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Abstract 

Formula One (F1) World Championship has become one of the most successful sport tournaments over 

the last decade. Races take place in modern-day closed racing circuits, whose design plays a key role in 

racing results. This paper proposes a framework for the design efficiency assessment of the more 

representative racing circuits that hosted Grands Prix during the recent F1 seasons. The proposed 

approach considers two basic circuit features (namely, circuit length and number of turns) and combines 

car performance and race safety data. The methodology used is based on Data Envelopment Analysis 

(DEA). The number of inefficient circuits is small, five in the case of variable returns to scale and nine 

(out of 21) when constant returns to scale are assumed. Potential improvements in terms of speed, fuel 

consumption and safety targets are computed. For each inefficient circuit its reference set is identified. 

Also, a second-stage DEA fractional regression analysis is carried out to study the influence of the circuit 

type (race or street circuit), the track orientation (clockwise or anticlockwise) and the number of red-

flagged races due to rainfall on the circuits’ efficiency. The results indicate that all three variables are 

significant. The implications of the results for track designers and F1 organizers are also discussed. 
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Benchmarking Formula One auto racing circuits: A two stage 

DEA approach 

1. Introduction  

Formula One (F1) has gained significant global recognition in the last decades. F1 auto 

races are considered mega sporting events offering a large positive impact for host cities 

across different dimensions, such as branding for tourism destination, social-cultural 

impact and impact on the local economy (Cheng and Jarvis, 2010). The mass media 

have had a leading contribution to its increasing expansion worldwide (Henry et al., 

2007). Thus, for example, in terms of audience, the F1 series captured 390 million 

viewers worldwide in 185 countries in the 2016 season (FOM, 2017). 

 

The F1 season comprises a series of outdoors city-to-city races, known as Grands Prix, 

that take place annually from to March to November. The results of each race provide a 

rankingboth for the drivers and the car constructors. The racing position of every F1 

driver/constructor depends on a number of important factors such as quality of the cars 

(including engine and aerodynamic performance, brakes, etc.), characteristics of the 

race track, talent of racing drivers, effectiveness of race strategies and others (weather 

conditions, tyre performance, etc.). 

In particular, the F1 circuit layout is considered to be one of the most important 

components of the race competition. Closed-circuit racing tracks are licensed by the 

FIA (FédérationInternationale de l’Automobile) according to the style of track and the 

classes of cars to be raced on them. Currently, the FIA’s rules on circuit design are 

harsh, looking at the improvement in the caroperation safety as much as the car 

performance. 

 

The success of the F1 World Championship as the highest auto racing tournament class 

derives from the performance of the drivers, constructors and the F1 race circuits. The 

F1 world has attracted a significant amount of attention from academics in recent years 

due to its highly competitive environment, partially induced by the openness to new 

urban environments (Lefebvre andRoult, 2011). These studies analyse various F1 

issues, such as, F1 car designs and failure analysis (Jenkins and Floyd, 2001; 
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PerantoniandLimebeer, 2014; Savage, 2010), car drivers’ injuries 

(MinoyamaandTsuchida, 2004), practices of intellectual capital 

(SolitanderandSolitander, 2010), estimation of the effect of aging on productivity 

(Castellucci et al., 2011), public relations strategies (Pfahland Bates, 2008), brand 

profiles (Rosenberger andDonahay 2008), stakeholder theory (Xue and Mason, 2011), 

social-cultural impacts (Cheng and Jarvis, 2010; Fairley et al., 2011; Jago et al., 2003; 

Liu and Gratton, 2010), etc. Although, the references cited above encompass many F1 

features, contributions regarding F1 circuits are still scarce. Two exceptions are studies 

by Casanova et al. (2001), who propose two methods for the reconstruction of 

Barcelona (Spain) and Suzuka (Japan) F1 circuits based on race car speed and lateral 

acceleration, and Lefebvre andRoult (2011), who analyse F1 circuits’ expansion in the 

last decades. 

 

More research has been carried out as regards performance analysis in F1: Kladroba 

(2000) focuses on ordinal multicriteria methods and illustrates the case of the 1998 F1 

drivers’ world championship; the contribution of Gomes Junior and Soares de Mello 

(2007) and Chaves et al. (2010) assess2007 F1 world drivers’ championship usingthe 

ELECTRE II multicriteria decision making method;Sitarz (2013) proposes a system of 

points for rankings in sports, presenting as an example the 2011 F1 

championship;Phillips (2014) compares F1 driver performances during 1950-2013 

using a statistical model, providing lap-time data predictions; Anderson (2014) applies 

three statistical models, two based on paired-comparison and one based on the rank-

ordered logit function, to rank F1 driver performance in the 2012 season;Soares de 

Mello et al. (2015) present an adaptationof the Condorcet method in a weakly rational 

decision maker environment to establish the ranking of the F1 constructors in the 2013 

championship; more recently, Bell et al. (2016) propose across-classified multilevel 

model to evaluate the F1 Driver and Constructor performance across the period 1950-

2014. 

 

There have, however, been fewer studies using a deterministic frontier analysis 

approach, such as Data Envelopment Analysis (DEA), to assess F1 performance, 

despite its wide use in many other sports,such as football (e.g. Espitia-EscuerandGarcía-

Cebrián, 2010; Villa and Lozano 2016), basketball (e.g. Chen et al., 2017; Moreno and 

Lozano, 2014), baseball (e.g. Lewis et al., 2009), cricket (Amin and Sharma. 2014), 
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Olympic games (e.g. Lozano et al., 2002; Wu et al., 2010), sport federations (de Carlos 

et al., 2017), tennis (e.g. Klaasenand Magnus, 2009; Ruiz et al., 2013), etc. To the best 

of our knowledge, there are only two F1 DEA studies in the literature: Gomes Junior 

and Soares de Mello (2007) that assesses F1 world drivers’ championship using DEA 

(F1 season 2006), and Gutiérrez and Lozano (2014), that analyses F1 teams’ 

performance (using Principal Component Analysis-based variable selection and DEA) 

over a number of F1 seasons up to 2011. 

