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Abstract— This study focuses on the comparison of tech-
niques for modelling and classifying data gathered from wear-
able sensors, in order to detect fall events of elderly people.
Although the vast majority of studies concerning fall detection
place the sensory on the waist, in this research the wearable
device must be placed on the wrist because it’s usability.
A first pre-processing stage is carried out as stated in [1],
[2]; this stage detects the most relevant points to label. This
study analyses the suitability of different models in solving this
classification problem: a feed-forward Neural Network and a
decision tree based on C5.0. A discussion about the results and
the deployment issues is performed according to whether the
models are to be exploited in edge/cloud computing or in the
wearable device.

I. INTRODUCTION
Fall Detection (FD) is a very active research area, with

many applications to healthcare, work safety, etc. Even
though there are plenty of commercial products, the best
rated products only reach a 80% of success[3]. There are
basically two types of FD systems: contex-aware systems
and wearable devices [4]. FD has been widely studied using
context-aware systems, i.e. video systems [5]; nevertheless,
the use of wearable devices is crucial because the high
percentage of elderly people and their desire to live au-
tonomously in their own house [6].

Wearables-based solutions include, mainly, tri-axial ac-
celerometers (3DACC) either alone or combined with other
sensors. Several solutions incorporate more than one sensory
element; for instance, Sorvala et al [7] proposed two sets of a
3DACC and a gyroscope, one on the wrist and another on the
ankle, detecting the fall events with two defined thresholds.
The use of 3DACC and a barometer in a necklace was also
reported in [8]; similar approaches have been developed in
several commercial products.

Several solutions using wearable devices combining
3DACC have been reported, i.e., identifying the fall events
using Support Vector Machines [9]. In [10] several classifiers
are compared using the 3DACC and the inertial sensor within
a smartphone to sample the data. A similar solution is
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proposed in [11], using some different transformations of the
3DACC signal. A main characteristic in all these solutions is
that the wearable devices are placed on the wrist. The reason
of this location is that it is by far much easier to detect a
fall using the sensory system in this placement. Nevertheless,
this type of devices lacks in usability and the people trend to
dismiss them in the bedside table. Thus, this research limits
itself to use a single sensor -a marketed smartwatch- placed
on the wrist in order to promote its usability.

Interestingly, the previous studies do not focus on the
specific dynamics of a falling event: although some of the
proposals report good performances, they are just machine
learning applied to the focused problem. There are studies
concerned with the dynamics in a fall event [12], [13],
establishing the taxonomy and the time periods for each
sequence. Additionally, Abbate et al proposed the use of
these dynamics as the basis of the FD algorithm [1]. A
very interesting point of this approach is that the compu-
tational constraints are kept moderate, although this solution
includes a high number of thresholds to tune. In citekhojaste-
HAIS2018, this solution was analysed with data gathered
from sensors placed on the wrist, using the Abate solution
plus a SMOTE balancing stage and a feed-forward Neural
Network. In this research, an alternative based on decision
trees and C5.0 is proposed.

II. ADAPTING FALL DETECTION TO A WRIST-BASED
SOLUTION

Abate et al [1] proposed the following scheme to detect
a candidate event as a fall event (refer to Fig. 1). A time t
corresponds to a peak time (point 1) if the magnitude of the
acceleration a is higher than th1 = 3×g, g = 9.8m/s. After
a peak time there must be a period of 2500 ms with relatively
calm (no other a value higher than th1). The impact end
(point 2) denotes the end of the fall event; it is the last time
for which the a value is higher than th2 = 1.5× g. Finally,
the impact start (point 3) denotes the starting time of the
fall event, computed as the time of the first sequence of an
a <= th3 (th3 = 0.8×g) followed by a value of a >= th2.
The impact start must belong to the interval [impact end−
1200 ms, peak time]. If no impact end is found, then it is
fixed to peak time plus 1000 ms. If no impact start is found,
it is fixed to peak time.

