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Abstract 

While air transport brings very significant economic and social benefits to the cities and 

regions served by airports, aircraft noise is the single major cause of community 

opposition to airport operations, becoming a critical issue that affects the sustainability of 

future traffic growth. However, planning operations exclusively focusing on noise impact 

may result in an increase of fuel consumption or delays. This paper develops a suitable 

bi-objective model for landing aircraft, which finds a schedule that minimises noise 

impact, total fuel consumption and delays, under wake vortex separation and Constrained 

Position Shifting restrictions. The results of this model are compared with real operations 

in a major European airport to assess the potential level of improvements. By comparing 

with real data from Madrid-Barajas airport, the research shows potential improvements 

of up to 4.5% reduction of total fuel consumption (without increasing noise levels) only 

by modifying the sequence of arrivals, and up to 43% (without extra fuel consumption) 

of reduction in noise impact over the populations under study. 

Keywords: air traffic management; noise impact; scheduling; wake vortex separation; 

aircraft fuel consumption.  
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1. INTRODUCTION  

By 2040, there will be a demand of 1.5M flights than can be accommodated, i.e. 160 

million passengers unable to fly (Eurocontrol, 2018). Even with 1.5M flights 

unaccommodated and therefore lost, the network remains highly congested. Therefore, 

one of the central challenges facing the aviation industry is air traffic demand growth, 

which results in congestion in many airports, primarily hubs (Flores-Fillol, 2010). 

Managing take-offs and landings of any airport is a complex problem that plays an 

important role in Air Traffic Management (ATM). Runways and air controllers are 

limited resources, so air traffic needs to be planned carefully to limit peak demand and 

satisfy as many airlines’ requirements as possible (Artiouchine et al., 2008).  

Building new airports and expanding the runway capacity of existing ones is one possible 

solution to congestion. However, this solution might result in negative environmental 

impacts on the quality of life of near-airport communities, such as noise disturbance, 

emissions, water pollution and habitat destruction (Laurenzo, 2006; Ho-Huu et al., 2017; 

Arntzen and Simons, 2014; Visser et al., 2008). In fact, several studies show a correlation 

between aircraft noise exposure and cardiovascular or psychological disease (Postorino 

and Mantecchini, 2015).  

During recent years, the population has increased in the cities and residential areas have 

become closer to airports, which implies an increase in the number of people affected by 

undesirable noise (Ganic et al., 2015a). Aircraft noise is a major cause of community 

opposition to current operations and to airport capacity improvement, becoming a critical 

issue that affects the sustainability of future traffic growth. Noise produced by aircraft has 

two main sources (Prats et al., 2009): aeronautical noise, which is the consequence of the 

friction of the air along the aircraft, and engine noise.  
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During take-off, aircraft noise is mainly determined by the thrust of the engines required. 

Although take-off noise is significantly dominating noise issues around airports in terms 

of regulation and policies, due to engineer advances, higher noise reductions are expected 

at take-off operations, potentially increasing the importance of landing noise. Schäfer et 

al. (2019) found that lower fan pressure ratios and the absence of combustion noise leads 

to a 50% reduction in take-off noise. In contrast, during landing, the higher weight of all-

electric aircraft will result in a 15% larger noise. 

 In an ideal world, an aircraft would take off, climb to its optimal cruising altitude, and 

maintain the cruising altitude if possible before beginning a constant, engines-idle descent 

until landing. In the real world, aircraft must coordinate with ATC which, when there are 

congestion delays, interrupts descents with level-offs and turns, forcing aircraft to spend 

more time at lower altitudes and deviate from their intended trajectory (Laurenzo, 2006). 

The initial schedule needs to be reorganised when planes are close enough to the airport, 

which means when they approach the TRACON – Terminal Radar Approach Control 

Facilities – between 5 and 50 miles from the airport (Inniss and Ball, 2004). The 

combination of low altitude and frequent thrust transients leads to significant 

aerodynamic noise impact during the arrival phase of the flight (Coppenbarger, 2007), 

created when the landing gear is deployed because aircraft use lower thrust. 

Aircraft noise impacts on the environment significantly for several reasons (Jagniatinskisa 

et al., 2016): living areas are close to airport locations; operations during night time; flight 

noise events repeating periodically; and, compared to other transportation means, aircraft 

have large noise levels over the background noise. At many noise-sensitive airports, 

quieter aircraft are the key to minimising the impact of aircraft noise and ensuring a 

sustainable growth of airport capacity and air transport under increasing environmental 

constraints, for the benefit of the travelling individuals, airlines and their neighbouring 
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communities (Eurocontrol, 2018).  

The control of noise around airports is a complex matter because many different factors 

have a significant impact on the creation and propagation of noise (Ganic et al., 2015b): 

fleet mix (types of aircraft that are using the airport); shape and characteristics of arrival 

and departure procedures; airport characteristics (number of take-offs and landings, the 

distribution of traffic throughout the day and night, etc.); and airport location. Aircraft 

vary in performance regarding noise and emissions. Even two aircraft of the same type 

may behave differently, depending on their weight and the atmospheric conditions.  

