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Abstract—The use of data-driven techniques for health moni-
toring and prognosis of engines is often plagued by the lack of
information about failure scenarios. This problem is aggravated
when there are missing or partially missing records in the log
data. Unluckily, the chance that a sequence of events leading
to a failure is not properly stored is higher when the system
exhibits an abnormal behaviour. In absence of patterns that can
be related to deterioration, failure detection is often guided to find
novelties in the records, or uncommon combinations of variables
that may indicate an anomalous performance. Finding novelties
in sequences of low quality data is a complex problem where
numerous ambiguities must be resolved. Aircraft industry is a
paradigmatic case in that it involves monitoring and prognosis
with less than perfect data, partly because many different control
and security subsystems prevent that failure conditions are
actually reached. The use of fuzzy technologies for modelling and
diagnosing aero-engines is discussed in this paper, along with the
most challenging issues and future research lines, according to
our own experience in this field.

Index Terms—Fuzzy data, Engine health monitoring, Fault
diagnosis, Fuzzy model

I. INTRODUCTION

The main purpose of engine data is to monitor engine pa-
rameters in order to avoid running the engine under undesired
conditions. Engine instrumentation is configured to trigger
alerts related to operator action, maintainance action or, if a
significant condition is found, shutting down the engine.

The development over time of the engine data is also
monitored in a process that is called Engine Health Monitoring
(EHM). EHM management systems have diagnostic and prog-
nostic purposes, as not only individual working conditions but
also the trend over time are examined in order to identify rapid
levels of deterioration. EHM management systems estimate
the Remaining Useful Life (RUL) of an engine, anticipating
certain events or findings and therefore reducing the number
and degree of engine refurbishments [1]. In the simplest case,
EHM management systems compare engine data against those
parameters identified to be characteristic of known engine
conditions or against design limits [2]. However, predicting
the engine parameter deterioration levels over time is com-
plex. There are multiple methods of EHM data assessment
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developed, whose range of application depends on the type of
engine and the amount and quality of the engine data.

This study concerns the application of fuzzy technologies
for EHM in aircrafts, where multi-sensor information is used
to report failures and predict the RUL of commercial turbofan
engines. Aircraft industry has specific requirements for EHM
systems, derived from the fact that gas turbines are inherently
fail-safe and the reliability of the turbine may be higher than
that of its sensors [3]. Sensor degradation cannot be tolerated
because deviations in sensor readings can be mistaken for
engine degradations and this can cause secondary failures
because of wrong control decisions [4]. Hence, aircraft engines
tend to be under-sensorized and a substantial uncertainty in the
knowledge of the operating point of the engine is accepted.
Uncertainty in EHM data is accounted for via mathematical
models, statistical or intelligent techniques, and in many cases
with the help of fuzzy technologies, which will be reviewed
in the forthcoming sections.

The structure of this paper is as follows: Section II reviews
the use of fuzzy technologies in aircraft EHM, discusses the
strengths are weakness of these techniques, and states some
open problems. A new family of fuzzy diagnostic tools is
proposed in Section III. An explanatory application of the new
tools is developed in Section IV. The conclusions of the paper
are presented in Section V.

II. REVIEW OF THE USE OF FUZZY TECHNOLOGIES IN
AEROENGINE HEALTH MONITORING

Most of the aircraft EHM assessment methods are based
around Gas Path Analysis (GPA) [2]. The gas path components
are all air-washed parts within the engine gas path: the
compressors, the combustor and the turbines. The gas path
components are susceptible to distinct different issues, such
as worn seals, excessive tip clearances, burning, cracking
or missing parts or sections of parts, etc. Changes in the
internal working conditions of the engine are detected either
by direct observation of EHM parameters or indirectly, through
a suitable transform of the EHM data.



A. Direct methods: detection of novelties with pattern recog-
nition

The most common GPA methodology consists in detecting
changes or novelties [5] in the internal working conditions of
the engine as early as possible, by finding specific combination
of values or signatures of the different defects. Fuzzy expert
systems have been used to identify engine trends and step
changes [6]. These algorithms rely on an experience database
comprising GPA variables sampled at engines with known
faults. Recent approaches learn fuzzy models from clean
engine data and deteriorations are detected as novelties in the
EHM data or in the residuals between the measurements and
the model predictions [7], [8].

