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Abstract—This paper develops an optimization method for the
integration of a hybrid energy storage system (HESS) considering
different supercapacitors and three different forms of Li-Ion bat-
teries: NMC (LiNiMnCo), LFP (LiFePO4) and LTO (Li2TiO3).
The proposed method finds the proper demand side management
(DSM) measures and optimizes the size of the HESS based on
the profile selected and the electric tariff, finding the case where
the net present value (NPV) is maximized. This method also
evaluates which supercapacitor and battery chemistry better suit
for each case. The proposed method allows to clearly evaluate
not only the technical issues related with the performance of the
system, but also the economical impact on the electric bill when
integrating a HESS in an industrial application. This method
will be also compared with the solution by only considering
economical factors.

I. INTRODUCTION

Following the rapid declining cost in Li-Ion batteries due
to economy of scale, it becomes a competitive technology
in stationary applications. During decades, Lead-acid batteries
have dominated this sector due to its low cost [1]. However, Li-
Ion batteries have improved their features in terms of energy
and power density, cycling and voltage level and makes them
the most suitable technology for this kind of application.
Compared to Lead-acid batteries, Li-Ion have a greater number
of cycles that results in a technology with a lower cost per kWh
[2]. Moreover, for long term applications, it is recommended
to include supercapacitors in order to enlarge battery cycling
and improve the overall performance of the HESS [3], [4].
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Industrial processes have a large potential for improving the
efficient use of energy resources and reducing the electricity
bill by means of HESS. DSM is one of the most suitable
technique due to its advantages [5]. However, the use of
HESS requires a deep analysis considering the associated
costs, and so, optimizing its size is crucial. Literature have
been more focused on optimizing the size of HESS used in
transportation or renewable sources rather than industry. In
this case, HESS aging takes a greater importance because
they operate a longer time and each storage technology has
to be thoroughly evaluated. This paper proposes to integrate
the HESS by coupling it together with a power converter for
the connection to the grid.

This paper examines hybrid solutions for a HESS based on
batteries with different chemistry and supercapacitors. There
are some toolboxes dealing with the performance of various
technologies of HESS [6], [7], an other toolbox dealing with
the optimization design of HESS and converter stages, like
[8]. The contemplated method seeks to develop an integral
methodology covering both technical and economical aspects.
For that purpose, different batteries and supercapacitors de-
vices are analysed. Furthermore, the impact of power losses
on the overall system efficiency is also considered.

For the battery analysis, LTO, NMC and LFP chemistries
are considered. Whereas NMC has the lowest price and highest
energy density, it also has the lowest C-rate and number of
cycles. On the other side, LTO is the most expensive and has
the lowest energy density, but it achieves the highest current
rate and number of cycles. Meanwhile, LFP features are in
the middle of the previous two [9]. The analysis carried out in
this paper will allow for selecting the battery chemistry better
fitting the profile requirements.

Supercapacitors is the other technology used to support the
storage system. It will be used under higher stress, so aging
has to be analyzed under particular scrutiny. In comparison
with battery-based storage systems, supercapacitors have a



higher number of cycles. The main factor that affect their
lifespan is temperature. Depth-of-discharge (DoD) and charge
voltage also contribute on their capacitance fade [3]. The
rule of thumb states that every 10◦C increased in working
temperature, supercapacitors degrades 1.2 times faster. It is
recommended to use supercapacitors above 50% of its state-
of-charge (SoC) to enlarge its life and not keep the voltage
high during floating conditions (0.1 V increase is equivalent to
a 10◦C increase) [3], [10]. The end-of-life (EoL) is defined to
occur either when it reaches 80% of its capacitance or doubles
its internal resistance [11].

The impact of the efficiency on the converter topology is
also evaluated. Depending on the operating point and the input
voltage, the efficiency of the converter varies [12]. A general
method to evaluate the efficiency of the converter based on the
rated power and voltage is implemented. A Multi-port Power
Electronic Interface (MPEI) converter is considered for the
integration of the HESS.

Finally, once the performance constrains are implemented
in the method, it is obtained the combination of HESS,
converter and DSM measures that achieves higher revenues
for a determined profile.

This paper is organized in three main sections. Section
II presents the process analysed, the models used for each
technology and the tariff considered for the analysis. Section
III evaluates the data signal processing, provides straightfor-
ward method to allocate the power between supercapacitors
and batteries based on their cost, and finally, the optimization
method proposed is presented. In Section IV, the results are
given for the processes considered.

