners. This last analysis is

done through the ranking metric M2 obtaining that the most suspicious characteristic is the

execution of several Combiners (Analysis of suspicious). Effectively, this MapReduce program

was wrongly design because does not admit this Combiner functionality and the failures are

triggered when several Combiners are executed. This information allows the developer to fix the

program removing the Combiner (patching the failure instead to correct the fault [206]) or

creating a new design of the program that supports other kind of Combiner.

Section IV.3 - Input reduction 78

IV.3 INPUT REDUCTION

The fault localization technique obtains automatically a ranking of the most suspicious root

causes of the fault. This ranking is an entry point for the developer to continue with the

debugging to both understand and fix the fault. Usually the root cause of the fault is not enough

to understand the fault, and the developers need more contextual information [206]. In the

example program of the previous subsection, the fault localization obtains that the most

suspicious cause of the fault is the execution of several Combiners, but this is not enough to

understand completely the fault. Even without very large test input data as in the middle of Fig.

20 (20 <key, value> pairs), the fault is not easy to understand because only 3 <key, value> pairs

trigger the failure and the other data difficult the understanding. Highlight those data related to

the fault can improve the understanding of the faults as other researchers suggest [206].

The MRDebug framework proposes to highlight the relevant test data minimizing/isolating the

data that trigger the failure to improve the understanding of the MapReduce design faults. As

Fig. 24 summarizes, this input reduction approach generates iteratively new subsets of the test

input data that still trigger the failure removing/unselecting those irrelevant <key, value> pairs.

Each one of these subsets are used to execute the program and determine if the data still trigger

the failure or not. In each iteration, the new subsets of data are generated by means of search-

based strategy [219]: delta debugging that is a greedy approach focused on local search [48]

(Subsection IV.3.1.2), or genetic algorithm (Subsection IV.3.1.1) [50], [51]. These subsets are

executed using MRTest as automatic testing technique/oracle (Chapter III) that determinises if

the subset of data is able to trigger the failure (feasible solution) or not (unfeasible solution).

After several iterations/optimizations, the technique obtains automatically a minimal/small

subset of data that still trigger the fault. Finally, these small data make the fault more easy to

understand. For example, the bottom of Fig. 20 depicts a simple test case with only 3 <key,

value> pairs that is more easy to analyse than the test case of the middle. In the following

subsections, the genetic algorithm and delta debugging strategies are detailed.

IV.3.1.1 Genetic Algorithm

Genetic algorithms solve problems based on the nature selection of the Darwin theory about

evolution. The solutions of the problem are represented by one individual and codified in the

chromosome. The goal of these algorithms is to generate better individuals that inherit the best

genes through reproduction and mutation as occurs in nature.

The genetic algorithm proposed to reduce/isolate the data of the test case (individual) that

trigger the failure is summarized in Fig. 25. At first point, the technique generates and executes

several subsets of data randomly (initial population). Then the algorithm evaluates how good

Fig. 24 Input reduction technique

Input data
that trigger a

fault

Selection of input
data subset

Strategies:
- Delta debugging
- Genetic algorithm

Check if the data
trigger the fault

Automatic
partial oracle:
MRTest

Is the subset of
input data a minimal
& trigger a fault?

No
Yes

Minimal input
data that still
trigger the fault

Section IV.3 - Input reduction 79

each subset is (fitness function), considering that the subset is as good as less data that still

trigger the failure has. Subsequently, the algorithm improves the actual subsets of data trying

to reduce their number of data (generation of new population). This algorithm also generates

iteratively new subsets of data until there is no improvement in the last generations (fitness

equally in last generations). As result, the algorithm obtains a minimal data or at least an enough

small data that still trigger the failure.

Individual (chromosome): The solution of this problem, also called individual, is one of the

possible subsets of the test input data (<key, value> pairs). Given an input data that failed during

testing with N <key, value> pairs, the search space is composed by (2^N)-1 possible subsets of

data (individuals). The subset of data of each individual is encoded in a chromosome composed

by a binary string schema [50] as in the Fig. 26. The genes of the chromosome indicate if the

<key, value> pair is selected (1) or not (0). Then this chromosome can be decoded in a subset of

data that could still trigger the failure or success. The best individuals are those that trigger the

failure with less data.

Initial population: The initial population is composed by several individuals randomly generated

together with another individual composed by all input data that failed in testing. This last

individual is used to start the reduction approach with the worst feasible solution.

Some researchers suggest an initial population with large number of individuals [220], but

similar results can be achieved with smaller number initial population after several generations

[221]. The use of small number of individuals like 20 is also preferable when the cost of each

Fig. 25 Genetic algorithm to reduce the input data

Input data
that trigger a

fault

Generate initial
population

Check if the data
trigger the fault

Evaluate
fitness

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
#𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡

#𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 1 𝐷𝑜 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡

Penalized

Generate new population
(generation)

Has the
last 5 generations not
minimize the input data?

No

Yes
Minimal input
data that still

trigger the fault

Goal: minimize the fitness (number of input data that trigger the fault)

Fig. 26 Input reduction technique

Phenotype spaceGenotype space

<1995, 7º>

<1999, 4º>
<1999, 2º>

<2003, 13º>

Input data

1

1
1

1

ConfigurationChromosome

<1995, 7º>

<1999, 4º>
<1999, 2º>

<2003, 13º>

0

1
1

0

Several populations, mutation, crossover,...

In
d

iv
id

ua
l

B
et

te
r

in
d

iv
id

u
al

(de)codification

Section IV.3 - Input reduction 80

generation/individual can be high, as in our case. As the experimentation of Section IV.4 details,

sometimes the execution can take several seconds/minutes because the individuals are

executed by MRTest (Chapter III).

Execution of individuals: Each individual composed by a subset of input data is executed by

MRTest [41]. Then the algorithm obtains automatically if the individual has data able to trigger

the failure (feasible individual) or not (infeasible individual).

Fitness: Each individual is evaluated by a fitness function that indicates how good is the subset

selected. The best ones are those that triggers the failure with few data, whereas the worsts are

those that either cannot trigger the failure or have lots of data.

The goal is to minimize the fitness considering the feasible and infeasible individuals. The

feasible individuals are those that triggers the failure, and their fitness is defined as the number

of the data selected. In contrast, the infeasible individuals are those that are not able to trigger

the failure. This infeasible individuals are penalized by a maximum fitness value (death penalty

[222]). One good practice to stablish this penalty is by the minimal penalty rule that consist in

the lower penalty that make the individual still worse than the worst feasible individual [223].

In the input reduction problem, the worst feasible individual always contains all input data

(fitness = number of input data that failed during the testing). Then the fitness is defined as: (1)

”the number of input data that failed in testing + 1” for the individuals that are not able to trigger

the failure, and (2) “the number of data selected” for those individuals that trigger the failure.

Generation of new population: The initial population is iteratively improved with new

individuals that inherits the best chromosome genes, these are those <key, value> pairs that are

relevant to trigger the failure. This new generations of individuals are created using all of the

following operations: (1) elitism, (2) asexual reproduction, (3) sexual reproduction, (4) mutation,

(5) non-duplicated individuals, and (6) generational replacement. These operations aims to

obtain both the maximum reduction of subset of input data that trigger the failure (local

minimal), and diversity of these data (skip local minimal to reach global minimal).

From one generation to the next, the best individual is preserved (elitism [224]) to provide two

advantages: guarantees that each generation has at least one subset of data that triggers the

failure (feasible solution), and the new generation has at least one individual that has either the

same or less number of <key, value > pairs than the previous generation. This best individual can

be better if is able to still trigger the failure with at least one <key, value> pair less. Then the

algorithm also explores the close subsets of this elite individual generating new similar subsets

reducing just one <key, value> pair. This operation is called asexual reproduction of one

individual mutating one random gen of the chromosome [225] to reduce one <key, value> pair.

The previous two operations (elitism and asexual reproduction) search only a small part of the

search space. Then these individuals generated from the asexual reproduction trend to improve

the solutions towards a local minimal whereas the other operations trends to skip the local

minimal.

The algorithm also provides diversity in the subsets of the test input data selected to search the

space more broadly and skip local minimal aimed to reach the global minimal. The remainder

individuals of the new generation are generated through sexual reproduction of previous

generation and little mutations. All individuals of the next generations are generated mixing two

parents selected through the roulette wheel method [51]. This method selects the individuals

randomly but weighted according to the fitness value, then the individuals with less data that

triggers the failure have more chances than those that either not trigger the failure or have more

Section IV.3 - Input reduction 81

data. For each two individual parents selected, two individual offspring are generated using one-

point crossover [51] to join different parts of the two subsets aimed to still trigger the failure

but with more diversity of data. This method generates one individual with the first part of the

input data from the father chromosome and the remainder part of data from the mother, and

also another individual with the opposite (the first part is from mother and the second from

father). The point that separates/crosses the chromosome genes from the father to the mother

is selected randomly. Then each offspring is a mix of the father subset and mother subset

(previous generation). Finally, each gen of the chromosomes can be mutated swapping the value

to introduce littles changes selecting or unselecting one <key, value> pair. Some researchers

suggest to perform the mutations with low probability [224], for example 1%.

In this algorithm, each new individual generated must be a completely new individual (not

duplications [226]). In case that one new individual was generated identically before, this

individual is replaced by a new random subset of the test input data. The completely new

individuals generated in each generation replace the previous generations (generational

replacement [51], [227]).

Termination criteria: New generations are created until there is no improvement in the best

individual fitness during the last generations (K-iterations [228]).

Example: Fig. 26 depicts part of the input reduction technique using the input data that fail in

the top of Fig. 20. An initial population is generated with one individual that contains all data

that trigger the failure (top of Fig. 26) and other 19 random subsets of these data (not

represented in Fig. 26). Then MRDebug uses the genetic operators to iteratively generate new

better individuals that modify the subsets of the test input data and reduce their number of

<key, value> pairs. Finally, the algorithm converges after 7 generations to the minimal subset of

data that still trigger the failure as in the bottom of Fig. 26. This subset of the test input data is

also represented in the bottom of Fig. 20 containing only 3 <key, value> pairs after MRDebug

removed the irrelevant data to enhance the understanding of the fault.

IV.3.1.2 Delta Debugging

Delta debugging is an approach proposed by Zeller et al. to simplify the test cases isolating the

inputs [48]. This isolation/minimization is done through a greedy search-based algorithm aimed

to find the first local minimal using a binary-search strategy recursively. At first point, the

algorithm proposed by Zeller et al. divides the search space in two halves (binary-search). If one

of the halves still contains the solution, then is again divided deeper and the other halve is

discarded (greedy). If none of the halves contains the solution, then the granularity of the search

space is increased dividing again one of the halves in two (binary-search). This approach is

applied recursively until reach the first local minimal.

The details of the technique are in the original paper of Zeller et al. [48], [49]. MRDebug only

adapts delta debugging to the input reduction problem of the MapReduce applications using

MRTest (Chapter III) as automated testing technique/oracle. The search space is composed by

all input data that trigger the failure, then the data are iteratively divided into two subsets

(binary-search). If one of these subsets still trigger the failure, then this subset is divided again

into two subsets until reach a local minimal, and the other subset is discarded (greedy). In the

other case that none of the two subsets of data are able to trigger the failure, the granularity is

increased dividing one of the subsets into two sub-subsets that are combined with the other

Section IV.4 - Experiments 82

subset generating a new search space. The approach is applied recursively until reach a local

minimal subset of data that still trigger the failure.

IV.4 EXPERIMENTS

The goal of the experiments is to evaluate both the effectiveness and efficiency of the debugging

techniques proposed in this chapter to understand the MapReduce design faults: fault

localization technique (Subsection IV.4.1) and input reduction technique (Subsection IV.4.2).

Finally, Subsection IV.4.3 discuss the results and the limitations.

IV.4.1 Fault Localization experiments

The goal of this experiment is the assessment of how effective and efficient the fault localization

technique is locating the root cause of the MapReduce design faults. The research questions are:

RQ7. Is the fault localization technique better providing the root cause of the MapReduce

design faults than a random location (baseline)?

RQ8. The fault localization technique obtains a ranking of the MapReduce characteristics

that could be the potential root causes of the design fault. How many characteristics

should be analyzed until reach the root cause of MapReduce design fault?

RQ9. Which ranking metrics of those used in fault localization are better to rank the root

causes of the MapReduce design faults?

RQ10. How much execution time is employed by the fault localization of the MapReduce

design faults?

RQ11. The localization technique analyzes several configurations previously generated. How

many MapReduce configurations must be generated by the fault localization technique

to achieve a good balance between maximum rate of design faults located and low

execution time?

The setup of the experiments aimed to answer the previous research questions is described in

Subsection IV.4.1.1. The results are detailed in Subsection IV.4.1.2.

IV.4.1.1 Fault Localization experiment: setup

In this experiment, 8000 different test cases from 4 real-world programs (2000 test cases per

program) are analysed by the fault localization technique to evaluate their capability to localize

the root cause of the faults. These 4 programs are the same used in the previous chapter and

each one has a known design fault: (1) Open Ankus [170] is a recommendation system that fails

when the recommendation data about the same item are split and parallelized, (2) Data quality

analysis [191] measures the quality of the data interchanged by companies and fails when the

data are not processed in the same order as in the input due a parallelization issues (the fault is

actually fixed), (3) Movie analysis [192] obtains statistics about movies and fails due a wrong

implementation of Combiner, and (4) Data cleaner Knn analysis [193] is a machine learning

program to clean data that fails when there are several Mappers each one trying to access to

non local available data.

The population of the experiment is composed of all test cases that trigger MapReduce design

faults. Each of these test cases is then taken as the experimentation unit, and the observations

are: the ranking of the potential root causes of faults (suspiciousness rank) obtained by the fault

Section IV.4 - Experiments 83

localization technique (RQ7-RQ9 and RQ11), and execution time (RQ10). The dependent variable

or response variable is: position of the root cause of fault in the suspiciousness rank (RQ7-RQ9

and RQ11), and execution time in milliseconds (RQ10). The baseline is the random localization

that obtains a random suspiciousness rank, and the treatments are the fault localization

technique using the most common 52 ranking metrics [188], [207], [218]: Ample, Ample2,

Anderberg, Arithmetic Mean, Baroni Urbani and Buser, Binary, Braun Banquet, Cbi Increase, Cbi

Log, Cbi Sqrt, Cohen, Dennis, Dice, Euclid, Fleiss, Fossum, Goodman, Gower, Hamann, Hamming,

Harmonic Mean, Jaccard, Kulczynski, Kulczynski2, M1, M2, Mccon, Michael, Minus, Mountford,

O, O^P, Ochiai1, Ochiai2, Overlap, Pearson, Phi Geometrical Mean, Rogers and Tanimoto,

Rogot1, Rogot2, Rusell And Rao, Scott, Simple Matching, Sokal, Sorensen Dice, Tarantula,

Tarwid, Wong1, Wong2, Wong3, Wong3 Prime, and Zoltar.

These experiments could be affected by the input data size, then a blocking factor is stablished

with two different sizes of data as in the previous experiments [41]: small size (between 1 and

10 <key, value> pairs) and a larger size for functional testing purposes (between 11 and 35 <key,

value> pairs).

In the experiments, two sampling methods are used: consecutive sampling to select the

MapReduce programs and random sampling to select the test cases. Ideally, the subject

programs should be selected randomly, but as in the case in many software engineering

experiments, this is not viable [194]. As such, four real-world programs that contain a known

fault are selected instead.

These experiments answer the research questions using different statistical measures. Whereas

RQ10 is answered analysing the execution time trend because is focused on efficiency, the other

research questions analyse the position of the root cause of the fault inside the suspiciousness

rank. RQ7 is answered comparing the positions of the root cause of the fault that are provided

by both random localization and fault localization. The comparison is done by the non-

parametric statistic test Wilcoxon Sign Rank test that measures the differences among the

paired medians with the following one-tail null hypothesis: H01: median(rank position of the root

cause of the fault by fault localization) = median(rank position of the root cause of the fault by

random localization). This kind of evaluation is also done in other fault localization studies [229].

RQ8 is answered using one of the most used evaluation metrics in fault localization [188], the

EXAM score [230]: percentage of the suspiciousness rank that must be analysed until reach the

position of the root cause of the fault.

Another metric to evaluate the fault localization techniques is the AUC (area under curve) that

allows the comparison among ranking metrics [231]. AUC consider the position of the root cause

of the fault in each test case. AUC is defined as the sum per each test case of the percentage of

suspiciousness rank not analyzed. RQ9 is answered using AUC normalized between 0 and 1.

The RQ11 is focused on how much configurations should be generated and analyzed to obtain

good rate between effectiveness and efficiency. Intuitively, more number of configurations

yields on better results, but also on more execution time. In other domains, Abreu et al. [210]

study empirically the relation between the fault localization accuracy and the number of analysis

performed. In our domain these number of analysis (number of configurations generated) could

vary and then are also empirically studied. The research question is answered though the

execution of all experiments varying the number of configurations and analyzing the trend of

the AUC normalized along the different ranking metrics.

Section IV.4 - Experiments 84

IV.4.1.2 Fault Localization experiment: results

The localization technique generates and analyzes several configurations to obtain the root

cause of the faults. Depending on the number of configurations generated, the results varies a

Fig. 27 Distribution of Exam score (% of characteristics examined in the ranking to detect the root cause of fault) and

ranking position of the root cause according to teach ranking metric in each program

Ranking metric

E
x
a
m

 s
c
o

re

R
a
n
k
 p

o
s
it

io
n75%

100%

25%

50%

1

6

7

8

2

3

4

5

E
x
a
m

 s
c
o

re

R
a
n
k
 p

o
s
it

io
n

75%

100%

25%

50%

1

6

7

8

2

3

4

5

E
x
a
m

 s
c
o

re

R
a
n
k
 p

o
s
it

io
n75%

100%

25%

50%

1

6

7

8

2

3

4

5

Data cleaner
Knn analysis

Open
Ankus

Data quality
analysis

Movie
analysis

5.9%

E
x
a
m

 s
c
o

re

R
a
n
k
 p

o
s
it

io
n

76.5%

100%

29.4%

52.9%

1

7

3

5

9

15

11

13

17

R
a
n
k
 p

o
s
it

io
n

1

7

3

5

9

15

11

13

17 All
programs

Section IV.4 - Experiments 85

bit. As we can see below in the answer of RQ11, the results are enough good generating and

analyzing just only one configuration per each characteristics of configurations. These results

are improved when more configurations are generated and analyzed. The best number of

configurations in terms of efficiency and effectiveness is 5 according of RQ11. Then MRDebug

use by default 5 as number of configurations per each characteristic, and the remainder

experiments for RQ7-RQ10 evaluates the localization technique with this default option.

Fig. 27 details the distribution of the position of the root cause of the fault in the suspiciousness

rank obtained automatically by the fault localization technique. In the rigth of the figure is also

detailed the baseline (random localization). Table 19 summarizes the p-values that compares

the localization technique and the random localization. Regardless of the ranking metric, the

fault localization technique is better than random localization with a p-value lower than 0.05.

There are two exceptions in Data quality analysis program, Rogot1 and Scott, with 11-35 <key,

value> pairs as input. In the movie analysis program there are also 9 ranking metrics that are not

significantly better than random localization, but the other 43 ranking metrics achieve significant

better results than random localization. In the aggregation of the 4 programs, all ranking metrics

are significantly better than random and the null hypothesis H01 is rejected according to

Wilcoxon Sign Rank test. Then the answer of RQ7 is that the localization technique achieves in

general significant better results than random localization.

According to Fig. 27, the fault localization technique usually ranks the root cause of the fault in

the first top positions. There are some exceptions in the movie analysis program because its root

cause of the fault is complex and then difficult to localize. Despite the program does not support

the Combiner, not always triggers the fault when a Combiner is executed. The fault is

triggered/masked depending on several factors such as if Combiner is executed or not, the logic

of the program, and the distribution of the data in the configuration. These issues add noise and

the technique sometimes ranks in the first positions characteristics that, although are not the

root cause of fault, are very related. Then the root cause of the fault of the movie analysis

program are usually ranked in in the firsts four positions, that is in less than the 23.5% top of the

rank (Exam score). However, the fault localization still provides better results than random. In

the remainder of programs, and in the aggregation of all programs, the root causes of the fault

are in the top positions of the rank. Then the answer of RQ8 is that the root causes of fault are

in general ranked in the first positions.