The diagnosis of an engine is formulated as a supervised
pattern recognition problem, often via a case-based reasoning
algorithm in which the measurements are compared to the
known signatures of defects that have been observed in the past
[9]. Thus, pattern recognition techniques are only efficient if
the experience database is complete; otherwise, unseen defects
will remain undetected. This is a requirement hard to fulfil,
as most of times the Full Authority Digital Engine Control
(FADEC) and other safety mechanisms will prevent that the
engine reaches these abnormal conditions. Also, there are
faults that do not have a well defined signature: for instance,
a higher than normal turbine temperature may have different
causes, such as an incipient deterioration or a higher load
of the engine. Pattern recognition cannot tell apart these root
causes if temperature, fuel flow, pressures and thurst are treated
in isolation.

B. Subspace methods and manifold learning

Since most of the deteriorations alter more than one GPA
variable, some authors consider that each of these variables
must be regarded as a mix of different factors [10]. In this
respect, subspace methods project EHM variables into a low-
dimensional factor space and the signatures of the defects are
sought in this projection [11], [12]. In other cases, a non-linear
transformation is used; for instance, neural-network based
autoencoders condense the EHM information into a reduced
number of variables [13]. Recently, other manifold learning
techniques have been extended to uncertain data and applied
to this problem. In [14], Blind Source Separation (BSS) for
interval-valued data data has been applied to the EHM problem
thus the independence among the factor is maximized. This
last reference addresses the presence of epistemic uncertainty
in the data. In any case, note that although the dimensionality
reduction simplifies the aforementioned pattern recognition
problem, the need for an experience database is still present.

C. Multivariate trend analysis of delta signals

One of the major sources of uncertainty in EHM is related to
the scarcity of sensors. Measurements are taken under different
flying conditions. Hence, certain changes in the monitored
variables may be caused by either a deterioration in the engine
or a change in the flight conditions. Furthermore, there is a
wide variability between GPA related magnitudes for different

engines, as the monitored variables of two engines flying in the
same conditions might not be concordant from flight to flight.
Following [15], this second variability is solved if defects are
not sought in GPA variables but in the gradient of the so-
called “delta” functions, which are the differences between
GPA variables and the theoretical values of a single reference
engine. The gradient of these delta functions are used, because
useful information about the deterioration speed is conveyed
by the slopes of these curves. However, since GPA variables
combine measurements taken in different flying conditions,
delta signals are very noisy. This poses a complex computa-
tional problem, as determining the gradient of a noisy signal
is strongly dependent on the properties of the noise filter. A
fuzzy-bandwidth filter was used to compute these slopes in
[16], where a fuzzy rule-based classifier was subsequently used
to monitor the engine on the basis of the multivariate gradient
signal, and also in [17] fuzzy estimations of the RULs of
compressor and turbine were produced for prognosis purposes.
These methods still make use of a sample of engines with
a known condition, that is used for learning classifier and
RUL models. In contrast, the experience database with the
signatures of the known defects are not needed anymore, as the
monitoring and prognosis decisions are taken by data-driven
fuzzy rule-based systems.

D. Sequence mining

Multivariate trend analysis transforms variable-length series
of gradients into fixed-length feature vectors that are the
inputs to a fuzzy classifier or model. This feature selection
process discards the sequence order of the deteriorations. For
example, suppose that two different motors #1 and #2 have
bad compressors and turbines: the compressor of #1 failed
first and its turbine was subsequently damaged because of the
compressor bad state. In contrast, the turbine in #2 failed first
and its compressor was damaged later. It may happen that their
feature vectors in trend analysis are identical. In reference
[18] the fixed-length transform is avoided, and specific se-
quential pattern mining-based classifiers (that can operate with
variable-length fuzzy inputs) were leveraged. Sequence mining
discovers conditions that are not to be found with multivariate
trend analysis. In any case, other drawbacks exist: a sample of
engines with known conditions is needed (although in this case
the decision system does not require an experience database).
Furthermore, frequent pattern matching techniques are used
for identifying the signatures of the deffects. Hence, isolated
deteriorations will not be found.

Summarizing, the conclusions of this review in fuzzy EHM
for aircrafts are:

• Direct methods operate with experience databases com-
prising GPA values of engines with known deteriorations.
These methods are sensible to uncertainties originated in
the variability from engine to engine, the changing flight
conditions and the lack of sensors.

• Fuzzy subspace methods alleviate the uncertainty caused
by the lack of sensors, as different imprecise signals are



combined to extract independent factors. The experience
database is still needed.

• Multivariate trend analysis relax the requisite of an
experience database to a list of engines with known
RULs, thus not-yet-seen defects can be discovered. These
methods cannot detect the precise time when a defect
appeared.

• Sequence mining cannot find defects with a low oc-
currence, because the signatures are obtained via fuzzy
frequent pattern matching.

