Jordan bimodules over the superalgebra $M_{1 \mid 1}$

Consuelo Martínez*
Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007 Oviedo SPAIN
Ivan Shestakovov ${ }^{\dagger}$
Institute of Mathematics and Statistics
R. do Matão, 1010 - Vila Universitaria, São Paulo
SP, 05508-090, Brasil

Abstract

Let F be a field of characteristic different of 2 and let $M_{1 \mid 1}(F)^{(+)}$ denote the Jordan superalgebra of 2×2 matrices over the field F. The aim of this paper is to classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra $M_{1 \mid 1}(F)^{(+)}$.

Introduction

We will assume in the paper that all algebras are algebras over a field F, char $F \neq 2$.

The theory of bimodules over simple Jordan algebras, developed by N. Jacobson in [J], was extended to Jordan superalgebras in a series of papers (see $[7,8, \ldots]$).

Let's remember that a superalgebra $J=J_{\overline{0}}+J_{\overline{1}}$ is a \mathbf{Z}_{2}-graded algebra. So $J_{\overline{0}}$ is a subalgebra of $J\left(J_{\overline{0}} J_{\overline{0}} \subseteq J_{\overline{0}}\right), J_{\overline{1}}$ is a module over $J_{\overline{0}}\left(J_{\overline{0}} J_{\overline{1}}, J_{\overline{1}} J_{\overline{0}} \subseteq J_{\overline{1}}\right)$ and $J_{\overline{1}} J_{\overline{1}} \subseteq J_{\overline{1}}$. Elements lying in $J_{\overline{0}} \cup J_{\overline{0}}$ are called homogeneous elements, even if they lie in $J_{\overline{0}}$ and odd if they lie in $J_{\overline{1}}$. The parity of a homogenous element a is zero if the element a is even and one if it is odd and is represented as $|a|$.

[^0]A Jordan superalgebra is a superalgebra $J=J_{\overline{0}}+J_{\overline{1}}$ satisfying the following two homogeneous identities:
i) $x y=(-1)^{|x||y|} y x$,
ii) $(x y)(z u)+(-1)^{|y| z \mid}(x z)(y u)+(-1)^{|y||u|+|z||u|}(x u)(y z)=((x y) z) u+$ $\left.(-1)^{|u| z|+|u|| y|+|z \||y|}((x u) z) y+(-1)^{|x||y|+|x||z|+|x||u|+|z||u|}(y u) z\right) x$, for arbitrary homogeneous elements x, y, z, u in J.

A Jordan superalgebra is called simple if it has no nontrivial graded ideals. For more information about (simple) Jordan superalgebras we refer the reader to [K], [MZ], [RZ].

If $A=A_{\overline{0}}+A_{\overline{1}}$ is an associative superalgebra, that is, an associative algebra that has a \mathbf{Z}_{2} grading, then we can define a new operation \circ given by: $a \circ b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ for arbitrary homogeneous elements $a, b \in A$. The superalgebra obtained in this way, with the same underlying vector space and the same gradding of A and with the new product circ is a Jordan superalgebra, that is denoted $A^{(+)}$

In particular, if we take $A=M_{1 \mid 1}(F)$, the superalgebra of 2×2 matrices over the field F, with even part the set of diagonal matrices and its even part equal to the set of off-diagonal matrices,

$$
A_{\overline{0}}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right\}, \quad A_{\overline{1}}=\left\{\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)\right\}
$$

the corresponding Jordan superalgebra $J=A^{(+)}=M_{1 \mid 1}(F)^{(+)}$is a simple Jordan superalgebra.

Definition. If V is a \mathbf{Z}_{2}-graded vector space and there exist bilinear maps $V \times J \rightarrow V, J \times V \rightarrow V$, we say that V is a Jordan bimodule over the Jordan superalgebra J if the split null extension $V+J$ is a Jordan superalgebra, where the multiplication in the split null extension extends the one of $J, V \cdot V=(0)$ and the multiplication of elements of J and V is given by the bilinear maps . (see [MZ2]).