The main approaches addressed today to reduce noise impact in the surrounding 

communities of airports, excluding impact on land use and/or carrying noise insulation 

methods, consider operational procedures and regulatory restrictions (Rodriguez-Diaz et 

al., 2017b). Regarding airport procedures, operations are designed to serve the vast 

majority of aircraft under a wide range of weather and wind conditions, thus reducing the 

choices of aircraft with better capabilities to achieve better performance (Hebly and 

Visser, 2011). Regarding regulatory restrictions, the concern from authorities is expressed 

in terms of different legislations and official restrictions that have been imposed in many 

countries (Directive 2002/30/EC, 2002). Hence, minimising noise disturbance around 

airports is a task that needs the contribution of various stakeholders: institutions, aircraft 

manufacturers, airlines and air traffic control (ATC).  

However, making the most efficient use of the current infrastructure by ATM would be 

the best alternative to balance demand with environmental restrictions. The challenge lies 

in simultaneously achieving safety, efficiency and equity, which are often competing 

objectives (Anagnostakis et al., 2001). 

There are many factors that may oppose the objective of minimising noise (Christian and 
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Sparrow, 2013): fuel burn, time-of-flight, emissions, etc. Hence, noise should not be the 

only parameter considered, as there are many stakeholders with various interests 

involved. Exclusively focusing on noise impact may result in an increase of fuel 

consumption (since avoiding noise impact on population located close to the airport may 

imply longer routes). To balance this conflict, the scope under research is to develop a 

suitable model for landing aircraft that finds a schedule that minimises noise impact, total 

fuel consumption and delays, while making the most of the current capacity of the 

runways.  

Moreover, in this paper we aim to prove that there is a margin for improvement in terms 

of noise reduction and fuel consumption, just by deciding on the most appropriate landing 

runway and order in the landing sequence. Here we are not considering introducing any 

change in the Standard Terminal Arrival Routes (STAR) of the considered airport since 

in the actual procedures there is still a place for considering noise impact and aiming for 

an efficient schedule. Our decision process starts in the approaching routes, and it is valid 

and applicable in general when the airport have more than one approach route, 

independently of the STARs involved.  

The paper is organized as follows: Section 2 describes the problem of the runway 

bottleneck and environmental concerns, and describes different approaches that have 

been studied in this field. In Section 3, the proposed linear model is presented, as well as 

the decision variables considered used to design the model. Also, as part of the 

methodology, the real scenario used for testing real operations is introduced, as well as 

the optimization methodology. Section 4 presents a detailed example with a limited 

number of flight plans to show how the model works. In Section 5 the numerical results 

in the real environment of the Adolfo Suárez Madrid-Barajas airport are described and 

analyzed. Finally, a short summary is given in Section 6, together with suggested topics 
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for future research in this area. 

2. PREVIOUS APPROACHES 

Bennell et al. (2013) undertook an extensive review of optimizing algorithms for 

scheduling flights in airports; however noise restrictions are almost not considered in the 

development of these algorithms. Only Hebly and Visser (2011) have studied the effects 

of taking into account noise measured in one point, which implies a delay driven support 

tool for sequencing and scheduling, under the formulation of an MILP (Mixed Integer 

Linear Programming) problem, where the sequencing is based on the principle of 

constraint position shifting (CPS). Based on the results of their model, and using the 

concept of fixed arrival routes, a small improvement in noise exposure in the point under 

study could be achieved.  

As far as we know, the only optimization algorithm for landing scheduling that considers 

noise impact is the one just mentioned. However, some other studies deal with the design 

of optimal routes that reduce the negative impact of aircraft noise on people living in the 

vicinity of airports. Prats et al. (2009) resolved a non-linear multi-objective optimal 

control problem to find the best trajectory for a given scenario, aircraft and time. Khardi 

(2014) presented a dynamic method to provide optimal paths that minimise aircraft 

impacts and fuel consumption, assessing a two-segment approach as an optimal 

trajectory. Ho-Huu et al. (2017) formulated a bi-objective optimisation problem by also 

considering noise and fuel as objectives to design optimal environmental routes. They 

consider the percentage of awakening to measure noise impact and present a novel 

application of MOEA/D (multi-objective evolutionary algorithm based on 

decomposition) for designing new noise abatement departure routes.  

The model defined in this study calculates the most suitable landing runway and the 
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landing times that minimize noise for the surrounding population, fuel consumption and 

delay. To minimize delays and fuel consumption, the CPS approach has been considered 

in our research. The CPS approach is based on a fundamental underlying principle that 

involves the specification of a parameter that limits the maximum number of position 

shifts (forward or rearward) that any aircraft will receive with respect to its first-come, 

first-served (FCFS) position (Dear, 1976; Rodriguez-Diaz et al., 2017a). Previous studies 

in the literature have dealt with scheduling considering noise, fuel burn, WTC or CPS as 

constraints, not as part of the objective function. This paper deals with all of them at the 

same time. Moreover, this paper develops a model that could be used in real operations 

and implemented in real software, given its low computational burden.  

The model developed here, not only aims to optimize runway capacity as in Rodriguez-

Diaz et al. (2017a) but also to optimize fuel consumption of the flights considered. One 

of the decisions taken consists of choosing the landing runway that minimizes the noise 

impact of the final approach route for the surrounding population without proposing any 

change in the existing approach routes and operational procedures of the airport. A linear 

model is defined to cope with the bi-objective nature of the problem (minimize total noise 

impact and minimize total fuel consumption), and the -constraints method is used to 

explore the Pareto frontier. As mentioned, these optimal decisions are being tested against 

a real operation in a major European airport, by measuring potential improvement in cost 

and noise level. 