Whenever a peak time is found, the following transforma-
tions should be computed:
• Average Absolute Acceleration Magnitude Variation,

AAMV =
∑ie

t=is
|at+1−at|

N , with is being the impact
start, ie the impact end, and N the number of samples
in the interval.



• Impact Duration Index, IDI = impact end −
impact start. Alternatively, it could be computed as
the number of samples.

• Maximum Peak Index, MPI = maxt∈[is,ie](at).
• Minimum Valley Index, MV I = mint∈[is−500,ie](at).
• Peak Duration Index, PDI = peak end− peak start,

with peak start defined as the time of the last magnitude
sample below thPDI = 1.8 × g occurred before peak
time, and peak end is defined as the time of the first
magnitude sample below thPDI = 1.8 × g occurred
after peak time.

• Activity Ratio Index, ARI , measuring the activity level
in an interval of 700 ms centred at the middle time
between impact start and impact end. The activity level
is calculated as the ratio between the number of samples
not in [thARIlow0.85 × g, thARIIhigh = 1.3 × g] and
the total number of samples in the 700 ms interval.

• Free Fall Index, FFI , computed as follows. Firstly,
search for an acceleration sample below thFFI = 0.8×
g occurring up to 200 ms before peak time; if found, the
sample time represents the end of the interval, otherwise
the end of the interval is set 200 ms before peak time.
Secondly, the start of the interval is simply set to 200 ms
before its end. FFI is defined as the average acceleration
magnitude evaluated within the interval.

• Step Count Index, SCI , measured as the number of
peaks in the interval [peak time − 2200, peak time].
SCI is the step count evaluated 2200 ms before peak
time. The number of valleys are counted, defining a
valley as a region with acceleration magnitude below
thSCIlow = 1 × g for at least 80 ms, followed by a
magnitude higher than thSCIhigh1.6×g during the next
200 ms. Some ideas on computing the time between
peaks [14] were used when implementing this feature.

Evaluating this approach was proposed as follows. The
time series of acceleration magnitude values are analysed
searching for peaks that marks where a fall event candidate
appears. When it happens to occur, the impact end and the
impact start are determined, and thus the remaining features.
As long as this fall events are detected when walking or
running, for instance, a Neural Network (NN) model is
obtained to classify the set of features extracted.

In order to train the NN, the authors made use of an
Activities of Daily Living (ADL) and FD dataset, where each
file contains a Time Series of 3DACC values corresponding
to an activity or to a fall event. Therefore, each dataset
including a fall event or a similar activity -for instance,
running can perform similarly to falling- will generate a set
of transformation values. Thus, for a dataset file we will
detect something similar to a falling, producing a row of the
transformations computed for each of the detected events
within the file. If nothing is detected within the file, no row
is produced. With this strategy, the Abbate et al obtained the
training and testing dataset to learn the NN.

A. The modifications on the algorithm

As stated in [15], [16], the solutions to this type of
problems must be ergonomic: the users must feel comfortable
using them. We considered that placing a device on the waist
is not comfortable, for instance, it is not valid for women
using dresses. When working with elder people, this issue
is of main relevance. Therefore, in this study, we placed the
wearable device on the wrist. This is not a simple change:
the vast majority of the literature reports solutions for FD
using waist based solutions. Moreover, according to [17]
the calculations should be performed on the smartwatches
to extend the battery life by reducing the communications.
Therefore, these calculations should be kept as simple as
possible.

A second modification is focused on the training of the
NN. The original strategy for the generation of the training
and testing dataset produced a highly imbalanced dataset: up
to 81% of the obtained samples belong to the class FD, while
the remaining belong to the different ADL similar to a fall
event.

To solve this problem a normalization stage is applied to
the generated imbalanced dataset, followed by a SMOTE
balancing stage [18]. This balancing stage will produce a
60%(FALL)-40%(no FALL) dataset, which would allow to
avoid the over-fitting of the NN models. As usual, there is
a compromise between the balancing of the dataset and the
synthetic data samples introduced in the dataset.