 

The proposed approach is related to those DEA applications in which different products 

are benchmarked. Thus, DEA has been used to compare printers (Doyle and Green 

1991), car models (e.g. Hwang et al., 2013; Papahristodoulou, 1997), industrial robots 

(e.g. Braglia and Petroni, 1999), computer programs (Herrero and Salmerón, 2005), 

facility layouts (e.g. Ertay et al., 2006), etc. In our case, the entities to be benchmarked 

are F1 circuits. The attributes considered are basically three: speed, safety and 

environmental impact. Speed is considered because F1 events are, mainly and above all, 

races and speed is the key element in a race. Safety, for both the drivers and the public, 

is clearly also a main concern. Finally, although the duration and frequency of F1 events 

are limited, that is no reason for ignoring the fact that some F1 races may generate more 

pollution than others. The main environmental impact considered has been CO2 

emissions, which can be considered to be proportional to fuel consumption (Demir et 

al., 2014). 

 

The idea behind the proposed approach for F1 circuits benchmarking is to estimate, in a 

non-parametric way, the relationship (i.e. the so-called production function) between 

key circuit design features and main circuit performance measures. This allows not only 

assessing the efficiency of the circuits overall, along with the speed, environmental and 

safety dimensions, but also, by regressing the efficiency scores obtained with some 

explanatory variables, the effects of these exogenous factors can be tested and 

estimated. In particular, it has been found that race tracks are more efficient than street 

racing circuits, thatanticlockwise-oriented circuits are less efficient than clockwise-

oriented circuits and that circuits in rainy weather regions are less efficient than circuits 

in dry weather regions. 
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As regards the methodology used, first of all, the proposed DEA approach allows the 

identification of the efficient circuits, i.e. those with a superior design in terms of speed, 

fuel efficiency and safety. For those circuits that are found to be inefficient, their 

shortfalls in each of these dimensions have been assessed. The reference set (i.e. peer 

group) of each inefficient circuit, i.e. those efficient circuits that may act as benchmarks 

for improvement, are also reported. Also, fractional regression models are used for the 

second stage of the DEA model. The regression model analysishas been carried out to 

describe the association between the DEA efficiency scores and relevant characteristics 

of F1 circuits, i.e. the type of circuit (race or street), the track direction(clockwise or 

anticlockwise) and the number of red-flagged races due to rain (in the last five races). 

The selection of this specific methodology of the two stage regression model is based 

on the fractional nature of the DEA efficiency scores and overcomes several highly 

restrictive assumptions of linear and censored regression models. 

 

Summarising, the efficiency of a racing circuit is a key issue in the F1 competition since 

the overall success of the F1 series depends on the performance of its races. This paper 

analyses the relative efficiency of the race circuits that host the F1 competition, both in 

terms of cars’ performance (i.e. speed and fuel efficiency) and circuit safety. The 

remainder of the paper is organized as follows. Section 2 describes the proposed 

approach. Section 3 presents the results. The proposed approach and implications of the 

study are further discussed in Section 4. Finally, in Section 5 the main conclusions are 

drawn and further research outlined. 

 

2. Proposed approach 

2.1. First stage: DEA model 

DEA is a non-parametric mathematical tool for assessing the relative efficiency of a 

number of comparable entities. The entities to be benchmarked can represent factories, 

countries, departments, industry sectors, football teams, tennis players, etc. and are 

usually designated as Decision Making Units (DMUs). All DMUs consume inputs in 

order to produce outputs. From the set of observations,the Production Possibility Set 

(also called the technology) is inferred using some basic assumptions such as 
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envelopment, free disposability, convexity or scalability (e.g. Cooper et al., 2006). 

Considering or not the latter assumption leads to the two most common technologies, 

which are labelled, respectively, Constant Returns to Scale (CRS) (e.g. Charnes et al., 

1978) and Variable Returns to Scale (VRS) (e.g. Banker et al., 1984) technologies. 

 

Given the technology, DEA models aim to project the DMUs onto the efficient frontier, 

which corresponds to the best practice. Thus, DMUs for which no potential 

improvement is feasible are deemed relatively efficient and therefore belong to the 

efficient frontier. In contrast, those DMUs for which a reduction in input consumption 

and/or an increase in output production are considered feasible are assessed as 

inefficient and an efficiency score is computed. The efficiency score measures the 

distance to the frontier and depends on the estimated amount of potential input 

reductions and output increases. There are different DEA models depending on the 

technology, the projection direction and the metric used to compute the relative 

efficiency (Cooper et al.,2004). 

 

A crucial step in DEA modelling is the selection of the input and output variables as 

everything that follows depends on that selection. As Cook et al. (2014) indicate, the 

selection of the inputs and outputs is not always discussed, given the importance it has, 

and also the selection of the proper inputs and outputs of a DEA study generally depend 

on the aims of the study and on the nature of the DMUs being analysed.There are a 

number of variables that can, in principle, be considered for an F1 DEA application. 

Thus, one can say that the elevation change along the circuit or the longest straight may 

have an effect. The run-off area available may also be a variable of interest, as it can 

affect the drivers’ safety (Perantoni and Limebeer, 2014). Other factors that can affect 

the cars’ performance are the altitude of the location and the weather conditions 

(temperature, or rain, for example) (Judde et al., 2013; Wloch and Bentley, 2004). It is 

difficult, however, to include the weather conditions because they are not constant for a 

given circuit, i.e. the temperature or the occurrence of rain is different from one season 

to the next, and it can be argued that these uncontrollable variables are not strictly 

speaking circuit design features. Regarding F1 design features, the FIA provides an 

updated list of requirements for the F1 circuit drawing (FIA, 2018) even providing an 

AUTOCAD template; in this regard, Casanova et al. (2001) develop the reconstruction 

of the Barcelona and Suzuka race circuits from racing car characteristics and Alnaser et 
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al. (2007) highlight the success of the Bahrain International F1 circuit from its 

architectural characteristics. 