 

3. PROPOSED APPROACH AND METHODOLOGY 

To analyze the problem and test the potential improvement in real operations, we will 

consider a set of instances consisting of a sequence of flights approaching an airport with 
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various landing runways subject to CPS. As one of the aims of the sequencing is to avoid 

a result that produces excessive amounts of noise in the surroundings, it is necessary to 

select a metric to measure the impact of the noise on landing aircraft for each assessed 

alternative. An aggregate metric called LOUDPeople, LP (Christian and Sparrow, 2013), 

is considered suitable for our purpose. The result from this metric avoids that we might 

make the determination of assigning an unacceptably high noise level to a small 

population in order to reduce the impact of the noise on many citizens: 

𝐿𝑃 =  ∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 ∗  2(
𝑆𝐸𝐿𝑖−100

10
)

𝑖     (1) 

𝑆𝐸𝐿 =  𝐿𝑒𝑞 + 10 ∗ 𝑙𝑜𝑔10(𝑇)    (2) 

where i represents each village in the surroundings; SELi is the Sound Exposure Level (in 

dB) normalised to one second at village i; T is the duration in seconds of the time period 

considered to measure the noise; and Leq is the equivalent sound level measured at each 

village. Note that when T=1 (as will happen in our study), it is 𝑆𝐸𝐿 = Leq.  

Once we defined how to assess the noise impact, a linear model was defined to cope with 

the bi-objective nature of the problem (minimise total noise impact and minimise total 

fuel consumption). The data needed are: 

N  Total number of flight plans (flights) considered  

R  Number of approach routes in the airport under study 

HSi  Scheduled take-off time of flight i from departure airport 

flight_timei,r    Minimum flight time of flight i when using route r  

Ki  Consumption of fuel per second of flight i 

LPir  Noise impact of flight i in route r for a certain population 
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CPS Constrained Position Shifting. For CPS = 0, the order of flights is 

the initial one (1,2,..,N) 

WTCi,j  Wake Turbulence Category separation between flight plan i and j.  

M  A big number (classically used for modelling convenience).  

 

The decision variables considered to define a feasible schedule are: 

𝜌𝑖,𝑟   {

 
  1 if flight plan 𝑖 approaches using route r

0 otherwise                                                     
                            

 

ti Landing time of flight plan i as scheduled by the model 

di Forced delay to flight plan i before landing, in order to assure safety 

separation distance between consecutive flight plans (minutes) 

i,j          {

 
 1 if flight plan 𝑖 lands before 𝑗 (𝑡𝑗 > 𝑡𝑖)

 0 otherwise                                                  
                            

  

With this notation the objective functions are:  

 Minimize total fuel consumption: 

𝑚𝑖𝑛 ∑ (𝑡𝑖 − 𝐻𝑆𝑖) 𝐾𝑖𝑖                        (3) 

 Minimize total noise impact: 

               𝑚𝑖𝑛 ∑ ∑ (𝐿𝑃𝑖,𝑟 𝜌𝑖,𝑟)𝑟𝑖                           (4) 

To ensure that the solutions obtained are feasible, the following constraints are 

introduced:   

1) Each flight plan i is only assigned to one route. Therefore for each flight i, exactly 

one 𝜌𝑖,𝑟 is 1:  

∑ 𝜌𝑖,𝑟 = 1        𝑟 ∀𝑖                                (5) 
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2) The real time of the arrival of flight plan i is determined by its departure time plus 

the flight time of the selected route and can have a delay so as to respect WTC 

separation restrictions (only the current route r must be considered in the 

calculation, identified because 𝜌𝑖,𝑟 = 1):  

           𝑡𝑖 =  𝑑𝑖 + ∑ (𝐻𝑆𝑖 + 𝑓𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒𝑖,𝑟) 𝜌𝑖,𝑟    ∀𝑖𝑟           (6) 

  

3) Either flight plan i lands before j or flight plan j lands before i:  

               𝜏𝑖,𝑗 +  𝜏𝑗,𝑖 =  1      ∀𝑖, 𝑗;   𝑗 ≠ 𝑖                                      (7) 

4) Separation constraints between flight plan i and flight plan j in the landing runway 

are guaranteed (in this inequation, if 𝜏𝑖,𝑗 = 1 remains 𝑡𝑗 ≥  𝑡𝑖 +  𝑊𝑇𝐶𝑖,𝑗  and the 

separation between flight i and j is at least WTC as required; else, if 𝜏𝑖,𝑗 = 0 it 

remains 𝑡𝑗 ≥  𝑡𝑖 +  𝑊𝑇𝐶𝑖,𝑗 − 𝑀  being M a big number and therefore the constraint 

becomes superfluous):  

                  𝑡𝑗 ≥  𝑡𝑖 +  𝑊𝑇𝐶𝑖,𝑗 − 𝑀(1 −  𝜏𝑖,𝑗)    ∀𝑖, ∀𝑗 ≠ 𝑖             (8) 

5) CPS constraint in landing is fulfilled (flight i must land in positions 𝑖 ± 𝐶𝑃𝑆):  

          ∑ 𝜏𝑖,𝑗𝑗 ≠𝑖  ≥ 𝑁 − (𝑖 + 𝐶𝑃𝑆)       ∀𝑖                                   (9) 

         ∑ 𝜏𝑖,𝑗𝑗 ≠𝑖  ≤ 𝑁 − (𝑖 − 𝐶𝑃𝑆)       ∀𝑖                                    (10)                                                                                                             

 

3.1. Finding the set of Pareto efficient solutions 

The design of a system with more than one objective is referred to in the literature as a 

Multiple Criteria Decision Making problem (Miettinen, 2008). This type of decision and 

planning problems involves multiple conflicting objectives that need to be considered 

simultaneously.  
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Solving a Multi-Objective Optimisation problem does not lead to a single global solution. 