III. ISOTONIC FUZZY HEALTH MODELS

Diagnosis and prognosis methodologies either depend on an
experience database, a sample of engines with known RULs
or a model of the engine whose residual can be monitored.
The main advantage of model-dependent assessments lies in
the possibility of finding defects not seen before, but being
dependent on an engine model is a stringent requisite. In this
section a new isotonic fuzzy health model of an aeroengine is
proposed, whose residual can be related to the location of the
deteriorations. This method is novel because it makes use of
the lowest possible amount of domain knowledge, which is (i)
certain variables in the engine are comonotonic, and (ii) the
state of health of the engine decreases with time.

The input variables of the proposed model are the same
“delta” variables introduced in Section II-C. In the particular
case of the aeroengines concerned by this study (see Figure
1), these variables are called ∆P30,∆T30,∆TGT,∆FF and
∆N2. The list of points of interest in the engine are:

• Station 3: This is the High Pressure Compressor (HPC)
exit and the entry into the combustion system. The
conditions at this point are key for the correct functioning
of the engine. The main variables measured at this station
are P30 (pressure) and T30 (temperature).

• Station 4: This is the combustion chamber exit and High
Pressure Turbine (HPT) entry. The temperature at this
point is one of the main engine parameters. T4, may also
be known as Turbine Gas Temperature (TGT)

• Station 5: This is the Low Pressure Turbine (LPT) exit.
The main variable at this station is P50. This pressure
is used to define EPR, which is subsequently used to
determine the overall engine thrust. EPR is the relation
of P50 to P20.

The Low Pressure (LP) system is the combination of the fan
and the LPT. The speed at which the LP system turns is defined
as N1. The High Pressure (HP) system is the combination of
the HPC and the HPT. The speed at which the HP system turns
is known as N2. In addition, the amount of fuel consumed is
also monitored through Fuel Flow (FF).

EPR is the relation of P50 (pressure at the Low Pressure
Turbine exit) to P20 (pressure at the fan inlet). In two shaft
high bypass ratio turbo fans, the thrust is performed by the air
compressed by the fan blades and pushed through the engine
bypass. The air pushed through the core of the engine is solely
used to turn the fan. This is, the air is compressed by the high
pressure compressor (HPC) so that the optimum conditions are

reached within the combustion chamber to subsequently turn
the high pressure turbine (HPT) to maintain the high pressure
(HP) system and subsequently turn the low pressure turbine
(LPT) which moves the fan and produces the engine thrust.

A. Proposed isotonic fuzzy model

Let the thrust of the considered engine be described by the
following function:

epr(∆P30,∆T30,∆TGT,∆FF,∆N2, fc) (1)

where fc ∈ FC is a vector defining the flight conditions, ∆P30
is the difference between the gas pressure at the entry of the
HPC and that of the reference engine, etc. Note that the thrust
of the reference motor is epr0(0, 0, 0, 0, 0, fc). For engines that
are in a good condition,

• epr(·) is comonotonical with ∆P30, ∆FF, ∆TGT, ∆N2
(the higher the compressor pressure, the consumed fuel,
the turbine temperature and the turbine speed, then the
higher the thrust is)

• epr(·) is antimonotonical with ∆T30 (the higher the
compressor temperature, the less dense the air is, hence
the thrust is lower)

Thus, the following fuzzy-valued model is proposed:

µẼPR(∆P30,∆T30,∆TGT,∆FF,∆N2)(e) =

sup
α
{e ∈ [EPR]α(∆P30,∆T30,∆TGT,∆FF,∆N2)} (2)

where the set [EPR]α is a confidence interval of the thrusts of
the engine,

[EPR]α = {epri(∆P30,∆T30,∆TGT,∆FF,∆N2, fc)

: fc ∈ FCα} (3)

and FCα is the smallest subset of FC such that P(fc ∈ FC) ≥
1 − α and FCα ⊆ FCβ for α > β. Lastly, let the parametric
definition of epr(·) be

epr(∆P30,∆T30,∆TGT,∆FF,∆N2, fc) =

f(κ1 ·∆P30− κ2 ·∆T30 + κ3 ·∆TGT + κ4 ·∆FF+

κ5 ·∆N2) + g(fc) (4)

and

[EPR]α(∆P30,∆T30,∆TGT,∆FF,∆N2) =

f(κ1 ·∆P30−κ2 ·∆T30 +κ3 ·∆TGT +κ4 ·∆FF +κ5 ·∆N2)

+ [γ − µ(1− α), γ + µ(1− α)] (5)

with κi ≥ 0, g(fc) >= 0 for all fc ∈ FC and f(x) ≥ f(y) for
x > y.