These above mentioned changes have already been studied
in [2]. In this research we proposed to analyse the perfor-
mance of decision trees in this context: the decision trees
represent very simple models that can be easily deployed
in wearable devices and with a very reduced computational
complexity. Therefore, they could represent a very interesting
improvement, either if they work similarly to the NN or just
similarly to them.

III. EXPERIMENTS AND RESULTS

A ADL and FD dataset is needed to evaluate the adap-
tation, so it contains time series sample from ADL and for
falls. This research made use of the UMA-FALL dataset [19]
among the publicly available datasets. This dataset includes
data for several participants carrying on with different ac-
tivities and performing forward, backward and lateral falls.
Actually, this falls are not real falls -demonstrative videos
have been also published-, but they can represent the initial
step for evaluating the adapted solution problem. Interest-
ingly, this dataset includes multiple sensors; therefore, the
researcher can evaluate the approach using sensors placed
on different parts of the body.

The thresholds used in this study are exactly the same
as those mentioned in the original paper. All the code was
implemented in R[20] and caret[21]. The parameters for
SMOTE were perc.over set to 300 and perc.under set to 200
-that is, 3 minority class samples are generated per original
sample while keeping 2 samples from the majority class-
. These parameters produces a balanced dataset that moves
from a distribution of 47 samples from the minority class and
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Fig. 1. Evolution of the magnitude of the acceleration -y-axis, extracted from [1]

200 from the majority class to a 188 minority class versus
282 majority class (40%/60% of balance).

To obtain the parameters for the NN a grid search was
performed; the final values were size set to 20, decay set to
10−3 and maximum number of iterations 500, the absolute
and relative tolerances set to 4 × 10−6 and 10−10, respec-
tively. In this research, we use the C5.0 implementation of the
C4.5 that is included in the R package to obtain the decision
trees. The parameters found optimum for this classification
problem are cf set to 0.25, bands set to 2, the fuzzy Threshold
parameter set to TRUE, the number of trials set to 15, and
winnow set to FALSE.

Both 5x2 cross validation (cv) and 10-fold cv were per-
formed to analysed the robustness of the solution. The latter
cv would allow us to compare with existing solutions, while
the former shows the performance of the system with an
increase in the number of unseen samples. The results are
shown in Table I and Table II for 10-fold cv and 5x2 cv,
respectively. The boxplots for the statistical measurements
Accuracy, Kappa factor, Sensitivity, Specificity, Precision
and Recall are shown in Fig. 2 for 10-fold cv and Fig. 3
for 5x2 cv, respectively.

A. Discussion on the results

From the tables it can be seen that both modelling
techniques perform exceptionally well once the SMOTE
is performed and using test folds from 10-fold cv: the
models even perform ideally for several folds. And more
importantly, the two models are interchangeable with no
apparent loss in the performance. Actually, these results are
rather similar to those published in the original work [1].
However, when using 5x2 cv the results diverts from those
previously mentioned.

With 5x2 cv, the size of the train and test datasets are of
similar number of samples, producing a worse training and,
what is more interesting, introduces more variability in the
test dataset. Therefore, the results are worse. The point is
that these results suggest the task is not solved yet as the
number of false alarms increased unexpectedly.

This problem is important because in this experimentation
we used the UMA-Fall dataset [19]. This dataset used was
generated with young participants using a very deterministic
protocol of activities. The falls were performed with the
participants standing still and letting them fall in the for-
ward/backward/lateral direction. Therefore, the differences
with real falls might be relevant; even if they are not
so different, the variability that might be introduced will
severely punish the performance of the obtained models.

There are more publicly available datasets, the majority
of these datasets have been gathered with healthy volunteers
[22], [23]. However, a real-world fall and activity of daily
living dataset is published in [24], where a comparison of
the different methods published so far is also included.
Therefore, the method described in this study needs to be
validated with more datasets, more specifically, with data
from real fall events.