 

After careful evaluation, the result was five main variables: two of them are key circuit 

design features (circuit length and number of turns) and the other three represent basic 

dimensions that we consider important for benchmarking F1 circuits (i.e. speed, safety 

and environmental impact). More specifically, as shown in Figure 1, fastest lap time (in 

seconds) (http: //www. fia.com) and fuel use per lap (in kilograms) (http: //f1-

facts.com\results) are considered as inputs. These variables correspond to speed and fuel 

consumption, the latter beinga surrogate for greenhouse gases emissions and their 

related environmental impact. On the output side, two types of variables can be 

distinguished: non-discretionary outputs related to track characteristics (namely, number 

of turns and lap length, in kilometres) (http://fia.com), and an undesirable output related 

to circuit safety (namely, number of car withdrawals per 100 laps due toaccidents and 

collisions) (http://en.espnf1.com). The inclusion of the number of accidents as a 

variable in the DEA model proposed in this paper is inspired by the permanent concerns 

of Formula One Management Ltd. (FOM), FIA and other F1 stakeholders regarding the 

issue of safety. 

 

***********************Insert Figure 1 around here*********************** 

 

The reason for considering lap length and number of turns stems from the fact that these 

two circuit design features affect the race (Castelluci et al., 2011; Papachristos, 2014). 

The fastest lap is an input which measures the extent to which the design is aimed at 

speed. Of course, the duration of a lap depends on the circuit length (which is why that 

variable is included as an input). 

 

Note that in order to make the DMUs homogeneous and comparable all the variables are 

measured per lap (100 laps in the case of accidents-caused withdrawals) and that the 

two non-discretionary variables considered (which represent the main 

physical/geometric attributes of the circuit) are of the internal type (Camanho et al., 

2009) and, hence, follow the Banker and Morey (1986) approach. Alternative ways of 

modelling this type of internal non-discretionary variable, especially for the CRS case, 

are discussed in Camanho et al. (2009). In the end, the inputs and outputs selected imply 
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that a circuit is inefficient if there exists some other circuit (with the same length or 

longer and with the same or a larger number of turns) that involve less time, less fuel 

consumption and fewer accidents. 

 

As will be commented on in Section 3, one of the variables considered (namely, the 

number of accidents/100 laps) refers to a certain timespan (1998-2014). Since we are 

very interested in considering the safety dimension of circuit design, in order to include 

the number of accidents that have occurred we have to consider several years because, 

fortunately, accidents do not occur too frequently. However, in this period some circuits 

have hosted more races than others. That is why the (undesirable) output is not the 

absolute number of accidents but it is normalized by considering how many accidents 

occur in every 100 laps. Thus, circuits that have held more races can be compared with 

circuits that have held fewer and also the benchmarking is fair because in this way this 

output variable refers to an intrinsic feature of the circuit design (the lap, or in the case 

of this variable, 100 laps). 

 

The specific DEA model used is a weighted Slacks-Based Measureof efficiency (SBM), 

(Tone, 2001) DEA model, which is a common approach when some outputs are 

undesirable (e.g. Lozano and Gutiérrez 2011). There are different ways of modelling 

undesirable outputs in DEA (e.g. Färe and Grosskopf, 2003; Scheel, 2001;Seiford and 

Zhu, 2002). One of them is to consider the undesirable outputas weakly disposable, i.e. 

efficient DMUs can only reduce the undesirable output if they also reduce the desirable 

outputs. In particular, in the proposed approach, the weak disposability of the 

undesirable output is modelled using the approach in Kuosmanen (2005). Alternatively, 

the approach in Färe and Grosskopf (2003), which does not use separate abatement 

factors for the different DMUs, can be used. 

 

In addition to the chosen SBM approach, let us recall that there are severalother types of 

DEA models that can handle undesirable outputs, such as the Directional Distance 

Function (DDF) model (e.g. FäreandGrosskopf, 2003; Lozano et al., 2013) and the 

Slacks-Based Inefficiency (SBI) model (e.g. Fukuyama and Weber, 2010; Lozano, 

2016). Each of them has its pros and cons. A disadvantage of DDF models is that input 

and desirable output slacks may remain. This does not happen in SBM or SBI. DDF has 

the advantage of using a directional vector, which allows computing the distance to the 
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frontier in several directions. Note that we are referring to the conventional case 

thatassumes that the directional vector is exogenously given and not to those DDF 

approaches that endogenously compute the directional vector (see Wang et al., 2017), 

neither to the so-called reversed DDF approach (Pastor et al., 2016)nor to the non-radial 

DDF model (e.g. Ferreira and Marques 2016).Although SBI also uses a direction vector, 

its role is more of a normalizing nature rather than defining the projection direction 

(Pastor andAparicio, 2010). What can be used in SBM as a surrogate of the direction 

vector are the weights used in the objective function. These weights are assumed to be 

normalized, i.e. their sum is unity.  

 

In order to formulate the mathematical model, let 

Data 

 1 2I ,   set of inputs 

i I   index on inputs 

iw    relative weight of improving input iI 

0   index of DMU being projected 

 1 2K ,   set of non-discretionary outputs 

k K   index on non-discretionary outputs 

 1B    set of undesirable outputs 

b B   index on undesirable outputs 

bŵ    relative weight of improving undesirable output bB 

 1 2J , ,...,n  set of DMUs 

j J   index on DMUs 

ijx    amount of input iI consumed by DMU jJ 

kjy    amount of non-discretionary output kK produced by DMU jJ 

bjz    amount of undesirable output bB produced by DMU jJ 
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Variables 

j , j  multiplier variable used to compute the target inputs and outputs 

of DMU 0 

is    improvement (i.e. slack) of input i 

bŝ    improvement (i.e. slack) of undesirable output b 

The proposed VRS SBM DEA model is thus,  

0 0

1 i b
i b

i I b Bi b

ˆs s
ˆMin w w

x z


 

     
(1a) 

s.t. 

  0j j ij i i
j

x x s i       
(1b) 

0j kj k
j

y y k     (1c) 

0j bj b b
j

ˆz z s b     (1d) 

  1j j
j

    (1e) 

0 0 0j j i bˆ, j s i s b         (1f) 

This linear programming model computes a target operating point within the production 

possibility corresponding to assuming VRS, non-discretionary desirable outputs and 

weak disposability of the undesirable outputs.The objective function provides a 

weighted SBM efficiency score. This type of non-radial, non-oriented DEA model has 

the indication property (i.e. the efficiency score is unity if and only if the DMU is 



 

 11 

efficient), apart from other properties directly inherited from using SBM efficiency, 

namelyunits invariance, monotonicity and reference-set dependence(see Tone, 2001). 