In the superalgebras setting, for each bimodule we can define the opposite module. Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a Jordan bimodule over a Jordan superalgebra J. Take copies $V_{\overline{1}}^{o p}$ and $V_{\overline{0}}^{o p}$ of $v_{\overline{1}}$ and $V_{\overline{\overline{0}}}$ with different parity. Then $V^{o p}=$ $V_{\overline{1}}^{o p}+V_{\overline{0}}^{o p}$ becomes a Jordan J-bimodule defining the action of J on $V^{o p}$ by:

$$
a v^{o p}=(-1)^{|a|}(a v)^{o p}, \quad v^{o p} a=(v a)^{o p}
$$

If J is a unital Jordan superalgebra and V is a bimodule such that the identity of $J, 1$, acts as the identity on V, then we say that J is a unital Jordan bimodule over J.

A one-sided Jordan bimodule over J is a bimodule V such that $\{J, V, J\}=$ (0), where $\{x, v, y\}=(x v) y+x(v y)-(-1)^{|x| v \mid} v(x y)$ represents the triple Jordan product in $J+V$ and $x, y \in J, v \in V$ are homogeneous elements.

Let's denote $U(x, y)$ the operator given by $v U(x, y)=\{x, v, y\}$ and $D(x, y)=R(x) R(y)-(-1)^{|x||y|} R(y) R(x)$.

It is well known that every Jordan bimodule decomposes as a direct sum of unital and one-sided Jordan bimodules.

The aim of this paper is to give the classification of one sided Jordan bimodules (already announced by the authors some time ago) and one-sided modules over the simple Jordan superalgebra $J=M_{1 \mid 1}(F)^{(+)}$.

1 Unital bimodules

In the section J will denote the Jordan superalgebra $J=M_{1 \mid 1}^{(+)}$. We will fix the canonical basis $\{e, f, x, y\}$, where $e=e_{11}, f=e_{22}, x=e_{12}, y=e_{21}$. Then $J_{\overline{0}}=F e+F f, J_{\overline{1}}=F x+F y, e f=0, e^{2}=2, f^{2}=f,[x, y]=e-f$.

For arbitrary elements $\alpha, \beta, \gamma \in F$, let us call $V(\alpha, \beta, \gamma)$ the 4-dimensional \mathbf{Z}_{2}-graded vector space $V=F(v, w, z, t)$ with $V_{\overline{0}}=F(v, w), V_{\overline{1}}=F(z, t)$ and the action of J over V defined by:

$$
\begin{array}{r}
v e=v, v f=0, v x=z, v y=t, \\
w e=0, w f=w, w x=(\gamma-1) z-2 \alpha t, w y=2 \beta z-(\gamma+1) t \\
z e=\frac{1}{2} z, z f=\frac{1}{2} z, z x=\alpha v, z y=\frac{1}{2}(\gamma+1) v+\frac{1}{2} w, \\
t e=\frac{1}{2} t, t f=\frac{1}{2} t, t x=\frac{1}{2}(\gamma-1) v-\frac{1}{2} w, t y=\beta v . \tag{1.1}
\end{array}
$$

Let us notice that $R(x)^{2}=\alpha I_{V}, R(y)^{2}=\beta I_{V}$ and $R(x) R(y)+R(y) R(x)=$ γI_{V}.

It can be also checked that $v U(x, y)=w$.
To start we will prove that $V(\alpha, \beta, 0)$ is a Jordan bimodule for arbitrary $\alpha, \beta \in F$.

