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Abstract 
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1. Introduction 

Data envelopment analysis (DEA) is a non-parametric methodology that can be used to assess 

the relative efficiency of similar (i.e. homogeneous) organizational units commonly termed 

decision making units (DMUs) (Cooper et al. 2004, 2006). DEA only requires data about the 

input consumption and output production of the DMUs. From those data, and by applying the 

minimum extrapolating principle and some standard axioms (such as envelopment, free 

disposability and convexity), a Production Possibility Set (PPS) containing all the operating 

points that are deemed feasible can be inferred. The efficient frontier corresponds to the non-

dominated operating points of the PPS. DEA models aim at projecting each DMU onto the 

efficient frontier, computing a target operating point as well as an efficiency or inefficiency 

score. The inefficiency score is generally a measure of the distance from the DMU to the target 

operating point. 

There are many different DEA models that differ in the orientation and metric considered. Thus, 

there are input-oriented, output-oriented and non-oriented DEA models, which, in turn, can use a 

radial, non-radial, hyperbolic or additive metric. One metric commonly used in DEA is the so-

called Directional Distance Function (DDF), which considers a directional vector and tries to 

move in that direction until the border of the PPS is reached (Chambers et al. 1996). DDF DEA 

models have been used in many applications and are particularly suited when there are 

undesirable outputs (e.g. Lozano and Gutiérrez 2008, Lozano et al. 2013). The list of DEA 

applications that use a DDF approach is very long. One reason for the success of this type of 

DEA approach is its clear interpretation as a movement along a given direction. Another strong 

point of DDF is the possibility of choosing the directional vector. In fact, there are many 

different exogenous and endogenous ways of selecting such directional vectors (e.g. Färe et al. 

2013, Zofío et al. 2013, Hampf and Krüger 2015, Daraio and Simar 2016). Wang et al. (2017) 

present a thorough survey of these methods. 

In this paper two new DDF approaches are considered. The first one uses an exogenous 

directional vector. One disadvantage of DDF approaches with exogenous directional vectors is 

that the computed targets are generally weak efficient. This can be corrected using a slacks 

maximization phase II. That is done, for example, in Asmild and Pastor (2010) and in Pastor et 

al. (2016). In the latter, the phase II uses a conventional l1 metric (i.e. additive) DEA model, 
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while in the former the input and output slacks are normalized by the corresponding components 

of the range directional vector. In this paper a different approach to reach an efficient target is 

proposed, one that does not aim to maximize the sum of slacks but tries to keep using the 

information provided by the given directional vector. The proposed lexicographic approach 

carries out the projection of the DMU onto the efficient frontier in several steps, taking its 

inspiration from the multi-stage methodology that Coelli (1998) proposed for radial oriented 

DEA models. Cherchye and Van Puyenbroeck (2001) present an economic legitimation of this 

multi-stage methodology. Recently, Korhonen et al. (2018) have proposed a similar 

lexicographic approach for radial oriented DEA models. There are, however, some differences 

between the methods in Coelli (1998) and Korhonen et al. (2018). The latter consider non-

discretionary variables and the possibility of simultaneously changing any subset of the 

controllable inputs and output. They also compute inefficiency scores for each of the variables 

separately. As regards the identification of the input and output directions that can keep on 

improving in the next iteration, they use the optimal values of the corresponding input and output 

slacks, something which they admit can be problematic in the presence of degeneracy. The 

procedure in Coelli (1998) is more robust in this regard but requires solving a separate linear 

program for each of the input and output dimensions that can, in principle, be improved. The 

lexicographic DDF approach proposed in this paper can use any directional vector and therefore 

includes the lexicographic radial approaches of Coelli (1998) and Korhonen et al. (2018) as a 

special case. It also uses a different way of identifying the improvable input dimensions, based 

on a mixed-integer linear program (MILP) with a few binary variables, similar to the one used in 

Lozano and Calzada-Infante (2017). Finally, a way of aggregating the successive stepsizes 

carried out in each iteration is presented, which not only computes an inefficiency score for each 

variable but also determines the overall efficiency score for the DMU under evaluation. 

The second DDF approach proposed in this paper uses an endogenously determined directional 

vector. This allows computing an efficient target in a single-step, thus dispensing with the multi-

stage methodology used for the exogenous directional vector case. The basic idea behind the 

proposed endogenous DDF approach is to modify the largest improvement model of Färe et al 

(2013), or the units-invariant version of Hampf and Krüger (2015), so that instead of maximizing 

the improvement to be obtained, the smallest improvement required to reach the efficient frontier 

is computed. To implement this minimization instead of the conventional maximization 
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approach, input and output multipliers are included in the model in order to determine a 

supporting hyperplane that passes through the target, thus ensuring its efficiency. The resulting 

optimization model is, however, non-linear. 

The structure of this paper is the following. First, in Section 2, the basic DDF DEA model, the 

lexicographic radial approach and the largest improvement approach are reviewed. Sections 3 

and 4 present the proposed lexicographic DDF and smallest improvement approaches, 

respectively. In Section 5 the proposed approach is illustrated with a small dataset. Finally, 

Section 6 summarizes and concludes. 