Despite all ranking metrics of the literature, there is no one formula that outperforms the rest

in all contexts [214]. In our domain, all ranking metrics not only are in general significantly better

than random localization, but also achieve good results. Table 20 summarizes and sorts ranking

metrics according to the AUC normalized. After all experiments, the answer of RQ9 is that the

best ranking metrics to locate MapReduce design faults are M2, O^P and Wong3 prime.

From the previous ranking metrics, Fig. 28 describes the accumulated percentage of faults

localized at each ranking position. The root causes of fault are ranked in the first position in more

than 85% of times for Open Ankus, more than 94% for Data quality analysis, more than 25% for

movie analysis, and 100% for Data cleaner knn analysis. When the data of all programs are

aggregated, in more than 75% of times the root cause of the fault is ranked in the first position,

and more than 85% in the second position. Then more information is added in the answer of

RQ8: the root cause of the fault is in general ranked in the first positions (more than 75% of

times in the first position and more than 85% of times in the second position).

Section IV.4 - Experiments 86

Table 19 P-values of the experiments performed in each program according to the ranking metrics used in fault
localization

 Programs

 Open Ankus Data quality analysis Movies analysis
Data cleaner Knn

analysis
All

programs
Ranking metric [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] [1-10] [11-35]

AMPLE 6.3E-127 1.6E-117 0.01117 2.3E-05 7.0E-24 0.0002 2.2E-138 2.2E-138 ~ 0

AMPLE2 7.9E-145 1.6E-139 1.0E-88 4.6E-70 1.9E-60 2.3E-57 1.4E-166 1.4E-166 ~ 0

ANDERBERG 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

ARITHMETIC MEAN 3.1E-138 2.5E-132 2.4E-105 1.7E-86 2.0E-39 1.0E-46 1.4E-166 1.4E-166 ~ 0

BARONI URBANI
AND BUSER 1.2E-131 5.1E-122 1.7E-142 2.8E-147 1.1E-55 4.0E-51 1.4E-166 1.4E-166 ~ 0

BINARY 5.9E-139 3.2E-129 2.1E-139 1.1E-147 4.1E-10 1.0E-15 1.4E-166 1.4E-166 ~ 0

BRAUN BANQUET 5.1E-134 9.6E-125 2.4E-142 2.8E-147 1.9E-64 1.2E-60 1.4E-166 1.4E-166 ~ 0

CBI INCREASE 2.4E-129 7.2E-123 1.3E-115 1.3E-68 7.1E-36 3.0E-40 2.8E-166 2.8E-166 ~ 0

CBI LOG 2.5E-126 3.2E-105 6.0E-90 5.0E-55 3.4E-35 4.2E-37 1.4E-166 1.4E-166 ~ 0

CBI SQRT 3.5E-133 6.5E-129 6.4E-89 4.4E-55 8.7E-30 1.7E-33 1.4E-166 1.4E-166 ~ 0

COHEN 1.1E-125 3.9E-121 1.5E-104 1.7E-86 6.7E-36 3.4E-37 1.4E-166 1.4E-166 ~ 0

DENNIS 3.2E-138 4.6E-132 1.4E-96 1.1E-56 1.0E-44 3.0E-44 1.4E-166 1.4E-166 ~ 0

DICE 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

EUCLID 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

FLEISS 2.7E-118 2.2E-86 5.8E-125 4.1E-133 4.6E-24 5.0E-07 1.4E-166 1.4E-166 ~ 0

FOSSUM 6.7E-141 1.7E-122 4.0E-146 1.8E-148 3.0E-43 2.9E-50 1.4E-166 1.4E-166 ~ 0

GOODMAN 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

GOWER 1.9E-33 4.3E-16 4.3E-28 3.9E-46 1 1 1.4E-166 1.4E-166 1.27E-110

HAMANN 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

HAMMING 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

HARMONIC MEAN 2.4E-144 3.2E-139 2.4E-105 1.7E-86 5.1E-49 5.4E-51 1.4E-166 1.4E-166 ~ 0

JACCARD 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

KULCZYNSKI 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

KULCZYNSKI2 1.5E-146 1.2E-141 1.0E-144 7.3E-148 6.4E-41 2.8E-53 1.4E-166 1.4E-166 ~ 0

M1 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

M2 9.3E-147 8.6E-141 4.0E-146 1.8E-148 9.3E-47 2.5E-58 1.4E-166 1.4E-166 ~ 0

MCCON 1.5E-146 1.2E-141 1.0E-144 7.3E-148 6.4E-41 2.8E-53 1.4E-166 1.4E-166 ~ 0

MICHAEL 5.8E-147 8.8E-141 1.1E-62 3.2E-21 6.0E-67 2.3E-63 2.2E-138 2.2E-138 ~ 0

MINUS 3.7E-147 1.1E-141 2.4E-105 1.7E-86 7.0E-47 3.6E-60 1.4E-166 1.4E-166 ~ 0

MOUNTFORD 2.2E-141 2.6E-135 2.2E-144 7.3E-148 4.8E-37 8.3E-44 1.4E-166 1.4E-166 ~ 0

O 5.9E-147 8.7E-142 3.2E-146 2.6E-148 3.0E-31 8.4E-52 1.4E-166 1.4E-166 ~ 0

O POW P 4.0E-147 8.1E-142 7.9E-147 1.8E-148 9.9E-39 7.6E-54 1.4E-166 1.4E-166 ~ 0

OCHIAI1 7.6E-145 5.6E-139 1.1E-144 7.3E-148 1.3E-46 3.1E-54 1.4E-166 1.4E-166 ~ 0

OCHIAI2 2.2E-139 3.7E-132 2.4E-105 1.7E-86 5.9E-68 9.7E-56 1.4E-166 1.4E-166 ~ 0

OVERLAP 6.1E-116 1.6E-105 2.2E-94 1.3E-58 4.2E-09 2.9E-13 3.8E-163 3.8E-163 ~ 0

PEARSON 2.3E-144 3.2E-139 2.4E-105 1.7E-86 2.5E-26 7.5E-46 1.4E-166 1.4E-166 ~ 0

PHI GEOMETRICAL
MEAN 2.4E-144 3.2E-139 2.4E-105 1.7E-86 3.0E-50 2.7E-51 1.4E-166 1.4E-166 ~ 0

ROGERS AND
TANIMOTO 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

ROGOT1 1.4E-123 2.5E-100 4.7E-29 0.99999 5.8E-26 3.3E-08 1.4E-166 1.4E-166 ~ 0

ROGOT2 2.4E-144 3.5E-139 2.4E-105 1.7E-86 4.9E-49 4.2E-51 1.4E-166 1.4E-166 ~ 0

RUSELL AND RAO 5.0E-138 1.8E-128 7.3E-142 9.2E-148 8.1E-09 3.3E-14 1.4E-166 1.4E-166 ~ 0

SCOTT 1.4E-123 2.5E-100 4.7E-29 0.99999 1.7E-26 6.2E-09 1.4E-166 1.4E-166 ~ 0

SIMPLE MATCHING 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

SOKAL 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

SORENSEN DICE 6.6E-140 3.9E-131 1.8E-142 2.8E-147 4.4E-53 3.3E-55 1.4E-166 1.4E-166 ~ 0

TARANTULA 1.2E-129 1.6E-124 8.9E-125 6.9E-100 2.8E-36 6.0E-39 2.8E-166 2.8E-166 ~ 0

TARWID 1.2E-129 1.6E-124 1.3E-115 1.3E-68 7.8E-36 7.2E-39 2.8E-166 2.8E-166 ~ 0

WONG1 5.0E-138 1.8E-128 7.3E-142 9.2E-148 8.1E-09 3.3E-14 1.4E-166 1.4E-166 ~ 0

WONG2 3.0E-52 4.4E-24 1.3E-140 2.8E-147 0.1687 0.2596 1.4E-166 1.4E-166 ~ 0

WONG3 3.7E-147 7.7E-142 2.5E-142 2.8E-147 6.6E-38 9.0E-51 1.4E-166 1.4E-166 ~ 0

WONG3 PRIME 3.7E-147 7.7E-142 1.7E-142 2.8E-147 1.1E-38 2.7E-54 1.4E-166 1.4E-166 ~ 0

ZOLTAR 2.4E-147 1.4E-142 1.0E-144 7.3E-148 4.8E-32 8.3E-51 1.4E-166 1.4E-166 ~ 0

Section IV.4 - Experiments 87

Table 20 AUC normalized in each program according to the ranking metrics used in fault localization

 Programs

 Open Ankus Data quality analysis Movies analysis
Data cleaner Knn

analysis
All

programs
Ranking metric [1-10] [11-35] [1-10] [11-35] [1-10] [11-35] [1-10] [11-35]

M2 0.985 0.958 0.997 1.000 0.832 0.841 1.000 1.000 0.917
O POW P 0.984 0.962 0.998 1.000 0.819 0.837 1.000 1.000 0.915

WONG3 PRIME 0.982 0.961 0.994 0.999 0.819 0.838 1.000 1.000 0.914
KULCZYNSKI2 0.977 0.956 0.996 0.999 0.823 0.835 1.000 1.000 0.914

MCCON 0.977 0.956 0.996 0.999 0.823 0.835 1.000 1.000 0.914
WONG3 0.982 0.961 0.994 0.999 0.817 0.833 1.000 1.000 0.914
ZOLTAR 0.985 0.963 0.996 0.999 0.807 0.833 1.000 1.000 0.913

O 0.985 0.961 0.997 1.000 0.799 0.828 1.000 1.000 0.912
OCHIAI1 0.960 0.938 0.996 0.999 0.830 0.832 1.000 1.000 0.910
FOSSUM 0.967 0.909 0.997 1.000 0.826 0.831 1.000 1.000 0.907
MINUS 0.978 0.959 0.957 0.941 0.830 0.840 1.000 1.000 0.904

ANDERBERG 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903
DICE 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903

GOODMAN 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903
JACCARD 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903

KULCZYNSKI 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903
SORENSEN DICE 0.931 0.899 0.994 0.999 0.838 0.831 1.000 1.000 0.903

MOUNTFORD 0.941 0.918 0.996 0.999 0.810 0.814 1.000 1.000 0.901
AMPLE2 0.963 0.943 0.949 0.933 0.850 0.833 1.000 1.000 0.900

BRAUN BANQUET 0.899 0.869 0.994 0.999 0.848 0.835 1.000 1.000 0.897
PHI GEOMETRICAL

MEAN
0.956 0.939 0.957 0.941 0.832 0.824 1.000 1.000 0.897

HARMONIC MEAN 0.956 0.939 0.957 0.941 0.830 0.823 1.000 1.000 0.897
ROGOT2 0.956 0.939 0.957 0.941 0.830 0.824 1.000 1.000 0.897
PEARSON 0.956 0.939 0.957 0.941 0.793 0.820 1.000 1.000 0.892
OCHIAI2 0.923 0.898 0.957 0.941 0.853 0.827 1.000 1.000 0.891

BARONI URBANI
AND BUSER

0.887 0.855 0.994 0.999 0.833 0.819 1.000 1.000 0.891

ARITHMETIC MEAN 0.920 0.899 0.957 0.941 0.812 0.818 1.000 1.000 0.885
DENNIS 0.918 0.898 0.954 0.931 0.818 0.811 1.000 1.000 0.883

RUSELL AND RAO 0.908 0.879 0.992 0.998 0.740 0.757 1.000 1.000 0.876
WONG1 0.908 0.879 0.992 0.998 0.740 0.757 1.000 1.000 0.876
BINARY 0.908 0.880 0.989 0.997 0.739 0.752 1.000 1.000 0.875

CBI SQRT 0.891 0.878 0.950 0.930 0.790 0.793 1.000 1.000 0.871
CBI LOG 0.888 0.838 0.950 0.931 0.801 0.799 1.000 1.000 0.868
COHEN 0.859 0.847 0.956 0.941 0.800 0.799 1.000 1.000 0.868

MICHAEL 0.985 0.961 0.928 0.893 0.862 0.841 0.857 0.857 0.866
FLEISS 0.864 0.778 0.976 0.982 0.782 0.730 1.000 1.000 0.857

TARANTULA 0.876 0.863 0.972 0.953 0.801 0.801 0.918 0.918 0.856
TARWID 0.876 0.863 0.969 0.943 0.800 0.800 0.918 0.918 0.855

CBI INCREASE 0.876 0.859 0.969 0.943 0.800 0.803 0.918 0.918 0.854
SCOTT 0.872 0.806 0.917 0.852 0.785 0.737 1.000 1.000 0.839

ROGOT1 0.872 0.806 0.917 0.852 0.784 0.735 1.000 1.000 0.838
OVERLAP 0.827 0.804 0.954 0.937 0.738 0.751 0.919 0.919 0.826

AMPLE 0.882 0.851 0.880 0.886 0.786 0.717 0.857 0.857 0.809
EUCLID 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803

HAMANN 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803
HAMMING 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803

M1 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803
ROGERS AND
TANIMOTO

0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803

SIMPLE MATCHING 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803
SOKAL 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803

WONG2 0.672 0.594 0.992 0.999 0.699 0.693 1.000 1.000 0.803
GOWER 0.615 0.562 0.909 0.923 0.534 0.558 1.000 1.000 0.734

RANDOM 0.474 0.469 0.872 0.872 0.678 0.677 0.505 0.505 0.614

Section IV.4 - Experiments 88

The experiments demonstrate that the fault localization technique is effective locating the root

cause of the faults. Other goal of the experiments is also to evaluate the efficiency. Fig. 29

describes the execution time according to the number of <key, value> pairs of the test case. The

localization technique employs few time, generally less than 6 seconds. The execution time also

follows a linear trend increasing the seconds when the input data is bigger. Then the answer of

RQ10 is that the fault localization technique is efficient employing only few seconds and is also

scalable with respect to the size of the test input data.

The fault localization technique obtains the root cause of the fault by means of the analysis of

several configurations. Depends on the number of configurations, the technique could yield

Fig. 28 Percentage of accumulated fault rightly localized in each position of the ranking for all programs
according to different ranking methods

0%

25%

50%

75%

100%

1 3 5 7

0%

25%

50%

75%

100%

1 3 5 7 9 11 13 15 17

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8

Open Ankus

%
 o

f
fa

u
lt
s
 l
o

c
a
li
z
e
d

25% 50% 75% 100%
Position in the rank

Exam score
25% 50% 75% 100%

Position in the rank

Exam score

5.9% 100%
Position in the rank

Exam score
25% 50% 75% 100%

Position in the rank

Exam score

Position in the rank

M2

Ranking metrics:

O^P

WONG 3 PRIME

RANDOM (baseline)

80%

85%

90%

95%

100%

1 2 3 4 5

Zoom

Data quality analysis

94%
95%
96%
97%
98%
99%

100%

1 2 3 4

Zoom

29.4% 52.9% 76.5%

0%

25%

50%

75%

100%

1 3 5 7 9 11 13 15 17

25%

40%

55%

70%

85%

100%

1 3 5 7 9 11 13

Movie analysis

Zoom

Data cleaner Knn analysis All programs

Zoom

75%

80%

85%

90%

95%

100%

1 3 5 7 9 11

Fig. 29 Execution time of the fault localization technique according to the number of <key, value> pairs

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

Number of input <key, value> pairs

Open Ankus

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

Number of input <key, value> pairs

Data quality analysis

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

Number of input <key, value> pairs

Movie analysis

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

Number of input <key, value> pairs

Data cleaner Knn analysisZoom

Section IV.4 - Experiments 89

better or worst results. To obtain the ideal number of configurations, Fig. 30 summarizes the

trend of the distribution of the AUC normalized in different ranking metrics along all experiments

varying the number of configurations. As expected, the fault localization obtains better results

when the number of configurations generated/analyzed increases, but also decrease the

efficiency. To obtain the number of configurations beyond which there is no improvement in

AUC, we calculate the second derivate of the curve. In this derivate, there is no value equally to

zero, then the AUC normalized is always slightly increased until a limit of 0.88. This improvement

is bigger between 1 to 5 number of configurations (from 0.82 to 0.87) and very lower after that

(from 0.87 to 0.88). Then the answer of RQ11 is 5 number of configurations because, as we can

see in RQ7-RQ10, yields to a very good effectiveness and very good efficiency.

IV.4.2 Input Reduction experiments

The goal of this experiment is the assessment of how effective and efficient the input reduction

techniques are isolating the data that triggers the MapReduce design faults. The research

questions are:

RQ12. Are both input reduction techniques, genetic algorithm and delta debugging, better

search strategies than random searches (baseline) to isolate the input data that trigger

the MapReduce design faults?

RQ13. Which of the input reduction techniques proposed, genetic algorithm and delta

debugging, is better isolating the data that trigger the MapReduce design faults?

RQ14. How much data reduce the input reduction techniques?

RQ15. How much execution time is employed by the input reduction techniques of the

MapReduce design faults?

The setup of the experiments aimed to answer the previous research questions is described in

Subsection IV.4.2.1. The results are detailed in Subsection IV.4.2.2.

Fig. 30 Effectiveness of ranking metrics used by the fault localization technique according to the number of
configurations generated

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of configurations generated per each characteristic by the fault localization technique

A
U

C
 n

o
rm

a
liz

e
d

Fault localization technique (treatment) Random (baseline)

Section IV.4 - Experiments 90

IV.4.2.1 Input Reduction experiments: setup

The experiments are very similar to the fault localization experiments. The same test cases that

triggers the faults are used as experimental units, but only in those with 11-35 <key, value> (1000

test case per each of the 4 programs). The reason to not include in the experiment the test cases

with 1-10 <key, value> pairs is because the search space is small (lower than 1024 subsets of

input data) and then can be analyzed thoroughly without a search strategy. The search space

grows exponentially, and then is not viable to explore thoroughly all search space with 11-35

<key, value> pairs due costly reasons (search space from 2047 to 34359738367 subsets of input

data). In these test cases, the search strategies proposed in this chapter can be used.

In this experiment, the dependent variable or response variable is the quantity of data

reduced/isolated (RQ12-RQ14) and the execution time (RQ15). The baselines of the experiment

are random searches in the search space (RQ12) and delta debugging (RQ13). The random

baseline aims to find a minimal subset of the input data that trigger the fault by means of

random searches in the space, that is, the technique selects randomly without substitution

several subsets of the input data. In the experiment, two random baselines are used, Random-

G and Random-D, that perform per each test case the same number of searches than genetic

algorithm and delta debugging, respectfully. The treatments of the experiment are the genetic

algorithm (RQ12-RQ13) and delta debugging (RQ12). The genetic algorithm is parametrized with

the default options: initial population of 20 individuals, the asexual reproduction generates 4

individuals in each generation and the mutation probability is 1%.

As in the fault localization experiment, the research question related to the efficiency, RQ15, is

answered analysing the execution time trend. The other research questions are about

effectiveness and are answered according to the data reduced. The RQ14 is answered analysing

the percentages reduced by the input reduction techniques. The other two research questions,

RQ12-RQ13, are answered with statistical tests as in other test suite reduction papers [232]–

[234]. The difference is that the techniques of this chapter instead to reduce the size of the test

suite, are focused in the reduction of the input data of the test cases. Then instead to measure

the percentage of test suite reduced [235], [236], the experiment measures the percentage of

test input data reduced. The comparison of the percentages of input data reduced is done by

the t test statistical test that measures the differences among the paired means with the

following one-tail null hypothesis: H02: mean(% reduced by genetic algorithm) = mean(%

reduced by Random-G) (RQ12), H03: mean(% reduced by delta debugging) = mean(% reduced by

Random-D) (RQ12), and H04: mean(% reduced by genetic algorithm) = mean(% reduced by delta

debugging) (RQ13).

IV.4.2.2 Input Reduction experiments: results

Fig. 31 details the distribution of the percentage of data reduced by each input reduction

technique. Table 21 also summarizes the mean of percentage reduced. The genetic algorithm

and delta debugging are clearly better techniques than their random counterpart even though,

respectively, they perform the same number of searches. The p-values are lesser than 0.001,

then the null hypothesis H02 and H03 are rejected. The answer of RQ12 is that both, the genetic

algorithm and delta debugging, reduce better the test input data than their equivalent random

techniques.