Lemma 1.1. $V(\alpha, \beta, 0)$ is a (unital) Jordan bimodule over J.
Proof
Let us define an embedding from $M_{1 \mid 1}(F)$ in $M_{2 \mid 2}(F)$ via:

$$
i: M_{1 \mid 1}(F) \rightarrow M_{2 \mid 2}(F)
$$

$$
\begin{aligned}
& e \rightarrow\left(\begin{array}{rr}
I_{2} & 0 \\
0 & 0
\end{array}\right) \\
& f \rightarrow\left(\begin{array}{rr}
0 & 0 \\
0 & I_{2}
\end{array}\right) \\
& x \rightarrow\left(\begin{array}{rr}
0 & I_{2} \\
A & 0
\end{array}\right) \\
& y \rightarrow\left(\begin{array}{rr}
0 & B \\
I_{2} & 0
\end{array}\right)
\end{aligned}
$$

where

$$
A=\left(\begin{array}{rr}
0 & 0 \\
0 & 2 \alpha
\end{array}\right), B=\left(\begin{array}{rr}
2 \beta & 0 \\
0 & 0
\end{array}\right) .
$$

Consider the J-submodule of $M_{2 \mid 2}(F)$ with basis $\{\mathbf{v}, \mathbf{w}=\mathbf{v} U(x, y), \mathbf{z}=$ $\mathbf{v} x, \mathbf{t}=\mathbf{v} y\}$.

This bimodule is isomorphic to $V(\alpha, \beta, 0)$.
Now let us consider arbitrary elements $\alpha, \beta, \gamma \in F$. We can take elements $\alpha^{\prime}, \beta^{\prime} \in F$ such that $\gamma^{2}-4 \alpha \beta-1=-4 \alpha^{\prime} \beta^{\prime}-1$, that is, $\gamma^{2}=4\left(\alpha \beta-\alpha^{\prime} \beta^{\prime}\right)$.

Lemma 1.2. There is an isomorphism $\varphi: M_{1 \mid 1}(F)^{(+)} \longrightarrow M_{1 \mid 1}(F)^{(+)}$such that for every $v \in V(\alpha, \beta, \gamma)$ we have $v R(\varphi(x))^{2}=\alpha^{\prime} v, v R(\varphi(y))^{2}=\beta^{\prime} v$ and $v(R(\varphi(x)) R(\varphi(y))+R(\varphi(y)) R(\varphi(x)))=0$.

Proof.
From $\gamma^{2}-4 \alpha \beta=-4 \alpha^{\prime} \beta^{\prime}$ it follow that matrices

$$
A^{\prime}=\left(\begin{array}{rr}
0 & 2 \alpha^{\prime} \\
-2 \beta^{\prime} & 0
\end{array}\right), A=\left(\begin{array}{rr}
\gamma & -2 \alpha \\
2 \beta & -\gamma
\end{array}\right)
$$

have the same determinant and both of them have zero trace.
Consequently both matrices are similar, that is, there is an invertible matrix P (without loss of generality we can assume that $|P|=1$) suchat that $A^{\prime}=P A P^{-1}$.

If $P=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ we only need to consider φ the automorphism of $M_{1 \mid 1}(F)^{(+)}$given by $\varphi(e)=e, \varphi(f)=f, \varphi(x)=a x+b y, \varphi(y)=c x+d y$.

Notice that this lemma says that $V(\alpha, \beta, \gamma)$ is a unital module over $M_{1 \mid 1}(F)^{(+)}$and that there is a semiisomorphism between $V(\alpha, \beta, \gamma)$ and $V\left(\alpha^{\prime}, \beta^{\prime}, 0\right)$.

That is, we have proved the following result.

Theorem 1.3. a) For arbitrary elements $\alpha, \beta, \gamma \in F$, the action of $J=$ $M_{1 \mid 1}(F)^{(+)}$over $V=V(\alpha, \beta, \gamma)$ over the graded vector space $V=F(v, w, z, t)$ given by (1.1) defines a structure of unital J-bimodule $V(\alpha, \beta, \gamma)$.
b) Given $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \in F$, the J bimodules $V(\alpha, \beta, \gamma)$ and $V\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ are isomorphic if and only if $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$ and $\gamma=\gamma^{\prime}$
c) The J bimodules $V(\alpha, \beta, \gamma)$ and $V\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ are semi- isomorphic if and only if $\gamma^{2}-4 \alpha \beta=\gamma^{\prime 2}-4 \alpha^{\prime} \beta^{\prime}$.