It can be safely assumed that engines are without deffects
in the first cycles after a shop visit, and κ1, . . . , κ5 and γ, µ
can be found by maximizing the interval-valued extension of
Kendall’s tau [19] between [EPR]α and the actual thrust values



	
  

Fig. 1. Outline of a two shaft high bypass ratio turbo fan

EPRt of the engine at the first t = 1 . . . N cycles, constrained
by κi ≥ 0, γ > 0, µ > 0 and

#{EPRt ∈ [EPR]α(∆P30t,∆T30t,

∆TGTt,∆FFt,∆N2t)} ≥ (1− α) ·N (6)

The expression of the function f is obtained by interpolating
the pairs (κ1·∆P30t−κ2·∆T30t+κ3·∆TGTt+κ4·∆FFt+κ5·
∆N2t+γ,EPRt) with a Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP).

Lastly, once the membership function of the fuzzy model is
known,

µ
ẼPRt(e) = µẼPR(∆P30t,

∆T30t,∆TGTt,∆FFt,∆N2t)(e) (7)

the residuals of this model can be regarded as a health
indicator, as will be shown in an illustrative example in the
next Section:

µ ˜HEALTHt
(e) = µ

ẼPRt(e− EPRt). (8)

In words, the residuals of the proposed model will be centered
at zero if the engine is not deteriored, but as soon as a degra-
dation happens (decrease of ∆P30, alone or in combination
of an increase of ∆T30, ∆TGT, etc.) the predicted thrust
will be lower than that of the non-degraded engine, because
of the signs of the coefficients and the monotonicity of the
function f . Given that the health of an engine cannot be in-
creased unless it undergones maintainance, isotonic regression
techniques are also used to estimate the centerpoints of the
aforementioned residuals.

IV. ILLUSTRATIVE EXAMPLE

The new method has been validated on a sample of 330
turbofan engines. A representative case has been chosen that
illustrates the properties of this method.

Figure 2 depicts the GPA delta variables of an engine with a
light deterioration in the HPT that cannot be found with direct
methods, manifold learning, trend analysis neither sequence
mining. A sixth variable DN2VIB has been added to the graph;
this variable is not being used by the model but serves for
validation purposes.

The isotonic fuzzy model has been fitted to the first N =
1000 cycles. The whole data spans more than 4000 cycles.
Each GPA value is colored according to the EPR (between
1.20 and 1.50). The synthetic HEALTH signal is obtained by
fitting a line with isotonic regression to the centerpoints of the
residual of the fuzzy model proposed in the preceding section.
Observe that the health tends to increase in the first half of
the monitored period, but the isotonic regression forces that
the signal is monotonically decreasing. Hence, the HEALTH
signal is constant in the initial cycles. In the second part of
the diagnostic, the residual is decreased and a deterioration in
the second half of the figure becomes evident. This signal
has been built without supplying the model any kind of
information about the signature of a degradation in a similar
engine: the only domain knowledge is the monotonicity or
antimonotonicity of the GPA delta signals and the thrust. As
an additional validation of the method, note that the signal
DN2VIB measures the vibrations in the high speed shaft. This
information has not been used by the isotonic model, that was
nonetheless able to detect a deterioration immediately before
the vibrations were measurable.

V. CONCLUDING REMARKS AND FUTURE WORK

Most of times, fault detection are regarded as pattern recog-
nition methods, that can be solved with data-driven techniques
with a different amount of domain knowledge. If a large
database of engines with different degrees of deterioration is
available, direct and subspace methods are the most common
fuzzy techniques, however these cannot detect defects that are
not in the experience database.



Fig. 2. Example of the application of the isotonic fuzzy model to an actual aeroengine. From left to right, top to bottom: Deltas of P30, T30, FF, TGT,
N2, N2VIB (vibrations of the engine, not contemplated in this model) and synthetic HEALTH signal formed by the centerpoints of the isotonic fuzzy model.
Observe that the model detects a deterioration of the engine in the last cycles, and this prediction is consistent with the independently measured vibration
N2VIB.

The use of delta variables with respect to a reference engine
allows applying machine learning algorithms to learn an EHM
management system from data, where fuzzy technologies are
used for designing the noise filters. The main drawbacks of
these methods are the impossibility of detecting the order
of the events and the precise cycle when the deterioration
initiates. The use of sequence mining solves the first issue,
and the isotonic algorithm introduced in this study solves the
second problem. Besides its simplicity, the use of a model
with a minimal amount of domain knowledge reduces the
systematic error of specific models, and at the same time its
generalization capabilities improve that of black boxes.

This is a work in progress; there are some aspects of the
application of isotonic learning to EHM monitoring that are
still unsolved. In particular, it is not yet clear how to attribute
the descent in the thrust to the turbine or the compressor. Once
this issue is solved, the next step in this research will be to
assess the dependence between the RUL of the engine and the
jumps in the health signal.
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