II. TECHNO-ECONOMICAL ANALYSIS

The proposed methodology is based on an analysis of
the power allocation of experimentally collected consumption
data, considering the efficiency of the storage devices and the
power converter. The optimization method uses the NPV value
as the figure of merit.

A. Process description
The aim of this paper is to evaluate the feasibility of

reducing the industrial process electricity bill by integrating a
HESS. Three different load profiles from the steel industry are
evaluated (Fig. 1). They share in common to be nearly-periodic
non-stop processes, and the last one involves regenerative
braking.

The ultimate goal of the HESS is to reduce the cost
of the electricity in industrial process from the user side.
Three different approaches are considered: 1) reduction in
the allocated power, 2) energy shifting to lower cost periods
and 3) efficiency improvement. These is implemented by
the following DSM measures: 1) peak shaving, 2) use of
regenerative braking when available and 3) load levelling.

B. Energy Storage Hybridization
Design of HESS shall be based on an optimization approach

based on economical constraints. The considered batteries and
supercapacitors systems are collected in Table I and II.
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Fig. 1. Profiles P − 1, P − 2 and P − 3 which correspond to Picking,
Galvanizing and rolling mill processes respectively.

TABLE I
PARAMETERS OF THE BATTERIES.

Bat NMC LFPcyl LTO LFPpris

Pr [kW] 347 608 549 103
Er [kWh] 115 101 69 52
cycles1 3800 7300 15100 5000

Installation Cost [e/kWh] 600 1000 2000 625
[e/kW] 265 275 321 316

E2
cost [e/kWh] 0.20 0.17 0.17 0.16

Num. cells 6480 15360 7200 90
Num. of modules 135 320 150 6
Num. cells/module 48 48 48 15

1 Number of cycles using a 80% of DoD.
2 Ecost is the cost considering the battery lifespan- (1).

(1)Ecost[e/kWh] =
Install.Cost[e/kWh]

DoD[%] · cycles
The basic idea about the optimization is to increase the

HESS lifespan by loss minimization. For that reason, simple
battery and supercapacitor models that account for the power
losses are needed (Fig. 2).

For the battery case, the typical model based on series RC
networks is simplified to a series resistance and a voltage
source that corresponds to the open-circuit voltage , Voc (3)
presented in Fig. 2. Altenatively, the efficiency given at the
datasheet can be used. In our case, a value of 0.04 Ω for
all cases, and the equivalent one for all modules is computed
considering the series and parallel number of cells (ns and
np) as in (2).

CeqCeq

Supercapacitor

Ceq ReqReqReq

Supercapacitor Battery

IscIsc IbatIbat

ReqReqReqVoc

Fig. 2. Supercapacitor and battery model



TABLE II
PARAMETERS OF THE SUPERCAPACITORS.

SC Pr

[kW]
Er

[Wh] V [V]
Install. Cost

[e/kWh] [e/kW]

SC1 69 70 62 17047 17
SC2 89 57 48 17907 18
SC3 44 52 48 19270 19

TABLE III
HESS MODEL.

Battery Supercapacitor

Impedance
Association

(2)Req =
ns ·Rs

np

(3)Voc =

i=ns∑
i=1

Voccell
Ceq =

1∑i=n
i=1

1
Ci

(4)

Current (5)ib =
Pl

Voc

(6)isc =
Pl√
2·Ec
C

Voltage (7)Vb =
Pb

Ib
(8)Vsc =

Psc

Isc

Power
Losses

Ploss =
P 2
lb

V 2
oc

·Req

(9)

Ploss = CeqReq
P 2
l

2E
(10)

Sizing
Constrains

(11)P = Pl + Ploss

SoE =
E0 −

∫
Pdt

Etotal

(12)

SoC =
Q0 −

∫
idt

Qtotal

(13)

Number of
cycles Datasheet

Tsc = Ta+Rsc ·Rth · i2sc
(14)

n =
nR

2
Vsc−VR

0.2
+

Tsc−TR
10

(15)

The operation range is assumed to be between 10 to 90%
SoC, and it is considered the Voc to remain constant within this
interval. On the other hand, the datasheet provides the energy,
power and cycling constrains when performing a DoD up to an
80%, which is considered the maximum one for the batteries.
The number of batteries is sized to accomplish all the technical
constrains. For that propose, (9, 11, 12) are used, where P ,
Ploss and Pl are the power given by the storage, the losses and
the load profile power; SoE the state of energy and E0 and
Etotal the initial and total energy. For this kind of application,
the equivalent parameters for the typical association of the
batteries are already given by the manufacturer (Table I).