Lemma 1.4. If $\gamma^{2}-4 \alpha \beta-1 \neq 0$ then the bimodule $V=V(\alpha, \beta, \gamma)$ is irreducible. If $\gamma=1$ and $\alpha=0$ then $F w+F w y$ is the only proper submodule of $V=V(\alpha, \beta, \gamma)$. In all other cases, $F w+F w x$ is the only proper submodule of $V=V(\alpha, \beta, \gamma)$.

Proof.

Let $(0) \neq V^{\prime}$ a nonzero submodule of $V=V(\alpha, \beta, \gamma)$. Then $V^{\prime} \cap V_{\overline{0}} \neq(0)$, since otherwise $V^{\prime} x=V^{\prime} y=(0)$.

Applying to an arbitrary element \tilde{v} in V^{\prime} the following Jordan identity: $R(x) R(e) R(y)-R(y) R(e) R(x)-R([x, y] e)-R(x e) R(y)+R(y e) R(x)-$ $R([x, y]) R(e)=0$, we get that $\tilde{v}(R(e)-R(e-f) R(e))=0$.

But the odd part of $V=V(\alpha, \beta, \gamma)$ lies in the $\frac{1}{2}$ - Peirce component of e and f, so $\tilde{v}=0$.

That is, if $V^{\prime} \cup V_{\overline{0}}=(0)$, then $V^{\prime}=(0)$.
If $\left\{e, V^{\prime}, e\right\} \neq(0)$, then $v \in V^{\prime}$ and so $V^{\prime}=V$.
If $\left\{e, V^{\prime}, e\right\}=(0)$, then $V^{\prime} \cup V_{\overline{0}}=F w$. But $w U(x, y)=\left(\gamma^{2}-4 \alpha \beta-1\right) v \in$ V^{\prime}. So $v \in V^{\prime}$, that is, $V=V^{\prime}$ as soon as $\gamma^{2}-4 \alpha \beta-1 \neq 0$. This proves irreducibility of $V=V(\alpha, \beta, \gamma)$ when $\gamma^{2}-4 \alpha \beta-1 \neq 0$.

So from now on we assume that $\gamma^{2}-4 \alpha \beta-1=0$
Now let's consider the case $\gamma=1$ and $\alpha=0$. Then $w U(x, y)=w x=0$ and $w y=2 \beta z-2 t$ and $V^{\prime}=F(w, w x)$.

Otherwise, $w x=(\gamma-1) z-2 \alpha t \neq 0$ and $w y=2 \beta z-(\gamma+1) t$ implies that $(\gamma+1) w x-2 \alpha w y=\left(\gamma^{2}-4 \alpha \beta-1\right) z-0 t=0$, that is, $F(w, w x)=V^{\prime}$.

Notation. If $\gamma^{2}-4 \alpha \beta-1=0$, let's denote $V^{\prime}(\alpha, \beta, \gamma)$ the only proper nonzero submodule of $V=V(\alpha, \beta, \gamma)$ (that can be expressed as $F(w, w x)$ except when $\alpha=0, \gamma=1$ that can be expressed as $F(w, w y))$ and $\tilde{V}(\alpha, \beta, \gamma)=$ $V(\alpha, \beta, \gamma) / V^{\prime}(\alpha, \beta, \gamma)$.

Now we can prove the classification result.
Theorem 1.5. Every irreducible finite dimensional unital Jordan bimodule over $J=M_{1 \mid 1}(F)^{(+)}$is isomorphic to one of the bimodules $V=V(\alpha, \beta, \gamma)$, if $\gamma^{2}-4 \alpha \beta-1 \neq 0$, or to $V^{\prime}(\alpha, \beta, \gamma)$ or $\tilde{V}(\alpha, \beta, \gamma)$ if $\gamma^{2}-4 \alpha \beta-1=0$ or their opposite modules.