Both techniques, genetic algorithm and delta debugging achieve in the Data cleaner Knn analysis

program the same percentage of input reduction (85.4%). The data of this program is easy to

Section IV.4 - Experiments 91

reduce because also by a random search can be achieved good reduction (80.5% by Random-G).

Then the search space of this program contains a lot of good/optimal solutions and both

techniques, genetic algorithm and delta debugging, reach them easily. For the other 3 programs,

the search space is more complex and the selection of a properly search strategy could yield in

better input reduction. In these programs, the genetic algorithm achieves significant better

input reduction than delta debugging. For the Open Ankus program, genetic algorithm reduces

in average 84.3% of input data and delta debugging 83.5% (p-value < 0.001); for the Data quality

analysis, 90.4% and 90% (p-value < 0.001); and for Movie analysis, 85.4% and 81.9% (p-value <

0.001). The null hypothesis H04 is rejected. Then the answer of RQ13 is that the genetic

algorithm is significant better isolating the input data that trigger the fault than delta

debugging.

Despite the genetic algorithm is significant better reducing the data than delta debugging, both

techniques achieve a good percentage of reductions. Table 21 and Fig. 31 indicate that both

techniques usually reduce the data more than 80%-85%. Then the answer of RQ14 is that both

techniques, genetic algorithm and delta debugging reduces the majority of the data, but the

genetic algorithm achieves significant better rates of reduction.

Whereas delta debugging is a greedy approach that search for the first minimal data that triggers

the fault, the genetic algorithm additionally tries to skip the local minimal aimed to achieve the

best solution (global minimal data that trigger the fault). Then delta debugging employs few time

Fig. 31 Distribution of percentage of input reduction in each program by different input reduction techniques

0.00

0.25

0.50

0.75

1.00

Genetic Delta

debugging
Random-G Random-D

Input reduction technique

P
e

rc
e

n
ta

g
e

 o
f

d
a

ta
 r

e
d

u
c
e

d
 b

y
 t

h
e

in
p

u
t

re
d

u
c

ti
o

n
 t

e
c

h
n

iq
u

e

Open Ankus

0.00

0.25

0.50

0.75

1.00

Genetic Delta

debugging
Random-G Random-D

Input reduction technique

Data quality analysis

0.00

0.25

0.50

0.75

1.00

Genetic Delta

debugging
Random-G Random-D

Input reduction technique

Movie analysis

0.00

0.25

0.50

0.75

1.00

Genetic Delta

debugging
Random-G Random-D

Input reduction technique

Data cleaner Knn analysis

P
e

rc
e

n
ta

g
e

 o
f

d
a

ta
 r

e
d

u
c
e

d
 b

y
 t

h
e

in
p

u
t

re
d

u
c

ti
o

n
 t

e
c

h
n

iq
u

e

P
e

rc
e

n
ta

g
e

 o
f

d
a

ta
 r

e
d

u
c
e

d
 b

y
 t

h
e

in
p

u
t

re
d

u
c

ti
o

n
 t

e
c

h
n

iq
u

e

P
e

rc
e

n
ta

g
e

 o
f

d
a

ta
 r

e
d

u
c
e

d
 b

y
 t

h
e

in
p

u
t

re
d

u
c

ti
o

n
 t

e
c

h
n

iq
u

e

Section IV.4 - Experiments 92

to isolate the data, while the genetic algorithm takes more time trying different solutions until

converge. Fig. 32 details the execution time trend of each technique according to the size of

input data, and Table 22 summarizes the average execution time. As expected, delta debugging

employs usually few seconds to isolate the input data that trigger the fault. On the other hand,

the genetic algorithm employs a lot of more time, sometimes in hour scale. The other

disadvantage of the genetic algorithm is that the execution time grows faster according to the

number of <key, value> pairs to be isolated. In contrast, the execution time of delta debugging

grows more slowly. Then the answer of RQ15 is that whereas delta debugging is scalable

employing few seconds, the genetic algorithm does not scale rightly and employs minutes-

hours.

IV.4.3 Discussion

The experiments indicate that MapReduce programs with design faults can be automatically

debugged with the fault localization and input reduction techniques proposed. The fault

localization discovers automatically in few seconds the right root cause of the design faults,

specially when employs the M2, O^P or Wong3 prime ranking metrics. In the other hand, the

input reduction techniques, genetic algorithm and delta debugging, isolate automatically the

data that trigger the fault achieving usually more than 80-85% reduction of the input data. The

genetic algorithm obtains significant better reductions than delta debugging, but also employs

Table 21 Mean of the percentage of input data reduced by each technique in the programs

 Program
Input reduction

technique
Open
Ankus

Data quality
analysis

Movie
analysis

Data cleaner
Knn analysis

Genetic 84.3% 90.4% 85.4% 85.4%

Delta Debugging 83.5% 90.0% 81.9% 85.4%

Random-G 69.0% 77.4% 62.3% 80.5%

Random-D 51.8% 63.1% 48.3% 65.3%

 ns p-value > 0.05 * p-value < 0.05 ** p-value < 0.01 *** p-value < 0.001

**
*

*
*

*

**
*

n
s*

*
*

*
*

*

*
*

*

*
*

*

*
*

*

*
*

*

*
*

*

Fig. 32 Execution time of the test input reduction according to the number of <key, value> pairs

Movies analysis

Open Ankus

Data cleaner Knn analysis

Data quality analysis

Input reduction technique
Delta debugging
Genetic Random with same number of searches than Delta Debugging

Random with same number of searches than Genetic

Number of <Key, Value> pairs before input reduction Number of <Key, Value> pairs before input reduction

Number of <Key, Value> pairs before input reduction Number of <Key, Value> pairs before input reduction

Section IV.4 - Experiments 93

more time. Then the genetic algorithm can be used to reduce the input data during

laboratory/offline testing because the execution time is not an issue. In contrast, the execution

time is an issue in the runtime testing like the approach proposed in the next chapter, then in

this scenario is better to use delta debugging because in few seconds achieves good reductions.

The remainder of this subsection discusses the limitations of these experiments through the

threats of validity and their subcategories [194], [198], [199].

The conclusion threats are those issues that could affect the concluding of the experiments. The

debugging techniques of this chapter generate test cases with different configurations and then

take advantage of the testing technique proposed in the previous chapter to automatically check

if there is a failure or not. This oracle is not 100% accurate and could provide wrong information

for the debugging techniques (inaccurate data). Then the fault localization technique and the

input reduction techniques (genetic algorithm, delta debugging, and also the baselines Random-

{G,D}), decrease their effectiveness. This is not a big issue because all techniques uses the same

oracle, and usually provides the right information [41].

The internal threats are those issues regarding the causal relationship between independent

variables and dependent variables. RQ10 and RQ15 analyze the execution time, but some noise

can be introduced into the measurements by other operative system tasks (confounding effects

of variables). To mitigate this problem, the experiments are executed in the same computer

without any other programs operating in the background.

The tool that automates the research, MRDebug, can contain faults and other limitations. To

mitigate the potential faults of the tool, both manual and automatic testing was performed

mainly from the functional and performance point of view. This tool also uses MRTest as testing

technique/oracle and has the same limitations described in the previous chapter (Section III.4.3).

For example, when the program under test inserts data in an external database, MRDebug and

MRTest can perform the insertions for each of the configurations generated/executed. When

the external service is fully controllable, then the tester can handle these side effects inside the

test cases.

The external threats are those issues that can affect the generalization of the results. The

subjects of this experiment are 8000 test cases randomly selected from 4 MapReduce programs

selected by consecutive sampling. Ideally, the programs should also be selected randomly, but

often this is not feasible in software engineering (Interaction of selection and treatment). For Big

Data programs, there is no benchmark of faults and industrial programs are not usually

available. This problem is mitigated by using some real-world applications, instead of using

programs with seeded faults (hand-seeded faults or mutation faults) that are prone to other

Table 22 Mean of the execution time of input reduction measured in milliseconds by each technique in the
programs

 Program

Input reduction

technique

Open Ankus Data quality

analysis

Movie

analysis

Data cleaner Knn

analysis

Genetic 20195 ms 3632696 ms 484364 ms 3341 ms

Delta Debugging 898 ms 57079 ms 25634 ms 306 ms

Random-G 18337 ms 4132114 ms 341645 ms 3570 ms

Random-D 811 ms 44829 ms 6361 ms 303 ms

Section IV.5 - Related Work 94

external threats [200], [201]. Therefore, there are other issues regarding seeded faults when

they are used to evaluate testing techniques. The hand-seeded faults are injected by the expert

and they are subjective, decrease the reproducibility of the experiments and are not

representative of real faults in terms of easy detection [202]. In contrast, mutation faults are

representative of the majority of faults, but this is not the case when the developer implements

an incorrect algorithm [203]. The faults pursued by this thesis fall into the previous category of

faults that are not possible to substitute with mutations. The faults that are the target of this

thesis are caused by incorrect design decisions that lead to the implementation of faulty

algorithms, completely different from those of the correct implementation. As such, the

injection of mutation faults is not a feasible way to evaluate the debugging techniques of this

chapter.

The test cases used to evaluate the debugging techniques has 1-10 and 11-35 input data. The

results of the experiments could not be generalizable for all other sizes of the input data

(Applicability of results across different samples). However, in the experiments the debugging

techniques scale rightly regardless of the input data. The sizes of the input data used in the

experiments (1-10 and 11-35) follows the same design of our previous experiments [41]. During

functional testing and debugging, when the test cases has more data, more difficult to both

detect and debug the faults. Then, the functional test cases are usually designed with few data,

specially in when the programs are executed in distributed fashion.

Other results can be obtained if the fault localization technique generates/analyzes the

configurations in a different way, or if the input reduction technique employs other search

strategy (Applicability of results when technique is varied). Despite there are room to improve,

the techniques achieve very good effectiveness.

The construct threats are those issues between the experiment and its underlying theoretical

concepts. The fault localization technique is only compared against a random localization

because the other techniques of the literature are not suitable for MapReduce design faults.

These other techniques are usually focused in the analysis of the statements instead of

configurations. In the case of the input reduction, the genetic algorithm is compared against

both random and an adaptation of the delta debugging algorithm that is very used to isolate

faults.

One part of the experiment analyses the efficiency of the debugging techniques based only on

the execution time measure, but there could be more measures not considered, such as memory

(Mono-operation bias). To mitigate this problem, the experiments were executed in a

commodity computer with few resources. The memory does not appear relevant because its

usage was low during the experiments. Furthermore, the tool that automates the research was

tested to avoid memory bottlenecks.

IV.5 RELATED WORK

Debugging distributed programs is a difficult task, specially in the Big Data field [237]. Several

works propose debugging techniques focused on performance for Big Data frameworks [84],

[238] and others for the MapReduce programs [239], [240]. In contrast, the current chapter is

not focused on performance debugging, but on functional debugging. Olston et al. [241]

interview ten employers of Yahoo! about debugging dataflow programs like MapReduce. The

majority of them suggests that can be valuable to obtain the data and operators that cause the

failure. The current chapter undertakes both tasks in MapReduce design faults through the

Section IV.5 - Related Work 95

MRDebug framework. MRDebug localizes the root cause of the fault, isolates/reduces the data

that trigger the failure, and supports the common debugging utilities such as breakpoints.

Fault localization: Daphne [242] is a debugger for DryadLINQ (framework that supports and

extends the MapReduce processing model). This debugger diagnostics the root cause of the

faults based on a decision tree at different levels of abstraction considering logs and stack traces

of the execution. The current work does not analyze neither logs nor stack traces because is

focused on the failures that are triggered by some non-deterministic executions. Then MRDebug

analyzes with spectrum-based fault localization not only one execution, but several executions

to localize the non-deterministic characteristics that trigger the failure.

Isolation/reduction of the data: BigSift [243] is a runtime debugger for applications executed in

Spark (framework that support and extends the MapReduce processing model). This debugger

isolates the data through delta debugging combined with data provenance and an automatic

oracle provided by the tester. The approach proposed in the current chapter also isolates the

data through delta debugging but do not need that the tester provides an oracle. MRDebug is

focused only on design faults and then uses a generic oracle from our previous chapter (MRTest).

In addition to delta debugging, the current work also performs the isolation of the data through

a more generalized search-based algorithm [244].

Debugging utilities: Inspector Gadget [241] is a debugger that alerts about predicate violations

and also traces the data that produce the failures in Pig programs (abstraction of the MapReduce

processing model). Our previous work also alerts of potential failures in production [52], but

only for those caused by MapReduce design faults. The current work, MRDebug, also allows to

trace the failures, but only for those caused by design faults and only at high level with

breakpoints and watchpoints in a simulation environment.

BigDebug [245] is a runtime debugger that allows to insert simulated breakpoints and

watchpoints in Spark production environment. In contrast, the approach proposed in the current

chapter simulates the production environments to allow the insertion of the breakpoints and

watchpoints.

Other works are focused on record and replay failures. Arthur [246] is a debugger for Hadoop

and Spark that traces the relevant data and allows to replay the failure. Newt [247] is another

debugger of MapReduce applications that captures runtime information allowing the tracing

and reproduction of failures. Bergen et al. [248] proposes a debugger for Spark that records

failures from production and reproduces these failures locally to support breakpoints. These

approaches that are focused on record-replay failures does not handle properly the non-

determinism failures, that is the main goal of the current work. Arthur [246] considers a

checksum of the output and then can detect non-determinism, but is not able to reproduce non-

deterministic results. Newt [247] can also record the non-deterministic data but is not able to

reproduce them deterministically. The current work, MRDebug, is focused in debugging failures

caused by non-deterministic executions due a design fault. MRDebug simulates different

infrastructure configurations to capture several executions that cause the failure and several

that mask it. Then MRDebug can reproduce deterministically the non-deterministic executions

through seeds.

Section IV.6 - Conclusions 96

IV.6 CONCLUSIONS

The design faults of the MapReduce can be automatically debugged to locate the root cause of

the fault and isolate the data that trigger the failures. The common fault localization techniques

are focused on the source code, but these MapReduce faults are caused by wrong design instead

of the code. The root cause of these faults can be automatically obtained through spectrum-

based fault localization analysing the infrastructure configurations instead of the source code.

The root cause of the fault is not usually enough to understand the fault. In order to improve

the debugging, the isolation/minimization of the data that trigger the failure can help to

understand the fault. The relevant data can be isolated through search-based algorithms aimed

to reduce the data that triggers the failure. The localization and input reduction techniques are

automatized in a debugging framework called MRDebug. This framework also simulates the

distributed executions to support the common debugging utilities such as breakpoints and

watchpoints.

We performed an empirical study to analyze the effectiveness and efficiency of both localization

and input reduction techniques. The results showed that both techniques debug rightly the

programs in reasonable time. The localization technique obtains the root cause of the faults

analysing few configurations in scalable way employing also few seconds. The spectrum-based

fault localization techniques use a similarity metric to analyze the potential root causes of the

fault. MRDebug obtains usually the right root cause of the fault regardless of the similarity

metric employed, but the bests for MapReduce design faults are M2, O^P and Wong3 prime.

MRDebug contains two input reduction techniques: delta debugging and genetic algorithm.

Both techniques reduce the majority of the data making the wrong execution of the MapReduce

design fault simpler to understand. The genetic algorithm isolates the data significantly better

than delta debugging, but also employs much more time. Then the genetic algorithm is better

when there are no deadlines like in offline testing on laboratory. Contrary, delta debugging is

better when there are deadlines like in online testing on production as in the approach proposed

in the next chapter.

CHAPTER V - OPERATIONS 97

V OPERATIONS

The previous chapters of the thesis propose techniques to test and debug the functionality of

the MapReduce applications. These techniques analyze the execution of the input data under

different infrastructure configurations, then both techniques are able to detect and diagnose

the design faults automatically given only the input data. These input data are provided by the

tester, but this chapter proposes an autonomous approach to take the data from runtime to

test-debug, without human intervention, the programs that are executed in production.

Once the data are taken automatically from runtime as test input data, the testing and

debugging techniques can detect and diagnose the faults also in automatic way. In Big Data field,

it is not feasible to test-debug the programs with all runtime data because is expensive from the

performance and resources point of view. As initial work, we proposed a data-flow criteria called

MRFlow [53] that is adapted to MapReduce considering the different transformations of data

from Mapper to Combiner-Reducer. This data-flow criteria has also several limitations to use

automatically during runtime because requires to both instrument the program and analyze the

whole runtime data to obtain a sample that covers the data-flow criteria. Then the data-flow

criteria is not feasible at all to obtain in few seconds the input data for testing-debugging each

program executed production. Instead to obtain an input data for each program like in the data-

flow criteria, the data can be obtained for all programs that use the same runtime data and then

use a cache mechanism to accelerate the execution of the testing-debugging techniques in few

seconds.

The approach proposed in this chapter, MrExsist, identifies the programs executed in production

and then takes samples of the runtime data (usually from cache) to perform testing and

debugging with the techniques of the previous chapters. This approach takes both program and

data from production, but instead to test-debug the applications in production (In Vivo), test-

debug these applications in laboratory to obtain a fine-grained control and reproducibility of the

tests. The chapter proposes a hybrid approach between testing-debugging in the laboratory and

testing in production, which we have named the Ex Vivo approach: the tests are automatically

obtained from the runtime data, but they are executed outside of the production environment

so as not to affect the application.

The majority of this chapter is published in QRS 2017 [52]. Section V.1 discusses the background

and related work about testing in production. Section V.2 defines the Ex Vivo testing approach,

and Section V.3 describes the MrExist framework based on this approach that is adapted to the

MapReduce processing model. Then MrExist is validated in Section V.4. Finally, the conclusions

are included in Section V.5.

V.1 BACKGROUND AND RELATED WORK

In the production environment, the infrastructure failures are fairly frequent. Several research

lines suggest the injection of infrastructure failures [85], [148] during the testing, and several

tools support it [64]–[66]. For example, Marynowski et al. [147] create test cases specifying

which computers fail and when. Some faults can be detected with the injection of infrastructure

failures, but others require a full control of the distributed system and its underlying large

infrastructure. To detect this kind of faults, this work does not inject infrastructure failures, but

simulates the different infrastructure configurations in a lab to obtain fine-grained control and

reproducibility of the tests.

Section V.2 - Ex Vivo Testing 98

Other testing techniques focus on the generation of test input data with different approaches

like a bacteriological algorithm [149] or input domain together with combinatorial testing [172].

Unlike the previous testing techniques, this chapter takes the data directly from production in

runtime.

There are several tools to design and execute test cases for MapReduce applications. Herriot

[63] allows the execution of the tests in a real cluster at the same time that it supports the

injection of the infrastructure failures. Other tools called MiniClusters [62] execute the test cases

in a cluster simulated in memory. For unit testing, MRUnit [61] provides an adaptation of JUnit

[60] to the MapReduce processing model. This chapter also proposes a testing tool for the

MapReduce processing model, but unlike the others it performs full automatic testing in

production with the runtime data.

V.2 EX VIVO TESTING

Modern software applications are increasingly distributed, pervasive, and adaptive. For such

systems, the boundary between development-time and production is vanishing [249], and

several authors (e.g., [250], [251]) have proposed that software testing can (or should) be used

even after deployment to continue detecting functional faults that cannot be found in the

development environment. Testing in the production environment has been referred to with

different terminology [252]:

• Online testing, as opposed to offline, to highlight that testing is done without

interrupting the normal operation.

• Testing “in the field”, as opposed to traditional testing performed “in the lab”.

• Runtime testing, to highlight that testing is done employing execution data from

operation, rather than other artificial data.

• A form of testing in production is also monitoring, which is referred to as passive testing

in contrast with actively providing some stimulus (test input).

From the previous approaches, other testing approaches arise, among them In Vivo testing

[253]. This kind of testing is performed inside the production environment but in an isolated

process in order not to affect the program executed in production. In this way, testing can take

advantage of information from production such as runtime data, third party libraries or

configurations. However, online tests also consume memory and other production resources

that could negatively impact the program executed in production, especially regarding

performance.