In apart, the solution proposed analysed and extended in
this work includes far too many thresholds. These thresholds
have been manually set by the authors for the sensory
system placed on the waist; consequently, these values must
be tuned for the sensor in a different location as long
as the acceleration values are not the same. Even if the
thresholds are valid, perhaps the classification models must
be specific for groups of people according to their movement
characteristics [25], [26].

Besides, the eHealth and wearable applications deploy-
ment issues have been study in the literature [17]. According
to the published results, there is a trade off between the
mobile computation and the communication acts to extend
the battery charge as long as possible. Consequently, it has
been found that moving all the pre-processing and modelling
issues to the mobile part could be advantageous provided
the computational complexity of the solution is kept low.
The consequences of these findings shall be reflected in the
transformations and in the models, reducing complex floating
point operations as much as possible [27], [26].



N
_A

C
C

N
_K

p

N
_S

e

N
_S

p

N
_P

r

N
_G

C
_A

C
C

C
_K

p

C
_S

e

C
_S

p

C
_P

r

C
_G

0.75

0.80

0.85

0.90

0.95

1.00

Fig. 2. 10 fold cv Boxplot for the different measurements -Accuracy (Acc), Kappa (Kp), Sensitivity (Se) and Specificity (Sp), Precision (Pr) and the
geometric mean of the Acc and Pr, G = 2

√
Pr ×Acc-, both for the feed-forward NN (six boxplots to the left, with the N prefix) and C5.0 (six boxplots

to the right, with the C prefix).

N
_A

C
C

N
_K

p

N
_S

e

N
_S

p

N
_P

r

N
_G

C
_A

C
C

C
_K

p

C
_S

e

C
_S

p

C
_P

r

C
_G

0.80

0.85

0.90

0.95

1.00

Fig. 3. 5x2 cv Boxplot for the different measurements -Accuracy (Acc), Kappa (Kp), Sensitivity (Se) and Specificity (Sp), Precision (Pr) and the geometric
mean of the Acc and Pr, G = 2

√
Pr ×Acc-, both for the feed-forward NN (six boxplots to the left, with the N prefix) and C5.0 (six boxplots to the

right, with the C prefix).



Feed forward NN C5.0 decision tree
Fold Acc Kp Se Sp Pr G Acc Kp Se Sp Pr G

1 0.97872 0.95620 0.9643 1.00000 1.00000 0.98198 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00000 1.00000 1.0000 1.00000 1.00000 1.00000 0.95745 0.91013 1.00000 0.89474 0.93333 0.96609
3 0.97872 0.95620 0.9643 1.00000 1.00000 0.98198 0.97872 0.95620 0.96429 1.00000 1.00000 0.98198
4 0.95833 0.91289 0.9655 0.94737 0.96552 0.96552 0.89583 0.77186 1.00000 0.73684 0.85294 0.92355
5 0.93617 0.87076 0.8929 1.00000 1.00000 0.94491 0.95745 0.91013 1.00000 0.89474 0.93333 0.96609
6 1.00000 1.00000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
7 1.00000 1.00000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
8 0.89130 0.76954 0.9286 0.83333 0.89655 0.91242 0.95652 0.90873 0.96429 0.94444 0.96429 0.96429
9 0.97872 0.95545 1.0000 0.94737 0.96552 0.98261 0.95745 0.91013 1.00000 0.89474 0.93333 0.96609

10 0.97872 0.95620 0.9643 1.00000 1.00000 0.98198 0.97872 0.95545 1.00000 0.94737 0.96552 0.98261
mean 0.97007 0.93772 0.9680 0.97281 0.98276 0.97514 0.96821 0.93226 0.99286 0.93129 0.95827 0.97507

median 0.97872 0.95620 0.9649 1.00000 1.00000 0.98198 0.96809 0.93279 1.00000 0.94591 0.96490 0.97404
std 0.03412 0.07177 0.0355 0.05367 0.03351 0.02787 0.03158 0.06882 0.01506 0.08242 0.04716 0.02353

TABLE I
10 FOLD CV RESULTS OBTAINED FOR HTE NN AND C5.0. FROM LEFT TO RIGHT, THE MAIN STATISTICAL MEASUREMENTS ARE SHOWN: ACCURACY

(ACC), KAPPA FACTOR (KP, SENSITIVITY (SE), THE SPECIFICITY (SP), THE PRECISION (PR) AND THE GEOMETRIC MEAN OF THE ACC AND PR,
G = 2

√
Pr ×Acc.