2. Review of relevant existing approaches 

2.1. Notation and basic concepts 

Let 

j 1,2,...,n  index on DMUs 

0  index of a certain DMU whose efficiency is to be determined 

i 1,2,...,m  index on inputs 

k 1,2,...,s  index on outputs 

ijx   amount of input i consumed by DMU j 

kjy   amount of output k produced by DMU j 

If we assume Variable Returns to Scale (VRS), the corresponding PPS is formed by the convex 

linear combinations of the observed DMUs and the operating points that this convex hull 

dominate. Mathematically, 

n n n
VRS

j ij i j kj k j

j 1 j 1 j 1

T {(x, y) | λ 0 x x i y y k 1}

  

              (1) 



5 

All the DEA models that are formulated below to assess the efficiency use as decision variables 

these lambda variables (a.k.a. intensity variables) that represent the coefficients of the 

corresponding convex linear combination 

 1 2 n, ,...     intensity variables 

By linearly combining the observed DMUs using these intensity variables, a feasible operating 

point can be computed. The operating points that are of interest are those that are efficient, i.e. 

non-dominated. Using the symbol   for the logical AND operation, the efficient frontier is: 

            VRS,eff VRS VRSˆ ˆ ˆ ˆ ˆ ˆT x, y T | x, y T x x y y x x y y           
 

 (2) 

Assessing the technical efficiency of DMU 0 involves projecting onto an efficient target 

operating point that dominates it, i.e. finding an operating point in this subset 

VRS,eff
0 0ˆ ˆ ˆ ˆ{(x,y) T | x x y y }    . This is where DEA models generally differ. Thus, some 

DEA models use an input orientation that gives priority to inputs reduction, while others use an 

output orientation that gives priority to outputs increase. There are also non-oriented DEA 

models that simultaneously aim at reducing inputs and increasing outputs. In any case, apart 

from the orientation, DEA models generally differ in the way the target operating point is 

determined. Some models are called radial because they try to keep the same input and output 

mix of DMU 0 (e.g. Banker et al. 1984), while others are non-radial and can lead to efficient 

targets with an input and output mix completely different from DMU 0 (e.g. Pastor et al. 1999). 

Furthermore, some DEA models project onto the most distant efficient target (e.g. Färe et al. 

2013), while others aim at the closest efficient target (e.g. Aparicio 2016) and others compute a 

stepwise efficiency improvement path (e.g. Lozano and Villa 2005). 

2.2. Basic DDF approach 

DDF has a clear interpretation, which corresponds to DMU 0 moving along a direction given by 

a directional vector 0g  (Chambers et al. 1996). Wang et al. (2017) classify DDF approaches 

depending on whether the directional vector is determined endogenously, using a certain 

criterion, or not. Thus, for example, in Zofio et al. (2013) the directional vector is computed 

endogenously so that the target is allocative efficient while in Lee (2016) the directional vector is 
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computed so that the benchmark is a Nash equilibrium in an imperfectly competitive market. In 

the conventional DDF approach, however, the directional vector is given, although it can depend 

on the specific DMU being projected and on the whole sample of DMUs (e.g. Silva Portela et al. 

2004, Asmild and Pastor 2010, Daraio and Simar 2016). In any case, given the directional vector 

 x y
0g g ,g  the DDF model computes the maximum stepsize from  0 0x , y  along direction 

 x yg ,g . 

x
j ij i0 i

j

y
j kj k0 k

j

j
j

j

Max

s.t.

x x g i

y y g k

1

0 j free



    

     

 

   







 (3) 

The above DDF DEA model does not necessarily project onto the efficient frontier. Thus, the 

corresponding target: 

* x
i i0 i

y*
k k0 k

x̂ x g i

ŷ y g k

   

    
 (4) 

can be just weak efficient. This, however, can be remedied by applying a phase two that exhausts 

any possible remaining input and output slacks. This phase two can also be incorporated into the 

DDF DEA model by introducing input and output slacks and using a very small constant 0   
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i k
i k

x x
j ij i0 i i i

j

y y
j kj k0 kk k

j

j
j

j i k

Max s s

s.t.

x x g s g i

y y g s g k

1

0 j free s 0 i s 0 k

 





 

 
     

 
 

      

       

 

       

 







 (5) 

Note that, in the above formulation, in order to keep the objective function dimensionless, we 

have used dimensionless input and output slacks. 

2.3. Lexicographic radial approach 

The lexicographic radial approach was termed multi-stage methodology by Coelli (1998), who 

proposed to use it for oriented DEA models in order to avoid the slacks maximization phase II. 

In radial DEA models, which is a special case of the DDF approach in which  0 0g x ,0 , 

 0 0g 0, y  or  0 0 0g x , y , in principle, unless a slacks maximization phase II is carried out, 

the computed target can be weak efficient, i.e. the target is not efficient but it can be improved 

only in some (not all) dimensions. That is because the movement along the radial direction may 

stop because one (or more) input or output dimensions cannot be further improved but that does 

not mean that there are no other dimensions in which further improvements are feasible. The idea 

behind the radial lexicographic approach is to exhaust those remaining slacks, not in the classical 

additive way but by keeping moving in a radial direction along the subspace spanned by the 

dimensions that can still be improved. 

The main difference between Coelli (1998) and Korhonen et al. (2018) is that the former 

considers radial oriented DEA models (first with input orientation and later with output 

orientation or vice versa) while the latter considers the non-oriented case in which inputs and 

outputs are improved simultaneously. In order to mathematically formulate the lexicographic 
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radial approach let us consider this latter case. Also, without loss of generality we will assume 

VRS. We will formulate the approach using our own notation. Thus, let DI  and NDI  

(respectively, DO  and NDO ) be the subsets of discretionary and non-discretionary inputs 

(respectively, outputs). The lexicographic radial approach defines, for each iteration t, the subsets 

of controllable inputs and outputs ( tI  and tO , respectively) that can be improved from the 

previous iteration radial target  t 1 t 1x , y  . Initially, D
1I I  , D

1O O   and    0 0
0 0x , y x , y . 