The performance of the MapReduce programs is important because they usually analyze large

and complex datasets [254]. The information of these datasets can be useful for carrying out

testing in runtime [255], but the execution of the tests in the production environment is

problematic for several reasons. Hadoop automatically manages the executions carried out in

production, but does not support fine-grained control and reproduction in the same

circumstances. In addition, the tests executed in production consume resources and can

negatively impact the performance of the applications. Although production data can be a good

test data, in the MapReduce context it is not feasible to execute the test cases in the production

environment like the In Vivo testing. A more convenient alternative is the execution of the test

cases in a simulator outside production, but using production data as test inputs.

Section V.3 - MrExist: Ex Vivo Testing Framework for MapReduce Applications 99

Thus, this chapter proposes a novel testing approach called Ex Vivo. This new type of testing

takes some information from production like the In Vivo approach, but performs testing outside

the production environment. Then testing can take advantage of the runtime information but in

a more controllable way than In Vivo, and without the limitations imposed by the actual

production environment. The Ex Vivo testing also has few risks to impact the execution of

programs because it does not take resources from production like the In Vivo approach. To the

best of our knowledge there are no testing approaches with these principles, either in

MapReduce or in other software contexts.

The terminology used of In Vivo and Ex Vivo testing, together with In Vitro, has been borrowed

from biological sciences where they are used to denote different kinds of tests. As Fig. 33

describes, In Vivo (latin for "within the living") are those tests performed inside an organism, Ex

Vivo (latin for "out of living") outside, and In Vitro in a tube. In software testing the organism

could be seen as the analogy for the production environment whereas the tube could be the

development-testing environments. Consequently, In Vitro is the traditional testing that does

not take advantage of the production information to detect faults. In contrast, both In Vivo and

Ex Vivo, take advantage of this information (for example runtime data), but testing is performed

in different environments: In Vivo performs testing inside the production environment, while Ex

Vivo performs testing outside.

V.3 MREXIST: EX VIVO TESTING FRAMEWORK FOR MAPREDUCE APPLICATIONS

In order to perform testing not only in development-testing phases, but also actively during

production, an automatic continuous testing framework is proposed. This framework is called

MrExist (MapReduce EX vIvo teSTing) and it is based on the Ex Vivo testing approach exposed in

Section V.2 adapted to the MapReduce processing model characteristics. These programs are

executed in a non-deterministic way by a distributed system, for example by Hadoop. Usually

these systems do not allow fine-grained control of the execution, thus making testing more

difficult. The Ex Vivo framework proposed here takes data under execution and then executes

test cases based on such real data in a test server outside the production environment.

Fig. 33 Software testing approaches

Input Software
under test

Output

Testing environment

Input Application Output

Production environment

Input Software
under test

Output

Testing environment

Input Application Output

Production environment

Input Software
under test

Output

IN VITRO

EX VIVO

IN VIVO

Section V.3 - MrExist: Ex Vivo Testing Framework for MapReduce Applications 100

Therefore the execution of the test cases does not take resources from production, does not

introduce side-effects and can be fully controlled.

Fig. 34 describes the MrExist framework starting with a user that executes a program and

finishing by testing performed automatically without any knowledge either of the specification

or of the expected output. Firstly a probe detects that a user has executed a program (1), and

the probe sends this program to the test server (2). Then the program is parsed by the test server

(3) to obtain the location of the data and the MapReduce functionality code. This code is

instrumented (4) to analyze its internal states, and the test input data are sampled from the

production data (5). Finally, the testing is performed using the testing technique of the chapter

III that only needs the test input data and the program to detect functional faults (6). Once the

faults are detected, the debugging technique of the previous chapter can be integrated

automatically.

Generally speaking, a challenge for testing in production is how to check whether the output is

correct or not (test oracle), especially in those programs that are specifically developed to obtain

some previously unknown or costly answer [181], as for example some machine learning

programs. Such problems do not exist in those faults addressed by the thesis, as we can compare

the outputs obtained for the same data in different configurations (Chapter III). The MrExist

framework automatically detects a functional fault when the same data executed in different

configurations do not generate an equivalent output. The different parts of MrExist are

described in detail in the subsections below together with the following example.

Consider the program that calculates the average temperature per year described in Fig. 10

(Chapter III). This problem can be divided in as many subproblems as there are years, then each

subproblem only calculates the average temperature for one year. To start off, several Mappers

receive subsets of historical data and emit <year, temperature of this year>. After the execution

of all Mappers, the temperatures (values) are grouped by their year (key). Then, several

Reducers receive subproblems like <year, [all temperatures of this year]>, that is one year with

all temperatures for this year, and emit the average. This program optimizes the performance

through a Combiner functionality that receives several temperatures and then they are replaced

by their average to decrease the data sent from one computer to another. This program has a

functional fault because all the temperatures are needed to obtain the total average

temperature. First, the Combiner replaces the data available locally for their average, and then

the Reducer calculates the global average with these local averages, but sometimes this output

does not match the average of all temperatures. This kind of fault is difficult to detect in the

MapReduce programs and is usually masked during the testing [42] because the latter does not

suffer aggressive situations as in the execution of large data in production like parallelization,

Fig. 34 Architecture of MrExist (MapReduce EX vivo teSTing)

Client

Input data
location Sampling

Testing

Instrumentation
Mapper
Combiner
...

010...
110...
101...

110...

Input
data

Program

probe

1

3

4
5

6

Parser

Code under
test

P
ro

d
u

ct
io

n
La

b

Production cluster

Te
st

 s
e

rv
er

...

...

2

Section V.3 - MrExist: Ex Vivo Testing Framework for MapReduce Applications 101

computer failures, automatic optimizations and so on. Then these programs can be released to

production and the Ex Vivo framework proposed, MrExist, could automatically detect faults and

notify the user in runtime.

V.3.1 Parser

The probe sends the program executed in production to the test server. Then the program is

parsed in order to obtain the MapReduce code functionality and the location of the dataset

employed in production. The parser analyzes the bytecode with Javassist [256] not only to obtain

the bytecode of the Mapper, Combiner and Reducer, but also other MapReduce advanced

functionalities such as Partitioner and Sort, among others that are relevant for testing.

The parser employs a cache based on MD5 hashes [257] that leverages the communications

between client and test server. The client only sends a few bytes of hash instead of the program,

and when the test server does not have the program in the cache, then it can request it. The

parser also detects automatically if the program under test has been tested before or not, and

then registers the different versions/improvements of the program based also on its hashes.

For example, when the user executes the program that calculates the average per year, the

probe sends the MD5 hash of the program to the test server. If the program is not in the cache,

the test server requests the program from the probe. Then the program is parsed in the test

server obtaining (1) location of dataset, (2) code of the MapReduce functionality, and (3) other

metadata such as the number of the version. For the program under test the parser obtains the

following MapReduce code: AvgMapper function (Mapper), AvgReducer function (Reducer and

Combiner), TextInputFormat function (Input format), among other advanced codes of the

MapReduce programs and dependencies. Finally, the parser checks if the program has been

tested before or if it is a new version with changes of a previous program. Then the parser

registers this information about the program version, allowing the visualization of the quality

evolution in the user programs.

V.3.2 Instrumentation

The Mapper, Combiner and Reducer functions in Hadoop do not return any data, the <key,

value> pairs are sent from one function to another based on buffers, dumps, and remote calls,

among others. In order to observe the internal states of the program under test, the MapReduce

functions are instrumented. The instrumentation automatically adds mocks, stubs and spies

inside the code using mocking frameworks widely used in practice [258] such as Mockito [259]

and PowerMock [260].

For example, in the program that calculates the average temperature per year, the parser

obtains that avgMapper and avgReducer code implement the Mapper, Combiner and Reducer.

In order to enable full control and monitoring of their internal states during testing, these

functions are instrumented with mocks, stubs and spies.

V.3.3 Sampling

In addition to the code under test, MrExist needs data to perform testing. The sampling method

generates the test input data from the location previously obtained by the parser.

In Big Data, the datasets usually contain a huge amount of data stored in a distributed database

or filesystem, such as HBase [261] or HDFS (Hadoop Distributed File System) [262]. In terms of

resources, it is not feasible to perform functional testing with all of these large data. Instead,

Section V.3 - MrExist: Ex Vivo Testing Framework for MapReduce Applications 102

MrExist generates a smaller test input data with a reservoir sampling [263]. This algorithm

samples streams of data and can be parallelized to improve the performance. The MrExist

framework implements the sampling using the MapReduce processing model to employ Big

Data power during the sampling of the large datasets. This algorithm assigns a random number

to each <key, value> pair, and then only the highest are sampled.

The samples obtained from the sampling algorithm are used as test input data and are saved in

a specific binary format for the <key, value> data, called SequenceFile [264]. These samples are

obtained based on randomness, but the algorithm also supports pseudorandom numbers, also

called seeds, to obtain the samples in a deterministic way and support the reproduction of the

test cases in the same circumstances.

In a Big Data cluster there are several datasets, but the majority of the programs only analyze

the same one, two or few datasets [28], and sometimes concurrently [265]. To avoid multiple

samplings of these Big Data datasets a cache is implemented to improve performance [266],

[267]. Then the sampling method is only executed when the dataset has no samples in cache.

These samples can also be generated proactively, for example scheduling the samplings of the

available datasets during weekends, nights or at other times with low production activities.

In the program that calculates the average temperature per year, the parser obtains the dataset

used in production. Then MrExist checks if the cache contains test input data for this dataset. If

there is no data, a sampling is performed obtaining the following 20 temperatures also depicted

in the top of Fig. 20: year 1995 with 7⁰, 9⁰, 7⁰ and 10⁰; year 1996 with 1⁰, 3⁰, 2⁰ and 5⁰; year

1997 with 8⁰ and 6⁰; year 1998 with 5⁰; year 1999 with 4⁰, 2⁰ and 3⁰; year 2000 with 5⁰ and 10⁰;

year 2001 with 9⁰ and 8⁰; year 2002 with 12⁰, and year 2003 with 13⁰. Then these test input data

are available in the cache for future uses in testing.

V.3.4 Testing

The execution of the program in production is managed by a distributed system, for example

Hadoop, that automatically allocates resources in a parallel way, re-executes different parts of

the program in case of computer failures, performs some data optimization and mixes the

analysis of different parallel traces, among others. These automatic mechanisms guide the

execution in a highly scalable way, but could also cause that a program generates an incorrect

output. In this case, the program has a functional fault because it generates valid or incorrect

output depending on the infrastructure configuration as happen in those programs of the

previous chapters.

MrExist detects these faults employing a specific MapReduce testing technique proposed in

Chapter III (MRTest). This testing technique executes the same data in different infrastructure

configurations and checks whether their outputs are similar or not. These infrastructure

configurations are generated with a combination of a different number of Mapper/Reducer

tasks, and several MapReduce optimizations, among others. Fig. 35 describes the execution of

the testing technique taking advantage of the sampling and instrumentation of the previous

subsections. The test server obtains the test input data from sampling, and the software under

test from instrumentation. Then the test server executes each test input data with different

configurations and finally checks if the outputs are equivalent, revealing a fault if they are not.

These configurations are generated and executed with an extension of MRUnit [42], [61] (JUnit

[60] for MapReduce), and checked with Hamcrest matchers [268].

Section V.3 - MrExist: Ex Vivo Testing Framework for MapReduce Applications 103

In the program that calculates the average temperature per year, MrExist automatically detects

a fault. First, the parser obtains that the program under test has a customized Mapper, Combiner

and Reducer functionalities, among other MapReduce advanced functions. Then these functions

are instrumented, and the testing is performed with the different test input data obtained from

production by the sampling method. The top of Fig. 20 describes the testing performed with 20

test input data using MRTest testing technique (Chapter III). The test server iteratively generates

and simulates different configurations, and then checks if one of the outputs is not equivalent

to the others. The first configuration generated is made up of only one Mapper, one Combiner

and one Reducer. The second configuration executes the same data with concurrency and

different optimizations obtaining different outputs than the previous configuration. Then a fault

is automatically discovered in the program executed in production and the developer can debug

this program automatically using the MRDebug debugging approach (Chapter IV). In this case,

the program does not support this Combiner because it replaces the temperatures available

locally by their average, and then Reducer calculates erroneously the total average with these

local averages.

Once the fault is automatically detected, MrExist sends an email to the user in order to notify

the fault. The email not only contains the existence of the fault, but also represents how this

fault is caused, as can be seen at the middle of Fig. 20. Then the user can debug and stop the

program to avoid incorrect worthless output while also saving money, energy and time of large-

scale computation resources, especially for those MapReduce programs that finish their

execution after several hours [28] or days [27].

V.3.5 Test oracle

The test oracles have some properties to characterize the testing efficacy [182], [183]. The

MrExist framework aims to detect faults without human intervention, and the oracle used

during testing is an automated partial oracle [181]. This kind of oracle can detect some faults

without any knowledge about the expected output. The oracle employed in MrExist is

automatically derived from the program executions [184] using metamorphic testing [45], [269],

[270], that is a field also employed to test machine learning programs [185] and in In Vivo

frameworks [271]. The metamorphic testing given a test case checks relationships inside one or

different executions of the program. The test case is called original test case, the different

executions are called follow-up test cases, and the relationship that should be satisfied is called

metamorphic relationship.

The MrExist framework proposes a metamorphic testing that can automatically test the

MapReduce programs. This approach obtains the test cases from production (original test cases)

Fig. 35 Testing technique used in MrExist

Large input

Program

Large output

Test input
data 1

Software
under test

Conf. 1
Conf. 2
...

Output 1
Output 2

... Are
equivalent?...Other test input data

P
ro

d
u

ct
io

n
La

b
 t

e
st

 s
er

ve
r

Testing techniqueInstrumentationSampling

Configuration

Yes

No

Section V.4 - Case Study 104

then executes them with different configurations (follow-up test cases) and finally checks if their

outputs are equivalent (metamorphic relationship), if not a potential fault is detected.

In most metamorphic testing research, the test cases are generated with random testing [186].

In MrExist, the original test cases are also obtained randomly based on a sampling of the

production dataset. One benefit of testing with this automatic oracle is that these random data

can be useful to cover more test domains [272].

According to the study of Segura et al. [186] the number of metamorphic papers will increase in

the following years, but to date 49% employ the metamorphic testing capabilities to different

problem domains, and only 2% present a tool. In our case, this chapter not only defines and

automatizes the metamorphic relationship to the MapReduce domain, but also develops a tool

that detects faults in production without human intervention and non-intrusively from runtime

data.

V.3.6 Probe

MrExist executes testing with runtime data when a MapReduce program is executed in

production. The probe detects the execution of the program and catches it together with other

information about the context and user. Then the probe sends the program and all information

to the test server asynchronously with the aim of minimizing the impact of the probe in terms

of execution time.

The probe is not intrusive in the sense that no modification or additional code is necessary either

in the MapReduce applications or in the production cluster. To enable MrExist framework it is

only necessary (1) the replacement of one library in the Hadoop client that adds the probe for

all programs executed in this computer, and (2) the deployment of the test server to perform

testing with access to the Hadoop cluster and data sources employed in production. The test

server is a Java application that automatically deploys a Jetty server [273] and serverless

database SQLite [274], [275] both embedded inside. Thus the test server is self-contained and

can easily be deployed from one computer to another in case of computer failures.

V.4 CASE STUDY

In order to validate the testing framework MrExist, we use the real-world program Open Ankus

[170] as case study. This program is also used to evaluate the other techniques proposed in the

thesis (chapters III and IV). Open Ankus implements both Machine Learning and Data Mining

libraries using the MapReduce processing model. One part of the program is a recommendation

system that predicts the best books for each user based on the books read by others. The system

obtains the similarities between users based on the points that each user assigns to different

books. Given these similarities, the system predicts the points from each user to each book, and

the highest are recommended. Finally, when the user assigns points to the book, the system

calculates the error of its previous prediction.

This program is executed in the production environment, and MrExist automatically notifies the

existence of a functional fault. This fault arises in the following situation: (1) the system predicts

that Alice could assign 0 points to Don Quixote, (2) Alice assigns 0 points to Don Quixote, (3)

later the system detects a change in Alice’s taste and predicts that Alice could assign 10 points

to Don Quixote, and (4) Alice assigns 10 points to Don Quixote. For the previous situation

obtained from runtime data, the expected output is that the predictions are accurate with 0%

Section V.5 - Conclusions 105

of error. But MrExist detects that the MapReduce program has a fault because it sometimes

obtains 100% of error as output and 0% in others, depending on the infrastructure configuration

(number of computers, computer failures, and so on). The program checks per each user-book

the first points assigned against the first points predicted, and so on (0 vs 0 and 10 vs 10, 0% of

error). The fault arises when the infrastructure configuration causes that the input data are

processed in a different order. The MapReduce processing model splits the input data into

several subsets that are analyzed in parallel, then the final part of the input data can be

processed before the first part. This fault is revealed when the infrastructure configuration

causes that the first assignment is checked against the second prediction, and the second

assignment against the first prediction (0 vs 10 and 10 vs 0, 100% of error).

Fig. 36 depicts the Ex Vivo testing for the previous situation. When the program is executed in

production, the tests are executed in the test server. Firstly, the large runtime data is sampled

to obtain test input data, among others: (1) prediction of Alice-Don Quixote: 0 points, (2)

assignment of Alice-Don Quixote: 0 points, (3) prediction of Alice-Don Quixote: 10 points, and

(4) assignment of Alice-Don Quixote: 10 points. Then these runtime data are executed in several

configurations. The first configuration obtains 0% of error as output whereas the second obtains

an incorrect output of 100% of error because the infrastructure configuration causes that the

program analyzes the input data in a different order. Then the testing framework MrExist

notifies the user of the existence of a functional fault in the program executed in production.

V.5 CONCLUSIONS

This chapter introduces a context-independent testing approach called Ex Vivo to detect faults.

The tests are designed from production data and executed in a different environment to avoid

side-effects and gain fine-grained control. This approach is employed in the thesis in an

automatic testing framework for MapReduce programs. The execution of an application triggers

the testing in background taking advantage of runtime data and detecting faults without human

intervention. In the case of a fault, the framework notifies the user who can debug and stop the

Fig. 36 Fault detected automatically by MrExist in the recommendation system of Open Ankus

Mapper

prediction
Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Alice -> Don Quixote
Prediction Assignment

0 0
10 10

Alice ->Don Quixote

Mapper
assignment

<Alice -> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 0,
Assignment: 10]>

Mapper
prediction

Prediction: 0
Prediction: 10

Assignment: 0

Assignment: 10

Reducer

Prediction Assignment
0 10

10 0

Alice ->Don Quixote

Mapper
assignment

Mapper
assignment

<Alice -> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 10,
Assignment: 0]>

Same input Different infrastructure configuration Different output

Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Alice ->Don Quixote

Large input

Program

Large output

P
ro

d
u

ct
io

n
La

b
 t

e
st

 s
er

ve
r

Testing techniqueInstrumentationSampling

Configuration

Are
equivalent?

No

Reducer

C
o

n
fi

gu
ra

ti
o

n
 1

C
o

n
fi

gu
ra

ti
o

n
 2

Software
under
test

Same program

Erin -> The Shadow of the Wind: 10 10
 To kill a mockingbird: 7 5
Alice -> Don Quixote: 0 10
 Carol -> Figth club: 10 10

 Carol -> Frankenstein: 5 8
 Frank -> The alchemist: 9 6

Prediction Assignment

Notification

User

Alice -> Don Quixote -> Prediction: 0
Alice -> Don Quixote -> Assignment: 0
Alice -> The neverending story -> Prediction: 7

Alice -> Don Quixote -> Prediction: 10
Alice -> Don Quixote -> Assignment: 10

Carol -> The Divine Comedy -> Assignment: 9

Dave -> Le petit prince: 8 10

Section V.5 - Conclusions 106

faulty program, allowing to improve the quality, avoid incorrect output and save time, money

and energy of the large-scale resources executed in production.

This approach is applied in a real-world program executed in a production cluster, and without

any modification, the testing framework automatically notifies that the program has a functional

fault.

