ACCEPTED MANUSCRIPT

Breakdown of the coherence effects and Fermi liquid behavior in YbAl₃ nanoparticles

To cite this article before publication: Cristina Echevarria Bonet *et al* 2018 *J. Phys.: Condens. Matter* in press https://doi.org/10.1088/1361-648X/aab0c7

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

C. Echevarria-Bonet ^{1,3}, D P Rojas², J I Espeso³, J Rodríguez Fernández³, L Rodríguez Fernández⁴, E Bauer ⁵, S Burdin ⁶, S G Magalhães⁷, L. Fernández Barquín³

E-mail: d.rojas@upm.es

Abstract. A change in the Kondo lattice behavior of bulk YbAl₃ has been observed when the alloy is shaped into nanoparticles (≈ 12 nm). Measurements of the electrical resistivity show inhibited coherence effects and deviation from the standard Fermi liquid behavior (T^2 -dependence). The results are interpreted as due to the effect of the disruption of the periodicity of the array of Kondo ions provoked by the size reduction process. Additionally, the ensemble of randomly placed nanoparticles also triggers an extra source of electronic scattering at very low temperatures (≈ 15 K) due to quantum interference effects.

Keywords: Yb nanometric alloys, Kondo lattice, single impurity, electrical resistivity, Quantum interference effects

Submitted to: J. Phys.: Condens. Matter

1. Introduction

The behavior of magnetic impurities in a metallic host embraced in the well-known Kondo effect has been one of the most challenging problems in condensed matter physics [1]. This phenomenon is a fine example of development of electronic correlations in a solid, and in the last years it has witnessed a resurgence with the development of nanoelectronic devices and novel nanostructured materials [2, 3]. However, there is probably no other area where the presence of the Kondo effect is so fundamental as in

¹ BCMaterials, Building No. 500, Tech. Park Biscay, 48160 Derio, Spain.

²Dpto de Estructuras y Física de Edificación. ETSAM-Universidad Politécnica de Madrid, 28040 Madrid, Spain

³Dpto. CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain

⁴SERMET, Universidad de Cantabria, 39005 Santander, Spain

⁵Institute of Solid State Physics, TU Wien, 1040 Wien, Austria

⁶Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France

 $^{^7}$ Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil

Strongly Correlated Electron Systems (SCES) (Ce-, U-, and Yb-based compounds) [4]. Within the existing theories, the *Kondo lattice model* [5] has been successfully applied for explaining the influence of *Kondo effect* on the physical properties of this kind of materials.

In the framework of this model, a large number of SCES can be classified as *Kondo lattice* systems, and these are viewed as a dense periodic array of magnetic ions, different to the single impurity systems, where the impurities are considered far away with no coherence between each other. The possibility that long range Fermi liquid coherence may break down in a Kondo alloy has open new perspectives since it may lead to the formation of non-trivial new quantum states [6, 7, 8]. Until now, this issue has mainly been experimentally explored for bulk materials by diluting the active Kondo ion with a non magnetic one (in Ce alloys), paying an especial attention to the crossover from *Kondo lattice* to single impurity regime detected by electrical resistivity measurements [9, 10, 11, 12, 13]. Less attention has been focused on Yb alloys respect to Ce systems, with only a few reports (see for instance [14, 15, 16]), where even this crossover hardly has been explored [17].

It is also remarkable to note that most of the reports in SCES have been constrained to macroscopically well-crystallized bulk materials. However it appears evident that the development of molecular beam epitaxy techniques have allowed very recently the production of two dimensional structures based on Ce-Kondo lattice systems, known as "Kondo superlattices" [18]. The reduction of the dimensionality results in new types of electronic states, as observed in CeIn₃-LaIn₃ superlattices, where an enhancement of the effective electron mass and non Fermi liquid behavior were underlined [19]. Another example is the fabrication of multi-scale microstructures spanning from atomic to nanometer and mesoscopic scales in YbAl₃ alloy, showing a simultaneous enhancement of the electron and phonon transport properties [20].