Note that the above DEA model tries to simultaneously decrease the inputs (e.g. the 

fastest lap time) and the undesirable output, i.e. to increase speed and safety at the same 

time. This may seem contradictory and actually it is not possible if the DMU is 

efficient. However, the optimization model sees if there is an operating point in which 

that occurs and tries to maximize the weighted improvements in both the inputs and the 

undesirable output. 

 

A subtler issue is the interpretation of reducing the undesirable outputs when, as in our 

case, the desirable outputs are non-discretionary. That a certain variable is non-

discretionary means that its value cannot be changed. But that refers to a specific DMU, 

the one that is being assessed. However, when projecting that DMU,DEA considers the 

whole production possibility set, which includes all virtual operating points whose 

input-output mixesare theoretically possible. It is when searching among those feasible 

operating points that it makes sense to allow for a reduction of an undesirable output 

compatible with possible increases of the desirable outputs, even if those outputs are 

non-discretionary. That is, of course, provided that the technology (i.e. the production 

possibility set) considers such operating point feasible. In other words, when computing 

the target,the proposed DEA model does not consider a fixed operating point (whose 

non-discretionary outputs could not be changed) but it has freedom (within the 

production possibility set) to choose any operating point with its corresponding input 

and output variables (including the non-discretionary). 

 

The computed DEA projection provides targets which imply potential improvements 

whose interpretation is the following. Given the length and number of turns of the 

circuit, and based on the observed dataset, it would be feasible to reduce (in the amount 

given by the respective slacks) the observed fastest lap time, the observed fuel 

consumption and the observed number of accident-caused withdrawals. In other words, 

for that length and number of turns, the design of the circuit is not as speedy, nor as 

fuel-efficient nor as safe as it could be according to the production possibility set 

inferred from the given observations. 
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For each inefficient circuit, looking at the optimal values of the j  variables, its 

corresponding reference set can be identified. This information is useful to identify, for 

each inefficient DMU, which circuits to consider as benchmarks. 

 

Although the above models assume VRS, without much effort (just deleting the 

convexity constraint   1j j
j

   ) a CRS efficiency score can be obtained. The CRS 

analysis, which corresponds to ignoring the possible scale size effects in the design of 

the circuits, always produces lower efficiency scores and a lower number of efficient 

DMUs. 

 

Another interesting possibility is to estimate the maximum possible improvement along 

each of the three improvable dimensions. That can be done using a specific weight 

vector that assigns a weight of 1.0 to that dimension and 0.0 to the rest. Thus, 

considering a weight vector 1 2 11 0ˆw ,w w    a speed efficiency score efficiency score 

0
speed

  can be obtained. Similarly, using 2 1 11 0ˆw ,w w   and 1 2 10 1ˆw w ,w    a 

fuel efficiency score 0
fuel  and a safety efficiency score 0

safety
 , respectively, can be 

computed. 

 

Finally, in order to check for the presence of outliers in the data the method in Anh Tran 

et al. (2010) was applied and it was found that all the efficient DMUs had small -count 

and -sum indexes. When outliers were present a robust frontier method (e.g. Ferreira et 

al. 2018, Ferreira and Marques 2018) can be applied. 

 

2.2. Second stage: Regression models 

In order to study the impact of factors that can influence efficiency, a second stage 

analysis is performed regressing the efficiency scores on some contextual variables.In 

the scientific literature about second stage DEA efficiency analysis, several regression 

models have been considered. Standard linear models based on ordinary the least 

squares estimation procedure offer best linear unbiased estimates upon statistical 

distributional assumptions and biased estimates when the assumptions do not hold. In 
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general, linear regression models are not suitable for second stage efficiency analysis 

because the estimates may lie outside the closed unit interval. Truncated and censored 

regression models based on the maximum likelihood estimates have been used to take 

into account the bounded nature of the efficiency score as response variable; however, 

those models are actually mis-specified when modelling efficiency DEA scores and are 

not exempted from distributional assumptions (Hoff, 2007; Simar and Wilson, 2008; 

McDonald, 2009; Ramalho et al., 2010). A semi-parametric bootstrapped regression 

model was proposed by Simar and Wilson(2008) to make inferential statements.In this 

study, the frontier is considered as an observed best-practice concept, hence DEA 

efficiency scores are treated as observed measures of technical efficiency (McDonald, 

2009;Ramalho et al., 2010). Several statistical regression models are considered. A 

linear conditional mean model could be used to describe the DEA efficiency scores 

(EFF): 

( )x xi i iE EFF  , 1,2,...,i n  

xi denotes the k-dimensional vector of the variables of the i-th DMU observation and βa 

k-dimensional vector of unknown parameters. However, the DEA efficiency is not 

generated from a truncated process but rather is the outcome of a fractional process 

(McDonald, 2009). 

( ) ( )x xi ii
E EFF H  , 1,2,...,i n  

whereH()  [0, 1] is a nonlinear function, and may adopt a logit (2.a), probit (2.b), log-

log (2.c) or complementary log-log (2.d) specification.  

 
 1

logit i
exp( )

H
exp( )




i

i

x β
x β

x β
 (2.a) 

 probit i iH ( )x β x β  (2.b) 

  ( )i
loglog iH exp( exp )


 

x β
x β  (2.c) 
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  1
( )i

cloglog iH exp( exp )  
x β

x β  (2.d) 

One-part standard fractional regression models are statistically suitable for conducting 

this type of fractional regression analysis based on the following fundamentals: a) no 

underlying assumption is required about the conditional distribution of DEA efficiency 

scores or heteroskedasticity patterns; b) the specification of the model can adopt the 

asymmetric character of the efficiency scores; c) the estimates can be computed by 

quasi-maximum likelihood. In addition, fractional models proportion better 

performance results than other regression models when efficiency DEA scores are 

concentrated at unity (Papke and Wooldridge, 1996; Ramalho et al., 2010). 

 

In order to examine the link specification for the conditional mean of efficiency scores 

the Ramsey RESET test (Ramsey Regression Equation Specification Error Test) is 

tested  and uses the null hypothesis  ( ) ( )i iE EFF Hx x   and the alternative 

hypothesis ( , ) ( )i iE EFF H   x z x z , where   0 and      
2 3 1

ˆ ˆ ˆ= , ,...,
J 

 
 

z xβ xβ xβ  

allow using a higher-order polynomial regression specification (for further details see 

Ramsey, 1969). 