The first step in the lexicographic radial approach involves solving: 

0 i k
i k

D
j ij i0 0 i0 i

j

ND
j ij i0

j

D
j kj k0 0 k0 k

j

ND
j kj k0

j

j
j

D D
j 0 i k

Max s s

s.t.

x x x s i I

x x i I

y y y s k O

y y k O

1

0 j free s 0 i I s 0 k O

 





 

 
   

 
 

      

   

      

   

 

         

 











 

(6) 

If the optimal solution of the above model has  
*

D
is 0 i I     and  

*
D

ks 0 k O     then the 

radial target computed in this first step is already efficient and the procedure stops at 
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1 * D
i i0 0 i0

1 ND
i i0

1 * D
k k0 0 k0

1 ND
k k0

x x x i I

x x i I

y y y k O

y y k O

     

  

     

  

 (7) 

If that is not the case then the subsets of inputs and output dimensions that can be further 

improved are determined. Korhonen et al. (2018) do this based on the optimal values of the input 

and output slacks as follows: 

 
*

t t 1 iI i I : s 0  


 
   
 

                     
*

t t 1 kO k O : s 0  


 
   
 

 (8) 

Coelli (1998) uses a more robust approach that involves solving, for each input dimension 

t 1i ' I  and output dimension t 1k ' O
 , a linear program that tries to improve that single 

dimension as much as possible. 

i '

t 1
j i ' j i ' i '

j

t 1
j ij i

j

t 1
j kj k

j

j
j

j

Min

s.t.

x x

x x i i '

y y k

1

0 j









  

   

  

 

  









                           

k '

t 1
j ij i

j

t 1
j k ' j k ' k '

j

t 1
j kj k

j

j
j

j

Max

s.t.

x x i

y y

y y k k '

1

0 j









  

   

   

 

  









 

(9) 

The subsets of inputs and outputs that can be improved in iteration t are thus: 

 *
t t 1 i 'I i ' I : 1 

                         *
t t 1 k 'O k ' O : 1 

     (10) 

In any case, the model to be solved for the next step t is: 



10 

t 1 i k
i k

t 1
j ij i t 1 i0 i t

j

t 1
j ij i t

j

t 1
j kj k t 1 k0 k t

j

t 1
j kj k t

j

j
j

t t
j t 1 i k

Max s s

s.t.

x x x s i I

x x i I

y y y s k O

y y k O

1

0 j free s 0 i I s 0 k O

 


  


 

  


 

   


 
   

 
 

      

   

      

   

 

         

 











 

(11) 

which leads to the t step radial target: 

t t 1 *
i i t 1 i0 t

t t 1
i i t

t t 1 *
k k t 1 k0 t

t t 1
k k t

x x x i I

x x i I

y y y k O

y y k O

 


 

 


 

     

  

     

  

 (12) 

and to updated sets t 1I  and t 1O
 . The procedure stops when t 1 t 1I O 

   . 

Korhonen et al. (2018) also define inefficiency scores for each controllable input and output 

dimension: 

 

* D
i t 1

t:i It

i I


                                       

 

* D
k t 1

t:k Ot

ˆ k O


      
(13) 
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These individual inefficiency scores are not aggregated, however, to compute an overall 

efficiency score for DMU 0, probably because the purpose of their paper is to identify the 

efficient target rather than efficiency estimation. 

2.4. Endogenous largest improvement DDF approach 

As mentioned in the introduction, the directional vector used in DDF can be exogenous (i.e. 

given a priori) or endogenously determined based on the own data (Wang et al. 2017). Among 

the latter methods one can use the approach proposed in Zofío et al. (2013), provided that the 

input and output unit prices are available. Otherwise, one can use the largest improvement model 

of Färe et al. (2013), in which the components of the directional vector are unknown variables to 

be determined using the following model 

x
j ij i0 i

j

y
j kj k0 k

j

j
j

yx
i k

i k

yx
j i k

Max

s.t.

x x g i

y y g k

1

g g 1

0 j 0 g 0 i g 0 k



   

   

 

 

        







 

 

(14) 

which can be linearized defining x x
i i

ˆ g i    and 
y y
k k

ˆ g k      which leads to 
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x
j ij i0 i

j

y
j kj k0 k

j

j
j

yx
i k

i k

yx
j i k

Max

s.t.

ˆx x i

ˆy y k

1

ˆ ˆ

ˆ ˆ0 j 0 0 i 0 k



   

   

 

    

          







 

 

(15) 

Note that although the first two sets of constraints are inequalities, they hold as equalities in any 

optimal solution. The optimal solution to the above model provides an inefficiency score 
*  as 

well as optimal, endogenously-computed direction vectors 

 
 

*
x

* ix
i *

ˆ

g i


 


               
 

*
y

* ky
k *

ˆ

g k


 


 (16) 

For efficient units, 
* 0   and then any positive, normalized direction vector can be used, e.g. 

x
i

1
g i

m s
 


,  

*
y
k

1
g k

m s
 


. 

The model is called largest improvement because, contrary to the idea behind the closest 

efficient target approach, it looks for the directional vector that maximizes the stepsize  . The 

approach proposed in Section 4 can be called smallest improvement because what we propose is 

to find the directional vector that leads to the smallest stepsize  . Note, however, that just 

changing the objective function of model (15) from maximization to minimization would not 

work since the corresponding optimal solution would be 
* 0   even if DMU 0 is inefficient. 
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Hampf and Krüger (2015) proposed the following units invariant version of the largest 

improvement model 

x
j ij i0 i i0

j

y
j kj k0 k0k

j

j
j

yx
i k

i k

yx
j i k

Max

s.t.

x x x i

y y y k

1

1

0 j 0 0 i 0 k



    

    

 

   

          







 

 

(17) 

which can also be linearized defining x x
i i

ˆ̂
i    and 

y y
k k

ˆ̂
k     

x
j ij i0 i i0

j

y
j kj k0 k0k

j

j
j

yx
i k

i k

yx
j i k

Max

s.t.