CHAPTER VI - FINAL REMARKS 107

VI FINAL REMARKS

This thesis enhances the state-of-the-art of the software testing and debugging in the

MapReduce field proposing new techniques that support the following hypothesis (Section I.2):

H1: The MapReduce applications have specific characteristics that another kind of
applications do not have, such as delegate their execution to a framework that handles
the massive execution splitting the datasets along several servers, allocating resources
in parallel, or re-executing of part of the program in case of infrastructure failures. These
characteristics in conjunction are not broadly covered by the state-of-the-art testing
techniques, and the MapReduce applications must be tested with new approaches.

H2: The functional failures of the MapReduce applications that are wrongly designed
entail the execution of the data concurrently in several servers in non-deterministic way.
These failures are not just caused by the code, but by the design. The common debugging
techniques are broadly focused on the failures caused by the code but not on those
caused by the wrong design, then the MapReduce applications must be debugged with
new approaches.

The thesis is divided in four lines of research and the research questions of each one are

summarized in the Section VI.1. The conclusions of this thesis are described in Section VI.2.

Finally, the future work is in Section VI.3.

VI.1 SUMMARY OF RESEARCH QUESTIONS

The first line of research is focused on the state-of-art and challenges in software quality of

MapReduce programs. The following research questions were answered through a systematic

mapping study (Chapter II):

RQ1. Why is testing performed in MapReduce programs? There are at least seven
reasons for testing the MapReduce programs. The most frequent reasons are based on
performance issues (to analyze, optimize and fulfill performance goals), the existence of
several or specific failures, the type and quality of the data processed by these programs,
and testing to predict the resources required and efficiently select the resources to be
used. To a lesser degree, the other reasons for testing are the improper use of the
processing model or technology, program misconfiguration or failures after a long period
of executions.

RQ2. What testing is performed in MapReduce programs? The majority of the research
efforts in testing the MapReduce programs focus on the analysis of performance, and to
a lesser extent the functional aspects of MapReduce programs.

RQ3. How is testing performed in MapReduce programs? Mainly by evaluation and
simulation. In both cases testing is focused specifically on the MapReduce functions and
does not consider other parts of the program. Several tools are used to perform testing,
but few are available on the Internet.

RQ4. By whom, where and when is testing performed in MapReduce programs? Testing
is mainly performed by the tester in the Software/System Qualification Testing Process
and major efforts focus on the MapReduce program (unit and integration testing
between Map and Reduce functions).

Other findings:

Section VI.1 - Summary of Research Questions 108

1. Despite several studies that are aimed at both improving and studying the state-of-art
of Big Data technology, there are in comparison few research lines focused on software
testing of the Big Data programs.

2. The majority of testing research in MapReduce applications is focused on either Map
or Reduce or the integration of both, and cannot be applied to other processing models
because they are specifically designed for MapReduce.

3. The majority of research is about performance testing, and, to a lesser degree,
functional testing. This research is about verification and validation analysis, and, to a
lesser degree, about dynamic testing.

4. The prediction/analysis models employed in performance testing use different
numbers of heterogeneous parameters based not only on the MapReduce program
functionality, but also on the cluster infrastructure, file system and data.

5. The most frequent reasons for testing the MapReduce programs are based on
performance issues (analyze, optimize and fulfill performance goals), existence of several
and specific failures, the type and quality of the data processed by these programs, and
testing to predict and efficiently select the resources.

6. There are several rigorous reasons for testing the functionality of MapReduce
applications, such as the percentage of programs that fail in production or the improper
use of both functional semantics and data, but there are not many research efforts
focused on this line of interest.

7. Whereas performance testing is done by simulation and evaluation, functional testing
employs different test activities, such as static testing and structure-based testing.

8. As expected, testing research is focused on the software qualification process to help
the tester.

9. The majority of research neither creates nor uses a tool for testing MapReduce
programs.

10. Software testing research focused on MapReduce applications is usually published in
conferences, and furthermore it is usually published without a strong validation, using
only some case studies instead of rigorous empirical experiments.

According to the previous findings, the functional testing of MapReduce programs has several

challenges. The second line of research faces these challenges focused on those faults caused

by a wrong design of the MapReduce programs. These faulty programs do not support the non-

determinism of the large-scale executions due the infrastructure failures or the optimizations.

Then we devised a testing technique that automatically executes the test cases under different

configurations that take into account this non-determinism. This technique is detailed in Chapter

III and answers the following research questions:

RQ5. Do the test execution engines detect more design failures when the MapReduce
test cases are executed in different configurations? Yes, the execution of the test case
in different configurations reveals more design faults. Despite a random selection of
configurations (MRTest-Random) can reveal several design faults, a better selection of
the configurations through Partition and Combinatorial testing (MRTest-t-Wise) reveals
more design faults. MRTest-2-Wise usually detects automatically the majority of design
faults in MapReduce programs.

RQ6. How expensive is the execution of the test cases in several different
configurations? The execution time of test cases in several configurations takes more

Section VI.1 - Summary of Research Questions 109

time than execution in one configuration: x2 or x3 when a fault is detected, and x200 or
x400 when a fault is not detected. Regardless of the previous differences, the execution
time of the test cases in several executions is reasonable, usually few seconds.

This testing technique (MRTest) is able to detect the design faults of the MapReduce programs

automatically without an expected output (oracle). Once the fault is detected, the next step is

to debug the program to understand this fault. The third line of research aims to debug the

MapReduce programs in order to (1) localize the design characteristic that triggers the failure,

(2) isolate the input data that triggers the failure to reduce the irrelevant data making the test

case easier to understand, and (3) allow the inspection of the parallel execution through

breakpoints. These techniques are detailed in Chapter IV and answer the following research

questions:

RQ7. Is the fault localization technique better providing the root cause of the
MapReduce design faults than a random localization (baseline)? Yes, the localization
technique achieves in general significant better results than random localization. Some
ranking metrics can achieve in some programs similar and worst localization than random
localization technique, but overall the fault localization technique proposed achieves the
best results in the majority of ranking metrics.

RQ8. The fault localization technique obtains a ranking of the MapReduce
characteristics that could be the potential root causes of the design fault. How many
characteristics should be analysed until reach the root cause of MapReduce design
fault? Few, the root causes of fault are in general ranked in the first positions regardless
of the ranking metric used. The fault localization technique using the best ranking metrics
localizes the fault usually in the first position of the ranking.

RQ9. Which ranking metrics of those used in fault localization are better to rank the
root causes of the MapReduce design faults? The majority of ranking metrics achieves
good results, but the best ranking metrics to locate MapReduce design faults are M2,
O^P and Wong3 prime. These ranking metrics usually locates the fault in the first position
of the ranking.

RQ10. How much execution time is employed by the fault localization of the
MapReduce design faults? The fault localization technique is efficient employing only
few seconds to localize the root cause of the fault. The test cases with more data are
more difficult to debug than those with less data, but the technique also employs few
seconds because is linearly scalable.

RQ11. The localization technique analyses several configurations previously generated.
How many MapReduce configurations must be generated by the fault localization
technique to achieve a good balance between maximum rate of design faults located
and low execution time? 5. The localization technique improves the effectiveness
executing more configurations, but also employs more time. From 0 to 5 configurations
the effectiveness has a substantial improvement compared with the slightly
improvement after 5 configurations.

RQ12. Are both input reduction techniques, genetic algorithm and delta debugging,
better search strategies than random searches (baseline) to isolate the input data that
trigger the MapReduce design faults? Yes, the genetic algorithm and delta debugging
reduce better the test input data than their equivalent random techniques.

RQ13. Which of the input reduction techniques proposed, genetic algorithm and delta
debugging, is better isolating the data that trigger the MapReduce design faults? The

Section VI.2 - Conclusions 110

genetic algorithm is significant better isolating the input data that trigger the fault than
delta debugging. For some programs, delta debugging can achieve similar reductions
than genetic algorithm, but in the genetic algorithm can achieve bigger reductions.

RQ14. How much data reduce the input reduction techniques? The genetic algorithm
and delta debugging reduce the majority of the data. However, the genetic algorithm can
reduce more data.

RQ15. How much execution time is employed by the input reduction techniques of the
MapReduce design faults? Delta debugging is scalable employing few seconds, but the
genetic algorithm does not scale rightly and employs minutes-hours. The delta debugging
technique converges in the solution faster than genetic algorithm, but the genetic
algorithm also searches more exhaustively a better solution that sometimes achieves.

The testing technique is able to detect the design fault and the debugging framework provides

the potential causes of this fault to make it easy to understand and fix. These techniques can

also be used to detect faults in the programs executed in production. The fourth line of research

is focused in the design fault during the operations (Section V). The programs executed in

production can be tested automatically through the testing technique proposed in the thesis

and taking samples of runtime data as input. Once the fault is detected, the root cause of the

fault can also be automatically obtained through the debugging techniques proposed in the

thesis.

VI.2 CONCLUSIONS

There are several challenges to test the functionality of the MapReduce programs due the

execution over large-scale infrastructure with frequent infrastructure failures. Some of the

functional faults may be masked in a testing/development environment but revealed in

production because the program is wrongly designed to support optimizations and concurrency

at large scale.

These faults can be detected executing the test cases in different configurations that reproduce

the production environment with the non-deterministic executions due the frequent

infrastructure failures and optimizations, among others. We devised a testing technique and a

tool that checks that the same input executed in different configurations provides similar

outputs, in other case a design fault is detected. Usually this technique detects the design faults

automatically in few seconds.

However, these design faults are not easy to debug due the parallel execution of the code and

the internal optimizations. However, the root cause of the fault can be automatically localized

analysing those design characteristics that are usually more prone to trigger the failure and

those that masked the fault. We devised a fault localization technique and tool that (1) generate

several relevant configurations, and (2) analyse statistically the characteristics of these

configurations that are more prone to fail and succeed. This technique provides automatically

in few seconds a rank of the more suspicious characteristics of the design, and the root cause of

the design fault is usually the top.

Although the root cause of the fault is localized, these design faults can not be easy to

understand because the test cases fail in executions that involves concurrency and

optimizations. We devised an input reduction technique to isolate the relevant data that still

trigger the failure making the fault easier to understand. This technique reduces the majority of

Section VI.3 - Future Work 111

the input data in few seconds. The input reduction and fault localization techniques are

integrated in a debugging framework that also support the inspection of the code though the

common debugging utilities such as breakpoints and watchpoints.

The previous testing and debugging techniques can be used automatically in laboratory, but they

can also be used in production with the runtime programs. We devised an autonomous

environment to detect design faults in the MapReduce programs executed in production taking

samples of the runtime data as input of test cases. Once a design failure is detected

automatically in few seconds of execution, the developed is informed about the fault and its

root cause. Then the developer can stop the Big Data program saving money, energy, computer

resources and potential failures.

VI.3 FUTURE WORK

The techniques proposed in the thesis are able to detect and debug the design faults of the

MapReduce programs automatically in both laboratory and production. As future work we plan

to also fix the MapReduce programs automatically through self-adaptation technique. Some of

the design faults that are caused by optimizations can easily fixed turning down the

optimizations or with little modifications. In other cases, the faults are difficult to fix like in those

with domain-specific semantic in the design. There are also other cases in which the automatic

fix is not possible because the whole program functionality does not fit in the MapReduce

processing model. Currently, we are working in a PDCA methodology to not only fix the program,

but also measure the impact of the functional patch in performance and maintenance. We plan

to automatize this methodology through a search-based approach.

As future work, we also plan to adapt the testing and debugging techniques to other systems

and integrate them with other technologies of the Big Data stack. Some frameworks very used

in Big Data like Spark and Flink extend and generalize the MapReduce processing model adding

different operations that can also yield in non-deterministic faults. The techniques proposed in

this thesis can be slightly expanded to address these new kinds of faults.

CHAPTER VII - CONSLUSIONES Y TRABAJO FUTURO 113

VII CONSLUSIONES Y TRABAJO FUTURO

En las pruebas funcionales de los programas MapReduce hay varios desafíos debido a la

ejecución en una infraestructura de gran escala con frecuentes fallos de infraestructura. Algunos

de los defectos funcionales pueden estar enmascarados en un entorno de pruebas/desarrollo

pero revelados en producción porque el programa está incorrectamente diseñado para soportar

optimización y concurrencias a gran escala.

Estos defectos pueden ser detectados ejecutando los casos de prueba en diferentes

configuraciones debido a los frecuentes fallos de infraestructura y optimizaciones, entre otros.

Hemos diseñado una técnica de prueba y una herramienta que comprueba que la ejecución de

la misma entrada en diferentes configuraciones provea salidas similares, en caso contrario se

detecta un defecto de diseño. Normalmente esta técnica detecta los defectos de diseño

automáticamente en pocos segundos.

Sin embargo, estos defectos de diseño no son fáciles de depurar por la ejecución paralela del

código y las optimizaciones internas. No obstante, la causa raíz del defecto pude ser localizada

automáticamente analizando tanto aquellas características de diseño que habitualmente son

más propensas a provocar el fallo, como aquellas otras que encascaran el defecto. Hemos

diseñado una técnica de localización de defectos y una herramienta que (1) genera varias

configuraciones, y (2) analiza estadísticamente las características de esas configuraciones que

son más propensas a fallar y a tener éxito. Esta técnica proporciona automáticamente en pocos

segundos un ranking de las características de diseño más sospechosas, y la causa raíz del defecto

de diseño suele estar en las primeras posiciones.

Aunque se localice la cusa raíz del defecto, estos defectos de diseño no pueden ser fácilmente

entendibles porque los casos de prueba fallan en ejecuciones que involucran concurrencia y

optimizaciones. Hemos diseñado una técnica de reducción de datos que aísla los datos

relevantes que siguen causando el fallo, haciendo que el defecto sea más fácil de entender. Esta

técnica reduce la mayoría de los datos de entrada en pocos segundos. Las técnicas de reducción

de datos y de localización de defectos se han integrado en un framework de depuración que

también soporta la inspección del código a través de las utilidades habituales de la depuración

como los breakpoints y los watchpoints.

Las anteriores técnicas de pruebas y depuración pueden ser utilizadas automáticamente en el

laboratorio, pero también pueden utilizarse en producción con los programas que se están

ejecutando. Hemos diseñado un entorno autónomo que detecta los defectos de diseño de los

programas MapReduce que se ejecutan en producción tomando como entradas de los casos de

pruebas muestras de los datos que se están procesando en producción. Una vez que un fallo de

diseño es detectado automáticamente en pocos segundos de ejecución, el desarrollador es

informado sobre el defecto y su causa raíz. Entonces el desarrollador puede parar el programa

Big Data para ahorrar dinero, energía, recursos de computación y evitar potenciales fallos.

Las técnicas propuestas en la tesis son capaces de detectar y depurar automáticamente los

defectos de diseño de los programas MapReduce tanto en el laboratorio como en producción.

Como trabajo futuro planeamos también corregir automáticamente los programas MapReduce

utilizando una técnica de autoadaptación. Algunos de los defectos de diseño son causados por

optimizaciones que pueden ser fácilmente corregibles deshabilitando la optimización o con

pequeñas modificaciones. En otros casos, los defectos son difíciles de corregir como ocurre con

aquellos que tienen en el diseño semánticas específicas de un dominio. También hay otros casos

Section VI.3 - Future Work 114

en los que la corrección automática no es posible porque toda la funcionalidad del programa no

es compatible con el modelo de procesamiento MapReduce. Actualmente estamos trabajando

en una metodología PDCA que no sólo corrija el programa, sino que también mide el impacto

que tiene la mejora funcional respecto al rendimiento y el mantenimiento. Planeamos

automatizar esta metodología a través de un enfoque guiado por búsqueda.

Como trabajo futuro también planeamos adaptar las técnicas de pruebas y depuración a otros

sistemas e integrarlas con otras tecnologías Big Data. Algunos frameworks muy utilizados en Big

Data como Spark y Flink extienden y generalizan el modelo de procesamiento MapReduce

añadiendo diferentes operaciones que también pueden causar defectos no-determinísticos. Las

técnicas propuestas en esta tesis pueden expandirse ligeramente para abordar estos nuevos

tipos de defectos.

CHAPTER VIII - APPENDICES 115

VIII APPENDICES

VIII.1 HIGH-IMPACT JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY

Table 23: High-impact journals for the mapping study

JCR journals

2015 2016

R
an

k

Im
p

ac
t

fa
ct

o
r

N
u

m
b

er
 o

f
ci

ta
ti

o
n

s

N
u

m
b

er
 o

f

p
ap

er
s

 R
an

k

Im
p

ac
t

fa
ct

o
r

N
u

m
b

er
 o

f

ci
ta

ti
o

n
s

N
u

m
b

er
 o

f

p
ap

er
s

ACM Computing Surveys Q1 5.24 4150 88 Q1 6.75 6629 76

ACM SIGPLAN Notices Q1 0.49 3657 389 Q1 0.34 2541 378

ACM Transactions on Database
Systems (ACM TODS) Q2 0.63 969 19

Q2 1.52 1504 26

ACM Transactions on Information
Systems (ACM TOIS) Q2 0.98 1220 27

Q2 2.31 1790 33

ACM Transactions on Software
Engineering and Methodology
(ACM TOSEM)

Q3 1.51 700 21

Q2 2.52 1104 16

Computer Science and Information
Systems (ComSIS) Q4 0.62 265 64

Q4 0.84 392 47

Distributed and Parallel Databases Q4 0.80 293 21 Q4 1.18 349 19

Distributed Computing Q3 1.26 498 26 Q2 1.67 954 24

Empirical Software Engineering
(ESE) Q2 1.39 828 52

Q2 3.28 1453 68

The International Arab Journal of
Information Technology (IAJIT) Q4 0.52 292 78

Q3 0.72 502 93

IEEE Software Q2 0.82 1638 55 Q1 2.19 2547 69

IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE) Q1 2.48 6465 245

Q1 3.44 9370 239

IEEE Transactions on Parallel and
Distributed Systems (IEEE TPDS) Q1 2.66 5080 282

Q1 4.18 8313 271

IEEE Transactions on Software
Engineering (IEEE TSE) Q1 1.51 4221 62

Q1 3.27 6712 59

International Journal of Data
Warehousing and Mining (IJDWM) Q4 0.63 146 17

Q4 0.73 219 15

International Journal of
Information Management (IJIM) Q1 2.69 1937 73

Q1 3.87 3087 115

International Journal of
Information Processing and
Management (IJIPM)

Q1 1.40 2296 63

Q1 2.39 3067 72

International Journal of
Information Technology and
Decision Making (IJITDM)

Q3 1.18 627 45

Q3 1.66 742 56

Section VIII.1 - High-impact Journals and Conferences used for the Mapping Study 116

International Journal of
Information Technology and
Management (IJITM)

Q4 0.60 226 23

Q4 1.07 281 29

International Journal of Software
Engineering and Knowledge
Engineering (IJSEKE)

Q4 0.24 216 55

Q4 0.30 345 52

Information and Software
Technology (IST) Q1 1.57 2145 153

Q1 2.69 3448 122

Journal of Database Management
(JDM) Q4 0.12 131 7

Q4 0.27 182 9

Journal of Information Technology
(JIT) Q1 4.78 1695 24

Q1 6.95 2515 19

Journal of Management
Information Systems (JMIS) Q1 3.03 3818 41

Q1 2.36 4456 30

Journal of Software: Evolution and
Process Q4 0.73 140 46

Q4 1.03 319 50

Journal of Parallel and Distributed
Computing (JPDC) Q1 1.32 1983 94

Q1 1.93 2740 84

The Journal of Strategic
Information Systems (JSIS) Q2 2.60 1159 17

Q2 3.49 1580 15

Journal of Systems and Software
(JSS) Q1 1.42 3243 181

Q1 2.44 5161 229

Knowledge and Information
Systems (KAIS) Q2 1.70 1559 110

Q2 2.00 2146 117

Software Quality Journal (SQJ) Q4 0.79 280 24 Q3 1.86 486 33

Software Testing, Verification&
Reliability (STVR) Q3 1.08 363 25

Q3 1.59 612 20

Table 24: CORE conferences for the mapping study

CORE Conferences
CORE
2014

CORE
2017

ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD) A* A*

Computer Aided Verification (CAV) A* A*

IEEE International Conference on Data Mining (IEEE ICDM) A* A*

International Conference on Data Engineering (IEEE ICDE) A* A*

Special Interest Group on Management of Data Conference (SIGMOD) A* A*

Very Large Data Bases Conference (VLDB) A* A*

Automated Software Engineering (ASE) A A

Biennial Conference on Innovative Data Systems Research (CIDR) A A

Empirical Software Engineering and Measurement (ESEM) A A

European Conference on Parallel Processing (EURO-PAR) A A

European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD) A A

Section VIII.1 - High-impact Journals and Conferences used for the Mapping Study 117