 

3. Assessment of F1 racing circuits’ efficiency 

This section discusses the dataset used and the results obtained from the DEA analysis. 

3.1 Dataset 

The circuits considered in the analysis, their main features and corresponding 

descriptive statistics are listed in Table 1. The dataset comprises 21 circuits, selected on 

the basis of the availability of as many DMUsas possible through the 17 F1 seasons 

1998-2014. New regulations related to engines, cars, penalties and testing have taken 

place since then, producing a gap in the times series. Table 1 also shows the main data 

sources. Whenever possible, the collected data were double-checked against other F1-

related sources. 
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The database includes all the circuits that hosted 2014 F1 races (except for Sochi 

Autodrom, Russia, that joined the F1 World Championship in 2014) plus three other 

circuits, namely Korea International Circuit (South Korea), Istanbul Park (Turkey) and 

Buddh International Circuit (India), that have regularly hosted F1 World Championship 

in the latest seasons. The track design of each of the circuits considered is considerably 

different (FIA, 2017). Thus, for example, Silverstone (U.K.) is a generally fast circuit 

with some slow corners and several fast wide turns, while Shanghai International circuit 

(China) features medium-speed corners and a straight that is flat out for almost 1.2 

kilometres. 

 

***********************Insert Table 1 around here*********************** 

 

The number of seasons in which a Grand Prix was held in a circuit and the number of 

car withdrawals/100 laps exhibit significant variability among the circuits. In this 

regard, the withdrawals data used consist of the number of recorded car withdrawals 

from the race per 100 laps, excluding technical problems (e.g., gearbox, engines, broken 

wing). Table 2 lists the number of registered car withdrawals due to accidents and 

collisions occurring in each F1 season from 1998 through to 2014. From 1998 to 2009, 

the number of these F1 circuits’ car withdrawals represents over 60% of the total for the 

1998-2014 period, while the accumulated number during the 2010-2014 period 

represents around 40%. 

 

***********************Insert Table 2 around here*********************** 

 

Note that although the dataset considered includes up to the 2014 season, this does not 

mean, that, for example, the fastest lap input refers to the fastest lap that year. Actually, 

it refers to the fastest lap recorded in the history of the circuit up to 2014. Analogously, 

as indicated above, the number of accidents refers to the period 1998-2004. Fuel use 

figures are estimations and refer to the 2014 season. Although there may be some 

inconsistency, in that the variables do not refer to the same time interval that should not 

be a problem, provided that the same intervals are used for all DMUs. In particular, 

given the lumpy and infrequent character of accidents it has been deemed preferable to 

accumulate them for as long a period as possible, which is equivalent to averaging 

them. 
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In order to obtain an idea about the data distribution,Figures2 and 3 show the boxplots 

of the five input and output variables considered and their corresponding scatterplots, 

respectively. In addition, Figure 3 shows the correlation coefficient between each input 

and output variable. Note that the variables where there is more variability are the 

fastest lap and the number of turns. There is positive correlation between fastest lap and 

fuel use/lap, i.e. as a lap takes longer then more fuel is consumed. There are also 

positive correlations between fastest lap and lap length and number of turns, indicating 

that if the circuit length is of great length or has many turns then a lap takes longer. Fuel 

use/lap is positive correlated with lap length and, to a small extent, with the number of 

turns. The number of turns and the circuit length are only slightly positively correlated. 

The correlation of the number of accidents/100 laps with the fastest lap and fuel use is 

negative but very small. One would expect the number of accidents/lap (or per 100 laps) 

to depend on the average speed but the two inputs (fastest lap and fuel use/lap) are 

related to the average speed but mediated by the circuit length. Thus, for example, the 

fastest lap corresponds to the lap length divided by the average speed. Similarly, the 

fuel consumption grows with the average speed but also with the lap length. The 

correlation of the number of accidents/100 laps with the number of turns is slightly 

negative and with the lap length is positive, although small. 

 

***********************Insert Figure 2 around here*********************** 

 

***********************Insert Figure 3 around here*********************** 

 

3.2. Efficiency scores 

The proposed SBM DEA model has been solved for both VRS and CRS using uniform 

weights 1 2 1 1 3ˆw w w   . Table 3 shows the corresponding efficiency scores as well 

as the potential improvements (of the discretionary variables) corresponding to the 

target operating points computed by the VRS DEA model. Only five circuits are found 

to be technically inefficient by the VRS analysis. The CRS efficiency scores are lower 

andassess more circuits (up to nine) as inefficient. The potential improvements 

estimated are rather modest (i.e. even the inefficient circuits are not far from efficiency) 
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except in the case of circuit C19, for which significant improvements are deemed 

possible. 

 

***********************Insert Table 3 around here*********************** 

 

Table 4 shows, for the five technically inefficient circuits, their reference set and 

corresponding optimal values of j  and j  variables. The reference set represents the 

subset of efficient DMUs from which the target efficient operating point is computed 

(using the optimal values of the j  and j  variables as coefficients of the 

corresponding convex linear combination). Note that the j  variables are always zero 

and that each inefficient circuit has a different reference set. In some cases, as in the 

cases of C3, C15 and C19 there is a main benchmark (whose corresponding j  is close 

to unity) and thus represents the specific efficient circuit that should be taken as the 

basic reference. In the cases of C5 and C21, however, there is no a single main 

benchmark but several. Note that among the different efficient circuits the ones with a 

higher peer count (i.e. that intervene in the reference set of more inefficient DMUs) are 

C10, C16 and C20. Note also that there are several efficient circuits (namely C1, C4, 

C8, C13, C14, C17 and C18) that do not belong to any of the reference sets of the 

inefficient circuits. 