Following this alternative route, novel phenomena appear when reducing the size of those materials to the nanometer scale. In particular, it is appealing to investigate deeper the eventual variations in the relation to the role of Kondo interaction, especially in Kondo lattice compounds [21]. There are only a few examples of experimental results on Ce alloys ([22, 23] and Refs. therein), and also some theoretical approaches (see for instance [24, 25, 26]). In Yb systems, a significant example is the nanosized YbAl₃ particles, which exhibits a decrease of the Yb valence with the size reduction. Such a decrease was attributed to the bonding loss of the surface atoms [27]. More recently, changes in the valence with the size reduction in REPb₃ (RE=Eu, Yb) alloys were also observed [28]. For nanosized YbAl₃, the bulk counterpart of this alloy is an archetypal intermediate valence system, which has been thoroughly studied in the past. The existence of energy scales related to coherence and Kondo effects allows to classify this alloy as a Kondo lattice system [14]. Electrical resistivity results indicate a decrease of the scattering around 100 K [29]. There is also a broad maximum around 100 K in the magnetic susceptibility and also in the magnetic contribution to the specific heat related to an energy scale (Kondo temperature $(T_K = 500 - 670 \text{ K})$) [14, 30, 31], as found as well

in the nanosized YbAl₃ alloys [27]. In this kind of material with a Kondo temperature higher than 500 K, the crystalline field effects are found to play a secondary role [1, 14, 30, 32]. Moreover, studies on Yb_{1-x}Lu_xAl₃ series of alloys showed that according to magnetic susceptibility and specific heat measurements the appearance of a second energy scale at 40 K in the intermediate valence Kondo lattice YbAl₃ is a true coherence effect [14]. In addition, a reduction of Kondo lattice effects in Yb_{1-x}Lu_xAl₃ was observed by soft x-ray photoelectron spectroscopy with a behavior in a good agreement with the single impurity Anderson model [15]. However, it is interesting to note that details of these changes in the Kondo lattice behavior has not been explored so far by electrical resistivity ($\rho(T)$) measurements in this Yb-substituted series Yb_{1-x}Lu_xAl₃, despite it represents a smoking gun evidence to disclose the evolution of the coherence effects and the Kondo regime in strongly correlated Yb and Ce compounds. The Fermi liquid regime ($\propto T^2$) at low temperatures and coherence effects, hallmarks of a Kondo lattice behavior, can be easily identified by measuring electronic transport properties.

Considering the electronic properties of nanosized YbAl₃ [27] and those commented for the bulk alloy above, it is relevant to scrutinize the influence of the size reduction on the electronic transport properties (electrical resistivity), and how the *Kondo lattice* behavior and the Fermi liquid ground state (T^2 dependence at low temperatures) are affected, both constitute the main aims of this work. This will represent a definite step forward within SCES systems (Ce,Yb,U alloys). Additionally, the results are compared with that obtained for the non-magnetic reference LuAl₃ nanometric alloy, and with the dilution effect by nonmagnetic Lu in bulk YbAl₃ alloy using the electrical resistivity as well.

2. Experimental

Nanocrystalline LuAl₃ allow was prepared by high-energy mechanical milling of a starting bulk alloy. Then, the alloy was crushed and milled in a planetary high-energy ball system (Retsch PM 400/2) at a rotation speed of 200 rpm, using a container and balls made of tungsten carbide, a similar procedure, as already used in the study of the YbAl₃ and other Rare Earth nanoalloys [27, 33]. The bulk Yb_{0.2}Lu_{0.8}Al₃ alloy was prepared in an arc furnace from constituent elements Yb (Alfa-4N), Lu (Alfa-4N) and Al (Alfa-5N). Transmission Electron Microscopy (TEM) was performed in a JEOL JEM 2100 microscope. X-ray diffraction measurements were performed at room temperature with a Bruker D8 Advance diffractometer using Cu- $K\alpha$ radiation. Electronic transport properties were measured by the four probe method in a Quantum Design PPMS device. For the electrical resistivity measurements the milled powder is first pressed in a press pellet die. A disk is then obtained, which has to be cut in a parallelepiped shape. The sample bar was of a typical length (10 mm) and area (2x2.5 mm²). Our in-house holder consisted of 4 spring-loaded pins. The pin holder was screwed on top of the sample until a certain deformation was observed in the springs. The spring-loaded pins are rounded to secure an excellent contact.