Due to the competing nature of the objectives, it might be possible to obtain an infinite 

number of solutions where each unique solution assigns different priorities to the problem 

objectives. These solutions are known as Pareto points and constitute the so called Pareto 

frontier. For instance, in our case with two objectives, the set of non-dominated solutions 

(Pareto frontier) is defined in such a way that for each point, minimising the global fuel 

consumption cannot be improved without sacrificing noise impact. 

The generation of the Pareto frontier can be accomplished through scalarisation or 

vectorisation methods (Chircop and Zammit-Mangion, 2013): scalarisation methods 

convert the Multi-Objective Optimisation problem into various parametric Single-

Objective Optimisation problems; vectorisation methods tackle the Multi-Objective 

Optimisation problem directly. The first ones typically define a set of differently 

parameterised single-objective models and apply multiple runs of a single-objective 

optimiser. Laumanns et al. (2006) states that it is a difficult and sometimes impossible 

task to choose a sequence of parameter values, such that the whole Pareto front is 

discovered because the choice of the parameter values determines which specific 

elements of the Pareto set are found.  

One of the most popular methods to generate the Pareto front is the -constraint method 

(Haimes et al., 1971). Its logic works by choosing one objective function as the only 

objective and the remaining objective functions as constraints; by a systematic 

modification of the constraint bounds, different elements of the Pareto frontier are 

obtained. The method relies on the availability of a procedure to solve constrained single-

objective problems.  

Algorithm in Figure 1 gives an implementation of the method (Chankong and Haimes, 
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1983) for the case of two objectives. The idea, as stated before, is to iteratively increase 

the constraint bound by a pre-defined constant δ. The necessity to choose such a value 

represents also the main drawback of this approach. Since only one solution can be found 

in each interval, the discretisation must be sufficiently fine not to “miss” substantial 

Pareto-optimal solutions. In the worst case, the difference between objective vectors 

might be as small as the machine accuracy of the computer used to run the algorithm. 

 

--------------------------------    FIG. 1  -------------------------------- 

 

In our case, the following specific procedure was used: 

 Minimise only the global consumption, which indicates the superior limit of total 

noise impact (point on the far right in our frontiers).  

 Minimise only the total noise impact (point on the far left).  

 Solve the model being the objective function the minimisation of the global fuel 

consumption, but adding a new constraint that limits the total noise impact 

according to some  proportions ([1; 0.95; 0.90; …; 0]), in the segment of the 

noise range defined by steps 1 and 2. 

 

3.2. Scenario description 

To test the capabilities and efficiencies of our model and analyse the results, we will 

consider a real scenario with data from arrivals at Adolfo Suárez Madrid-Barajas Airport, 

which is the biggest airport in Spain and ranks 5th in the EU in terms of passengers 
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(AENA, 2018). This airport operates in two different configurations that determine the 

direction of departures and arrivals. In the North configuration, which is the preferred one 

(Eurocontrol – Public Airport Corner, 2018), airplanes take off and land, heading north. 

In the South configuration, airplanes take off and land, heading south.  

Adolfo Suárez Madrid-Barajas Airport has four runways, composed of two parallel 

runways on a north–south axis separated by 1.8 km, and another two parallel runways on 

a northwest–southeast axis separated by 2.5 km. Depending on the configuration, the 

runways have different denominations (Figure 2 shows the layout of the runways and 

their names in both configurations). In this way, in the North configuration, aircraft take 

off using runways 36L and 36R (left and right respectively) and land using runways 32L 

and 32R.  

--------------------------------    FIG. 2  -------------------------------- 

Adolfo Suárez Madrid-Barajas Airport has various correctives to reduce noise levels in 

compliance with European Directive 2002/30/EC, such as the prohibition of night-time 

operations of aircraft with noise levels of four or higher (according to EASA scale) , and 

operating restrictions due to noise quota from 23:00 to 07:00 local time.  

To collect noise information for our experiments, the WebTrack tool of the Spanish 

National Airports Agency (AENA) has been used. WebTrack allows for checking noise 

levels caused by different aircraft by using the trajectory of the airplane in the 

surroundings of the airport, both for landings and arrivals (Figure 3 shows a screenshot 

of this tool). This function is accomplished thanks to the data provided by the noise 

monitoring system SIRMA [“Sistema Integral de Ruido de Madrid-Barajas”] (SIRMA, 

2018). This system receives information on both the noise recorded at the 27 Noise 

Monitoring Terminals (NMTs) installed around the airport, as well as radar and flight 
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plan data from the SACTA system (“Sistema Automatizado de Control de Tránsito 

Aéreo”). The WebTrack tool provides information about the aircraft (flight number, 

approach route and altitude) and associates these data with the corresponding aircraft’s 

noise emission level for each NMT, which is necessary for feeding our model.  