 

***********************Insert Table 4 around here*********************** 

 

Figure 4 shows the variable-specific efficiency scores along the speed, fuel consumption 

and safety dimensions. The average value for each dimension is also shown so that the 

circuits with efficiency scores above or below the average can be identified. Note that 

the VRS efficient DMUs are efficient in all these three specific dimensions. Note also 

that 0 992 0 974 0 939    speed fuel safetyAver. . Aver. . Aver. .   . This means that 

safety is the dimension with the largest efficiency improvement potential, followed by 

fuel consumption. In contrast, the efficiency as regards speed is very high. The only 

circuit that seems to have some improvement potential in that dimension is C19 (Korea 

International circuit). 
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***********************Insert Figure 4 around here*********************** 

 

3.2. Second-stage analysis 

In a second stage, a regression analysis has been carried out to understand why F1 

circuits differ in their efficiency scores and to investigate the effects of contextual 

variables. The variables considered in the models include twodesign-related variables, 

namely the type of circuit (i.e. street or race circuit) andthe track orientation (clockwise 

or anticlockwise),as well asa proxy climate variable, represented by the number of red-

flagged racesdue tounsafe track conditions caused by rainfallin the past five races. As 

shown in Table 1, the dataset includes four street circuits (namely, Albert Park, Monte 

Carlo, Gilles Villeneuve and Marina Bay) while the rest are race circuits. Similarly, 

from a track orientation perspective, a majority of the circuits has a clockwise 

orientation, with the exception of Marina Bay, José Carlos Pace, Yas Marina and Korea 

International. The hazard of unsafe track conditions caused by the rainfall is not a 

frequent event, except forSepang, Albert Park, Circuit of Catalunya,Suzuka and Korea 

International. 

 

The corresponding fractional models were estimated using frm(Ramalho, 2017), an R 

package.The quasi-maximum likelihood estimation results of the fractional models for 

the different functional specifications, besides the Ordinary Least Squares (OLS) linear 

regression model estimation, are presented in Table 5. 

 

The estimation results of the linear model and the fractional models differ significantly. 

In the OLS linear regression, the number of red-flagged races due to unsafe track 

conditions caused by rainfall is the only variable considered statistically significant and 

the percentage of efficiency variability explained by the linear model is 45.1% 

indicating a poor model fit. In addition, the 55% of the estimated efficiency scores in 

OLS linear model do not belong to (0,1]. 

 

However, all four fractional regression models identify as statistically significant the 

three variables considered, with no disagreement between the sign of theireffects. The 

coefficient of the type of circuit is highly statistically significant, and negative, in all 
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fractional models.This means the efficiency scores of street circuits and race circuits are 

different, i.e. that street circuits have better efficiency results than race circuits. As 

regards the red-flagged races due to the rain variable, the results indicate that it can 

significantly affect the track conditions and reduce the efficiency of F1 circuits, i.e. rain 

likelihood also has a negative effect on circuit efficiency. Clockwise orientation, on the 

other hand, affects the circuit efficiency score positively.Moreover, the fractional 

regressions models describe a better association between the observed model and the 

estimated model than the OLS linear model. 

 

The RESET test, using second order (J=1) and the Lagrange multiplier version, reveals 

that as fractional models specifications do not differ greatly, each of these could be 

chosen to perform second stage efficiency scores (p-valueLogit=0.273; p-

valueProbit=0.202; p-valuelog-log=0.279; p-valueclog-log=0. 106).  

 

***********************Insert Table 5 around here*********************** 

4. Discussion 

From the selection of the input and output variables it can be seen that the proposed 

DEA approach corresponds to considering each circuit as an entity that consumes time 

and fuel to produce a lap that has a certain length, certain number of turns and a certain 

probability of accident. The latter is considered an undesirable output so that the smaller 

the better. As regards the other two outputs, they have been considered non-

discretionary because doing otherwise would imply that, ceteris paribus, a circuit would 

be more efficient if it is longer and has more turns, something which we do not mean. 

The proposed model considers that, ceteris paribus, a circuit is more efficient if it is 

faster, safer and less polluting. Also, the non-discretionary character of the length and 

number of turns outputs implies that we are not considering the possibility of 

remodelling the circuit, i.e. we are benchmarking the current circuit designs. 

 

An interesting question, posed by one of the reviewers, is that some of the variables 

used for benchmarking the circuits (such as speed or fuel consumption) are more 

dependent on drivers and constructors than on the circuits themselves. Thus, while some 

of the variables (i.e. number of turns and circuit length) completely fall under the 
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responsibility of the circuits, others (such as the fastest lap, the fuel consumption or the 

number of accidents) also depend on the drivers and constructors. However, provided 

that the drivers and constructors are the same in all the races, the differences in fuel 

consumption, fastest laps and accidents between the different circuits can be attributed 

to the circuits themselves. Therefore, considering those variables for circuit 

benchmarking is a reasonable assumption that, admittedly, ignores that actually the 

drivers vary over time and sometimes even within a season or that the cars suffer 

modifications and improvements between seasons and even between races. 

 

Since the different stakeholders have differing (and sometimes even conflicting) aims, a 

different DEA model may result depending on the perspective adopted. The perspective 

adopted in this paper is that of the public in general and auto racing fans in particular. It 

is assumed that they are interested in three main aspects: speed, safety and environment; 

hence the three discretionary variables that the DEA model tries to improve. However, 

that the model focuses on one stakeholder does not mean that other stakeholders may 

not also be interested in some of these aspects. The best example is safety, which is a 

concern probably shared by all stakeholders. Note also that the weighted nature of the 

proposed SBM model allows taking into account some preference structure among the 

three aims considered. In the paper we have reported the results for the equal weights 

case as well as for giving all the weight to each of the three aspects separately. Of 

course, the corresponding results only vary in the case of inefficient circuits, as for the 

efficient circuits the results are the same for any weighting. 

 

About the results obtained, we have, on the one hand, the identification of the circuits 

that are inefficient, the assigning of an overall efficiency score, the quantification of 

their margin for improvement in each dimension and the reference DMUs they can use 

as benchmarks. On the other hand, from the second stage, it has been found that race 

tracks are more efficient than street racing circuits, that a clockwise orientation 

increases the efficiency of the circuits and that weather conditions (particularly, rain) 

negatively affect the circuit efficiency. These findings can be useful for track designers 

and F1 organizers. Thus, hosting races in street racing circuits should be avoided as they 

lead to more fuel consumption, more accidents and a lower average speed than an 

equivalent race track (with the same length and number of turns). Also, when designing 

the circuit it is preferable, ceteris paribus, to adopt a clockwise orientation as this leads 
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to faster laps, less fuel consumption and increased safety. And, finally, when choosing a 

location for a race (or when scheduling the different Grands Prix of a season) it should 

be borne in mind that bad weather affects efficiency negatively byincreasing accidents 

and fuel consumption and reducing speed. Two of the above recommendations/effects 

are reasonable and to a certain extent unsurprising. The fact that they have been 

confirmed empirically is nevertheless interesting and supports the validity of the 

proposed approach. As regards the influencing effect of the orientation of the circuit, 

this finding is new and calls for further study to find the reasons behind it. 