3. Results

Figure 1 shows the X-ray diffraction patterns and results of Rietveld refinement of 70 h milled YbAl₃ (a) and LuAl₃ (b) alloys. The Rietveld analysis of x-ray data for 70 h milled YbAl₃ alloy (Bragg factor: $R_B = 10\%$) provided the unit-cell parameter a = 4.2037(7) Å, mean grain size $D_{XRD} = 12(2)$ nm and lattice strain $\eta = 0.37(3)$ %, in agreement with the previously reported results [27]. For the sample LuAl₃ milled for 70 h, with a Bragg factor ($R_B = 7\%$), values of a=4.1918(4) Å, $D_{XRD} = 10$ (2) nm and $\eta = 0.64(3)$ % are calculated. The structural characterization was completed collecting TEM images. Figure 1 (c) and (d) show representative high resolution transmission electron microscopy (HRTEM) images of the 70 h milled YbAl₃ and LuAl₃ nanoparticles. The figures show a single YbAl₃ particle with a mean diameter 14 nm diameter (Figure 1 (c)) and of 11 nm for LuAl₃ nanoparticle (Figure 1(d)). The lattice planes can be clearly observed, which indicates that the nanoparticles are crystalline in the core. These values of the mean size of the nanoparticles are near to those obtained by the analysis of the X-ray diffraction data.

Figure 2(a) shows the temperature dependence of the total electrical resistivity $(\rho(T))$ in bulk, 20 h, and 70 h milled YbAl₃ alloys. It is observed a gradual change in the high temperature slope in the milled samples respect to the bulk alloy, with a decrease of the relative variation in all temperature range with the milling process. For 70 h milled YbAl₃ alloy there are two important features that indicate a remarkable difference with the bulk sample: the high temperature slope, and a minimum around 15 K, as indicated by the marker, in more detail in figure 2(b). There is also a broad hump in the 70 h milled YbAl₃ alloy.

The appearance of this hump is typical in the magnetic contribution to $\rho(T)$ of intermediate valence $Kondo\ lattice$ systems, as observed for instance in the intermediate valence YbCuAl [34]. When coming down from high temperatures in 70 h milled YbAl₃, the $\rho(T)$ increase can be attributed to the incoherent Kondo scattering (high temperature scale- T_K = 670 K [14]) until the decrease below T_{max} = 125 K. Thus, the contribution to the electrical resistivity in 70 h milled YbAl₃ (see Figure 2(b)) basically comes from the magnetic scattering and the residual resistivity terms. This suggests that the disorder provoked by the milling process induces an increase of the scattering from defects in the crystal lattice, starting to play a more significant role that the electron-phonon scattering. This fact has been observed in other milled Rare Earth-based alloys, where the electrical resistivity has shown a significant reduction of the high temperature slope with the increase of the milling time, with values of RRR = ρ_{300K}/ρ_{4K} (Residual Resistivity Ratio) changing from 1.6 to 1.1 [35].

On the other hand, at low temperatures a drastic change (although relatively reduced) in the behavior is observed in such a milled sample respect to the bulk alloy, with a marked upturn and the presence of a minimum around 15 K, as shown in Figure 2(a,b). Precisely there is a small upturn in YbAl₃ 20 h ($\langle D_{XRD} \rangle \approx 19$ nm [27]) which demonstrates that the appearance of the minimum at 70 h alloy is not casual but the

result of a definite tendency (see Figure 2 (c)). The consequence of this minimum is a deviation from standard Fermi liquid behavior, as shown in Figure 3, when comparing the bulk and 70 h milled YbAl₃ alloy samples.

To analyze the origin of such a minimum in $\rho(T)$ it is pertinent to check $\rho(T)$ in LuAl₃ milled for 70 h. This will allow to test whether the minimum is observed in a conventional metallic alloy of a similar nanometric structure. In this case (see Figure 4 (a)), the shape of the resistivity curve is that of a typical metal. Curiously it also displays a minimum, much shallower than that in 70 h milled YbAl₃, as shown in details in the inset of Figure 4 (a). This last feature could be intuitively interpreted as additional contributions around the minimum in the Yb-based alloy, which we will commenting below.

The analysis of the different contributions to $\rho(T)$ in disordered (amorphous) metals and nanocrystalline alloys is not a simple task. There exist several mechanisms that could provide a reasonable interpretation for the increase of the electrical resistivity at low temperatures for the nanometric 70 h milled YbAl₃ and LuAl₃ alloys. To facilitate the interpretation we will describe our rationale step by step. Firstly, it could be expected the low temperature upturn be due by eventual changes in the density of carriers, which are considered commonly in semiconducting materials and hopping conductivity. In a second step we will discuss quantum interference effects (QIE) usually observed in compounds of amorphous nature [36, 37]. Finally, a third plausible approach to quantify is the role of an eventual Kondo effect in the Yb sample will be discussed as another extra scattering source frequently present in SCES Yb alloys.