ˆ̂
x x x i

ˆ̂
y y y k

1

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ0 j 0 0 i 0 k



    

    

 

    

          







 

 

(18) 



14 

As before, the two first set of constraints are binding at any optimal solution and the optimal 

solution of the above model provides an inefficiency score 
*  as well as an optimal, 

endogenously-computed direction vector 

*
x
i

x
i i0*

ˆ̂

g x i

  
 

  


              

*
y
k

y
k0k *

ˆ̂

g y k

  
   


 
(19) 

For efficient units, 
* 0   and any positive, normalized direction vector can be used, e.g. 

x
i i0

1
g x i

m s
  


,  

*
y

k0k

1
g y k

m s
  


. 

3. Proposed lexicographic DDF approach 

In the previous section the lexicographic radial approach was formulated in detail to facilitate 

appreciating the similarities and differences with respect to the proposed lexicographic DDF. To 

start with, we consider any directional vector  x y
0g g ,g , which means that the radial 

direction is a special case. Also, while the lexicographic radial approach starts by computing the 

first radial target and then determines the input and output dimensions, if any, that can still be 

further improved, we reverse this order and before computing the directional target we determine 

the input and output dimensions that can be improved. Thus, if there are not any controllable 

inputs and outputs that can be improved from DMU 0, we do not need to solve any DDF model 

because we can be certain that DMU 0 is efficient and the procedure stops. 

In order to determine the controllable input and output dimensions that can be improved from the 

initial operating point    0 0
0 0x , y x , y  or from any subsequent directional target  t 1 t 1x , y 

, 

we propose to solve a MILP with a binary variable for each input and output dimension that 

could be improved in the previous iteration. The model is similar to the one used in Lozano and 

Calzada-Infante (2017). Let 

iu  binary variable indicating whether or not input t 1i I  can be reduced in iteration t 
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kv  binary variable indicating whether or not output t 1k O
  can be increased in 

iteration t 

Note that, since we reverse the order in which the subsets of improvable input and output 

dimensions are determined, in our case, initially, D
0I I  , D

0O O  . The proposed approach 

uses the precision level (i.e. the number of decimal digits) of the corresponding input and output 

variables. Let us denote them as i  and k̂ , respectively. Thus, if a certain controllable input 

Di I  is measured with a precision of one or two decimal digits, then i 0.1   or i 0.01  , 

respectively or if the variable does not consider rational numbers, then i 1  . In any case, the 

model to be solved to determine which controllable dimensions can be improved in iteration t is: 

   

i k

i I k Ot 1 t 1

n
t 1

j ij i i i t 1
j 1

n
t 1

j ij i t 1
j 1

n
t 1

j kj k k k t 1
j 1

n
t 1

j kj k t 1
j 1

n

j
j 1

j i t 1 k t 1

Max u v

s.t.

x x u i I

x x i I

ˆy y v k O

y y k O

1

0 j u 0,1 i I v 0,1 k O

   

 




 




 




 






 
 



      

   

      

   

 

        

 











 

(20) 

The aim of model (20) is to detect all the input and output dimensions that can still be improved. 

Therefore, the parameters i  and k̂  represent the minimum amount of change of those variables 

that can be counted as an improvement. Hence, as indicated in the text, their value is related to 
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the precision level of the different variables. Thus, if a variable is measured with two decimal 

positions then a change in that variable smaller than 0.01 is not appreciable. In other words, only 

if the variable can be improved by at least 0.01 that input or output dimension can qualify as still 

able to improve. 

Note also that model (20) allows determining all the dimensions that can be improved solving a 

single optimization model. The alternative is to do as in Coelli (1998) and solve model (9) for 

each controllable input and output dimension in the sets t 1I  and t 1O
 . 

The subsets of inputs and outputs that can be improved in iteration t are thus: 

 *
t t 1 iI i I : u 1 

                        *
t t 1 kO k O : v 1 

    (21) 

If t tI O    then the process stops as there are not any input or output dimensions that can be 

improved. Otherwise, we formulate and solve the DDF model for iteration t: 

t

t 1 x
j ij i t i t

j

t 1
j ij i t

j

yt 1
j kj k t tk

j

t 1
j kj k t

j

j
j

j t

Max

s.t.

x x g i I

x x i I

y y g k O

y y k O

1

0 j free

 

 

 

 



     

   

     

   

 

   











 

(22) 

which leads to the step t directional target: 
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t 1 * x
i t i tt

i t 1
i t

yt 1 *
k t tt k

k t 1
k t

x g i I
x

x i I

y g k O
y

y k O

 

 

 

 

    
 

 

    
 

 

 (23) 

As indicated above, the procedure stops if, after computing the iteration T directional target 

 T Tx , y , we solve model (20) for t=T+1 and the optimal objective function is zero, i.e. 