The supercapacitor model consists of an ideal capacitance
and a series resistance as shown in Fig. 2. For sizing purposes,
this model is accurate enough, and also, the parameters needed
are provided in the data sheet [13]. The supercapacitors are
grouped in series modules reaching 400 V. The equivalent

Fig. 3. Period distribution along the day each month, going from the most
expensive 1 (P1) to the cheapest one (P6).

resistance and capacitance for each series modules grouped
are gathered in (2, 4). The charge evolution and power
constrains are calculated using (6),(10)-(15), where isc and
Vsc are the current and voltage of the supercapacitor; E is
the available energy; Q0 and Qtotal is the initial and total
charge; SoC the state of charge; Tsc and Ta the operating and
ambient temperature; and Rsc and Rth the electric and thermal
resistance of one cell. Life cycling estimation is estimated by
the empiric relationship shown in (15), where n is the number
of cycles and the suffix R indicates the referenced value. This
expression is based on the voltage and temperature evolution
obtained previously [10], [11], [13].

C. Tariff

The electric bill is usually formed by two main charges
worldwide: electricity consumption and capacity demanded
[14]. This paper follows the Spanish regulation, which in-
cludes the energy and capacity charge, as well as taxes. In
general, energy depends on the time of the day at which the
consumption is required. For the specific considered case, six-
period tariff is considered. Prices are shown in Table IV and
the period varies as shown in Fig. 3. A similar analysis can
be carried out with different tariff distributions.

TABLE IV
SIX-PERIOD TARIFF.

Tariff P1 P2 P3 P4 P5 P6

C1
p e/kW/year 11.29 10.52 9.93 9.25 8.97 6.90

C2
e e/kWh 0.124 0.113 0.098 0.089 0.085 0.071

1 Cc: Contracted capacity charge. 2Ce: Energy consumption charge.

Each period can have a different contracted capacity, but
the regulation states that each contracted capacity has to be
equal or greater than the previous one (Pn+1 ≥ Pn). Once the
contracted capacity is settled for each period, the contracted
capacity charge (CCC) is calculated using (16), where Pfi

is the contracted capacity in period i expressed in kW and
Cpi is its annual price in period i. The energy charge (EC) is
computed following (17), where Ei is the energy consumed
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Fig. 4. Energy cost of each battery chemistry considering their lifespan
compared to the grid energy charge. The dashed line highlights the upper
limit price for making load levelling profitable.

in the period i (expressed in kWh) and Cei is the price of the
energy in that period i.

(16)CCC =

i=n∑
j=1

CpiPfi (17)EC =

i=n∑
i=1

EiCei

Once CCC and EC are calculated, the total electricity bill
cost is given by (18).

(18)Ecost = (CCC + EC)(1 + Etax)(1 + V ATtax)

For the specific case considered, the VAT tax is 21%, the
electricity tax (Etax) is 5.11%.

Considering the energy cost of all the battery models (Ecost

listed in Table I) is above the cost of grid energy (Table
IV), it is not profitable to size a HESS for shifting energy
purposes (Fig. 4). It is worth also noting the special case of
regenerative loads. Under the same consideration, once the
HESS is completely charged, it is cheaper to return the energy
back to the grid rather than increase the HESS energy capacity.
However, this could be different based on local regulations
(net-tariff). Hence, at the inflection point where the energy
battery price falls below the upper price of a tariff as shown
in Fig. 4, energy shifting will start to be profitable as a
DSM measure. However, this energy cost is a function of
the DoD, the number of cycles and the installation cost. The
actual paper, only considers the existing battery models, being
objective of future research the analysis of these coefficients
when energy shifting strategies are adopted.

Considering all the above, the HESS will be sized to
optimize the contracted service capacity by a peak-shaving
strategy. In the case an exceed of stored energy is available at
the end of the highest cost period, it will be used for reducing
the demanded grid energy.

