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Abstract—Many algorithms for the optimization of array
antennas need the calculation of a gradient to minimize a cost
function. Usually, the best approach is to compute analytically
the derivatives, since that way computations are faster. However,
sometimes the derivatives are cumbersome to obtain or they
cannot be calculated, such as when directly optimizing the layout
in reflectarrays for cross-polarization improvement. In those
cases, derivatives are evaluated using numerical techniques such
as finite differences. In this work, we present the numerical tech-
nique of differential contributions (DFC) to accelerate gradient-
based algorithms when the derivatives are calculated with finite
differences, achieving a complexity time scaling of the same order
as the analytical derivatives. The technique is applied to a far
field phase-only synthesis for reflectarray antennas using the
generalized Intersection Approach, and it is compared with the
analytic derivatives and the use of finite differences with the FFT.
The DFC technique shows superior performance in all cases, even
than the analytic derivative.

Index Terms—Gradient-based algorithm, optimization, synthe-
sis, reflectarray, array, far field, differential contributions, finite
differences, generalized Intersection Approach

I. INTRODUCTION

Radiation pattern synthesis is necessary for applications that
require non-canonical beams. For instance, space applications
such as Direct Broadcast Satellite (DBS) [1], where the
antenna must generate a specific footprint on the Earth surface;
Synthetic Aperture Radar [2], where the pattern must be much
wider in one principal plane than the other; global Earth
coverage [3], where an isoflux pattern providing constant flux
on the Earth surface may be employed. Other applications such
Local Multipoint Distribution Service [4], cross-polarization
improvement [5], etc., also require non-canonical beams. In
addition, near field applications such as multi-focus [6] or
Compact Antenna Test Range [7] also benefit from optimizing
the radiated field.

A usual approach to perform array antenna synthesis is to
employ a local optimizer, which usually requires the com-
putation of the gradient of the cost function to minimize
[5]–[9]. When possible, the best strategy is to analytically
obtain the derivatives so computations are faster than using
numerical methods. However, there might be situations in
which this is not possible, either because the derivatives are
cumbersome to obtain, or because they are not available, such
as when performing the direct optimization of the layout for
cross-polarization improvement [5], [10]. In those cases, finite

differences must be use, which slows the computation of the
gradient with regard to the use of the analytical derivative.

In this work, we propose the technique of differential
contributions (DFC) [11] to accelerate the computation of the
gradient in local search algorithm for array antenna synthesis
when using finite differences. It is based on two principles.
First, thanks to the linearity of Maxwell’s equations, there is
a linear relation between the tangential field at the aperture
and the radiated field. In addition, by analysing each array
element assuming local periodicity, the modification of one
element, does not affect the others. These assumptions allow
to consider the differential contribution to the radiated field
of only one element when computing each derivative of
the gradient, effectively accelerating its computations when
using finite differences. This technique is implemented in
generalized Intersection Approach for a far-field phase-only
synthesis (POS) and compared with the performance when
using finite differences with the Fast Fourier Transform (FFT),
and the analytical derivative. The proposed technique con-
sistently provides faster results, even when compared to the
analytical derivative, while the achieving a high accuracy in
the computation of the gradient.

II. OPTIMIZATION ALGORITHM

A. Generalized Intersection Approach

The chosen algorithm is the generalized Intersection Ap-
proach (IA) [12] particularized for POS in [9]. It is an iterative
algorithm that performs two operations on the radiated field
at each iteration:

~Ei+1 = B
[
F
(
~Ei

)]
, (1)

where F is the forward projector, which computes the radiated
field and then trims it according to some specifications given
in the form of lower and upper masks; and B is the backward
projector, which minimizes the distance between the current
radiated field by the reflectarray and the field trimmed by the
forward projector that complies with the specifications [10].

For the present case, a far field synthesis will be performed,
and the generalized IA works with the squared field amplitude,
or equivalently, the gain. We consider a reflectarray antenna as
a particular case of a phased-array, comprised of N elements
and whose radiated field is computed at M points in space.