Proof.

Let V be an irreducible unital finite dimensional J-bimodule. Up to opposite, we can assume that $V_{\overline{0}}=\left\{e, V_{\overline{0}}, e\right\}+\left\{f, V_{\overline{0}}, f\right\}$ and $V_{\overline{1}}=\left\{e, V_{\overline{1}}, f\right\}$.

The operators $R(x)^{2}, R(y)^{2}, R(x) R(y)+R(y) R(x)$ commute with the action of J. By Schur's Lemma they act as scalars α, β, γ respectively.

We claim that for every subspace W of $\left\{e, V_{\overline{0}}, e\right\}$ the vector space $U=$ $W+W U\left(J_{\overline{1}}, J_{\overline{1}}\right)+W J_{\overline{1}}$ is a J-bimodule. Indeed, since $W \subseteq\left\{e, V_{\overline{0}}, e\right\}$, we have that $W J_{\overline{1}} \subseteq\left\{e, V_{\overline{1}}, f\right\}$ and $W U\left(J_{\overline{1}}, J_{\overline{1}}\right) \subseteq\left\{f, V_{\overline{0}}, f\right\}$. Hence each summand $W, W U\left(J_{\overline{1}}, J_{\overline{1}}\right)$ and $W J_{\overline{1}}$ is invariant under multiplication by e and f, so under multiplication by $J_{\overline{0}}$.

Now using that $R\left(J_{\overline{1}}\right) R\left(J_{\overline{1}}\right) \subseteq U\left(J_{\overline{1}}, J_{\overline{1}}\right)+D\left(J_{\overline{1}}, J_{\overline{1}}\right)+R\left(J_{\overline{0}}\right)$, we get that $W R\left(J_{\overline{1}}\right) R\left(J_{\overline{1}}\right) \subseteq W U\left(J_{\overline{1}}, J_{\overline{1}}\right)+W D\left(J_{\overline{1}}, J_{\overline{1}}\right)+W R\left(J_{\overline{0}}\right) \subseteq U$. That implies that $W R(J) R(J) \subseteq U$.

So, we only need to prove that $W U\left(J_{\overline{1}}, J_{\overline{1}}\right) R\left(J_{\overline{1}}\right) \subseteq W J_{\overline{1}}$. But $U\left(J_{\overline{1}}, J_{\overline{1}}\right) \subseteq$ $R\left(J_{\overline{1}}\right) R\left(J_{\overline{1}}\right)+R\left(J_{\overline{0}}\right)$ and $\left.R\left(J_{\overline{1}}\right) R\left(J_{\overline{1}}\right) R\left(J_{\overline{1}}\right) \subseteq R(J) R(J)+D\left(J_{\overline{1}}\right), J_{\overline{1}}\right) R\left(J_{\overline{1}}\right)$. Now using that $D\left(J_{\overline{1}}, J_{\overline{1}}\right)$ acts as an scalar multiplication we gets what we wanted.

In the same way we can prove that for every $W \subseteq\left\{f, V_{\overline{0}}, f\right\}$, the subspace $W+W U\left(J_{\overline{1}}, J_{\overline{1}}\right)+W J_{\overline{1}}$ is a J-bimodule.

Since we assume V to be irreducible, it follows that $\operatorname{dim}_{F}\left\{e, V_{\overline{0}}, e\right\} \leq 1$ and $\operatorname{dim}_{F}\left\{f, V_{\overline{0}}, f\right\} \leq 1$, $\operatorname{dim} V_{\overline{1}} \leq 2$.