D. Converter Impact

The proposed sizing methodology also evaluates the im-
pact of the power converter efficiency. Converter efficiency
depends on the conduction and switching losses. In order to
have a model approximation suitable to be considered in the
optimization process, (19) is considered instead [15].
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Fig. 5. 100 kW Converter efficiency example.a) Real (ηR) and calculated
(ηC ) efficiency at different input voltage (vin) b) Resulting error of the
efficiency calculated with (19) of a 100 kW at different input voltage of
power.

(19)

Ploss =

(
b0 + b1(vin − 1 + b2

(
1

vin
− 1)

))
+

(
b3 + b4(vin − 1) + b5

(
1

vin
− 1

))
pin

+

(
b6 + b7(vin − 1) + b8

(
1

vin
− 1

))
p2in

where vin and pin are the input voltage and input power;
and bx are the coefficients that have already been calculated
based on the converter efficiency data provided by the Califor-
nia Energy Commission [16]. Losses mainly come from the
auxiliary circuits and drives (independent of power); voltage
drops, ohmic losses and switching losses, related to the power
load; and other losses related to the input voltage [12], [15].
Fig.5a depicts the efficiency curve from the data [16] and the
one obtained using (19) at minimum, nominal and maximum
input voltage for a 100kW converter. The efficiency estimation
error is always below 3% as shown in Fig.5b for all efficiency
and voltage ranges. Table V gives the efficiency of some of
the converters considered at different power levels. The higher
the power, the higher the overall efficiency. The converter cost
is considered to be 100 e/kW.

TABLE V
CONVERTER EFFICIENCY RESULTS AT 100, 500 AND 1000 KW.

Pconv

[kW]
η10%
[%]

η30%
[%]

η50%
[%]

η75%
[%]

η100%
[%]

100 90.3 94.9 95.2 95 94.4
500 95.8 97 96.8 96.2 95.5
1000 97 98.1 98.1 98 97.6

III. ANALYSIS AND HESS OPTIMIZATION METHOD

A. Digital signal processing

The proposed optimization method allocates the power
by using digital filtering techniques over the consumption



profiles. [17]. The HESS operation will be targeted for peak
shaving during the tariff high cost periods. The higher the
power carried by the HESS is, the higher the revenue and
the installations costs. This duality triggers the need for an
optimization method. In the flow chart presented in Fig. 6,
the main idea is explained. The data has been recorded using
a sample time of 1 s. The analysis is carried out in three
steps. First, the peak shaving level is decided and the profile
to be given by the HESS is determined using the histogram
distribution. Secondly, it is obtained the profile that has to
be handled by the HESS in the time domain to reduced the
capacity. Finally, the power shared between the batteries and
the supercapacitors is selected, so the ratio of energy is the
same than the installation cost of the required energy by
each element. An iterative process compromising frequency
domain analysis for the selection of the cut-off frequency
for the sharing filter and time domain for calculating the
corresponding energy share is used.

The power handled by the HESS is allocated by using two
complementary high-pass and low-pass filters. The high-pass
filter and low-pass filter provide the power to the supercapac-
itors and the batteries respectively. Fig. 7 shows an example.
In the upper graph, it is shown the load profile and the power
provided by the grid, which has been reduced at high cost
periods. The lower graph shows the power demanded to the
HESS. As it can be seen, the supercapacitors handle the peak
powers, whereas the batteries operate at lower power and
higher energy levels.

Fig. 8 collects the energy distribution of the first profile
case in a histogram during the day. It can be shown that
the energy content at high power levels is very low, thus
enabling to perform a peak shaving at high cost periods.
Besides, the profile keeps periodic along the day to ensure
the HESS would be able to provide the power demanded and
avoid penalizations. Fig. 9 provides the energy distribution for
all the processes. It is clear that all the three have in common
a low-energy value in the high-power region.

Based on the HESS power and energy pricing, an initial
cut-off frequency fc can be selected for the power share
within the supercapacitors and batteries. Considering the costs
breakdown in Table I and II, it is shown that the difference
between energy price is much more relevant than the power
one. Besides, as it is shown in Fig. 10, the required energy
installation for a given power allocation is much higher. Based
on that, only the energy factor kE (20) is considered for the
selection of fc, where Eb and Esc is the energy required of
each technology. On the contrary, kPHESS gathers the eco-
nomical relation of both technologies taking into account the
battery (Pb) and supercapacitor (Psc) energy price collected
in Table I and II.