Assuming that S variables are optimized, and denoting with
Gt(u,v) the trimmed gain by the forward projector, and with
G(u,v) the current gain pattern radiated by the reflectarray, the
cost function which is minimized by the backward projector
is [10]:

F(~r) =
M

∑
m=1

{
C(~r)

[
Gt(~r)−G

(
~r; ξ̄

)]}2
, (2)

where ~r ∈ {~r1, . . . ,~rt , . . . ,~rM} is an observation point where
the far field is computed, with ~rt = (u,v)t , u = sinθ cosϕ ,
v = sinθ sinϕ; C(~r) is a weighting function and ξ̄ =
(ξ1, . . . ,ξi, . . . ,ξS) is a vector of S optimization variables,
which for the POS will be the phase-shift introduced by the
reflectarray elements. The cost function in (2) is minimized
by the Levenberg-Marquardt Algorithm (LMA) [13], which
requires the computation of the Jacobian matrix formed with
the derivatives of the residuals:

R
(
~r; ξ̄

)
=C(~r)

(
Gt(~r)−G

(
~r; ξ̄

))
. (3)

Since we consider S optimizing variables, the LMA will
require to compute S derivatives of (3).

B. Analytical Derivative

From here on, we drop the dependence on ~r to alleviate
notation and to focus only on the optimization variables ξ̄ .
Since for POS the optimization variables are the phase-shifts
introduced by the reflectarray elements, there is an easy way to
obtain the derivative analytically. For the computation of the
Jacobian matrix (gradient), we need to obtain the following
derivative:

R ′
(
ξ̄
)
=

∂R
(
ξ̄
)

∂ξi
=

∂
[
C ·
(
Gt −G(ξ̄ )

)]
∂ξi

. (4)

The apostrophe indicates a partial derivative with respect to
variable ξi. In addition, the gain is proportional to the squared
far field amplitude:

G
(
ξ̄
)
=

2π

η0Pt

∣∣Eff
(
ξ̄
)∣∣2 , (5)

where η0 = µ0c is the intrinsic impedance of vacuum and
Pt the power radiated by the feed. Thus, we can rewrite the
residual in (3) as:

R
(
ξ̄
)
=C1−C2

∣∣Eff
(
ξ̄
)∣∣2 , (6)

where:

C1 =CGt ; C2 =C
2π

η0Pt
. (7)

Taking into account that Eff
(
ξ̄
)

is complex, and it can be
written as the sum of its real and imaginary parts:

Eff
(
ξ̄
)
= Eff,R

(
ξ̄
)
+ jEff,I

(
ξ̄
)
, (8)

using the chain rule, it follows:

R ′
(
ξ̄
)
=−2C2

[
Eff,R

(
ξ̄
)

E ′ff,R
(
ξ̄
)
+Eff,I

(
ξ̄
)

E ′ff,I
(
ξ̄
)]
. (9)

For the far field, we consider the copolar component in two
linear polarizations [14], which are:

EX
ff
(
ξ̄
)
= EX

CP
(
ξ̄
)
= cosϕEX

θ

(
ξ̄
)
− sinϕEX

ϕ

(
ξ̄
)
, (10a)

EY
ff
(
ξ̄
)
= EY

CP
(
ξ̄
)
= sinϕEY

θ

(
ξ̄
)
+ cosϕEY

ϕ

(
ξ̄
)
, (10b)

which are again complex numbers and need to be expressed
in their real and imaginary parts. In addition, since the POS
is done independently for each linear polarization, we will
focus on polarization X. The steps for polarization Y will be
identical. Thanks to the linearity of the differential operator,
(9) can be written as:

R ′
(
ξ̄
)
=−2C2

[
EX

CP,R
(
ξ̄
)(

cosϕE ′θ ,R
(
ξ̄
)
− sinϕE ′ϕ,R

(
ξ̄
))