Regarding the first mechanism, our $\rho(T)$ measurements indicated an ohmic dependence (see Figure 4(b)), thus providing a reasonable evidence for a metallic conductivity. Thus, ruling out the influence of oxides such as Yb₂O₃ in $\rho(T)$. The presence of this oxide (less than 3 %) of the sample) has been previously detected in bulk and milled YbAl₃ alloys [27]. Consequently, this ohmic dependence of $\rho(T)$ also eliminates the possibility of hopping conductivity, based on Mott metal-insulator transition, with an exponential dependence anyway [38]. Secondly, an electrical resistivity minimum has been been widely observed in amorphous materials of high $\rho_0 \ (\gtrsim 80 \ \mu\Omega \text{cm})$. The high-energy milling process usually leads to sizeable lattice strains and deformations, thus giving rise to a poorly crystallized environment at a very local range [39]. Therefore, it would not be surprising to detect an influence of these effects in $\rho(T)$. Quantum electron interaction effects [36] put forward two corrections, namely the electron-electron interaction (EEI) and the weak localization (WL). In the following, we will briefly comment on both effects. Although EEI and WL introduce temperature dependent corrections to resistivity, in three-dimensional disordered metals at low temperatures, the contribution to resistivity from the EEI effects dominates over that due to WL effects [36, 40]. Assuming the existence of EEI, the correction to conductivity (σ) is derived as:

$$\Delta\sigma_{ee} = \frac{1.3}{\sqrt{2}} \frac{e^2}{2\pi h} F_0 \sqrt{\frac{2\pi k_B T}{hD'}} \tag{1}$$

where $D' = \frac{v_F^2 \tau}{3}$ is the diffusion constant, in terms of the Fermi velocity v_F and the relaxation time τ . F_0 is a screening term which turns to 4/3 in the case of the absence of an applied magnetic field. Experimental reports revealing the $\rho \propto -\sqrt{T}$ dependence have been extensively published for disordered metals [37]. On the other hand, the electron wave propagation, away from a classical interpretation, allows a variety of paths with the existence of loops of interference between the electron waves giving rise to a factual localization. If all particles returned back to the origin, then $\rho \to \infty$ and the full localization would be achieved.

An ideal approach to determine the influence of EEI effects is then to include $\rho \propto -\sqrt{T}$. As shown in Figure 5 (a), one can realize that it is possible to fit a linear variation (\sqrt{T} dependence) for 70 h milled LuAl₃ alloy. This supports experimentally the former assumption: the mechanism related to the electrical resistivity minimum in LuAl₃ is the commented quantum corrections.

Regarding the YbAl₃ nano (70 h milled alloy), the contribution below the minimum shows an extra contribution. Let us first consider that for $T < T_{min}$ there is a major contribution from QIE effects as occurs in LuAl₃. The fit only considering the $-\sqrt{T}$ term is not satisfactory (see Figure 5(b)), thus suggesting the presence of another more important scattering mechanism(s). In SCES Yb systems we presented above there could exist a contribution stemming from the Kondo effect $(\rho \propto -ln(T))$ [1]. In this sense, we have found that the low temperature data (T < 7 K), is well described according to the - lnT dependence, and the results are displayed in Figure 5 (c). This could indicate the presence of an additional temperature scale $(T^*=7 \text{ K})$ related to the onset of an eventual Kondo contribution at low temperatures, different to the high T_K temperature scale.

4. Discussion

The outcome of the former analysis is that the experimental evidence is explained by both QIE and Kondo interaction, which are responsible for the low temperature upturn below T_{min} . The milling of the bulk YbAl₃ results in an ensemble of nanoparticles randomly dispersed and in contact, forming a granular alloy. It is commonly accepted that nanoparticles can be generally described as a two-component system consisting of the core nanocrystallites and a grain or interphase boundary components [41]. The thickness of this grain boundary is commonly assumed around 1 nm. At grain boundaries, more disorder is expected in relation to the core of nanoparticles. On the one hand, the nanometric size of the particles favors the presence of surface shells in which the atomic coordination is reduced whereas the microstrain is enhanced. In this situation the nanostructure becomes more and more disordered, affecting the electrical resistivity. Therefore, such a considerable disorder is the basic element supporting the OIE.