(20)kE =
Eb

Esc + Eb
(21)kPHESS =

Psc

Pbat + Psc

Fig. 11 depicts the variation of kE for the three analysed
process and its relation with kPHESS in function of the cut-
off frequency of the sharing filter, fc. The intersection point

Data acquisition: Ts=1 s during 8 hours 
fN=1/(2Ts) ; fc ∈ (0, fN); fc [99];

Cost rel[€/kWh]=Costb/(Costsc+Costb)

fc selected=fc[i];

Histogram
Peak shaving energy required
at high cost periods 

Allocate the power of the HESS
In the frequency domain:
Complementary filters: fc=fc[i]
High pass filter→P bat

Low pass filter → P sc

Allocate the power of the HESS
In the frequency domain:
Complementary filters: fc=fc[i]
High pass filter→P bat

Low pass filter → P sc

i=1; i<100;i++;
fc [i]=i/100·fN

HESS profile
in the time domain
HESS profile
in the time domain

Costrel<Erel

yes

Calculate energy required from the HESS
In the time domain:
Esc=max(Eacum sc)
Ebat =max(Eacum bat )
Erel=Eb/(Esc+Eb)

Calculate energy required from the HESS
In the time domain:
Esc=max(Eacum sc)
Ebat =max(Eacum bat )
Erel=Eb/(Esc+Eb)

Calculate energy required from the HESS
In the time domain:
Esc=max(Eacum sc)
Ebat =max(Eacum bat )
Erel=Eb/(Esc+Eb)

no

Fig. 6. Data analysis process steps: 1. Decide the peak shaving level. 2.
Get the HESS profile. 3.Perform the frequency domain analysis of the HESS
profile and select power allocation.

between the kE curves and the kPHESS value determines the
fc value. The three processes are evaluated for a peak shaving
of 500 kW. There is one process (P−3) that does not intersect
with kPHESS . For this special case, the HESS will be formed
only of batteries as a first approach.

Up to this point, a procedure for the selection of the sharing
energy between the batteries and the supercapacitors for a
given power shaving level has been shown. However, the
selection of the optimal power level is still undecided. The
main idea about the optimization is to realize that the HESS
energy requirements for each peak shaving level determines
the opportunity cost for the HESS. This can be analysed by the
curves shown in Fig. 10. In there, the logarithmic relationship
between peak shaving and the HESS energy requirements for
the installation is depicted. The lower the energy required, the
higher the revenue.
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Fig. 8. Histogram of the energy distribution of the profile P − 1.
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B. Optimization method

The net present value (NPV) and the payback period are
the main metrics evaluated by the method. NPV is defined in
(22); where Ct is the net cash flow during period t, C0 the
initial investment cost, r the discount rate, which is considered
1%, and t the number of periods during the HESS life [18]. It
gives the net present value of a varying cash flow and is the
parameter to be maximized in the method.

(22)NPV =

T∑
t=1

Ct

(1 + r)t
− Co

Fig. 12 presents an example of the evolution of these
economic factors with respect to the performed peak shaving.
The greater the peak shaving, the larger the installation, and
the higher the savings obtained from reducing the electricity
bill. The NPV will be maximized at a peak shaving level,
which is the solution to be founded by the method. For the
same peak shaving level, the installation cost varies with
the hybridization ratio between supercapacitors and batteries.
Besides, it is given a 10% of margin between the maximum
power contracted and the expected maximum power demanded
to the grid to avoid penalizations by the electricity trader.

The total amount of modules should be the minimum
number of modules that accomplishes the technical constrains.
Thus, the final solution is the one that has a HESS which
ensures the lifespan required to achieve the maximum NPV
possible. However, a further evaluation should be considered
for getting this maximum NPV as the best option. As shown
in Fig. 12, the NPV value remains almost constant at its
maximum for a wide range of power installed. Thus, it might
be a better solution to slightly reduce the NPV value and
perform a lower peak shaving with lower requirements in the
installed HESS power.
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Fig. 13. Optimization method flow chart.