International Conference on Database Theory (ICDT) A A

International Conference on Distributed Computing Systems (ICDCS) A A

International Conference on Extending Database Technology (EDBT) A A

International Conference on Information and Knowledge Management
(CIKM) A A

International Conference on Software Engineering (ICSE) A A

International Conference on Statistical and Scientific Database
Management (SSDBM) A A

International Symposium on Cluster Computing and the Grid (CCGRID) A A

International Symposium on Intelligent Data Analysis (IDA) A A

International Symposium on Software Testing and Analysis (ISSTA) A A

Joint International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE) A A

Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD) A A

Parallel Computing Technologies International Conferences Series (PaCT) A A

SIAM International Conference on Data Mining (SDM) A A

Symposium on Large Spatial Databases (SSTD) A A

ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE) A B

Advances in Databases and Information Systems (ADBIS) B B

Australasian Data Mining Conference (AusDM) B B

Australasian Database Conference (ADC) B B

Databases and Programming Language (DBPL) B B

European Software Engineering Conference (ESEC) A B

IEEE International Conference on Cloud Computing (IEEE CLOUD) B B

IEEE International Enterprise Distributed Object Computing Conference
(IEEE EDOC) B B

International Baltic Conference on Databases and Information Systems
(DB&IS) B B

International Conference on Data Warehousing and Knowledge Discovery
(DaWaK) B B

International Conference on Database and Expert Systems Applications
(DEXA) B B

International Conference on Database Systems for Advanced Applications
(DASFAA) B B

International Conference on Management of Data (COMAD) B B

International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA) B B

International Conference on Quality Software (QSIC) B B

International Conference on Software and Data Technologies (ICSOFT) B B

International Conference on Tests and Proof (TAP) B B

International Database Engineering and Applications Symposium (IDEAS) B B

International Workshop on Data Warehousing and OLAP (DOLAP) B B

Section VIII.2 - Other Journals and Conferences used for the Mapping Study 118

Software Engineering and Knowledge Engineering (SEKE) B B

Symposium on Applied Computing (SAC) B B

Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP) C C

Evolution and Change in Data Management (ECDM) C C

IEEE International Conference on Cloud Computing Technology and
Science (IEEE CloudCom) C C

International Conference on Intelligent Data Engineering and Automated
Learning (IDEAL) C C

International Conference on Software Testing, Verification and Validation
(ICST) C C

International Workshop on Formal Approaches to Testing of Software
(FATES) C C

Symposium on Principles of Database Systems (PODS) C C

VIII.2 OTHER JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY

Table 25: Other journals for the mapping study

ACM DATA BASE International Journal of Intelligent Information and
Database Systems (IJIIDS)

ACM SIGSOFT Software Engineering
Notes (ACM SIGSOFT)

International Journal of Information Quality (IJIQ)

ACM Transactions on Management
Information Systems (ACM TMIS)

International Journal of Information Systems and
Change Management (IJISCM)

Big Data Research International Journal of Information Technologies
and Systems Approach (IJITSA)

Computing and Information
Technology (CIT)

International Journal of Parallel, Emergent and
Distributed Systems (IJPEDS)

European Journal of Information
Systems (EJIS)

Journal of Cases on Information Technology (JCIT)

Foundations and Trends in
Databases (FTDB)

Journal of Data and Information Quality (JDIQ)

IEEE Cloud Computing Journal of Digital Information Management (JDIM)

IEEE Computer Journal of Enterprise Information Management
(JEIM)

IEEE Distributed Systems Online
(IEEE DS)

Journal of Information and Data Management
(JIDM)

IEEE Transactions on Big Data Journal of Information

IEEE Transactions on Cloud
Computing (IEEE TCC)

Journal of Information Processing (JIP)

International Journal of Big Data
Intelligence (IJBD)

The Journal of Information Processing Systems (JIPS)

International Journal of Cloud
Applications and Computing (IJCAC)

Journal of Information Technology Research (JITR)

Section VIII.2 - Other Journals and Conferences used for the Mapping Study 119

International Journal of Cloud
Computing (IJCC)

Journal of Systems and Information Technology
(JSIT)

International Journal of Distributed
Systems and Technologies (IJDST)

Transactions on Large-Scale Data- and Knowledge-
Centered Systems (Transactions LDKS)

International Journal of Enterprise
Information Systems (IJEIS)

Journal of Enterprise Information Management
(JEIM)

Table 26: Other conferences for the mapping study

Advances in Model-Based Testing (A-
MOST)

Industrial Conference on Data Mining (ICDM)

Alberto Mendelzon Workshop on
Foundations of Data Management (AMW)

International Conference on Intelligent Data
Acquisition and Advanced Computing Systems
(IDAACS)

International Conference on Big Data
Analytics (BDA)

Internet and Distributed Computing Systems
(IDCS)

International Conference Beyond
Databases, Architectures, and Structures
(BDAS)

IEEE/ACM International Symposium on Big
Data Computing (BDC)

International Conference on Big Data and
Smart Computing (BigComp)

IEEE International Conference on Big Data
(IEEE BigData)

International Congress on Big Data
(BigData Congress)

IEEE Symposium on Large-Scale Data Analysis
and Visualization (IEEE LDAV)

Workshop on Scalability in Model Driven
Engineering (BigMDE)

International Conference on Algorithms for
Big Data (ICABD)

British National Conference on Databases
(BNCOD)

International Conference on Big Data and
Cloud Computing (BdCloud)

International Conference on Cloud and
Autonomic Computing Conference (CAC)

International Conference on Big Data Cloud
and Applications (BDCA)

International Conference on Cloud and
Green Computing (CGC)

International Conference on Big Data
Computing and Communications (BigCom)

International Conference on Cloud
Computing and Services Science (CLOSER)

International Conference on Big Data
Computing Service and Applications
(BigDataService)

Cloud Computing (CloudComp) International Multiconference on Computer
Science and Information Technology (IMCSIT)

Conference on Data and Application
Security and Privacy (CODASPY)

International Workshop on Machine Learning,
Optimization, and Big Data (MOD)

International Computer Software and
Applications Conference (COMPSAC)

Symposium on Network Cloud Computing and
Applications (NCCA)

International Conference on Cloud and
Service Computing (CSC)

Conference on Next Generation Information
Technologies and Systems (NGITS)

European Joint Conference on Theory and
Practice of Software (ETAPS)

ACM Symposium on Cloud Computing (SoCC)

International Conference on Future Data
and Security Engineering (FDSE)

SPIN Workshop on Model Checking of
Software (SPIN)

Section VIII.3 - Primary Studies 120

Federated Conference on Computer
Science and Information Systems (FEDCSIS)

Symposium on Computational Intelligence in
Big Data (CIBD)

International Conference on Future
Internet of Things and Cloud (FICLOUD)

Symposium on Information Management and
Big Data (SIMBig)

USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud)

Testing: Academic

International Conference on Advanced
Cloud and Big Data (CBD)

International Conference on Testing
Communicating Systems (TestCom)

International Conference on Cloud
Engineering (IC2E)

Workshop on Big Data Benchmarking (WBDB)

International Conference on Algorithms for
Big Data (ICABD)

Workshop on Big Data Benchmarks,
Performance Optimization, and Emerging
Hardware (BPOE)

International Conference on Innovative
Computing and Cloud Computing (ICCC)

Workshop on Mobile Big Data (Mobidata)

International Conference on Data
Engineering and Management (ICDEM)

VIII.3 PRIMARY STUDIES

Table 27: Primary studies

Ref. Year Contribution
Number of
citations1

Summary

[142] 2013 Conference 20
A study and characterization of MapReduce-like
failures

[112] 2013 Conference 30
A prediction model of individual MapReduce
jobs based on important properties

[120] 2013 Conference 25
A performance prediction based on network
properties and configuration of the cluster

[138] 2013 Conference 22

A performance prediction based on a
representation of the architecture with some
information of the MapReduce program

[150] 2015 Conference 7

Generator of representative data to testing Big
Data programs based on input space
partitioning

[27] 2010 Conference 311
A study and characterization of more than
170000 MapReduce executions

[114] 2011 Conference 46
A simple performance prediction model that
considers the program and the system

[119] 2013 Journal 47

A model that obtains several metrics about the
MapReduce programs performance and
resource utilization

[109] 2013 Briefing 19
Classification of testing in Big Data and the
underlying challenges

[143] 2013 Conference 8
Classification of MapReduce faults based on
empirical changes in the programs

Section VIII.3 - Primary Studies 121

[144] 2015 Conference 13
Checking of the commutativity problem in the
Reduce functions

[121] 2013 Conference 30

A performance prediction model based on
information about the MapReduce program
and the cluster

[136] 2012
Doctoral

dissertation
14

A simulator of MapReduce program that
obtains a prediction of the performance

[117] 2014 Journal 50

A performance prediction model of MapReduce
program using Mean Field Analysis and
information of the program, system and data

[127] 2015 Conference 7

A performance prediction model of MapReduce
program in the cloud considering the program
and the data

[148] 2012 Conference 34

A failure injector in the architecture using the
cloud manager in order to test the MapReduce
programs

[110] 2013 Conference 7 Challenges of software testing in Big Data

[28] 2013 Conference 97
A study and characterization of three Hadoop
clusters

[129] 2016 Journal 31

Prediction of the performance and optimization
of resource utilization based on deadline
requirements

[139] 2011 Conference 54
Monitoring of the MapReduce program that
generates detailed reports of the execution

[141] 2013 Journal 54
A study and characterization of several bugs in
Big Data programs

[128] 2015 Conference 10

A performance prediction model of the
MapReduce programs considering the
deployment in virtualized cloud and the
characteristics of the program

[118] 2012 Conference 11

A performance prediction model of the
MapReduce programs considering several
samplings of the input data

[147] 2015 Journal 11

A testing framework to run the MapReduce
programs under architectural failures in order
to test

[122] 2013 Conference 7

A performance prediction model of the
MapReduce programs considering the resource
contention and the task failures

[38] 2014 Conference 7

Classification of several MapReduce faults with
a series of challenges in order to reveal the
faults

[145] 2011 Conference 28
Functional Testing of the Reduce function
based on symbolic execution

[29] 2014 Conference 22
Characterization of the MapReduce programs
based on empirical study

Section VIII.3 - Primary Studies 122

[123] 2014 Conference 5

A performance prediction model of the
MapReduce programs considering the memory
shared and disk I/O

[103] 2014 Journal 9

Prediction of the MapReduce performance
based on empirical executions and an
adjustment based on micro benchmarks

[140] 2014 Journal 19

Performance analysis model for MapReduce
applications based on ISO 25010 that
establishes a relationship between the
performance and reliability measures

[115] 2013 Conference 1
Obtains the performance of the MapReduce
programs based on Stochastic Petri Nets

[133] 2015 Conference 2

Performance prediction of HIVE-QL queries
through the underlying MapReduce
applications based on multiple lineal regression

[105] 2013 Journal 13
Performance prediction of PIG queries through
the underlying MapReduce applications

[113] 2014 Conference 2

Performance prediction for a MapReduce
program and optimization based on the type of
application and potential bottlenecks

[124] 2014 Conference 6

Mathematical model for performance
prediction of the RDMA-Enhanced MapReduce
programs

[104] 2013 Conference 32

A performance prediction model of the
MapReduce programs considering information
of the program and the performance for several
parts of the program

[130] 2015 Conference 3
Model that predicts the performance of
MapReduce applications in hybrid clouds

[125] 2015 Conference 33
Simulation of the Spark applications in order to
obtain performance information

[126] 2014 Conference 1

A performance prediction model of the
MapReduce programs considering the
heterogeneity of the cluster

[116] 2011 Conference 29

A performance prediction model of the
MapReduce programs based on the mean time
between failures

[111] 2014 Conference 8
Overview and challenges of performance
testing in Big Data

[151] 2013 Conference 8
Data generation for dataflow programs based
on symbolic execution

[135] 2014 Conference 8

Simulating the MapReduce program under
configurable hardware in order to obtain a
performance prediction

[137] 2014 Conference 2
Simulating the scheduler of the MapReduce
program in order to test the best configuration

[107] 2015 Conference 6 Test factory model for Big Data development

Section VIII.3 - Primary Studies 123

[153] 2011 Conference 71

Static analysis of the MapReduce configuration
in order to detect misconfigurations and avoid
failures

[152] 2011 Conference 12

Automatic checking of the java types inside
MapReduce programs in order to detect
incompatible types

[149] 2012 Dissertation 7

Data generator for MapReduce programs based
on bacteriological algorithm in order to test the
program

[53] 2015 Conference 6

Testing technique for MapReduce programs
based on data flow and the MapReduce
specifics

[146] 2013 Conference 5
Checking the correctness of the dataflow
programs based on the operators properties

[134] 2013 Journal 0
Performance prediction of the join queries in
Pig

[108] 2013 Journal 11 Overview and challenges of testing in Big Data

[154] 2011 Conference 17

Formal verification of the MapReduce program
based on a model of the program/specification
and invariants

1 Number of citations obtained from Google Scholar [276] in 2018.

REFERENCES 125

REFERENCES

[1] J. Gantz, D. Reinsel, and B. D. Shadows, “The Digital Universe in 2020,” IDC iView “Big
Data, Bigger Digit. Shad. Biggest Growth Far East,” vol. 2007, no. December 2012, pp. 1–
16, 2012.

[2] “ISO/IEC JTC 1 - Big Data, preliminary report.” 2014.

[3] NewVantage Partners LLC, “Big Data Executive Survey 2016 An Update on the Adoption
of Big Data in the Fortune 1000,” 2016.

[4] Gartner, “How to Take a First Step to Advanced Analytics,” 2015.

[5] McKinsey & Company, “Big data: The next frontier for innovation, competition, and
productivity,” McKinsey Glob. Inst., no. June, p. 156, 2011.

[6] Xerox, “Big Data in Western Europe Today,” 2015.

[7] Capgemini Consulting, “Big Data survey,” 2014.

[8] B. Marr, “Where Big Data Projects Fail,” 2015. [Online]. Available:
http://www.forbes.com/sites/bernardmarr/2015/03/17/where-big-data-projects-fail/.
[Accessed: 19-Feb-2017].

[9] Pure Storage, “BIG DATA’S BIG FAILURE: The struggles businesses face in accessing the
information they need,” 2015.

[10] N. Laranjeiro, S. N. Soydemir, and J. Bernardino, “A Survey on Data Quality: Classifying
Poor Data,” in Proceedings - 2015 IEEE 21st Pacific Rim International Symposium on
Dependable Computing, PRDC 2015, 2016, pp. 179–188.

[11] L. Cai and Y. Zhu, “The Challenges of Data Quality and Data Quality Assessment in the Big
Data Era,” Data Sci. J., vol. 14, p. 2, 2015.

[12] IBM, “The Four V’s of Big Data,” 2013.

[13] United States Postal Service, “Undeliverable as Addressed Mail,” 2014.

[14] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498, no. 7453, pp. 255–
260, Jun. 2013.

[15] D. Bachlechner and T. Leimbach, “Big data challenges: Impact, potential responses and
research needs,” in 2016 IEEE International Conference on Emerging Technologies and
Innovative Business Practices for the Transformation of Societies (EmergiTech), 2016, pp.
257–264.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
Proc. OSDI - Symp. Oper. Syst. Des. Implement., pp. 137–149, 2004.

[17] “Institutions that are using Apache Hadoop for educational or production uses.” [Online].
Available: https://wiki.apache.org/hadoop/PoweredBy. [Accessed: 23-Jan-2017].

[18] S. Agarwal and Z. Khanam, “Map Reduce: A Survey Paper on Recent Expansion,” Int. J.
Adv. Comput. Sci. Appl., vol. 6, no. 8, 2015.

[19] Z. Khanam and S. Agarwal, “Map-Reduce Implementations: Survey and Performance
Comparison,” Int. J. Comput. Sci. Inf. Technol., vol. 7, no. 4, pp. 119–126, 2015.

[20] “Apache Hadoop: open-source software for reliable, scalable, distributed computing.”

 126

[Online]. Available: https://hadoop.apache.org/. [Accessed: 23-Jan-2017].

[21] “Apache Flink: Scalable batch and stream data processing.” [Online]. Available:
https://flink.apache.org. [Accessed: 20-Feb-2017].

[22] A. Alexandrov, R. Bergmann, S. Ewen, J. C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,
K. Tzoumas, and D. Warneke, “The Stratosphere platform for big data analytics,” VLDB J.,
vol. 23, no. 6, pp. 939–964, 2014.

[23] Apache Spark, “Apache Spark: a fast and general engine for large-scale data processing,”
Spark.Apache.Org, 2015. [Online]. Available: https://spark.apache.org. [Accessed: 20-
Feb-2017].

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark : Cluster
Computing with Working Sets,” HotCloud’10 Proc. 2nd USENIX Conf. Hot Top. cloud
Comput., p. 10, 2010.

[25] M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce,”
Bioinformatics, vol. 25, no. 11, pp. 1363–1369, Jun. 2009.

[26] H. Kocakulak and T. T. Temizel, “A Hadoop solution for ballistic image analysis and
recognition,” in 2011 International Conference on High Performance Computing &
Simulation, 2011, pp. 836–842.

[27] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis of Traces from a Production
MapReduce Cluster,” in 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, 2010, pp. 94–103.

[28] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence,” Proc. VLDB
Endow., vol. 6, no. 10, pp. 853–864, 2013.

[29] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen, and L. Zhou,
“Nondeterminism in MapReduce considered harmful? an empirical study on non-
commutative aggregators in MapReduce programs,” in Companion Proceedings of the
36th International Conference on Software Engineering - ICSE Companion 2014, 2014, pp.
44–53.

[30] ISO/IEC/IEEE, “29119-1:2013 - ISO/IEC/IEEE International Standard for Software and
systems engineering — Software testing — Part 1: Concepts and definitions,”
ISO/IEC/IEEE 29119-1:2013(E), vol. 2013, pp. 1–64, 2013.

[31] A. Bertolino, “Software Testing Research : Achievements , Challenges , Dreams,” in
Future of Software Engineering. FOSE ’07, 2007, pp. 85–103.

[32] A. Bertolino, P. Inverardi, and H. Muccini, “Software architecture-based analysis and
testing: A look into achievements and future challenges,” Computing, vol. 95, no. 8. pp.
633–648, 2013.

[33] B. A. Kitchenham, D. (David) Budgen, and P. Brereton, Evidence-based software
engineering and systematic reviews. CRC Press, 2015.

[34] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in
software engineering,” EASE’08 Proc. 12th Int. Conf. Eval. Assess. Softw. Eng., pp. 68–77,
2008.

[35] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,” Commun. ACM,
vol. 42, no. 1, pp. 94–97, 1999.

 127

[36] N. Juristo and A. M. Moreno, “Basics of Software Engineering Experimentation,” Analysis,
vol. 5/6, p. 420, 2001.

[37] J. Morán, C. De La Riva, and J. Tuya, “Testing MapReduce Programs: A Systematic
Mapping Study,” J. Softw. Evol. Process, vol. 31, no. 3, 2019.

[38] J. Moran, C. de la Riva, and J. Tuya, “MRTree: Functional Testing Based on MapReduce’s
Execution Behaviour,” in 2014 International Conference on Future Internet of Things and
Cloud, 2014, pp. 379–384.

[39] J. Morán, C. De La Riva, and J. Tuya, “Pruebas funcionales en programas MapReduce
basadas en comportamientos no esperados,” in Jornadas de Ingeniería del Software y
Bases de Datos (JISBD), 2014.

[40] J. Morán and C. De La Riva, “Pruebas para sistemas con procesamiento y transformación
de datos en paralelo,” University of Oviedo, 2014.

[41] J. Moran, A. Bertolino, C. de la Riva, and J. Tuya, “Automatic Testing of Design Faults in
MapReduce Applications,” IEEE Transactions on Reliability, 2018.