If $\gamma^{2}-4 \alpha \beta-1 \neq 0$, let us show that $v \simeq V(\alpha, \beta, \gamma)$, where $R(x)^{2}$ acts on V as $\alpha I_{V}, R(y)^{2}$ acts as βI_{V} and $R(x) R(y)+R(y) R(x)$ acts as γI_{V}. We have already seen that $V_{\overline{0}} \neq(0)$. The operator $U(x, y)^{2}$ acts on $V_{\overline{0}}$ as the multiplication by $\gamma^{2}-2 \alpha \beta-1$. This implies that both $\left\{e, V_{\overline{0}}, e\right\}$ and $\left\{f, V_{\overline{0}}, f\right\}$ are different of zero (multiplication by $U(x, y)$ exchange them both).

Choose $0 \neq v \in\left\{e, V_{\overline{0}}, e\right\}$. We know that $w=v U(x, y) \in\left\{f, V_{\overline{0}}, f\right\}$. Let us prove that $v x, v y \in V_{\overline{1}}$ are linearly independent. Suppose that $v y=\lambda v x$, $\lambda \in F$. Then $v R(y) R(x)=(v y) x=\lambda(v x) x=\lambda \alpha v$ and $v U(x, y)=$ $v R(x) R(y)-v R(y) R(x)-v R([x, y])=v(R(x) R(y)+R(y) R(x))-2 v R(y) R(x)-$ $v R(e-f)=(\gamma-2 \lambda \alpha-1) v$, that is, $v U(x, y) \in F v$, which is a contradiction.

Hence $F(v, w=v U(x, y), v x, v y)$ is a J-bimodule and the multiplication table coincides with the one of $V(\alpha, \beta, \gamma)$.

Now let's consider the case $\gamma^{2}-4 \alpha \beta-1=0$. In this case $V_{0} U(x, y)^{2}=(0)$. If $\left\{e, V_{\overline{0}}, e\right\} \neq(0)$ and $0 \neq v \in\left\{e, V_{\overline{0}}, e\right\}$, then $w=v U(x, y)=0$. Indeed, if $w=v U(x, y) \neq 0$, then V is generated by $w, w U(x, y), w x$, wy. But $w U(x, y)=v U(x, y)^{2}=0$. So, $\operatorname{dim}_{F} V_{\overline{0}} \leq 1$, which contradicts $v, w \in V_{\overline{0}}$. Hence $w=v U(x, y)=0$. This says that $V \simeq V^{\prime}(\alpha, \beta$, gamma $)$.

If $\left\{f, V_{\overline{0}}, f\right\} \neq(0)$, then $V \simeq \bar{V}(\alpha, \beta, \gamma)$, what proves the theorem.

2 One sided modules

Let $S=S(J)$ be the unital universal associative enveloping algebra of the Jordan algebra $J=M_{1 \mid 1}^{(+)}$. Denote $x=e_{12}, y=e_{21}, e=e_{11}, f=e_{22}, v=$ $e-f$, then $J=a l g_{J o r d}\langle x, y\rangle$ and $S=a \lg _{A s}\langle x, y\rangle$.

We have $x \circ e=x, y \circ e=y,[x, y]=v$. Observe that x^{2}, y^{2} lie in the center $Z(S)$ of S. Moreover, we have

$$
\begin{aligned}
& {[x \circ y, x]=\left[y, x^{2}\right]=0,} \\
& {[x \circ y, y]=\left[x, y^{2}\right]=0,}
\end{aligned}
$$

hence $x \circ y \in Z(S)$.
Lemma 2.1. Let $A=F\left[x^{2}, y^{2}\right], B=F\left[x^{2}, y^{2}, x \circ y\right]$.

1) The algebra S is a free B-module with free generators $1, x, y, x y$.
2) The center $Z(S)=B$.
3) $B=A[x \circ y]$, where $(x \circ y)^{2}=1+4 x^{2} y^{2}$.