-------------------------- FIG. 3 ---------------------- 

-------------------------- TABLE 1 ---------------------- 

Table 1 details the location of the 27 NMTs, average noise of each NMT for 2017 caused 

by aircraft, the population of each affected village and whether this NMT noise measure 

corresponds to landings or departures, taking as a reference the North configuration (the 

preferred one). Analysing Table 1, out of 27, only seven reflect the noise produced by 

arriving aircraft (which is what we are analysing). The biggest population of these seven 

locations is in Torrejón (NMT 20), and the locations with the worst records of noise 

measures are Coslada (NMT 11) and San Fernando de Henares (NMT 10). Considering 

the North configuration, Coslada and San Fernando de Henares are the NMTs that register 

the worst noise records because they are under the final approach route of aircraft landing 

on runway 32L.  

Also, since the objective of this study is not only to reduce the noise impact on the 

populations with higher noise records but also to consider the overall population impacted 

on, we will also take into account the NMT of Torrejón de Ardoz since this population is 

closer to the final approach route of aircraft landing on runway 32R. Although the noise 

records are not as severe as those for Coslada and San Fernando, the population impacted 

on is more than double that of Coslada and San Fernando. This allows us to have a 

representative and balanced measure of global noise impact on the surrounding areas of 

both landing runways. So, for our research, these three NMTs will be considered for 
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measuring noise impact and gathering individual noise impacts with the WebTrack tool, 

as the other NMTs reflect a smaller noise impact.  

In our paper, noise estimation is based on single events modelled by AENA following 

ISO 20906:2009, and a metric that allows us to use these real data gathered by the NMTs, 

thus obtaining the noise disturbance in the affected population. Another possibility would 

have been using noise contours maps, which are a graphical representation of the 

significant levels of noise in a given territory, obtained by measuring a set of 

representative points, over different periods. Although in different occasions they were 

used in the airports neighborhoods (ICAO, 2008; FAA, 2013), and are widely used for 

legislation purposes, noise assessment and study of noise effects in the population, 

however they are not so frequently employed in the literature for scheduling optimization 

purposes (Tian et al., 2018); Kim et al., 2018).  

Noise data was chosen for a full day that Adolfo Suárez Madrid-Barajas Airport operated 

using the North configuration, i.e. 20th January 2018. Timetables for each flight plan 

were collected using an online flight tracker (FlightRadar24, 2018).  

The following assumptions were made in our experiments: 

 Noise over San Fernando de Henares, Coslada and Torrejón de Ardoz was taken 

when all the aircraft were overflying the corresponding NMT sensors of these 

populations 

 Average noise produced by each type of aircraft was determined for each runway 

to calculate the alternative noise caused by the aircraft if landing on the alternative 

runway (Table 2). The use of generic aircraft types has been validated by Torija 

and Self (2018) for computing aviation noise outputs.  
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-------------------------- TABLE 2 ---------------------- 

 Fuel consumption data for the whole flight are average data per aircraft extracted 

of ICAO Carbon Emissions Calculator Methodology document (ICAO Carbon 

Emissions Calculator Methodology, 2016). This is a proxy of the real 

consumption data. 

 Aircraft landing at the 32R runway take five minutes more approach time than 

those landing on the 32L runway. 

 Wake vortex minimum separation considered is the one established by document 

4444 of OACI.  

 Given the bi-criteria nature of the model, the -constraints methodology is used to 

find the Pareto frontier for each instance. 

All the computational experiments are done considering different time slots, different 

CPS and the real flight time of each flight. The optimization software used to solve the 

models is LINGO v17. 

 

4. A FIRST EXAMPLE OF THE MODEL SOLUTION 

For a better understanding of the model and the study framework, a detailed example of 

just five flight plans that landed in Adolfo Suárez Madrid-Barajas Airport on 20th January 

2018 is first presented. Details of those flights are provided in Table 3.  

-------------------------- TABLE 3 ---------------------- 

Considering CPS = 2 (i.e., each flight can only shift at most two positions in relation to 

its original position in the sequence); we ran the model, forcing five different maximum 

noise levels to find five points in the Pareto frontier. Figure 4 shows the result given by 
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the model compared to the real solution. The diamond points represent solutions found 

by our model in the Pareto frontier, and for each point, the sequence and landing runway 

of each flight plan are specified. The square point reflects the real solution (what actually 

happened that day) and the sequence of landings, and the runways where the flights 

landed.  

-------------------------- FIG. 4 ---------------------- 

It can be seen that both the landing runways and the sequence of landings chosen by the 

model change depending on the point of the Pareto frontier. When the model calculates 

the best solution to minimise total fuel consumption (i.e., not limiting at all the noise 

level, thus finding the point in the far right in Figure 4), it proposes that the aircraft 

consuming the most in the sequence, lands as early as possible considering the CPS 

restriction imposed. This means for flight QR149 (FP5), which in the real sequence lands 

in the fifth position, the model proposes it to land in the third position. However, when 

the model calculates the best solution to minimise total noise impact, it can be seen that 

it chooses the 32L runway for all the flights in the example, as this runway and its 

approach route is the one that minimises the population disturbed by the noise generated 

by lading aircrafts. It can be seen that the CPS does not have an impact on the result when 

minimising the total noise impact, since the model chooses the same order as the initial 

sequence (when minimising noise, only the election of the most appropriate landing 

runway is taken into account for this objective).  