+EX
CP,I
(
ξ̄
)(

cosϕE ′θ ,I
(
ξ̄
)
− sinϕE ′ϕ,I

(
ξ̄
))]

(11)

For POS, the far field in spherical coordinates for polariza-
tion X are [9]:

EX
θ

(
ξ̄
)
= A

[
PX

x
(
ξ̄
)

cosϕ−η0 cosθ
(
QX

x
(
ξ̄
)

sinϕ−

QX
y
(
ξ̄
)

cosϕ
)]
,

(12a)

EX
ϕ

(
ξ̄
)
=−A

[
PX

x
(
ξ̄
)

sinϕ cosθ +η0
(
QX

x
(
ξ̄
)

cosϕ+

QX
y
(
ξ̄
)

sinϕ
)]
,

(12b)

where A is:
A =

jk0 exp(− jk0r)
4πr

. (13)

At this point, A is a complex number, as well as the spectrum
functions P and Q. Since we need the real and imaginary parts
of (12), it seems that we need to consider the multiplication
of A with P and Q. However, A is a common factor to all
equations and does not depend on the optimization variables.
Thus, we can extract it from (12) and add it to C2 in (9) so
the following operations are simplified. With that, the real and
imaginary parts of Eθ are:

EX
θ ,R
(
ξ̄
)
= cosϕPX

x,R
(
ξ̄
)
−η0 cosθ sinϕQX

x,R
(
ξ̄
)
+

η0 cosθ cosϕQX
y,R
(
ξ̄
)
,

(14a)

EX
θ ,I
(
ξ̄
)
= cosϕPX

x,I
(
ξ̄
)
−η0 cosθ sinϕQX

x,I
(
ξ̄
)
+

η0 cosθ cosϕQX
y,I
(
ξ̄
)
.

(14b)

And similarly for EX
ϕ .

For the computation of the derivatives of the real and
imaginary parts of EX

θ
and EX

ϕ , we need to compute the
derivatives of the real and imaginary parts of the spectrum
functions P and Q, by virtue of the linear property of the
differential operator. For instance, a generic spectrum function
P takes the form:

P
(
ξ̄
)
= K

N

∑
i=1

exp( jξi)Einc,i exp( jk0(uxi + vyi)) , (15)

where K ∈ R is the amplitude of the element pattern [15],
Einc,i is the complex incident field on reflectarray element i



and ξi the phase-shift introduced by that element, which is
the optimization variable for the POS. After extracting the
real and imaginary parts of (15), we have:

PR
(
ξ̄
)
= K

N

∑
i=1

[
cosξi Einc,i,R coski− sinξi Einc,i,I coski−

cosξi Einc,i.I sinki− sinξi Einc,i,R sinki

]
,

(16a)

PI
(
ξ̄
)
= K

N

∑
i=1

[
cosξi Einc,i,R sinki− sinξi Einc,i,I sinki+

cosξi Einc,i,I coski + sinξi Einc,i,R coski

]
,

(16b)

where ki = k0(uxi + vyi). Thus, the derivative for any element
i = p is:

P′R
(
ξ̄
)
=−K

[
sinξp Einc,p,R coskp + cosξp Einc,p,I coskp−

sinξp Einc,p,I sinkp + cosξp Einc,p,R sinkp

]
,

(17a)

P′I
(
ξ̄
)
=−K

[
sinξp Einc,p,R sinkp + cosξp Einc,p,I sinkp+

sinξp Einc,p,I coskp− cosξp Einc,p,R coskp

]
.

(17b)

The derivatives in (17) can be used for the four cases PX/Y
x/y

by simply using the adequate incidence field. For instance,
the spectrum function PX

y would need the field EX
inc,y. For

the spectrum functions Q, which use the magnetic field [9],
a similar process is carried out, yielding similar derivatives
as in (17). Finally, as it can be seen, the computation of
the derivative only considers the contribution of the element
depending on variable ξi, and thus the time cost of computing
one derivative analytically is O(M).