In bulk YbAl₃, the f-electron atoms are forming a periodic array which lie in the socalled *Kondo lattice* systems [5]. Every spin in the lattice is screened by the conduction

electrons. In real space, the screening takes place on a length scale of mesoscopic size $(\xi_K = \hbar v_F/k_B T_K)$, where v_F is the Fermi velocity), denoted as the Kondo screening cloud [42]. The values of Fermi velocity may range from 10^6 m/s for normal metals to 10^3 - 10^4 m/s in Heavy Fermion systems [43]. Consequently, the Fermi velocity is directly related with the electronic contribution to the specific heat (Sommerfeld coefficient (γ)). The value of $\gamma = 45 \text{ mJ/molK}^2$ estimated from the specific heat data in bulk YbAl₃ is found to decrease down to 36 mJ/molK² for the 70 h milled YbAl₃ alloy [27]. Since a value of the Fermi velocity $v_F = 4 \cdot 10^4$ m/s, is observed for the bulk YbAl₃ [44], a simple scaling with the variation of the coefficient γ leads to an appraisal of 5.10^4 m/s for the Fermi velocity in the milled sample. On the other hand, from the maximum in the magnetic susceptibility and magnetic contribution to the specific heat in bulk and milled YbAl₃ alloys [27], the T_K values do not change significantly, being around 500 K-670 K, as estimated for the bulk sample [14, 30, 32]. Thus, following the above reasoning, it is possible to estimate a value of ξ_K around 0.7 nm for the 70 h milled YbAl₃ alloy. The length scale ξ_K would be less than the mean size of our samples (12 nm), and consequently the Kondo screening cloud is restricted within the nanoparticle, at least in the core, with variations at the surface of the nanoparticles. The size effect would not be essential for the disruption of the Kondo lattice behavior, as the characteristic length is one order of magnitude lower than the mean grain size, whereas the increase in the lattice strain and the disorder at the surface of the particles with the size reduction process will play a significant role. Our measurements of electrical resistivity of nanosized YbAl₃ indicate that the nanoparticle ensemble provokes the breakdown of the Kondo lattice coherence, with a presence of a low temperature upturn.

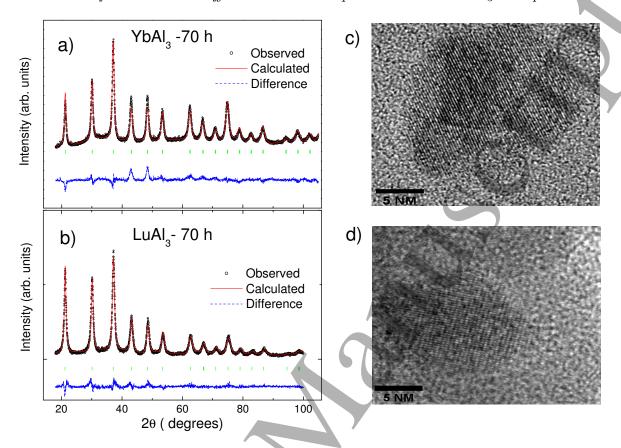
It has been shown that the reduction of size in nano-YbAl₃ results in the Yb valence reduction as a consequence of the increasing non-magnetic Yb²⁺ atoms at the surface of nanoparticles [27]. Irrespective of this qualitative interpretation, what is clear is that by reducing the size, a $\rho(T)$ minimum appears with the low temperature upturn. As a matter of fact, this situation resembles the cases of bulk alloys under chemical substitution in which by adding non-magnetic rare-earth atoms (Y and La for Ce-based and La or Lu for Yb-based compounds) the transition from Kondo Lattice to single impurity regime is observed (see for instance [12, 17]. In bulk YbAl₃ the coherence scattering is maintained throughout the alloy as a result of a Kondo lattice behavior. This is greatly modified whenever there is a reduction of size and a concomitant increase of surface strain and disorder in the nanoparticle shell. For comparison purposes, the possibility of a change of regime by Lu dilution was explored in the bulk YbAl₃. The bulk sample Yb_{0.2}Lu_{0.8}Al₃ is found to crystallize in the same type of structure and space group Pm-3m as YbAl₃ and LuAl₃ alloys but with a lattice parameter a =4.1932(2) Å. The results show the presence of a low temperature minimum in $\rho(T)$ of the bulk Yb_{0.2}Lu_{0.8}Al₃ alloy with an upturn following a -lnT dependence (see Figure 6). Curiously, the position of this minimum around 7 K, coincides with the onset of -lnT term below the temperature scale T^* , associated to the low temperature upturn in the 70 h milled YbAl₃ alloy. Consequently, it is possible to find some similarities