*
i Tu 0 i I    and *

k Tv 0 k O   . Therefore,  T Tx , y  is the final directional target computed 

by the lexicographic DDF approach. This final directional target can also be determined adding 

the corresponding improvements achieved in the successive iterations. Since each variable stops 

improving after a certain number of iterations, it is only necessary to add the step sizes of those 

iterations. This can be done using the indicator variables  ti I   and  tk O   that indicate 

whether a certain input i or output k was still able to improve in iteration t or, equivalently, the 

last iteration T(i)  (respectively T̂(k) ) in which a certain input i (respectively output k) was able 

to improve. Mathematically, 

   t t
t t

t t

1 if i I 1 if k O
i I k O

0 if i I 0 if k O

 
 

 

   
      

   

 

   t t
t t

ˆT(i) max t : i I T(k) max t : k O      

(24) 

Therefore, the final directional target can also be expressed as: 

 

 

T(i)T
T x * x *
i i0 i t t i0 i t

t 1 t 1

T̂(k)T
y yT * *

k k0 t t k0 tk k
t 1 t 1

x x g i I x g

y y g k O y g



 



 

         

         

 

 

 (25) 

Defining the directional inefficiency indicators: 



18 

ˆT(i) T(k)
total * total *
i t k t

t 1 t 1

ˆi k

 

          (26) 

the efficiency score of DMU 0 along the given direction can be computed as: 

total x
i i

D
i0Di I

0 ytotal
k k

D
k0Dk O

1 g
1

xI

ˆ g1
1

yO





 


 
 







 (27) 

Note that the above expression is similar to the slacks-based measure of efficiency (SBM) (Tone 

2001) in which the total x
i ig   and total x

k i
ˆ g   represent the total input and output slacks, 

respectively. It is clear that 00 1   . However, the SBM efficiency score of Tone (2001), which 

is equivalent to the Enhanced Russell Graph Measure (ERM) of Pastor et al. (1999), minimizes the 

ratio of the average input reduction to the average output expansion, without using any a priori 

projection direction, while the directional efficiency score 0  is associated with the given 

direction vector 0g . It is thus clear that the ERM/SBM efficiency score is always lower than (or at 

most equal to) the lexicographic DDF efficiency score 0 . Actually, the ERM/SBM corresponds 

to finding the minimum directional efficiency score among all the directional vectors  x yg ,g  

with x D
ig 0 i I    and 

y D
kg 0 k O   . Hence, since the ERM/SBM score coincides with the 

directional efficiency score for a certain direction, it can be considered as a special case of the 

directional efficiency score. In summary, the ERM/SBM efficiency score uses a non-radial 

approach whose direction projection is not defined a priori while the proposed approach projects 

along a given direction vector. Therefore, they are not directly comparable. In spite of this, as 

indicated above, because the proposed directional efficiency score has a functional form analogous 

to ERM/SBM, some interesting relationships between them can be derived. But this does not 

change the fundamental difference that one assumes a given directional vector while in the 

ERM/SBM case the projection direction is free. 
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The following result also holds: 

Proposition 1: For any directional vector  x y
0g g ,g  with x D

ig 0 i I   , 
y D
kg 0 k O   , 

0 1   if and only if DMU 0 is efficient. 

Proof: 

total D total D
0 i k

D D
1 1

ˆ1 0 i I 0 k O

ˆT(i) 0 i I T(k) 0 k O I O 

           

         
 

                       ■ 

In summary, the basic difference between the proposed approach and the lexicographic radial 

approaches of Korhonen et al. (2018) and Coelli (1998) is that the latter carry out a radial 

projection, orientated in the case of Coelli (1998) and non-orientated in the case of Korhonen et 

al. (2018), while the proposed approach projects along a given direction vector. Hence the radial 

projection is a special case of the proposed approach. There are also algorithmic differences in 

the way the successive steps are carried out. These can be noted in the flowcharts of the three 

methods, shown in the appendix. Finally, the directional efficiency score (27) is another 

distinguishing feature of the proposed approach.  

4. Proposed smallest improvement approach 

The lexicographic DDF approach proposed in the previous section can be used when the 

directional vector is exogenous. Although it guarantees that the computed target is efficient, the 

multi-stage methodology used is somewhat complex, as it requires solving two models (one of 

them MILP) in each step. As one of the reviewers pointed out, it may be simpler to project onto 

the efficient frontier directly, by endogenously computing the appropriate directional vector. 

This can be done using, for example, the largest improvement models seen in Section 2.4. In this 

section, we propose a reformulation of those models so that instead of the largest improvement, 

which usually leads to a faraway target, the smallest improvement is sought, thus leading to a 

closest efficient target. 
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To formulate the proposed model, we must do two modifications to models (15) and (18). One is 

to change the objective function from maximization to minimization and the other is to introduce 

input and output multipliers (plus intercept variable in the VRS case) and appropriate constraints 

so that a supporting hyperplane that passes through the computed target can be determined. Thus, 

letting ip  (respectively, kq ) be the multiplier of input i (respectively, output k),   the intercept 

variable (equal to zero in the CRS case) and ix̂  and kŷ  the input and output targets, the 

corresponding constraints are 

     

 

k kj i ij
k i

y x
k k0 i i0 ik

k i
k k i i

k i y x
k k0 i i0 ik

k i

i k

i k
i k

q y p x 0 j

ˆ ˆq y p x 0 for model (15)

ˆ ˆq y p x
ˆ ˆˆ ˆq y 1 p x 1 0 for model (18)

p 1 i q 1 k free

p q 100

   


       


    

                    

    

 

 

 
 

 

 

 (28) 

The first set of constraints imposes that the hyperplane defined by ip , kq and   envelops the 

data. The second constraint guarantees that it is a supporting hyperplane, as it passes through the 

computed target. The third set of constraints guarantees the strong efficiency of the target and the 

last one is a normalization constraint that allows choosing among the alternative optimal 

multiplier vectors and that facilitates solving the non-linear optimization model. 

Therefore, the smallest improvement version of model (15) is  
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x
i j ij i0 i

j

y
k j kj k0 k

j

j
j

yx
i k

i k

k kj i ij
k i

yx
k k0 i i0 i i k k

k i i k

i k

i k
i k

yx
j i k

Min

s.t.