Comparing the total real fuel consumption with the best solution found by the model in 

this small example, our model is able to reduce almost 2% of total fuel consumption (more 

than 1 ton of fuel of the total consumption of the flights considered in this instance), only 

by changing the order of the landing sequence. If the same analysis is performed in terms 
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of total noise impact, the result is that more than a 30% total noise impact reduction is 

achieved.  

 

 

5. RESULTS AND DISCUSSION  

To evaluate the influence of the value of CPS, a first set of data has been computed, 

considering different values of CPS: from the lower value CPS = 0 (i.e., the sequence of 

landings in the same order as the real one, FIFO), to CPS = 5 (Rodriguez-Diaz et al. 

2017a, noted that controllers always wish to keep the sequence as similar as possible to 

the FCFS sequence received, and the limit of 5 was defined in their study). As always 

occurs when relaxing constraints in optimization models, results for CPS = 5 are no worse 

than for CPS = 0 in terms of total fuel consumption (kg), achieving a total reduction of 

2,000 kg for the best case of CPS = 0 vs. the best for CPS = 5 (see Figure 5). When 

compared to the real sequence, the improvements are almost 20,000 kg of total fuel 

reduction. For the other values of CPS, the results are always between the bounds of the 

solution found for CPS = 0 and CPS = 5. Therefore, the next set of experiments were 

performed, considering only these two extreme values for CPS.  

------------------------- FIG. 5 ---------------------- 

To select the time frames of data used to analyse and compare the results after running 

the defined model, we study how congestion can influence the results and the possible 

improvements found by the model. Congestion is determined by the total number of 

landing aircraft per period. Figure 6 shows the number of airplanes that landed in every 

hour period at Adolfo Suárez Madrid-Barajas Airport the day of the data set.  
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-------------------------- FIG. 6 ---------------------- 

As can be seen, between 8:00 - 9:00 and 12:00 - 13:00 are peak periods, while during the 

night, the number of landing aircraft is significantly smaller. Taking into account that the 

number of flights in each sample need to be equal for comparison purposes (50 flight 

plans in this case), the chosen periods for our analysis are: 

 Low congestion - [00:00 – 8:00] 

 High congestion - [12:00 – 13:30] 

 Intermediate congestion - [20:10 – 22:10].   

Figure 7 to Figure 9 show the results of different sets of data, depending on the time of 

day considered. As can be seen, for all three cases, all the solutions found by the model 

are better than the real operation, dominating (i.e., being better in cost and noise 

simultaneously) the real schedules of that day. As noted before, the best solutions are 

obviously found for CPS = 5.  

-------------------------- FIGS. 7, 8 & 9 ---------------------- 

If we evaluate in these three figures the opportunities for cost reduction when relaxing 

the CPS constraint (i.e., allowing CPS = 5 instead of CPS = 0) we observe in the right 

extreme points of the figure (this means, points that minimize just fuel consumption), that 

in the Low congestion case we find a solution which allows to save 0.25% of total fuel, 

in the High congestion case 0.49%, while in the Intermediate congestion case the 

reduction in fuel consumption goes up to 1.17%. 

Given that the three real operation points are dominated by all the points in the three 

Pareto frontiers, we can analyse the results in terms of the potential percentage of 

improvement in total fuel consumption and total noise impact, comparing the real 
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situation with the best solution regarding noise (extreme left point in the frontier) and cost 

(extreme right point; see Table 4). It can be seen that the best results, in terms of total fuel 

consumption improvement, are again achieved for the scenario with Intermediate 

congestion (for both CPS).  

These results indicate that when congestion is very low or very high, aircraft arrive at the 

airport with higher spacing or very close respectively, and the gain of applying CPS is 

very low. However, when the gaps between aircraft are big enough to combine different 

aircraft optimising the WTC but not very high so that the order of the aircraft is not altered 

without producing large waiting periods (impacting on fuel consumption), the 

improvement achieved by applying the CPS method is higher. We must point out here 

that the low percentage of improvement must be analysed, considering that the approach 

and landing procedures represent only a small percentage of the total flight time.  

-------------------------- TABLE 4 ---------------------- 

Regarding the results for noise improvement, it can be seen that CPS has no impact on 

the solutions achieved, with improvements in respect to the real noise impact much higher 

than in the cost case (more than 35% in all the scenarios considered). Allowing the model 

to select the most appropriate landing runway in terms of noise, confirms that there is 

place for improvement and can lead to important reductions in terms of noise impact over 

the populations that surround this airport.  

After this analysis, we can state that noise and fuel-burnt reduction is achieved in our 

model as a consequence of 2 factors:  

 Selecting the most appropriate landing runway allows the model to achieve 

reductions of overall noise in the population surrounding the airport. 
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 Changing the sequence of arrival allows the model to reduce the total fuel 

consumption since it leads to reductions in the spacing between aircrafts, reducing 

flight-times and selecting the optimal sequence of arrival. 

With our bi-objective model we achieve solutions that, at the same time, are optimized in 

both objectives (fuel and noise), finding schedules which are much better than real 

operation.  

Having observed the potential for improvement in both noise and fuel consumption, it 

could be interesting to test how the type of aircraft influences the potential improvements. 

Figures 10 and 11 show the difference between the real operation and the two best 

alternatives for both criteria (i.e., the difference in fuel consumption and noise impact 

between the real data and the best solution found when minimising fuel consumption, and 

the best solution found by the algorithm when minimising the noise impact for the testbed 

of intermediate congestion).  