Feed forward NN C5.0 decision tree
Fold Acc Kp Se Sp Pr G Acc Kp Se Sp Pr G

1 0.92766 0.84740 0.9645 0.87234 0.91892 0.9415 0.92340 0.83755 0.97163 0.85106 0.90728 0.93891
2 0.95319 0.90334 0.9433 0.96809 0.97794 0.9604 0.92340 0.84155 0.92199 0.92553 0.94891 0.93535
3 0.91489 0.82079 0.9504 0.86170 0.91156 0.9308 0.90638 0.80287 0.94326 0.85106 0.90476 0.92381
4 0.88936 0.77113 0.8936 0.88298 0.91971 0.9066 0.93191 0.85455 0.99291 0.84043 0.90323 0.94701
5 0.89362 0.78336 0.8652 0.93617 0.95312 0.9081 0.96170 0.92007 0.97163 0.94681 0.96479 0.96820
6 0.94468 0.88455 0.9574 0.92553 0.95070 0.9541 0.94043 0.87544 0.95745 0.91489 0.94406 0.95073
7 0.92766 0.84629 0.9787 0.85106 0.90789 0.9426 0.94043 0.87410 0.97872 0.88298 0.92617 0.95209
8 0.91489 0.82143 0.9433 0.87234 0.91724 0.9302 0.92340 0.83755 0.97163 0.85106 0.90728 0.93891
9 0.91489 0.82456 0.9078 0.92553 0.94815 0.9278 0.92340 0.84099 0.92908 0.91489 0.94245 0.93574

10 0.94043 0.87544 0.9574 0.91489 0.94406 0.9507 0.94894 0.89286 0.97163 0.91489 0.94483 0.95814
mean 0.92213 0.83783 0.9362 0.90106 0.93493 0.9353 0.93234 0.85775 0.96099 0.88936 0.92938 0.94489

median 0.92128 0.83543 0.9468 0.89894 0.93188 0.9361 0.92766 0.84805 0.97163 0.89894 0.93431 0.94296
std 0.02085 0.04243 0.0357 0.03821 0.02301 0.0182 0.01585 0.03346 0.02274 0.03859 0.02245 0.01291

TABLE II
5X2 CV RESULTS OBTAINED FOR HTE NN AND C5.0. FROM LEFT TO RIGHT, THE MAIN STATISTICAL MEASUREMENTS ARE SHOWN: ACCURACY

(ACC), KAPPA FACTOR (KP, SENSITIVITY (SE), THE SPECIFICITY (SP), THE PRECISION (PR) AND THE GEOMETRIC MEAN OF THE ACC AND PR,
G = 2

√
Pr ×Acc.

IV. CONCLUSIONS

This study compares the performances of two classifica-
tion techniques when tackling the problem fall detection with
data gathered from accelerometers located on one wrist. The
original proposal detected fall events and performed a feature
extraction which was classified with a feed-forward NN. A
SMOTE stage is included to balance the transformed dataset
previous modelling. Two different techniques are compared:
the feed-forward NN and C5.0 decision trees. A publicly
available dataset with falls has been used in evaluating
the proposal. Interestingly, the two modelling techniques
performed similarly, which suggest that in real world appli-
cations with the solution embedded in smartwatches perhaps
the decision tree is more likely to be used.

Although exceptional results have been found using 10
fold cv, the 5x2 cv results suggest that still a high number of
false alarms is obtained. Although the percentages are better
that those reported for commercial devices, some design
aspects must be analyzed in depth: the robustness to the
variability in the behaviour of the user, or the tuning of the
threshold to fit specific populations like the elderly.
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