ˆx̂ x x i

ˆŷ y y k

1

ˆ ˆ

q y p x 0 j

ˆ ˆq y p x p q

p 1 i q 1 k free

p q 100

ˆ ˆ0 j 0 0 i 0 k



    

    

 

    

   

 
        

  

    

 

          







 

 

   

 
 

(29) 

and that of model (18) is  
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x
i j ij i0 i i0

j

y
k j kj k0 k0k

j

j
j

yx
i k

i k

k kj i ij
k i

yx
k k0 i i0 i i i0 k k0k

k i i k

i k

i k
i k

j

Min

s.t.

ˆ̂
x̂ x x x i

ˆ̂
ŷ y y y k

1

ˆ ˆˆ ˆ

q y p x 0 j

ˆ ˆˆ ˆq y p x p x q y

p 1 i q 1 k free

p q 100

ˆ̂
0 j 0



     

     

 

    

   

 
        

  

    

 

     







 

 

   

 

yx
i k

ˆ̂
0 i 0 k    

 

(30) 

Both endogenous smallest improvement DDF models are non-linear. Model (30) has the 

advantage of being units-invariant. 

5. Illustration 

In order to illustrate the proposed approaches, consider the two-input, single-output dataset 

shown in Table 1. All the variables are assumed to be controllable. There are 10 DMUs of which 

six (namely DMUs A to F) are efficient. The other four are inefficient with two of them (namely, 

DMUs I and J) weak efficient. 

==================== Table 1 =================== 
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Table 2 shows the results of the application of the lexicographic DDF approach to the inefficient 

DMUs G and H. In each case, three different scenarios (i.e. three different directional vectors) 

are considered. The different steps carried out in each scenario and the successive operating 

points computed can be seen in Figure 1. Note that, since the total number of variables is three, 

that is also the maximum number of steps that may be required to reach the efficient frontier. 

However, the number of steps that are required actually is often lower than the maximum. Thus, 

for the three directional vectors considered for DMU G, in one case the target of the first 

iteration (which in this case coincides with the conventional DDF target) is already efficient (i.e. 

T=1). In the other two cases, a second step is required (i.e. T=2). For DMU H, of the three 

directional vectors considered, in one case two steps of the lexicographic DDF approach are 

needed while in the other two scenarios three steps are required (i.e. T=3). In any case, for each 

directional vector, the inefficiency indicator for each input and output are shown together, with 

the efficiency score of the DMU computed along that direction. 

==================== Table 2 =================== 

==================== Figure 1 =================== 

Table 3 and Figure 2 show the results of the application of the lexicographic DDF approach to 

the two weak efficient DMUs. In the case of DMU J, solving model (20) in the first iteration 

detects that there is one dimension (namely, 1x ) that cannot be improved. The conventional DDF 

model would determine 
* 0   when trying to advance along Jg . In our case, since we remove 

1x  from the set 1I
 , we can determine a positive stepsize along the direction defined by the other 

two directional vector components. In any case, for this DMU, at most two steps have to be 

carried out. Actually, for the three directional vectors considered, two steps were required. 

Something similar happens when projecting the weak efficient DMU I only, in this case, initially 

there are two dimensions (namely, 1x  and y ) that cannot be improved. That is detected by 

model (20) in the first iteration so that they are removed from 1I
  and 1O , respectively. This 

means that, for this DMU, independently of the directional vector, only one step is required to 

reach the efficient frontier and the movement is always along the 2x  axis. 
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==================== Table 3 =================== 

==================== Figure 2 =================== 

Table 4 and 5 show the results of the smallest improvement DEA models (29) and (30), 

respectively, for this dataset. The corresponding non-linear optimization models have been 

solved in GAMS using COUENNE solver. The computing times require are shown in the last 

column. For the efficient DMUs the optimal objective function is 
* 0  . For the inefficient 

DMUs, the variables  
*

x
1̂ ,  

*
x
2̂  and  

*
y

̂  of model (29) indicate the corresponding 

improvements along the two inputs and the output dimension, respectively. In the case of model 

(30) the corresponding improvements are 
*

x
10 1

ˆ̂
x    

 
, 

*
x

20 2
ˆ̂

x    
 

 and 
*

y
0

ˆ̂
y    

 
. Note that, 

although that does not have to occur in general, for this small dataset the targets computed by 

both models coincide. All these targets lie on the efficient frontier. In particular, for DMU J the 

target coincides with one of the DMUs, namely DMU E. 

==================== Table 4 =================== 

==================== Table 5 =================== 

For the sake of comparison, the results of the largest improvement DDF models (15) and (18) are 

shown in Table 6. Note that, for the inefficient DMUs, the optimal 
*  value for the largest 

improvement models (15) and (18) are larger than for smallest improvement models (29) and 

(30). Again, although this does not occur in general, the targets computed by the two largest 

improvement models coincide. In particular, the target of both DMU G and H coincides with 

DMU D and the target computed for DMU J coincides with DMU E. From Figure 1 it can be 

seen that, within the region that dominates DMU G, DMU D is farthest from it and the same 

happens in the case of DMU H. In the case of DMU J it happens that there is only one efficient 

operating point in the region that dominates it and that is DMU E (see Figure 2). Hence, that is 

the target computed by both the largest and the smallest improvement models. That happens also 

with DMU I. This can be seen in Figure 3, which shows the projections of the four inefficient 

DMUs computed by the largest and smallest improvement DDF approaches. 
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==================== Table 6 =================== 

==================== Figure 3 =================== 

6. Conclusions 

In this paper, two new DDF approaches are proposed. One of them can be used when the 

directional vector is exogenously given but does not use a slacks-maximizing phase to overcome 

the weak efficient of the target computed by the conventional DDF approach. Instead, it uses a 

lexicographic approach that follows the given directional vector along all the input and output 

dimensions that are susceptible to improvement at each step. This type of multi-stage 

methodology has been used before, for radial DEA models, by Coelli (1998) and, more recently, 

by Korhonen et al. (2018). In our case, in each step of the proposed lexicographic DDF 

approach, two different DEA models are used. First, a MILP model that identifies the input and 

output dimensions that can be improved is solved, followed by a DDF DEA model that moves 

along the projection of the given directional distance along those input and output dimensions. 