-------------------------- FIGS. 10 & 11 ---------------------- 

Figure 10 shows that when minimising fuel consumption, Airbus 332 has an average 

improvement of 450 kg when CPS = 5 (which is a 0.39% of its total consumption) while 

for CPS = 0 the fuel average saving is 150 kg (0.14% of its total consumption). It is 

reasonable to observe that the biggest improvements are for highest CPS due to higher 

improvement margins.  It is also interesting to note that the largest percentages of total 

fuel reduction, in comparison with the total amount of fuel consumption per aircraft, are 

for AT75, A319 and B38M.  

Figure 11 shows that when minimising noise impact, Airbus 319 has an average 

improvement of LP = 14000 for both CPS = 5 or CPS = 0, which contributes to a reduction 
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of 18% in the noise impact of this aircraft in the surrounding populations. For Airbus 333 

or Boeing 788, the model can achieve reductions of around 50% of noise impact in the 

populations affected by the final approach route.  

 

6. CONCLUSIONS 

In this paper a suitable bi-objective model for scheduling the landing of a sequence of 

aircraft by minimising noise impact and total fuel consumption (while limiting delays and 

maximising runway capacity) is presented. The model makes the most of the current 

capacity of the runways by choosing the most appropriate landing runway and landing 

time under wake vortex separation and CPS restrictions. It is also important to note that 

the proposed approach does not imply any change in the STARs or the operational 

procedures of the considered airport.  

By using this model, we tested the potential improvements that are possible to attain when 

comparing current operational routines with the best alternative found by the model. The 

scenario considered in order to validate the proposed approach real data of landing aircraft 

at the Adolfo Suárez Madrid-Barajas Airport.  

By analysing real flight plans on a specific day, improvements of up to 4.5% of total fuel 

consumption reduction were found, by modifying only the order of the approach sequence 

of arrivals at the airport, and up to 43% of reduction in total noise impact, which confirms 

that scheduling can be easily improved and have an immediate positive impact on the 

surrounding population of the airport without incurring delays and harming fuel 

consumption. Aircraft with the worst records of noise are those that have the highest 

possibilities of improvement, and aircraft that have lower consumption are those with 

lower absolute values of fuel reduction in kg but higher relative reductions in comparison 
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to the total fuel consumed by the flight. 

Lastly, it is important to note that congestion (total number of landing aircraft per time 

period) has an important effect on the possibilities of improvement of this model. 

Although for all three cases with different flight densities, all the points found by the 

model are better than the real operation, and dominating (i.e., being better with regard to 

cost and noise simultaneously) all of those in the current operation, the best results in 

terms of total fuel consumption improvement are achieved for the scenario with 

Intermediate congestion. Hence, being able to smooth the traffic over peak hours could 

have rewarding results; opening the door to achieving improvements in terms of having 

wider scheduling options that take into account noise reduction and fuel consumption as 

objectives.   

Regarding the practical application of the model, while the route segment of the filed 

flight plan does not usually change during the flight itself, the STAR, the approach route 

and the runway might change depending on the weather conditions (such as wind), and 

air traffic congestion around the airport, among other factors. This is why the filled flight 

plan route ends not at the destination airport but at the point where a STAR begins, since 

the STAR, approach route and landing runway are usually assigned to the pilot during the 

en-route phase of the flight. Since the computational time of our model is very low, our 

model can be run during this phase to support the air traffic controllers on the best 

approach route that needs to be selected in order to balance noise disturbance in nearby 

populations and total fuel consumption. Note that the complete Pareto frontier would not 

be needed for real implementation as it was only used for our experiments, which reduces 

even more the computational time and would allow air traffic management systems to run 

periodically the model with the last updated data in order to find continuously the best 

solution. 
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There are a number of topics open for further research. Depending on the availability of 

more accurate real-time atmospheric condition information, a more accurate noise 

prediction could be obtained. This would allow for adjusting the decisions taken by the 

model with respect to noise propagation properties and noise impact influence on 

surrounding populations of the proposed solution. Also, extending the problem to 

consider all the flight trajectories would allow us to have a wider vision of the problem. 

Finally, the possibility of considering as an objective not only the total reduction but also 

the priority of flights would be interesting to explore. 
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Input: Objective bounds f and 𝑓 ̅ ∈  R, and increment 𝛿 ∈ 𝑅 

P := ∅ 

 := 𝑓 ̅ 

while  ⩾ f do 

x := opt(f; f’) 

if ∄x′ ∈ P such that x′ ≻ x then P := P ∪ {x} 

 :=  − δ 

end while 

Output: Set of Pareto-optimal decision vectors P 

 

 

 

 

Figure 1.- Bi-objective -constraint Method (for objectives f and f’) 
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North Configuration South Configuration 

  

 

 
 
 
 
 

Figure 2. Adolfo Suárez Madrid-Barajas airport - North and South configurations. 

Solid arrows represent the direction of departures and spotted arrows represent the 

direction of landings 
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Figure 3. WebTrack screenshot example (WebTrack AENA, 2018) 
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Figure 4. Alternative sequences found by the model for 5 FPs with CPS=2. Diamonds 

are solutions in the Pareto frontier, and the square point is the real schedule that day. 