between the size reduction and chemical substitution process by Lu in bulk YbAl₃ alloy. In both of cases there is an increase in the fraction of non-magnetic atoms (Yb²⁺ or Lu) and the disorder leading to a limit situation where the periodicity of the Kondo ions is broken. Consequently, a deviation from the Fermi liquid regime is observed.

Concerning the observed -lnT dependence of the low temperature upturn in the 70 h milled YbAl₃ alloy, it is obvious that the electronic transport in an ensemble of nanoparticles is complex. It will require further study in order to ascribe it to a Kondo behavior.

5. Conclusions

It is concluded that the size in intimate combination with the increasing strain is a magnificent driving parameter, now for intrinsic electronic scattering changes. In this sense and to extend the universality of the former assert, it is widely known that particles of noble metals in nanocrystalline state can suffer serious changes in the density of states, as have been recently reported [45]. Therefore, our finding is naturally connected with a more general physical situation.


To summarize, the scrutiny of the electrical resistivity in nano-YbAl₃ particles has revealed a deviation from the Fermi liquid behavior at low temperatures. Such a deviation is due to the combined effect of the disruption of the periodicity of the Kondo ions as consequence of size reduction process and QIE favored by the presence of a disordered collection of nanoparticles.

6. Acknowledgements

This work was supported by the Spanish MINECO under project MAT2014-55049-C2-R.

- [1] Hewson A C 1997 The Kondo problem to Heavy fermions (Cambridge, England: Cambridge University Press)
- [2] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature **391** 156
- [3] Prüser H, Dargel P E, Bouhassoune M, Ulbrich R G, Pruschke T, Lounis S and Wenderoth M 2014 Nat. Commun. 5 5417
- [4] Coleman P 2007 Handbook of Magnetism and Advanced Magnetic Materials (Chichester: Wiley)
- [5] Doniach S 1977 Physica B **91** 231
- [6] Burdin S and Fulde P 2007 Phys. Rev. B 76 104425
- [7] Kaul R K and Vojta M 2007 Phys. Rev. B **75** 132407
- [8] Burdin S and Lacroix C 2013 Phys. Rev. Lett. 110 226403
- [9] Lawrence J M, Graf T, Hundley M F, Mandrus D, Thompson J D, Lacerda A, Torikachvili M S, Sarrao J L and Fisk Z 1996 *Phys. Rev. B* **53** 12559
- [10] Bud'ko S L, Fontes M B and Baggio-Saitovitch E M 1998 J. Phys.: Condens. Matter 10 8815
- [11] Chudinov S, Brando M, Marcelli A and Battisti M 1998 Physica B 244 154
- [12] Medina A N, Rojas D P, Gandra F G, Azanha W R and Cardoso L P 1999 Phys. Rev. B 59(13) 8738
- [13] Pikul A P, Stockert U, Steppke A, Cichorek T, Hartmann S, Caroca-Canales N, Oeschler N, Brando M, Geibel C and Steglich F 2012 Phys. Rev. Lett. 108 066405