Proof. We have $y x=x \circ y-x y, x y x=(x \circ y) x-x^{2} y, y x y=(x \circ y) y-$ $y^{2} x,(x y)^{2}=(x \circ y) x y-x^{2} y^{2}$, which proves that S is spanned over B by elements $1, x, y, x y$. Let $z=\alpha+\beta x+\gamma y+\delta x y \in Z(S)$ with $\alpha, \beta, \gamma, \delta \in B$, then $0=[x, z]=\gamma[x, y]+\delta x[x, y]=\gamma v+\delta x v$. Multiplying by v, we get $\gamma+\delta x=0$, which gives $\gamma=\delta=0$. Similarly, we get $\beta=0$, hence $Z(S)=B$. The similar argument shows that if $\alpha+\beta x+\gamma y+\delta x y=0$ then $\alpha=\beta=\gamma=\delta=0$, which proves 1). Finally,
$(x \circ y)^{2}=(x y)^{2}+(y x)^{2}+2 x^{2} y^{2}=[x, y] x y+[y, x] y x+4 x^{2} y^{2}=v^{2}+4 x^{2} y^{2}=1+4 x^{2} y^{2}$, proving 3).

The algebra S has a natural \mathbf{Z}_{2}-grading induced by the grading of J :

$$
S_{\overline{0}}=B+B x y, S_{\overline{1}}=B x+B y .
$$

The category of one-sided Jordan J-superbimodules is isomorphic to the category of right associative \mathbf{Z}_{2}-graded S-modules. In particular, irreducible superbimodules over J correspond to irreducible \mathbf{Z}_{2}-graded S-modules.

Let $M=M_{\overline{0}}+M_{\overline{1}}$ be an irreducible \mathbf{Z}_{2}-graded S-module and $\varphi: S \rightarrow$ $E n d_{F} M$ be the corresponding representation. Then $\varphi(B)$ lies in the even part of the centralizer D of S-module M, which is a graded division algebra (see, for example, [1]). Denote $\alpha=\varphi\left(x^{2}\right), \beta=\varphi\left(y^{2}\right), \gamma=\varphi(x \circ y), K=$ $F(\alpha, \beta, \gamma)$, then K is a field, $K=F(\alpha, \beta)+F(\alpha, \beta) \gamma$ where $\gamma^{2}=4 \alpha \beta+1$. Moreover, the graded algebra $\bar{S}=\varphi(S)$ has dimension at most 4 over K.

The algebra \bar{S} and the module M may be considered over the field K, then M is a faithful irreducible graded module over the K-algebra \bar{S}. By [2, Lemma 4.2], M up to opposing grading is isomorphic to a minimal graded right ideal of \bar{S}. Since $\operatorname{dim}_{K} \bar{S} \leq 4$, we have $\operatorname{dim}_{K} M \leq 2$. Moreover, the case $\operatorname{dim}_{K} M=1$ can appear only when $\bar{S}=K$ which is impossible since $[\varphi(x), \varphi(y)] \neq 0$. Therefore, $\operatorname{dim}_{K} \bar{S}=4$ and $\operatorname{dim}_{K} M=2$.

Observe also that by the density theorem for graded modules (see, for example, [1]), \bar{S} is a dense graded subalgebra of the algebra $E n d_{D} M \subseteq$ $E n d_{K}^{g r} M=M_{1 \mid 1}(K)$. Clearly, this implies that $\bar{S}=M_{1 \mid 1}(K)$.

Consider the elements $a=\frac{\gamma+1}{2}-x y, b=x y-\frac{\gamma-1}{2} \in B$. We have $a^{2}=a, b^{2}=b, a+b=1$, hence up to change of indices $\varphi(a)=e_{11}, \varphi(b)=e_{22}$.