The lexicographic DDF approach has a clear graphical interpretation and requires a limited 

number of steps. Moreover, it contains the lexicographic radial approach as a special case and 

can be used also with non-discretionary variables, undesirable outputs and integer variables. A 

directional efficiency score as well as directional inefficiency indicators for each input and 

output variable are computed. Although the directional efficiency score has a functional form 

analogous to that of ERM/SBM efficiency score they are fundamentally different. Thus, while 

ERM/SBM is free to choose the projection direction and chooses the one that minimizes the 

corresponding efficiency score, the proposed lexicographic DDF approach computes the 

directional efficiency score associated with the given directional vector. 

An endogenous direction DDF approach has been proposed also. This does not require an 

exogenous direction and can compute an efficient target in a single step. The proposed 

endogenous DDF approach is based on the largest improvement models of Färe et al. (2013) and 

Hampf and Krüger (2015) but instead of considering the direction that maximizes the 

corresponding DDF, a smallest improvement criterion is used with the aim of computing a 
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closest efficient target. The corresponding minimization model includes input and output 

multipliers that define a supporting hyperplane that passes through the computed efficient target. 

Although a units-invariant version can be used, the proposed smallest improvement approach 

requires, in any case, solving a non-linear optimization model. 

Possible continuations of this research include extending the approach to centralized DEA and 

network DEA contexts. Developing an extension for interval and fuzzy data would also be 

interesting. 
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Table 1. Illustration dataset 

DMU 1x  2x  y  

A 12 30 90 

B 25 9 51 

C 43 11 70 

D 20 19 98 

E 2 22 43 

F 5 7 13 

G 30 49 40 

H 40 45 30 

I 5.62 40 60.01 

J 2 35 22 
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Table 2. Results of Lexicographic DDF projection of inefficient DMUs G and H for three different directional vectors 

DMU G 

Gg (1,5,1)  Gg (5,1,1)  Gg (1,1,5)  

t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   

0 1 2x ,x   y   - 30.00 49.00 40.00 0 1 2x ,x  y  - 30.00 49.00 40.00 0 1 2x ,x  y  - 30.00 49.00 40.00 

1 1 2x ,x  y  7.96 22.04 9.18 47.96 1 1 2x ,x  y  5.49 2.53 43.51 46.49 1 1 2x ,x  y  11.33 18.67 37.67 96.67 

2     - - - - 2 2x    21.08 2.53 22.42 46.49 2 2x    16.83 18.67 20.83 96.67 

 3     - - - - 3     - - - - 

   

total total
i k

ˆ&   7.96 7.96 7.96 total total
i k

ˆ&   5.49 26.57 5.49 total total
i k

ˆ&   11.33 28.16 11.33 

0  0.384 0  0.238 0  0.217 

 

DMU H 

Hg (1,5,1)  Hg (5,1,1)  Hg (1,1,5)  

t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   

0 1 2x ,x   y   - 40.00 45.00 30.00 0 1 2x ,x  y  - 40.00 45.00 30.00 0 1 2x ,x  y  - 40.00 45.00 30.00 

1 1 2x ,x  y  7.34 32.66 8.28 37.34 1 1 2x ,x  y  7.60 2.00 37.40 38.60 1 1 2x ,x  y  13.60 26.40 31.40 98.00 

2 1x    14.84 17.81 8.28 37.34 2 2x  y  5.40 2.00 32.00 43.00 2 1 2,x x  y  6.40 20.00 25.00 98.00 

3     - - - - 3 2x    10.00 2.00 22.00 43.00 3 2x    6.00 20.00 19 98.00 

 4     - - - - 4     - - - - 

   

total total
i k

ˆ&   22.18 7.34 7.34 total total
i k

ˆ&   7.60 23.00 13.00 total total
i k

ˆ&   20.00 26.00 13.60 

0  0.253 0  0.188 0  0.141 
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Table 3. Results of lexicographic DDF projection of weak efficient DMUs I and J for three different directional vectors 

DMU I 

Hg (1,5,1)  Hg (5,1,1)  Hg (1,1,5)  

t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   

0 1 2x ,x  y  - 5.62 40.00 60.01 0 1 2x ,x  y  - 5.62 40 60.01 0 1 2x ,x  y  - 5.62 40.00 60.01 

1 2x    3.02 - 24.89 - 1 2x    15.11 - 24.89 - 1 2x    15.11 - 24.89 - 

2     - - - - 2     - - - - 2     - - - - 

   

total total
i k

ˆ&   0.00 3.02 0.00 total total
i k

ˆ&   - 15.11 - total total
i k

ˆ&   0.00 15.11 0.00 

0  0.811 0  0.811 0  0.811 

 

DMU J 

Jg (1,5,1)  Jg (5,1,1)  Jg (1,1,5)  

t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   t  
tI  tO

 t  t
1x   t

2x   ty   

0 1 2x ,x  y  - 2.00 35.00 22.00 0 1 2x ,x  y  - 2.00 35.00 22.00 0 1 2x ,x  y  - 2.00 35.00 22.00 

1 2x  y  2.60 2.00 22.00 24.60 1 2x  y  13.00 2.00 22.00 35.00 1 2x  y  4.20 2.00 30.80 43.00 