5. Conclusions 

In this paper a benchmarking model for F1 circuits has been proposed. It involves 

carrying out an efficiency assessment of the circuits’designs along three key 

dimensions: speed, fuel consumption and safety. Efficient circuits can be identified and 

for the inefficient ones specific targets for improvement as well as a reference set are 

computed. In addition, separate speed, fuel and safety efficiency scores have been 

determined. CRS efficiency scores have been also computed. The results show that, in 

the VRS case, all but five circuits are technicallyefficient. In the CRS case four 

additional circuits are deemed inefficient.When considering each dimension of 

improvement separately then significant potential improvements have been estimated 

for the inefficient circuits. The inefficiencies, i.e. the margins for improvement, are 

highest for the safety dimension and lowest for the speed dimension. These are general 

remarks about the obtained results but specific figures for each inefficient circuit are 

provided by the proposed approach, allowing a case by case analysis of the results of 

each circuit.Moreover, since the proposed approach can rank the circuits based on their 

efficiency score and since, now and in the future, it can happen that there are more 

circuits than the actual number of races that can take place in a given season, the 

circuits’ efficiency scores might be used, together with other factors, to select the 

circuits to be included in the F1 championship. The proposed DEA model can also be 

used to estimate the changes in fastest lap, fuel consumption and number of accidents to 

be expected as a result of a circuit redesign (e.g. removing or adding a turn). 

 

The DEA efficiency scores have beenregressed, using a fractional regression model, to 

measure the influence of the circuit type, track orientation and rainfall likelihood on the 
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circuit efficiency. The results of this second-stage DEA regression indicate, with a 

reasonable goodness of fit, that all three variables appear to significantly affect 

efficiency across F1 circuits, with the corresponding implications for track designers 

and F1 organizers. 

 

There are, however, limitations of the study that one should be aware of. Some circuits 

could not be included in the analysis due to missing data on input or output variables. 

Also, even though the number of withdrawals due to accidents and collisions used as a 

measure of safety excluded the mechanical failure causes, not all the accidents and 

collisions may be ascribed to circuit safety issues. Thus, some accidents may have been 

due to driver error and not the fault of the circuit design and maintenance. This means 

that the computed safety efficiency may have been underestimated. 

 

Finally, as topics for further research, we can mention the possibility of selectinga 

different set of variables, reflecting the perspective of some other stakeholder. Also, a 

network DEA approach that considered two stages in series, namely a design stage and 

a racing stage, each one with its corresponding inputs, outputs and intermediate 

measures, can also be conceived. 
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Figure 1. DEA inputs and outputs considered 
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Figure 2. Boxplots of inputs and output variables 
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Figure 3. Scatterplots of input and output variables 
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Figure 4. Variable-specific directional distance function along safety, fuel and speed dimensions 
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Table 1. Dataset of auto racing circuits in Formula One motor racing series (N=21) 

DMU Country Circuit name 
Circuit 

type 

Track  

direction 

No.of red-

flagged F1 

races due to 

rain (in the 

last five 

races) 

No. of 

times 

hosting a 

Grand 

Prixa 

No. of 

turns 
Lap lengthb Fastest lapc Fuel use per lapd 

# accidents-

caused 

withdrawals 

per 100 laps e 

C1 Australia  Albert Park Street Clockwise 1 19 16 5.303 83.529 1.7 3.5 

C2 Malaysia Sepang Race Clockwise 1 16 15 5.543 92.282 1.7 1.2 

C3 Bahrain Sakhir Race Clockwise 0 10 15 5.412 89.527 1.8 1.4 

C4 China Shanghai Race Clockwise 0 11 16 5.451 92.238 1.7 1.1 

C5 Spain Circuit of Catalunya Race Clockwise 1 24 16 4.655 79.954 1.7 1.9 

C6 Monaco Monte Carlo Street Clockwise 0 61 19 3.340 73.532 1.2 2.0 

C7 Canada Gilles Villeneuve Street Clockwise 0 35 14 4.361 72.275 1.5 1.8 

C8 Austria Red Bull Ring Race Clockwise 0 26 10 4.326 67.908 1.4 2.6 

C9 Great Britain Silverstone Race Clockwise 0 48 18 5.891 89.615 2.7 1.5 

C10 Germany Hockenheimring Race Clockwise 0 33 17 4.574 73.306 2.3 1.6 

C11 Hungary Hungaroring Race Clockwise 0 29 14 4.381 78.436 1.9 1.0 

C12 Belgium Spa-Francorchamps Race Clockwise 0 47 19 7.004 104.503 3.2 2.4 

C13 Italy Monza Race Clockwise 0 64 11 5.793 79.525 2.6 2.7 

C14 Singapore Marina Bay Street Anticlockwise 0 7 23 5.065 104.381 2.3 2.7 

C15 Japan Suzuka Race Clockwise 1 26 18 5.807 88.954 2.8 1.6 

C16 USA De las Americas Race Anticlockwise - 3 20 5.513 95.657 2.5 0.6 

C17 Brazil José Carlos Pace Race Anticlockwise 0 32 15 4.309 69.822 1.9 2.0 

C18 Abu Dhabi Yas Marina Race Anticlockwise 0 6 21 5.554 98.434 2.6 0.7 

C19 South Korea Korea International  Race Anticlockwise 0 4 15 5.621 95.585 2.7 4.4 

C20 Turkey Istanbul Park Race Anticlockwise - 7 14 5.338 84.771 2.7 1.0 

C21 India Buddh Race Clockwise - 3 16 5.125 84.178 2.5 1.1 

 

Mean 24.3 16.3 5.160 85.638 2.16 1.8 

Median 24 16 5.338 84.771 2.30 1.6 

St.Dev. 18.7 3.1 0.780 10.886 0.55 0.9 

IQRf 27.0 4.0 1.110 17.95 0.95 1.4 

Sources: http: //www. fia.com; http://en.espnf1.com/; http://f1-facts.com\results (last accessed December, 2017). 