C. Gradient Computation with Differential Contributions

An alternative numerical method for the computation of the
gradient is the Differential Contributions (DFC) technique.
It accelerates the computation of the gradient when it is
evaluated using finite differences, achieving a time cost similar
to that of the analytic derivative. The derivative in (4) may be
expressed using finite differences, for instance the backward
lateral difference [16]:

∂R(ξ̄ )
∂ξi

=
R(ξ̄ )−R(ξ̄ −hêi)

h
+O(h), (18)

where h is a small positive scalar [13] and êi the ith unit vector.
For the computation of the derivative by means of (18), the

residual R(ξ̄ ) depends on the far field Eff(ξ̄ ) and it is common
to all S derivatives of the Jacobian matrix, so it only needs to
be computed once. On the other hand, R(ξ̄ −hêi) depends on
Eff(ξ̄ −hêi), and is computed for each derivative. In addition,
the perturbed field Eff(ξ̄ − hêi) may be computed with the
differential contribution:

Eff(ξ̄ −hêi) = Eff(ξ̄ )+∆Eff(ξi), (19)

where ∆Eff(ξi) is the differential contribution to the far field
produced by the element depending on variable i:

∆Eff(ξi) = Eff(ξi−h)−Eff(ξi). (20)

This is possible since the far field may be computed as
contribution of the field radiated by of all the elements of
the reflectarray, as in (15).

Since the Maxwell’s equations are linear, there exits a linear
relation between the tangential field at the aperture and the
radiated field. If we denote by Eref,k(ξi) = exp( jξi)Einc,k the
reflected tangential field of element k with k = 1, . . . ,N and
depending on variable ξi, (20) can be expressed writing the
far field as a function of the tangential field:

∆Eff(ξi) = Eff(Eref,k(ξi−h))−Eff(Eref,k(ξi)). (21)

Since the radiated field is linear with respect to the tangential
field it follows:

∆Eff(ξi) = Eff(∆Eref,k(ξi)), (22)

where:
∆Eref,k(ξi) = Eref,k(ξi−h)−Eref,k(ξi). (23)

Thus, (22) indicates that to compute one derivative, only
the differential contribution of one element is necessary, i.e.,
the element which depends on variable ξi. In practise, this
means that, starting from the tangential field, the time cost
of computing the far field is reduced from O(M logM) when
using the FFT to O(M) using the DFC technique. This time
cost is the same as for the analytic derivative.

D. Computational Results

The DFC technique has been compared with other tech-
niques for the computation of the Jacobian matrix: finites dif-
ferences using the FFT for the calculation of the far field, and
the analytic derivative obtained in Section II.B. Simulations
were performed in a workstation with an Intel Xeon E5-2630
v4 CPU at 2.2 GHz with 10 cores and 20 threads. In addition,
the computation of the Jacobian is parallelized, computing one
derivative (corresponding to a Jacobian column) per available
thread. Finally, the grid in which the far field is obtained has
512×512 points.

In Fig. 1 the measured computing time is shown when
optimizing a reflectarray with different number of elements,
or equivalently, reflectarrays of different size. From the results
shown in Fig. 1, the DFC technique is faster than the FFT
and even the analytic derivative, which a priori would seem
to be the fastest solution. In the present case, both the DFC
technique and analytic derivative have a time cost of O(SM)
for the computation of the gradient (Jacobian matrix), where S
is the number of optimization variables and M the number of
points where the far field is computed. However, the analytic
derivative requires more calculations in the loop that sweeps
the M points, resulting in the DFC technique being around
30% faster than the analytic derivative, and 56.9% and 94.2%
faster than the FFT and NUFFT, respectively.