2   y  18.40 2.00 22.00 43.00 2   y  8.00 2.00 22.00 43.00 2 2x    8.80 2.00 22.00 43.00 

3     - - - - 3     - - - - 3     - - - - 

   

total total
i k

ˆ&   0.00 2.60 21.00 total total
i k

ˆ&   0.00 13.00 21.00 total total
i k

ˆ&   0.00 13.00 4.20 

0  0.417 0  0.417 0  0.417 
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Table 4. Results of smallest improvement DDF model (29) 

DMU *   
*

x
1̂   

*
x
2̂   

*
y

̂   
*

1p   
*

2p  *q  
*  1x̂  2x̂  ŷ  

Computing 

time
 

A 0 0 0 0 57.8075 6.6849 35.5075 2301.4393 12 30 90 0.00:23.062 

B 0 0 0 0 17.5881 69.4968 12.9151 -406.5041 25 9 51 0.00:01.805 

C 0 0 0 0 6.1466 78.4589 15.3945 -49.7373 43 11 70 0.00:00.385 

D 0 0 0 0 8.5696 12.7310 78.6994 7299.2617 20 19 98 0.00:00.622 

E 0 0 0 0 74.8235 15.3998 9.7767 -68.0462 2 22 43 0.00:00.289 

F 0 0 0 0 42.5249 53.3085 4.1666 -531.6178 5 7 13 0.00:00.401 

G 51.3684 10.7895 40.5789 0 15.2919 72.8267 11.8814 -431.7891 19.2105 8.4211 40 0.00:03.852 

H 63.1579 26.0526 37.1053 0 5.4524 87.0940 7.4536 -540.0233 13.9474 7.8947 30 0.00:14.917 

I 15.1055 0.0009 15.1047 0 81.4484 1.0444 17.5072 566.9361 5.6191 24.8953 60.0100 0.00:01.827 

J 34 0 13 21 76.3393 16.4081 7.2526 -201.7968 2 22 43 0.00:00.604 
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Table 5. Results of smallest improvement DDF model (30) 

DMU *  
*

x
1

ˆ̂  
 

 
*

x
2

ˆ̂  
 

 
*

yˆ̂  
 

  
*

1p   
*

2p  *q  
*  1x̂  2x̂  ŷ  

Computing 

time
 

A 0 0 0 0 81.4784 1.0130 17.5086 567.6416 12 30 90 0.00:00.383 

B 0 0 0 0 17.5548 69.5312 12.9140 -406.0367 25 9 51 0.00:00.684 

C 0 0 0 0 3.8010 80.3238 15.8751 64.2536 43 11 70 0.00:00.502 

D 0 0 0 0 55.1239 28.2665 16.6096 -11.7966 20 19 98 0.00:00.299 

E 0 0 0 0 92.5028 5.8138 1.6834 -240.5224 2 22 43 0.00:00.572 

F 0 0 0 0 28.5341 67.2000 4.2659 -557.6143 5 7 13 0.00:00.275 

G 1.1878 0.3596 0.8281 0 5.3146 87.2938 7.3916 -541.5389 19.2105 8.4211 40 0.00:02.723 

H 1.4759 0.6513 0.8246 0 2.6422 91.1689 6.1890 -570.9362 13.9474 7.8947 30 0.00:03.494 

I 0.3777 0 0.3777 0 55.2807 28.1637 16.5557 -18.2682 5.6200 24.8936 60.0100 0.00:01.086 

J 1.3260 0 0.3714 0.9545 97.3685 1.4827 1.1488 -177.9551 2 22 43 0.00:00.405 
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Table 6. Results of largest improvement DDF models (15) and (18) 

 Model (15) Model (18) 

DMU *   
*

x
1̂   

*
x
2̂   

*
y

̂  1x̂  2x̂  ŷ  *  
*

x
1

ˆ̂  
 

 
*

x
2

ˆ̂  
 

 
*

yˆ̂  
 

 1x̂  2x̂  ŷ  

A 0 0 0 0 12 30 90 0 0 0 0 12 30 90 

B 0 0 0 0 25 9 51 0 0 0 0 25 9 51 

C 0 0 0 0 43 11 70 0 0 0 0 43 11 70 

D 0 0 0 0 20 19 98 0 0 0 0 20 19 98 

E 0 0 0 0 2 22 43 0 0 0 0 2 22 43 

F 0 0 0 0 5 7 13 0 0 0 0 5 7 13 

G 98 10 30 58 20 19 98 2.3956 0.3333 0.6122 1.4500 20 19 98 

H 114 20 26 68 20 19 98 3.3444 0.5000 0.5778 2.2667 20 19 98 

I 15.108 0.000 15.104 0.004 5.620 24.896 60.014 0.3778 0.0002 0.3776 0 5.6191 24.8953 60.0100 

J 34 0 13 21 2 22 43 1.3260 0 0.3714 0.9545 2 22 43 
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Figure 1. Lexicographic DDF projection of inefficient DMUs G and H for three different directional vectors (the coordinates of the points are shown 

with one decimal digit; the exact values are shown in Table 2) 
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Figure 2. Lexicographic DDF projection of weak efficient DMUs I and J for three different directional vectors (the coordinates of the points are 

shown with one decimal digit; the exact values are shown in Table 3) 
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Figure 3. Largest and smallest improvement projections of inefficient DMUs 

 
 

  

Note: Smallest improvement    Largest improvement    
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Figure 4. Flowchart of the lexicographic radial approaches of Korhonen et al. (2018) and Coelli (1998) 
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Coelli (1998) 
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Figure 5. Flowchart of the proposed lexicographic DDF approach 
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