Fig. 13 depicts the scheme of the optimization method.
The inputs are: the profile to be analysed, the tariff and the
battery and supercapacitor models. The optimization method
is mainly composed of two sequentially-connected iterative
loops: an outer loop where different power levels of peak
shaving are evaluated and an inner loop where the power
sharing allocation between the supercapacitors and the battery
is analysed for each power level and the HESS is sized. The
power sharing is optimized by varying the cut-off frequencies
of two complementary filters.

After deciding the power allocation, the converter is sized
and the power losses are included. For this work, a typical
configuration of two bidirectional synchronous dc-dc boost
converter (one for each technology) and a dc-ac inverter for the
grid interface is used. The size of the dc-ac power converter
will be picked to match the maximum power demanded from
the HESS, whereas the dc-dc will match the maximum power
of each technology. The resulting power losses, calculated
according to (19), are included to get the new power demanded
to the HESS.

The HESS is sized so it can handle the power demanded
with the lower number of devices possible. During the periods
that the HESS do not operate, the supercapacitors remain at
half the nominal voltage. A completely discharge will result
in a shorten lifespan [19]. For the same reason, the voltage
will be kept within the limits during operation [3].

For sizing the battery is performed a daily discharge with a
DoD of 80%. The energy, power, DoD and cycling constrains
(Table I) are considered for the sizing proposes.

IV. RESULTS

This section provides the optimization sizing results for
the selection of the optimal fc with the procedure explained
in Fig. 13. The results are compared with the HESS sizing
obtained before the optimization, following the straightforward
methodology proposed in Fig. 6 based on the energy cost of
each technology. Results are presented for all the processes
shown in Fig. 1. The system lifespan should be above 10 years
and the payback should be below 6 years.

The results without and with the proposed optimization are
shown in Tables VI and VII. Some important conclusions can
be grabbed from the data: 1) The optimization method makes
two of the processes (P−1 and P−2) to be profitable, whereas
only P − 1 is suitable using the initial cut-off frequency
selection, achieving a lower NPV. 2) In P − 1, the increase in
the NPV and the reduction in the payback are 31% and 30%
respectively when the optimization method is applied, 3) Up
to near 1 MW of peak shaving is achieved, representing the
21% of the total installation power. 4) P −3 requires a greater
amount of energy installation for performing a peak shaving
(Fig. 10), making the process non profitable.

As an example for the optimization curves, Fig. 14 depicts
the surface that presents all NPV and payback period cases for
P − 1. The best case is the maximum point of the Fig. 14a,
whereas the lower payback period is highlighted in Fig.14b.

TABLE VI
RESULTS WITHOUT OPTIMIZING THE POWER ALLOCATION.

Process 1 2 3

NPV [ke] 227.6 NP1 NP1

Payback [years] 5.6
Savings[ke/years] 59.4
Installation [ke/kWh] 334.7

Technology used 1 LFPcyl

+ 20 SC1

fc [Hz] 0.055
Pshaving [kW] 840

1 Non profitable - Negative NPV.

V. CONCLUSION

This paper has presented an optimization method for HESS
sizing considering technical and economical constraints. The
HESS design is based on different battery chemistries and
supercapacitors. The optimization method is focused on cyclic
consumption profiles, which are often the case in industrial



TABLE VII
RESULTS OPTIMIZING THE POWER ALLOCATION.

Process 1 2 3

NPV [ke] 328 63.8 NP
Payback [years] 4.3 6.9
Savings[ke/years] 63.9 25.2
Installation [ke/kWh] 276.8 174.9

Technology used 1 LFPpris

+ 46 SC1

1 NMC
+ 5 SC1

fc [Hz] 5 · 10−4 0.16
Pshaving [kW] 910 350

Peak Shaving [kW]
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Fig. 14. NPV and payback period for all cases studied in Process 1.

applications. The technical constraints include an analysis of
the HESS losses, considering the battery and supercapacitor
losses as well as the converter efficiency. Simple models have
been used, suitable for be considered in the optimization
method. From the economical side, the tariff distribution
between energy and power as well as metrics regarding the
installation costs, the payback and the NPV are considered.
The design of the HESS is based on the selection of the
optimal cut-off frequency for the profile share between the
battery and the supercapacitor. An stadistical approach based
on the analysis of the consumption profile has been developed.
The optimization method is compared with respect to a non-
optimal sizing relying only on economical constraints. A
significant reduction of 30% is achieved in the payback and
an increase of 31% in the NPV when the optimization method
is considered.
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