[42] J. Morán, B. Rivas, C. De Riva, J. Tuya, I. Caballero, and M. Serrano, “Configuration /
Infrastructure-aware testing of MapReduce programs,” Adv. Sci. Technol. Eng. Syst. J.,
vol. 2, no. 1, pp. 90–96, 2017.

[43] J. Moran, B. Rivas, C. De La Riva, J. Tuya, I. Caballero, and M. Serrano, “Infrastructure-
Aware Functional Testing of MapReduce Programs,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2016, pp. 171–
176.

[44] J. Morán, C. De La Riva, and J. Tuya, “Generación y Ejecución de Escenarios de Prueba
para Aplicaciones MapReduce,” in Jornadas de Ingeniería del Software y Bases de Datos
(JISBD), 2016.

[45] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new approach for generating next
test cases,” Tech. Rep. HKUST-CS98-01, Dep. Comput. Sci. Hong Kong Univ. Sci. Technol.
Hong Kon, pp. 1–11, 1998.

[46] J. Moran, C. De La Riva, and J. Tuya, “Automatización de la localización de defectos en el
diseño de aplicaciones MapReduce,” in Jornadas de Ingeniería del Software y Bases de
Datos (JISBD), 2018.

[47] J. Morán, C. De La Riva, J. Tuya, and B. Rivas, “Localización de defectos en aplicaciones
MapReduce,” in Jornadas de Ingeniería del Software y Bases de Datos, 2017.

[48] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans.
Softw. Eng., vol. 28, no. 2, pp. 183–200, 2002.

[49] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?,” ACM SIGSOFT
Softw. Eng. Notes, vol. 24, no. 6, pp. 253–267, 1999.

[50] J. H. Holland, Adaptation in Natural and Artificial Systems. 1975.

[51] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. 1989.

[52] J. Moran, A. Bertolino, C. de la Riva, and J. Tuya, “Towards Ex Vivo Testing of MapReduce
Applications,” in 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS), 2017, pp. 73–80.

[53] J. Morán, C. de la Riva, and J. Tuya, “Testing data transformations in MapReduce

 128

programs,” in Proceedings of the 6th International Workshop on Automating Test Case
Design, Selection and Evaluation - A-TEST 2015, 2015, pp. 20–25.

[54] J. Morán, C. De La Riva, and J. Tuya, “Pruebas basadas en flujo de datos para programas
MapReduce,” in Jornadas de Ingeniería del Software y Bases de Datos (JISBD), 2015.

[55] S. Rapps and E. J. Weyuker, “Selecting Software Test Data Using Data Flow Information,”
IEEE Trans. Softw. Eng., vol. SE-11, no. 4, pp. 367–375, 1985.

[56] P. Ferrera, I. De Prado, E. Palacios, J. L. Fernandez-Marquez, and G. Di Marzo Serugendo,
“Tuple MapReduce and Pangool: an associated implementation,” Knowl. Inf. Syst., vol.
41, no. 2, pp. 531–557, 2014.

[57] J. Lin, “Mapreduce is Good Enough? If All You Have is a Hammer, Throw Away Everything
That’s Not a Nail!,” Big Data, vol. 1, no. 1, pp. 28–37, 2013.

[58] S. Babu, “Towards automatic optimization of MapReduce programs,” SoCC ’10 Proc. 1st
ACM Symp. Cloud Comput., pp. 137–142, 2010.

[59] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hardware
Reliability,” Proc. 1st ACM Symp. Cloud Comput. - SoCC ’10, p. 193, 2010.

[60] “JUnit: a simple framework to write repeatable tests.” [Online]. Available:
http://junit.org. [Accessed: 27-Feb-2017].

[61] “Apache MRUnit: Java library that helps developers unit test Apache Hadoop map reduce
job.” [Online]. Available: http://mrunit.apache.org. [Accessed: 23-Jan-2017].

[62] “Minicluster: Apache hadoop cluster in memory for testing.” [Online]. Available:
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/CLIMiniCluster.html. [Accessed: 27-Feb-2017].

[63] “Herriot: Large-scale automated test framework.” [Online]. Available:
https://wiki.apache.org/hadoop/HowToUseSystemTestFramework. [Accessed: 27-Feb-
2017].

[64] “Anarchy Ape: Fault injection tool for Hadoop cluster from Yahoo anarchyape.” [Online].
Available: https://github.com/david78k/anarchyape. [Accessed: 23-Jan-2017].

[65] “Chaos Monkey: Fault injector.” [Online]. Available:
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey. [Accessed: 23-Jan-2017].

[66] “Hadoop Injection Framework.” [Online]. Available: https://hadoop.apache.org/.
[Accessed: 23-Jan-2017].

[67] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews
in Software Engineering,” Engineering, vol. 2, p. 1051, 2007.

[68] Z. Pan and G. Kosicki, “Framing analysis: An approach to news discourse,” Polit. Commun.,
vol. 10, no. 1, pp. 55–75, 1993.

[69] G. Hart, “The Five W’s: An Old Tool for the New Task of Audience Analysis,” Tech.
Commun., vol. 43, no. 2, pp. 139–145, 1996.

[70] R. Kipling, Just so stories. Macmillan and Co, 1902.

[71] C. Jia, Y. Cai, Y. T. Yu, and T. H. Tse, “5W+1H pattern: A perspective of systematic mapping
studies and a case study on cloud software testing,” J. Syst. Softw., vol. 116, pp. 206–219,
2016.

 129

[72] International Organization For Standardization Iso, “Iso/Iec 25010:2011,” Softw. Process
Improv. Pract., vol. 2, no. Resolution 937, pp. 1–25, 2011.

[73] International Organization For Standardization Iso, “ISO/IEC 9126-1,” Software Process:
Improvement and Practice, vol. 2, no. 1. pp. 1–25, 2001.

[74] “DBLP - digital bibliography & library project.” [Online]. Available: http://dblp.uni-
trier.de. [Accessed: 27-Feb-2017].

[75] “Thomson reuters.” [Online]. Available: http://thomsonreuters.com. [Accessed: 27-Feb-
2017].

[76] “CORE - Computing research and education.” [Online]. Available:
http://www.core.edu.au. [Accessed: 27-Feb-2017].

[77] “IEEE Xplore Digital Library.” [Online]. Available: http://ieeexplore.ieee.org. [Accessed:
27-Feb-2017].

[78] “ACM Digital Library.” [Online]. Available: http://dl.acm.org. [Accessed: 27-Feb-2017].

[79] “Scopus.” [Online]. Available: http://www.scopus.com. [Accessed: 27-Feb-2017].

[80] “EI compendex.” .

[81] “ISI web of science.” [Online]. Available: https://www.accesowok.fecyt.es. [Accessed: 27-
Feb-2017].

[82] M. Palacios, J. García-Fanjul, and J. Tuya, “Testing in Service Oriented Architectures with
dynamic binding: A mapping study,” Inf. Softw. Technol., vol. 53, no. 3, pp. 171–189,
2011.

[83] B. Kitchenham and P. Brereton, “A systematic review of systematic review process
research in software engineering,” Inf. Softw. Technol., vol. 55, no. 12, pp. 2049–2075,
2013.

[84] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha: BlackBox Diagnosis of
MapReduce Systems,” SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, pp. 8–13, 2010.

[85] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A Programmable Tool for Multiple-Failure
Injection,” ACM SIGPLAN Not., vol. 46, no. 10, p. 171, 2011.

[86] S. Tilley and T. Parveen, “HadoopUnit: Test Execution in the Cloud,” in Software Testing
in the Cloud, 2012, pp. 37–53.

[87] I. Saleh and K. Nagi, “HadoopMutator: A Cloud-Based Mutation Testing Framework,”
14th Int. Conf. Softw. Reuse, ICSR 2015, pp. 172–187, 2014.

[88] ISO/IEC/IEEE, “29119-4:2015 - ISO/IEC/IEEE International Standard for Software and
systems engineering — Software testing — Part 4: Test techniques,” ISO/IEC/IEEE 29119-
4:2015, pp. 1–149, 2015.

[89] “ISO/IEC 12207:2008 Systems and software engineering - Software life cycle processes.”
2008.

[90] International Software Testing Qualifications Board (ISTQB), “Foundation Level Syllabus
Reference, International Software Testing Qualifications Board (ISTQB) Std.” 2011.

[91] M. Shaw, “Writing Good Software Engineering Research Papers,” in Proceedings of the
25th International Conference on Software Engineering, 2003, pp. 726–736.

 130

[92] D. S. Cruzes and T. Dyb, “Research synthesis in software engineering: A tertiary study,”
in Information and Software Technology, 2011, vol. 53, no. 5, pp. 440–455.

[93] D. S. Cruzes and T. Dyba, “Recommended Steps for Thematic Synthesis in Software
Engineering,” 2011 Int. Symp. Empir. Softw. Eng. Meas., no. 7491, pp. 275–284, 2011.

[94] G. W. Noblit and R. D. R. Hare, Meta-ethnography: Synthesizing qualitative studies, vol.
11. 1988.

[95] A. Strauss and J. Corbin, “Basics of qualitative research: grounded theory procedure and
techniques,” Qual. Sociol., vol. 13, no. 1, pp. 3–21, 1990.

[96] F. Q. B. Da Silva, S. S. J. O. Cruz, T. B. Gouveia, and L. F. Capretz, “Using meta-ethnography
to synthesize research: A worked example of the relations between personality and
software team processes,” in International Symposium on Empirical Software
Engineering and Measurement, 2013, pp. 153–162.

[97] “ACM SIGSOFT - SEWORLD Mailing List.” [Online]. Available:
https://www.sigsoft.org/resources/seworld.html. [Accessed: 29-Mar-2018].

[98] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review process within the software engineering
domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–583, 2007.

[99] M. Petticrew and H. Roberts, Systematic reviews in the social sciences : a practical guide.
John Wiley & Sons, 2008.

[100] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic
mapping studies in software engineering: An update,” in Information and Software
Technology, 2015, vol. 64, pp. 1–18.

[101] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. Psychol. Meas., vol. 20,
no. 1, pp. 37–46, 1960.

[102] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochem. Medica, pp. 276–282,
2012.

[103] Z. Zhang, L. Cherkasova, and B. T. Loo, “Parameterizable benchmarking framework for
designing a mapreduce performance model,” Concurr. Comput. Pract. Exp., vol. 26, no.
12, pp. 2005–2026, 2014.

[104] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance Modeling of MapReduce Jobs in
Heterogeneous Cloud Environments,” Cloud Comput. (CLOUD), 2013 IEEE Sixth Int. Conf.,
pp. 839–846, 2013.

[105] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Performance Modeling and
Optimization of Deadline-Driven Pig Programs,” ACM Trans. Auton. Adapt. Syst., vol. 8,
no. 3, pp. 1–28, 2013.

[106] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering – A systematic literature review,”
Inf. Softw. Technol., vol. 51, pp. 7–15, 2008.

[107] M. Thangaraj and S. Anuradha, “State of art in testing for big data,” in 2015 IEEE
International Conference on Computational Intelligence and Computing Research, ICCIC
2015, 2016.

[108] A. Mittal, “Trustworthiness of Big Data,” Int. J. Comput. Appl., vol. 80, no. 9, pp. 35–40,

 131

Oct. 2013.

[109] M. Gudipati, S. Rao, N. D. Mohan, and N. Kumar Gajja, “Big Data: Testing Approach to
Overcome Quality Challenges,” vol. 11, no. 1. Big Data: Challenges and Opportunities, pp.
65–72, 2013.

[110] S. Nachiyappan and S. Justus, “Getting ready for BigData testing: A practitioner’s
perception,” in 2013 4th International Conference on Computing, Communications and
Networking Technologies, ICCCNT 2013, 2013.

[111] Z. Liu, “Research of performance test technology for big data applications,” 2014 IEEE Int.
Conf. Inf. Autom. ICIA 2014, no. July, pp. 53–58, 2014.

[112] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and X. Lin, “A Hadoop MapReduce
performance prediction method,” in Proceedings - 2013 IEEE International Conference on
High Performance Computing and Communications, HPCC 2013 and 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, EUC 2013, 2014, pp.
820–825.

[113] J. Yin and Y. Qiao, “Performance modeling and optimization of MapReduce programs,”
in CCIS 2014 - Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing
and Intelligence Systems, 2014, pp. 180–186.

[114] X. Yang and J. Sun, “An analytical performance model of MapReduce,” 2011 IEEE Int.
Conf. Cloud Comput. Intell. Syst., pp. 306–310, 2011.

[115] S.-T. Cheng, H.-C. Wang, Y.-J. Chen, and C.-F. Chen, “Performance Analysis Using Petri Net
Based MapReduce Model in Heterogeneous Clusters,” in Advances in Web-Based
Learning – ICWL 2013 Workshops, 2015, pp. 170–179.

[116] H. Jin, K. Qiao, X. H. Sun, and Y. Li, “Performance under failures of mapReduce
applications,” in Proceedings - 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGrid 2011, 2011, pp. 608–609.

[117] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri, “Exploiting mean field analysis to
model performances of big data architectures,” Futur. Gener. Comput. Syst., vol. 37, pp.
203–211, 2014.

[118] L. Xu, “MapReduce Framework Optimization via Performance Modeling,” in 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 2012, pp. 2506–2509.

[119] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkinson, H. Kuno, and U.
Dayal, “Analytical performance models for mapreduce workloads,” Int. J. Parallel
Program., vol. 41, no. 4, pp. 495–525, 2013.

[120] J. Han, M. Ishii, and H. Makino, “A Hadoop performance model for multi-rack clusters,”
in 2013 5th International Conference on Computer Science and Information Technology,
CSIT 2013 - Proceedings, 2013, pp. 265–274.

[121] M. Ishii, J. Han, and H. Makino, “Design and performance evaluation for Hadoop clusters
on virtualized environment,” in International Conference on Information Networking,
2013, pp. 244–249.

[122] X. Cui, X. Lin, C. Hu, R. Zhang, and C. Wang, “Modeling the Performance of MapReduce
under Resource Contentions and Task Failures,” 2013 IEEE 5th Int. Conf. Cloud Comput.
Technol. Sci., no. 1, pp. 158–163, 2013.

 132

[123] S. T. Ahmed and D. Loguinov, “On the performance of MapReduce: A stochastic
approach,” in 2014 IEEE International Conference on Big Data (Big Data), 2014, pp. 49–
54.

[124] M. Wasi-ur-Rahman, X. Lu, N. S. Islam, and D. K. Panda, “Performance Modeling for
RDMA-Enhanced Hadoop MapReduce,” 2014 43rd Int. Conf. Parallel Process., vol. 2014–
Novem, no. November, pp. 50–59, 2014.

[125] K. Wang and M. M. H. Khan, “Performance prediction for apache spark platform,” in
Proceedings - 2015 IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and
Security and 2015 IEEE 12th International Conference on Embedded Software and
Systems, H, 2015, pp. 166–173.

[126] Y. Fan, W. Wu, Y. Xu, Y. Cao, Q. Li, J. Cui, and Z. Duan, “Performance prediction model in
heterogeneous MapReduce environments,” in Proceedings - 2014 IEEE International
Conference on Computer and Information Technology, CIT 2014, 2014, pp. 240–245.

[127] X. Wu, Y. Liu, and I. Gorton, “Exploring Performance Models of Hadoop Applications on
Cloud Architecture,” in Proceedings of the 11th International ACM SIGSOFT Conference
on Quality of Software Architectures - QoSA ’15, 2015, pp. 93–101.

[128] I. Mytilinis, D. Tsoumakos, V. Kantere, A. Nanos, and N. Koziris, “I/O Performance
Modeling for Big Data Applications over Cloud Infrastructures,” in 2015 IEEE International
Conference on Cloud Engineering, 2015, pp. 201–206.

[129] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang, “Hadoop Performance Modeling for Job
Estimation and Resource Provisioning,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2,
pp. 441–454, 2016.

[130] H. Ohnaga, K. Aida, and O. Abdul-Rahman, “Performance of Hadoop Application on
Hybrid Cloud,” in 2015 International Conference on Cloud Computing Research and
Innovation (ICCCRI), 2015, pp. 130–138.

[131] “Apache Hive: data warehouse software facilitates reading, writing, and managing large
datasets residing in distributed storage using SQL.” [Online]. Available:
https://hive.apache.org/. [Accessed: 25-Oct-2017].

[132] “Apache Pig: platform for analyzing large data sets that consists of a high-level language
for expressing data analysis programs, coupled with infrastructure for evaluating these
programs.” [Online]. Available: https://pig.apache.org/. [Accessed: 25-Oct-2017].

[133] A. Sangroya and R. Singhal, “Performance Assurance Model for HiveQL on Large Data
Volume,” in Proceedings - 22nd IEEE International Conference on High Performance
Computing Workshops, HiPCW 2015, 2016, pp. 26–33.

[134] R. J. M. Mogrovejo, J. M. Monteiro, J. C. Machado, C. J. M. Viana, and S. Lifschitz,
“Towards a Statistical Evaluation of PigLatin Joins,” J. Inf. Data Manag., vol. 4, no. 3, p.
483, 2013.

[135] Z. Bian, K. Wang, Z. Wang, G. Munce, I. Cremer, W. Zhou, Q. Chen, and G. Xu, “Simulating
Big Data Clusters for System Planning, Evaluation, and Optimization,” 2014 43rd Int. Conf.
Parallel Process., pp. 391–400, 2014.

[136] G. Wang, “Evaluating Mapreduce system performance: A Simulation approach,” Virginia
Polytechnic Institute and State University, 2012.

 133

[137] J. Chauhan, D. Makaroff, and W. Grassmann, “Simulation and performance evaluation of
the hadoop capacity scheduler,” in Proceedings of 24th Annual International Conference
on Computer Science and Software Engineering, 2014, pp. 163–177.

[138] E. Barbierato, M. Gribaudo, and M. Iacono, “A performance modeling language for big
data architectures,” Proc. High …, 2013.

[139] J. Dai, J. Huang, S. Huang, B. Huang, and Y. Liu, “HiTune: dataflow-based performance
analysis for big data cloud,” Proceeding USENIXATC’11 Proc. 2011 USENIX Conf. USENIX
Annu. Tech. Conf., p. 7, 2011.

[140] L. Bautista Villalpando, A. April, and A. Abran, “Performance analysis model for big data
applications in cloud computing,” J. Cloud Comput. Adv. Syst. Appl., vol. 3, no. 1, pp. 19–
38, 2014.

[141] A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE Softw., vol. 30, no. 4, pp. 88–
94, 2013.

[142] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A characteristic study on failures
of production distributed data-parallel programs,” in 2013 35th International Conference
on Software Engineering (ICSE), 2013, pp. 963–972.

[143] L. C. Camargo and S. R. Vergilio, “Classifica{ç} ao de Defeitos para Programas MapReduce:
Resultados de um Estudo Emp{\i}rico,” 2013.

[144] Y.-F. Chen, C.-D. Hong, N. Sinha, and B.-Y. Wang, “Commutativity of Reducers,” Springer
Berlin Heidelberg, 2015, pp. 131–146.

[145] C. Csallner, L. Fegaras, and C. Li, “New Ideas Track: Testing Mapreduce-style Programs,”
Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng., pp. 504–507, 2011.

[146] Z. Xu, M. Hirzel, G. Rothermel, and K. L. Wu, “Testing properties of dataflow program
operators,” in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013 - Proceedings, 2013, pp. 103–113.

[147] J. E. Marynowski, A. O. Santin, and A. R. Pimentel, “Method for testing the fault tolerance
of MapReduce frameworks,” Comput. Networks, vol. 86, pp. 1–13, 2015.

[148] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell, and W. H. Sanders,
“Failure scenario as a service (FSaaS) for Hadoop clusters,” Proc. Work. Secur.
Dependable Middlew. Cloud Monit. Manag. - SDMCMM ’12, pp. 1–6, 2012.

[149] A. J. de Mattos, “Test data generation for testing mapreduce systems,” Federal University
of Paraná, 2011.

[150] N. Li, A. Escalona, Y. Guo, and J. Offutt, “A Scalable Big Data Test Framework,” in 2015
IEEE 8th International Conference on Software Testing, Verification and Validation (ICST),
2015, pp. 1–2.