III. APPLICATION TO THE SYNTHESIS OF A LARGE
REFLECTARRAY FOR DIRECT BROADCAST SATELLITE

A. Antenna Specifications

In this section, the DFC technique is applied to the syn-
thesis of a very large reflectarray for a Direct Broadcast



100 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500 5 000
0

10

20

30

# Optimizing variables

Ti
m

e
(s

)

FFT
Analytic
DFC

Fig. 1. Measured computing time of the Jacobian matrix computation with
the FFT, Diferential Contributions (DFC) and analytic derivative for different
number of optimization variables using a UV grid of 512× 512 points and
computations parallelized with 20 threads.

Satellite mission with European coverage [10]. The considered
reflectarray is rectangular and comprised of 5 180 elements
arranged in a periodic grid of 74×70. For the feed, an ideal
model based on a cosq θ function is employed [17], with
q = 23 generating an illumination taper of −17.9dB, and is
placed at coordinates (−358,0,1070)mm with respect to the
center of the reflectarray. The periodicity of the unit cell is
14×14mm2 and the working frequency is 11.85 GHz. Finally,
the reflectarray is placed in a satellite in geostationary orbit at
10° E longitude.

B. Results

Two different syntheses were carried out, the first using the
analytic derivative, and the second using the DFC technique.
The phase distributions obtained with each technique were
compared and Fig. 2 shows the difference for polarization X.
As it can be seen, the largest differences are produced at
the edges, which present the lowest illumination from the
feed and thus will affect less to the radiation pattern. For
Fig. 2, the mean absolute deviation is 1.6°. In addition,
the deviation was also computed after the first iteration of
the algorithm, showing a mean absolute deviation of only
0.0034° (5.9 ·10−5 rad). Taking into account the total number
of reflectarray elements, it is consistent with the expected error
of using finite differences, which for a lateral difference using
real numbers of 8 bytes is of the order of O(10−8) [16]. Fig. 3
shows the obtained copolar pattern for polarization X using
both methods. The differences due to the phase distribution not
being the same are negligible. Similar results were obtained for
polarization Y regarding the phase distributions and radiation
pattern.

Finally, it took the generalized Intersection Approach 149
iterations to obtain the results of Fig. 3, performing three
iterations of the LMA per iteration of the IA. Thus, the
Jacobian matrix was evaluated a total of 447 times. Moreover,
the synthesis was carried out in several stages, increasing the
number of variables at each stage to minimize the local minima
and improve convergence [12]. With the DFC technique,
2 875 seconds (47.9 minutes) were employed computing the
gradient. If the FFT were employed for the computation, it
would have taken 6 540 seconds (109 minutes) using data from
Fig. 1, which supposes a speed up of approximately 56%. For
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Fig. 2. Phase difference in degrees (°) between the syntheses using the
analytical derivative and the DFC technique for the computation of the
Jacobian matrix for polarization X.

the analytic derivative, the speed up was about 30% (from
4 086 seconds).

IV. CONCLUSION

In this work, a technique for the acceleration of the gradient
computation for reflectarray synthesis has been presented. It
is based on differential contribution (DFC) to the radiated
field, for which only the contribution of a single element is
considered. This way, the far field synthesis is sped up. This
technique has been implemented for a Phase-Only Synthesis
(POS) using the generalized Intersection Approach, where
the analytic derivative is available. A computing time study
comparing the DFC with other techniques for the computation
of the gradient was presented, including the analytic derivative
and the use of the FFT for the computation of the far field
using finite differences. The new technique is the fastest
for the computation of the gradient, even when compared
to the analytic derivative, since it has fewer operations for
the computation of the gradient. Finally, the technique was
employed for the synthesis of a very large reflectarray for a
Direct Broadcast Satellite mission with European coverage.
The results were compared with those of another synthesis
using the analytic derivative and the differences between the
two were negligible, while the DFC provides a computation
of the gradient around 30% faster.
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Fig. 3. Copolar pattern for polarization X in gain (dBi) of the synthesized European coverage obtained using (a) analyticla derivatives and (b) the differentical
contributions technique.
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