We will separate the two cases:

1. Let first $\gamma \neq 1$. Chose an element $m \in M_{\overline{0}} \cup M_{\overline{1}}$ such that $m a=m$, then we have $m=\frac{\gamma+1}{2} m-m x y$, which gives

$$
\begin{equation*}
m x y=\frac{\gamma-1}{2} m, \beta m x=\frac{\gamma-1}{2} m y . \tag{2.1}
\end{equation*}
$$

In particular, $m x y \neq 0, m^{\prime}=m x \neq 0$, and $M=K m+K m^{\prime}$. We have by (1)

$$
\begin{aligned}
m^{\prime} x & =\alpha m ; \\
m y & =\frac{2 \beta}{\gamma-1} m x=\frac{2 \beta}{\gamma-1} m^{\prime} ; \\
m^{\prime} y & =m x y=\frac{\gamma-1}{2} m .
\end{aligned}
$$

2. Let now $\gamma=1$, then $a=1-x y, b=x y$. Choose an element $m \in M_{\overline{0}} \cup M_{\overline{1}}$ such that $m=m b \neq 0$, then $m^{\prime}=m x \neq 0$ and again $M=K m+K m^{\prime}$. We have

$$
\begin{aligned}
m^{\prime} x & =\alpha m \\
m y & =m b y=m x y y=\beta m x=\beta m^{\prime} \\
m^{\prime} y & =m x y=m .
\end{aligned}
$$

Observe that for $\gamma=-1$ in case 1 we obtain the formulas of case 2. The condition $\gamma^{2}=1$ is equivalent to $\alpha \beta=0$, therefore we will distinguish four non-isomorphic cases: $\gamma \neq \pm 1 ; \alpha=0, \beta \neq 0 ; \alpha \neq 0, \beta=0 ; \alpha=\beta=0$.

Resuming, we have
Theorem 2.2. Let M be an irreducible one-sided Jordan bimodule over $J=M_{1 \mid 1}(F)^{(+)}$. Then there exist an extension field $K=F(\alpha, \beta, \gamma)$ with $\gamma^{2}=4 \alpha \beta+1$ such that $\operatorname{dim}_{K} M=2, M=K m+K m^{\prime}$, and up to opposite
grading the action of J on M is given as follows:

1. $\gamma \neq \pm 1$ (or $\alpha \beta \neq 0)$.

$$
\begin{aligned}
m \cdot x & =\frac{1}{2} m^{\prime} \\
m^{\prime} \cdot x & =\frac{1}{2} \alpha m \\
m \cdot y & =\frac{\beta}{\gamma-1} m^{\prime} \\
m^{\prime} \cdot y & =m x y=\frac{\gamma-1}{4} m .
\end{aligned}
$$

2. $\gamma= \pm 1($ or $\alpha \beta=0)$.

$$
\begin{aligned}
m \cdot x & =\frac{1}{2} m^{\prime} \\
m^{\prime} \cdot x & =\frac{1}{2} \alpha m ; \\
m \cdot y & =\frac{1}{2} \beta m^{\prime} \\
m^{\prime} \cdot y & =\frac{1}{2} m
\end{aligned}
$$

In the second case we have 3 non-isomorphic subclasses: $\alpha=0, \beta \neq 0 ; \alpha \neq$ $0, \beta=0 ; \alpha=\beta=0$.

The module M is finite dimensional if and only if the elements α, β are algebraic over F. In particular, if the field F is algebraically closed and M is finite dimensional, then $K=F$.

References

[1] Alberto Elduque, Mikhail Kochetov, Gradings on Simple Lie Algebras
[2] Yuri Bahturin, Michel Goze, and Elizabeth Remm, Group Gradings on Lie Algebras, with Applications to Geometry, I, in Developments and Retrospectives in Lie Theory: Algebraic Methods, edited by Geoffrey Mason, Ivan Penkov, Joseph A. Wolf, Springer, 2014, 1-51.

[^0]: *Partially supported by MTM 2017-83506-C2-2-P and FC-GRUPIN-ID/2018/000193
 ${ }^{\dagger}$ Partially supported by FAPESP-2018/21017-2