All points in the shadowed area dominate (are better in both cost and noise) than the 

real schedule operated 
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Figure 5. Pareto frontier for 50 flights (corresponding to the Low congestion time 

frame) with different values of CPS. All solutions found are better than the real 

schedule operated 
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Figure 6. Number of flights landing in every hour slot on the 20th January 2018 in 

Adolfo Suárez Madrid-Barajas Airport 
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Figure 7. Solutions found for 50 flights landing from 00:00 to 08:00 (Low congestion). 

The square point represents the real sequence (which is worse than all the solutions 

found) 
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Figure 8. Solutions found for 50 flights landing from 12:00 to 13:30 (High congestion). 

The square point represents the real sequence (which is worse than all the solutions 

found) 
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Figure 9. Solutions found for 50 flights landing from 20:10 to 22:10 (Intermediate 

congestion). The square point represents the real sequence (which is worse than all the 

solutions found) 
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Figure 10. Difference of fuel consumption (kg) between the real solution and the best 

solution found by minimizing fuel consumption, for two different CPS and per type of 

airplane (Intermediate congestion time frame flights). For each aircraft type, the 

percentage of improvement in terms of fuel consumption is shown per CPS. 
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Figure11. Difference in noise level between the real solution and the best solution found 

minimizing noise, for two different CPS and per type of airplane (Intermediate 

congestion time frame flights). 
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Table 1. Scenario description. Population taken from the Spanish National Institute of 

Statistics, with reference date January 2018 (INE, 2018). NMTs are grouped by 

Arrivals/Departures, recording the noise when Adolfo Suarez Madrid-Barajas Airport 

operates in the North configuration. 

 
NMT A/D Leq day (dB) Leq night (dB)  Location Population (2017) 

3 D 53 32 Dehesa Vieja 78,203 

4 D 54 45 Fuente del Fresno 1,265 

24 D 50 23 Ciudalcampo 609 

26 D 50 44 Club de Campo 3,500 

27 D 58 39 La Granjilla 500 

2 D 53 31 Algete 15,476 

5 D 50 44 Urbanización Santo Domingo Sur 
2,917 

21 D 50 43 Urbanización Santo Domingo Norte 

25 D 53 53 Prado Norte 1,877 

1 D 39 38 La Moraleja 114,864 

6 D 54 46 Fuente el Saz 6,424 

16 D 44 22 Tres Cantos 46,046 

18 D 47 39 El Molar 8,491 

7 D 49 39 Paracuellos 23,905 

9 D 62 53 Belvis 1,611 

23 A 48 42 Los Berrocales 798 

12 A 38 29 Alameda de Osuna 20,549 

13 A 49 43 Barajas 46,876 

8 A 59 48 Mejorada 22,948 

10 A 63 52 San Fernando de Henares 39,681 

11 A 66 55 Coslada 83,011 

20 A 49 44 Torrejón 128,013 

 
  



 
 

42 
 

Table 2. Average peak noise (dB) in the three NMTs, when landing on the two possible runways (32R and 32L) 

 

Aircraft 
Average Noise (dB)-NMT 10 Average Noise (dB)-NMT 11 Average Noise (dB)-NMT 20 

32R 32L 32R 32L 32R 32L 

A319 55 74 55 76 55 54 

A320 57 74 57 77 56 56 

A321 55 74 56 77 56 55 

A332 58 74 59 77 58 55 

A333 55 74 55 77 57 55 

A343 55 78 55 81 59 56 

A346 56 79 56 81 59 56 

AT75 53 72 53 75 57 53 

AT76 55 71 56 74 56 56 

B738 56 75 57 77 56 55 

B763 56 75 57 78 59 56 

B764 56 78 57 81 59 56 

B77W 56 75 57 78 59 56 

B788 55 74 56 77 56 53 

B789 55 75 56 77 57 52 

CRJ2 53 73 54 75 54 53 

CRJX 55 73 55 75 54 54 

E190 58 71 58 74 56 56 

E195 58 73 58 76 56 56 
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Table 3. Flight plans data for simplified real example (STD-Scheduled Departure from 

origin airport; fuel data taken from ICAO, 2016) 

 
 

ID Callsign Origin Aircraft  STD 
Tflight 

(min) 

Runway 

used 
WTC 

Fuel 

(kg/s) 

FP1 UX9161 
Las 

Palmas 

(LPA) 

B738 
20-1-18 

10:00 
152 32L M 0.694 

FP2 UX4042 
Alicante 

(ALC) 
AT75 

20-1-18 

11:30 
63 32R M 0.172 

FP3 UX9047 
Tenerife 

(TFN) 
B738 

20-1-18 

10:00 
154 32L M 0.694 

FP4 IB8711 
Lyon 

(LYS) 
CRJX 

20-1-18 

11:10 
85 32R M 0.444 

FP5 QR149 
Doha 

(DOH) 
B77W 

20-1-18 

05:00 
457 32R H 2.083 
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Table 4. Comparison of % improvement compared with real solution for the 3 scenarios 

(Low, Intermediate and High congestion) and two different values of CPS 

 
 Low congestion Intermediate congestion High congestion 

CPS = 0 CPS = 5 CPS = 0 CPS = 5 CPS = 0 CPS = 5 

Fuel 0.95% 1.20% 3.37% 4.50% 1.22% 1.71% 

Noise impact 36.44% 36.44% 41.91% 41.91% 43.12% 43.12% 

 