[151] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and C. Csallner, “SEDGE: Symbolic example
data generation for dataflow programs,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013 - Proceedings, 2013, pp. 235–
245.

[152] J. Dörre, S. Apel, and C. Lengauer, “Static type checking of Hadoop MapReduce
programs,” Proc. Second Int. Work. MapReduce its Appl. - MapReduce ’11, p. 17, 2011.

[153] A. Rabkin and R. Katz, “Static extraction of program configuration options,” 2011 33rd

 134

Int. Conf. Softw. Eng., pp. 131–140, 2011.

[154] K. Ono, Y. Hirai, Y. Tanabe, N. Noda, and M. Hagiya, “Using Coq in specification and
program extraction of Hadoop MapReduce applications,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2011, vol. 7041 LNCS, pp. 350–365.

[155] R. Hamlet, Random testing, no. 1. Wiley, 1994.

[156] J. M. Glenford, The art of software testing. 1979.

[157] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: A survey,” Softw.
Test. Verif. Reliab., vol. 15, no. 3, pp. 167–199, 2005.

[158] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput. Surv., vol. 43, no.
2, pp. 1–29, 2011.

[159] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating mapreduce
performance using workload suites,” in IEEE International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems - Proceedings,
2011, pp. 390–399.

[160] “GridMix: benchmark for Hadoop clusters.” [Online]. Available:
https://hadoop.apache.org/docs/stable1/gridmix.html.

[161] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “SparkBench: a spark benchmarking suite
characterizing large-scale in-memory data analytics,” Cluster Comput., vol. 20, no. 3, pp.
2575–2589, 2017.

[162] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolette, and H.-A. Jacobsen, “Bigbench:
Towards an industry standard benchmark for big data analytics,” Proc. 2013 ACM
SIGMOD Int. Conf. Manag. Data, pp. 1197–1208, 2013.

[163] “TPCx-BB: TPC Big Data Benchmark.” [Online]. Available: http://www.tpc.org/tpcx-bb/.

[164] C. Wohlin, P. Runeson, P. A. Da Mota Silveira Neto, E. Engström, I. Do Carmo Machado,
and E. S. De Almeida, “On the reliability of mapping studies in software engineering,” J.
Syst. Softw., vol. 86, no. 10, pp. 2594–2610, 2013.

[165] L. Major, T. Kyriacou, and O. P. Brereton, “Systematic literature review: Teaching novices
programming using robots,” IET Softw., vol. 6, no. 6, pp. 502–513, 2012.

[166] R. L. Bocchino, V. S. Adve, S. V Adve, M. Snir, and R. L. B. Jr., “Parallel Programming Must
Be Deterministic by Default,” Proc. First USENIX Conf. Hot Top. parallelism, vol. 22, no. 1,
p. 4, 2009.

[167] “Average temperature per year.” [Online]. Available:
https://github.com/t2013anurag/Hadoop-Map-Reduce-Avg-Temp.

[168] “Average temperature per year.” [Online]. Available:
https://github.com/hanasu/ClimateData.

[169] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapReduce,” Synth. Lect. Hum.
Lang. Technol., vol. 3, no. 1, pp. 1–177, 2010.

[170] “Open Ankus: Data mining and machine learning based on MapReduce.” [Online].
Available: http://www.openankus.org/.

[171] A. Orso and G. Rothermel, “Software testing: a research travelogue (2000–2014),” Proc.

 135

Futur. Softw. Eng. - FOSE 2014, pp. 117–132, 2014.

[172] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial test data generation
to big data applications,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering - ASE 2016, 2016, pp. 637–647.

[173] D. Hamlet and R. Taylor, “Partition Testing Does Not Inspire Confidence,” IEEE Trans.
Softw. Eng., vol. 16, no. 12, pp. 1402–1411, 1990.

[174] J. W. Duran and S. C. Ntafos, “An Evaluation of Random Testing,” IEEE Trans. Softw. Eng.,
vol. SE-10, no. 4, pp. 438–444, 1984.

[175] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical results and practical
implications,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 258–277, 2012.

[176] W. J. Gutjahr, “Partition testing vs. random testing: The influence of uncertainty,” IEEE
Trans. Softw. Eng., vol. 25, no. 5, pp. 661–674, 1999.

[177] A. W. Williams and R. L. Probert, “A measure for component interaction test coverage,”
in Proceedings of IEEE/ACS International Conference on Computer Systems and
Applications, AICCSA, 2001, vol. 2001–Janua, pp. 304–311.

[178] P. Ammann and J. Offutt, “Using formal methods to derive test frames in category-
partition testing,” Comput. Assur. 1994. COMPASS ’94 Safety, Reliab. Fault Toler. Concurr.
Real Time, Secur. Proc. Ninth Annu. Conf., pp. 69–79, 1994.

[179] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of design of experiments
to software testing,” in Proceedings - 27th Annual NASA Goddard / IEEE Software
Engineering Workshop, SEW 2002, 2003, pp. 91–95.

[180] J. Huller, “Reducing time to market with combinatorial design method testing,” in IN
PROCEEDINGS OF THE 2000 INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING
(INCOSE) CONFERENCE, 2000, pp. 16--20.

[181] E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25, no. 4, pp. 465–
470, 1982.

[182] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs, tests, and oracles: the
foundations of testing revisited,” in Proceeding of the 33rd international conference on
Software engineering - ICSE ’11, 2011, p. 391.

[183] R. A. P. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test oracles: State of the art,
taxonomies, and trends,” Adv. Comput., vol. 95, pp. 113–199, 2015.

[184] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in
software testing: A survey,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp. 507–525, 2015.

[185] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing and validating
machine learning classifiers by metamorphic testing,” in Journal of Systems and Software,
2011, vol. 84, no. 4, pp. 544–558.

[186] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A Survey on Metamorphic
Testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–824, Sep. 2016.

[187] R. W. Selby and V. R. Basili, “Comparing the Effectiveness of Software Testing Strategies,”
IEEE Trans. Softw. Eng., vol. SE-13, no. 12, pp. 1278–1296, 1987.

[188] H. A. De Souza, M. L. Chaim, and F. Kon, “Spectrum-based Software Fault Localization: A
Survey of Techniques, Advances, and Challenges,” arxiv16, pp. 1–40, 2016.

 136

[189] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,”
Informatica, vol. 31, pp. 249–268, 2007.

[190] V. R. Basili and H. Dieter Rombach, “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Trans. Softw. Eng., vol. 14, no. 6, pp. 758–773, 1988.

[191] B. Rivas, J. Merino, M. Serrano, I. Caballero, and M. Piattini, “I8K|DQ-BigData: I8K
architecture extension for data quality in big data,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2015, vol. 9382, pp. 164–172.

[192] “Movies analysis implemented in MapReduce.” [Online]. Available:
https://github.com/adityaundirwadkar/mapreduce-
programming/tree/master/example_1.

[193] “Treelogic S.L.” [Online]. Available: www.treelogic.com.

[194] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering, vol. 9783642290. 2012.

[195] “MapReduce algorithm of Connected components in graphs.” [Online]. Available:
https://github.com/Draxent/ConnectedComponents.

[196] “Goldstein analysis implemented in MapReduce.” [Online]. Available:
https://github.com/tchira/MapReduce/tree/master/src/main/java/com/telenav/hadoo
p/gratio.

[197] “Analysis of the New York restaurants based on MapReduce.” [Online]. Available:
https://github.com/Shubham617/MapReduce-Project/tree/master/NYC Restaurant
Data.

[198] T. D. Cook and D. T. (Donald T. Campbell, Quasi-experimentation : design & analysis
issues for field settings. Houghton Mifflin, 1979.

[199] R. Malhotra, Empirical research in software engineering : concepts, analysis, and
applications. .

[200] A. S. Namin and S. Kakarla, “The use of mutation in testing experiments and its sensitivity
to external threats,” Proc. 2011 Int. Symp. Softw. Test. Anal. - ISSTA ’11, p. 342, 2011.

[201] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon, “Threats to the validity of
mutation-based test assessment,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis - ISSTA 2016, 2016, pp. 354–365.

[202] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing
experiments?,” in Proceedings of the 27th international conference on Software
engineering - ICSE ’05, 2005, p. 402.

[203] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants a
valid substitute for real faults in software testing?,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014,
2014, pp. 654–665.

[204] R. Guderlei and J. Mayer, “Statistical Metamorphic Testing - Testing programs with
random output by means of statistical hypothesis tests and Metamorphic Testing,” in
Proceedings - International Conference on Quality Software, 2007, pp. 404–409.

[205] C. Murphy and G. Kaiser, “Empirical evaluation of approaches to testing applications

 137

without test oracles,” Dep. Comput. Sci. Columbia Univ. Tech. Rep. CUCS-039-09, 2010.

[206] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?,” in Proceedings of the 2011 International Symposium on Software
Testing and Analysis - ISSTA ’11, 2011, p. 199.

[207] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on Software Fault
Localization,” IEEE Trans. Softw. Eng., vol. PP, no. 99, pp. 1–1, 2016.

[208] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling for software
maintenance with applications to the year 2000 problem,” ACM SIGSOFT Softw. Eng.
Notes, vol. 22, no. 6, pp. 432–449, 1997.

[209] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “Empirical investigation of the
relationship between spectra differences and regression faults,” Softw. Test. Verif.
Reliab., vol. 10, no. 3, pp. 171–194, 2000.

[210] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “On the accuracy of spectrum-based
fault localization,” in Proceedings - Testing: Academic and Industrial Conference Practice
and Research Techniques, TAIC PART-Mutation 2007, 2007, pp. 89–98.

[211] L. Naish, H. J. Lee, and K. Ramamohanarao, “Spectral debugging with weights and
incremental ranking,” in Proceedings - Asia-Pacific Software Engineering Conference,
APSEC, 2009, pp. 168–175.

[212] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to testing,” Acta
Inform., vol. 18, no. 1, pp. 31–45, 1982.

[213] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and mitigation of its
impact on fault localization,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 1–28,
2014.

[214] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “No pot of gold at the end of program
spectrum rainbow: Greatest risk evaluation formula does not exist,” RN Univ. Coll.
London, 2014.

[215] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, and L. Etxeberria, “Spectrum-based fault
localization in software product lines,” Inf. Softw. Technol., 2018.

[216] D. Lewis, “Causation,” J. Philos., vol. 70, no. 17, p. 556, 1973.

[217] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation with distance
metrics,” in International Journal on Software Tools for Technology Transfer, 2006, vol.
8, no. 3, pp. 229–247.

[218] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software
diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 1–32, 2011.

[219] M. Harman and B. F. Jones, “Search-based software engineering,” Inf. Softw. Technol.,
vol. 43, no. 14, pp. 833–839, 2001.

[220] D. E. Goldberg, “Optimal initial population size for binary-coded genetic algorithms,”
Clear. Genet. Algorithms, Dep. Eng. Mech. Univ. Alabama, 1985.

[221] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, “A Study of Control Parameters
Affecting Online Performance of Genetic Algorithms for Function Optimization,” Proc.
3rd Int. Conf. Genet. Algorithms, vol. 3, pp. 51–60, 1989.

[222] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies,” Proc.

 138

Fourth Int. Conf. Genet. Algorithms, vol. 9, no. 3, p. 8, 1991.

[223] R. Le Riche, C. Knopf-Lenoir, and R. Haftka, “A Segregated Genetic Algorithm for
Constrained Structural Optimization.,” in 6th International Conference on Genetic
Algorithms, 1995, pp. 558–565.

[224] K. A. De Jong, “Analysis of the behavior of a class of genetic adaptive systems,” University
of Michigan, 1975.

[225] J. Cantó, S. Curiel, and E. Martínez-Gómez, “A simple algorithm for optimization and
model fitting: AGA (asexual genetic algorithm),” Astron. Astrophys., vol. 501, no. 3, pp.
1259–1268, 2009.

[226] M. L. Mauldin, “Maintaining diversity in genetic search,” in National Conference on
Artificial Intelligence, 1984, pp. 247–250.

[227] J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Trans.
Syst. Man. Cybern., vol. 16, no. 1, pp. 122–128, 1986.

[228] Y. W. Leung, Y. Wang, Y. W. Leung, and Y. Wang, “An orthogonal genetic algorithm with
quantization for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 5, no. 1,
pp. 41–53, 2001.

[229] W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization: A crosstab-based
statistical approach,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 3, pp.
378–396, 2012.

[230] W. E. Wong and Y. Qi, “Bp Neural Network-Based Effective Fault Localization,” Int. J.
Softw. Eng. Knowl. Eng., vol. 19, no. 4, pp. 573–597, 2009.

[231] B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y. Chen, “How well does test case
prioritization integrate with statistical fault localization?,” Inf. Softw. Technol., vol. 54,
no. 7, pp. 739–758, 2012.

[232] S. McMaster and A. Memon, “Call-stack coverage for GUI test suite reduction,” IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 99–115, 2008.

[233] S. McMaster and A. M. Memon, “Call stack coverage for test suite reduction,” in IEEE
International Conference on Software Maintenance, ICSM, 2005, vol. 2005, pp. 539–548.

[234] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and A. Souter, “An Empirical Comparison
of Test Suite Reduction Techniques for User-Session-Based Testing of Web Applications,”
in ICSM ’05: Proceedings of the 21st IEEE International Conference on Software
Maintenance, 2005, pp. 587–596.

[235] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set minimization on
fault detection effectiveness,” in Proceedings of the 17th international conference on
Software engineering - ICSE ’95, 1995, pp. 41–50.

[236] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical study of the effects of
minimization on the fault\ndetection capabilities of test suites,” Proceedings. Int. Conf.
Softw. Maint. (Cat. No. 98CB36272), 1998.

[237] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with big data analytics,”
interactions, vol. 19, no. 3, p. 50, 2012.

[238] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi: Visual Log-Analysis
Based Tools for Debugging Hadoop,” in Proc. of the HotCloud - Conf. on Hot Topics in

 139

Cloud Computing, 2009, pp. 1–5.

[239] E. Garduno, S. P. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “Theia: visual signatures
for problem diagnosis in large hadoop clusters,” in Proceedings of the International
Conference on Large Installation System Administration, 2012, no. 2, pp. 33–42.

[240] N. Khoussainova, M. Balazinska, and D. Suciu, “PerfXplain: debugging MapReduce job
performance,” Proc. VLDB Endow., vol. 5, no. 7, pp. 598–609, Mar. 2012.

[241] C. Olston and B. Reed, “Inspector Gadget: A framework for custom monitoring and
debugging of distributed dataflows,” Proc. 2011 ACM SIGMOD Int. Conf. Manag. data,
pp. 1221–1224, 2011.

[242] V. Jagannath, Z. Yin, and M. Budiu, “Monitoring and debugging DryadLINQ applications
with daphne,” in IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011, pp. 1266–1273.

[243] M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim, “Automated debugging
in data-intensive scalable computing,” in Proceedings of the 2017 Symposium on Cloud
Computing - SoCC ’17, 2017, pp. 520–534.

[244] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction for C
compiler bugs,” in Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation - PLDI ’12, 2012, p. 335.

[245] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein, and M. Kim,
“BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark,” Proc. 38th
Int. Conf. Softw. Eng. - ICSE ’16, vol. 2016, pp. 784–795, 2016.

[246] A. Dave, M. Zaharia, S. Shenker, and I. Stoica, “Arthur: Rich Post-Facto Debugging for
Production Analytics Applications,” 2013.

[247] D. Logothetis, S. De, and K. Yocum, “Scalable lineage capture for debugging DISC
analytics,” in Proceedings of the 4th annual Symposium on Cloud Computing - SOCC ’13,
2013, pp. 1–15.

[248] E. Bergen and S. Edlich, “Post-Debugging in Large Scale Big Data Analytic Systems,” in
Datenbanksysteme für Business, Technologie und Web, 2017, pp. 65–74.

[249] L. Baresi and C. Ghezzi, “The Disappearing Boundary Between Development-time and
Run-time,” Work. Futur. Softw. Eng. Res. FSE/SDP, pp. 17–22, 2010.

[250] M. Ali, F. De Angelis, D. Fani, A. Bertolino, G. De Angelis, and A. Polini, “An extensible
framework for online testing of choreographed services,” Computer (Long. Beach. Calif).,
vol. 47, no. 2, pp. 23–29, 2014.

[251] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-time testing of dynamic
adaptive systems,” 2013 8th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst., pp. 169–
174, 2013.

[252] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and Catalog of Runtime Software-
Fault Monitoring Tools,” IEEE Trans. Softw., vol. 30, no. 12, pp. 1–16, 2004.

[253] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality Assurance of Software Applications
Using the In Vivo Testing Approach,” in 2009 International Conference on Software
Testing Verification and Validation, 2009, pp. 111–120.

[254] A. Jacobs, “The Pathologies of Big Data,” Queue, vol. 7, no. 6, p. 10, 2009.

 140

[255] J. Gao, C. Xie, and C. Tao, “Big Data Validation and Quality Assurance -- Issuses,
Challenges, and Needs,” in 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE), 2016, no. August, pp. 433–441.

[256] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators,” Springer Berlin Heidelberg, 2003, pp. 364–376.

[257] R. (MIT L. for C. S. Rivest, “The MD5 Message-Digest Algorithm,” IETF. pp. 1–22, 1992.

[258] S. Mostafa and X. Wang, “An Empirical Study on the Usage of Mocking Frameworks in
Software Testing,” in 2014 14th International Conference on Quality Software, 2014, pp.
127–132.

[259] “Mockito: Tasty mocking framework for unit tests in Java.” [Online]. Available:
http://mockito.org/. [Accessed: 24-Feb-2017].

[260] “PowerMock: Mocking framework for unit testing.” [Online]. Available:
http://powermock.github.io/. [Accessed: 24-Feb-2017].

[261] “HBase: Hadoop database, a distributed, scalable, big data store.” [Online]. Available:
https://hbase.apache.org/.

[262] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,”
in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010,
pp. 1–10.

[263] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw., vol. 11, no. 1,
pp. 37–57, 1985.

[264] “SequenceFile: a flat file consisting of binary key/value pairs.” [Online]. Available:
https://wiki.apache.org/hadoop/SequenceFile. [Accessed: 24-Feb-2017].

[265] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E.
Harris, “Scarlett : Coping with Skewed Content Popularity in MapReduce Clusters,” in
Proceedings of the sixth conference on Computer systems-EuroSys ’11 (2011), 2011, pp.
287–300.

[266] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data systems:
a cross-industry study of MapReduce workloads,” Proc. VLDB Endow., vol. 5, no. 12, pp.
1802–1813, 2012.

[267] G. Ananthanarayanan, A. Ghodsi, and A. Wang, “PACMan: Coordinated memory caching
for parallel jobs,” 9th USENIX Symp. Networked Syst. Des. Implement., p. 14 pages, 2012.

[268] “Hamcrest: Matchers that can be combined to create flexible expressions of intent.”
[Online]. Available: http://hamcrest.org/. [Accessed: 02-Mar-2017].

[269] M. Blum and S. Kannan, “Designing programs that check their work,” J. ACM, vol. 42, no.
1, pp. 269–291, Jan. 1995.

[270] P. E. Ammann and J. C. Knight, “Data diversity: an approach to software fault tolerance,”
IEEE Trans. Comput., vol. 37, no. 4, pp. 418–425, 1988.

[271] C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of programs without test
oracles,” Proc. eighteenth Int. Symp. Softw. Test. Anal., pp. 189–200, 2009.

[272] T. Chen, F. Kuo, Y. Liu, and A. Tang, “Metamorphic Testing and Testing with Special
Values.,” in International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), 2004.

 141

[273] “Jetty server.” [Online]. Available: http://www.eclipse.org/jetty/. [Accessed: 23-Feb-
2017].

[274] Bi and Chunyue, “Research and application of SQLite embedded database technology,”
WSEAS Trans. Comput., vol. 8, no. 1, pp. 83–92, 2009.

[275] “SQLite: a self-contained, high-reliability, embedded, full-featured, public-domain, SQL
database engine.” [Online]. Available: https://sqlite.org. [Accessed: 23-Feb-2017].

[276] “Google Scholar.” [Online]. Available: https://scholar.google.es/. [Accessed: 27-Feb-
2018].