Notes:  afrom 1950 till 2014; b in kilometres; c in seconds; d in kilograms; e covers the period 1998-2014 and excludes mechanical failure causes; f Interquartile range 
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Table 2. Number of car withdrawals from the race due to accident/collision causes during the period 1998-2014 

 

 

Circuit Circuit name 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 

C1 Albert Park 1 0 0 1 3 1 8 2 3 2 0 0 8 2 0 3 1 

C2 Sepang 1 0 0 1 0 0 1 1 1 2 0 0 0 0 3 1  

C3 Sakhir 3 0 0  1 0 2 2 0 0 0       

C4 Shanghai 0 0 0 0 3 1 1 0 1 0 1       

C5 Circuit of Catalunya 0 0 0 1 0 4 5 1 0 0 0 4 0 2 2 0 2 

C6 Monte Carlo 1 0 4 3 3 2 2 0 0 1 5 0 3 1 0 1 1 

C7 Gilles Villeneuve 2 0 0 3 0  3 1 2 0 1 1 0 3 1 2 2 

C8 Red Bull Ring 0           0 3 0 5 0 5 

C9 Silverstone 3 0 1 0 1 2 0 1 3 0  0 0 2 0 0 0 

C10 Nürburgring 1  0  0 0 1 0 0 0 0 5 0 3 4 2 0 

C11 Hungaroring 4 0 0 0 0 0 0 1 2 2 0 1 0 0 0 0 0 

C12 Spa-Francorchamps 0 1 5 0 3 4 0 0  3 5  0 0 1 0 5 

C13 Monza 0 1 0 4 0 1 1 1 0 0 1 0 2 1 5 3 0 

C14 Marina Bay 0 0 2 2 5 1 0           

C15 Suzuka 2 2 1 0 4 0 1 0 0 1 2 0 0 1 0  2 

C16 De las Americas 0 1 0               

C17 José Carlos Pace 0 1 0 0 0 4 1 2 1 2 1 0 1 1 3 2 0 

C18 Yas Marina 0 0 3 0 0 0            

C19 Korea International 0 0 2 0 10             

C20 Istanbul Park    0 1 0 2 0 1 0        

C21 Buddh  1 0 1              
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  Source: http://en.espnf1.com/ 
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Table 3. Efficiency scores and potential improvements 

Circuit 

VRS CRS 

Efficiency 

score 

Potential reductions 
Efficiency 

score 
Fastest lap Fuel use/km # accidents/100 laps 

C1 1.000 - - - 1.000 

C2 1.000 - - - 1.000 

C3 0.963 0.0 0.0 0.1 0.938 

C4 1.000 - - - 1.000 

C5 0.929 0.000 0.0 0.4 0.920 

C6 1.000 - - - 1.000 

C7 1.000 - - - 1.000 

C8 1.000 - - - 1.000 

C9 1.000 - - - 1.000 

C10 1.000 - - - 1.000 

C11 1.000 - - - 0.833 

C12 1.000 - - - 0.954 

C13 1.000 - - - 1.000 

C14 1.000 - - - 0.820 

C15 0.958 0.000 0.1 0.1 0.957 

C16 1.000 - - - 1.000 

C17 1.000 - - - 0.921 

C18 1.000 - - - 1.000 

C19 0.640 2.651 0.9 3.1 0.631 

C20 1.000 - - - 1.000 

C21 0.981 0.000 0.0 0.1 0.909 
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Table 4. Reference set and optimal values of ofj and j variables 

Circuit Reference Set (j, j) 

C3 

C2 (0.802, 0.0) 

C7 (0.120, 0.0) 

C9 (0.050, 0.0) 

C20 (0.028, 0.0) 

C5 

C4 (0.225, 0.0) 

C6 (0.112, 0.0) 

C7 (0.459, 0.0) 

C10 (0.077, 0.0) 

C16 (0.127, 0.0) 

C15 

C9 (0.909, 0.0) 

C10 (0.052, 0.0) 

C16 (0.035, 0.0) 

C20 (0.004, 0.0) 

C19 
C2 (0.947, 0.0) 

C12 (0.053, 0.0) 

C21 

C10 (0.215, 0.0) 

C11 (0.092, 0.0) 

C16 (0.226, 0.0) 

C20 (0.467, 0.0) 
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Table 5. Regression models estimates 
 

Notes:    Dependent variable: WSBM efficiency scores. Sample: 18 F1 circuit cases. 

“*”, “**” and “***” indicate statistical significance at the 10%, 5% and 1% level, respectively. 

Corresponding robust standard error is reported within parentheses. 
aDummy variable coded one for circuits with race tracks and zero for street racing circuits. 
bDummy variable coded one for clockwise-oriented circuits and zero for anticlockwise-oriented circuits. 
cStandard one-part fractional regression model. Quasi-maximum likelihood estimation method. 

 

 

 

 

 

 Ordinary Least 

Squares 

Fractional regression model c 

 logit probit loglog cloglog 

Model intercept 
0.960*** 

(0.046) 

22.576*** 

(0.779) 

6.407*** 

(0.387) 

22.520*** 

(0.776) 

3.284*** 

(0.245) 

Circuit typea 
-0.036 

(0.039) 

-18.263*** 

(0.468) 

-4.366*** 

(0.247) 

-18.152*** 

(0.456) 

-2.020*** 

(0.148) 

Track 

orientationb 

0.084 

(0.039) 

2.334*** 

(0.477) 

1.087*** 

(0.324) 

2.181** 

(0.437) 

0.690** 

(0.351) 

Number of red-

flagged races due 

to rain 

-0.093** 

(0.036) 

-3.622*** 

(0.134) 

-1.514** 

(0.512) 

-3.487*** 

(1.091) 

-0.927** 

(0.398) 

% of fitted values 

out the range 

[0,1] 

55.55% - - - - 

R2 0.451 0.963 0.947 0.964 0.900 

Sum of Squared 

Residuals 
0.067 0.005 0.009 0.004 0.020 