- [14] Bauer E D, Booth C H, Laurence J M, Hundley M F, Sarrao J L, Thompson J D, Riseborough P S and Ebihara T 2004 Phys. Rev. B 69 125102
- [15] Yamaguchi J, Sekiyama A, Imada S, Yamasaki A, Tsunekawa M, Muro T, Ebihara T, Onuki Y and Suga S 2007 New J. Phys. 9 317
- [16] Köhler U, Oeschler N, Steglich F, Maquilon S and Fisk Z 2008 Phys. Rev. B 77(10) 104412
- [17] Rojas D P, Medina A N, Gandra F G, Fernández Barquín L and Gómez Sal J C in press Physica B
- [18] Shimozawa M, Goh S K, Shibauchi T and Matsuda Y 2016 Reports on Progress in Physics 79 074503
- [19] Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H, Terashima T and Matsuda Y 2010 Science 327 980
- [20] He D, Zhao W, Mu X, Zhou H, Wei P, Zhu W, Nie X, Su X, Liu H, He J and Zhang Q 2017 Journal of Alloys and Compounds 725 1297 1303
- [21] Lonzarich G, Pines D and feng Yang Y 2017 Reports on Progress in Physics 80 024501
- [22] Chen Y Y, Huang P H, Ou M N, Wang C R, Yao Y D, Lee T K, Yao M Y, Laurence J M and Booth C H 2007 Phys. Rev. Lett. 98 157206
- [23] Mohanta S K, Mishra S N, Iyer K K and Sampathkumaran E V 2013 Phys. Rev. B 87(12) 125125
- [24] Thimm W B, Kroha J and von Delft J 1999 Phys. Rev. Lett. 82 2143
- [25] Hand T, Kroha J and Monien H 2006 Phys. Rev. Lett. 97 136604
- [26] Schwabe A, Gütersloh D and Potthoff M 2012 Phys. Rev. Lett. 109 257202
- [27] Rojas D P, Barquín L F, Espeso J I and Rodríguez Fernández J 2008 Phys. Rev. B 78 094412
- [28] Subbarao U, Sarkar S, Jana R, Bera S S and Peter S C 2016 Inorganic Chemistry 55 5603–5611
- [29] Rowe D M, Kuznetsov V L, Kuznetsova L A and Min G 2002 J. Phys. D: Appl. Phys. 35 2183
- [30] Cornelius A L, Laurence J M, Ebihara T, Riseborough P S, Booth C H, Hundley M F, Pagliuso P G, Sarrao J L, Thompson J D, Jung M H, Lacerda A H and Kwei G H 2002 Phys. Rev. Lett. 88 117201
- [31] Burdin S, Georges A and Grempel D R 2000 Phys. Rev. Lett. 85 1048
- [32] Ebihara T, Bauer E D, Cornelius A L, Laurence J M, Harrison N, Thompson J D, Sarrao J L, Hundley M F and Uji S 2003 *Phys. Rev. Lett.* **90** 166404
- [33] Rojas D P, Barquín F, Fernández J R, Espeso J I and Sal J C G 2007 Journal of Physics: Condensed Matter 19 186214
- [34] Schlottmann P 1989 Physics Reports 181 1
- [35] Echevarria-Bonet C, Rojas D P, Espeso J I, Fernández J R, de la Fuente Rodríguez M, Barquín L F, Fernández L R, Gorria P, Blanco J A, Fdez-Gubieda M L, Bauer E and Damay F 2015 Journal of Physics: Condensed Matter 27 496002
- [36] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
- [37] Howson M A and Gallagher B L 1988 Phys. Reports 170 265
- [38] Kittel C 1986 Introduction to Solid State Physics (New York: John Wiley & Sons)
- [39] Echevarria-Bonet C, Rojas D P, Espeso J I, Rodríguez Fernández J, Rodríguez Fernández L, Gorria P, Blanco J A, Fdez-Gubieda M L, Bauer E, André G and Fernández Barquín L 2013 Phys. Rev. B 87(18) 180407
- [40] Ghosh T, Fukuda T, Kakeshita T, Kaul S N and Mukhopadhyay P K 2017 Phys. Rev. B 95(14) 140401
- [41] Rojas D P, Barquín L F, Fernández J R, Fernández L R and Gonzalez J 2010 Nanotechnology 21
- [42] Park J, Lee S S B, Oreg Y and Sim H S 2013 Phys. Rev. Lett. 110(24) 246603
- [43] Mourachkine A 2004 Room-temperature Superconductivity (Cambridge, UK: Cambridge International Science Pub.)
- [44] Demsar J, Kabanov V V, Alexandrov A S, Lee H J, Bauer E D, Sarrao J L and Taylor A J 2009 Phys. Rev. B 80(8) 085121
- [45] Garitaonandia J S, Insausti M, Goikolea E, Suzuki M, Cashion J D, Kawamura N, Ohsawa H,

Figure 1. X-ray diffraction patterns and results of Rietveld refinement of 70 h milled YbAl₃ (a) and LuAl₃ (b) alloys. The vertical markers are the expected Bragg positions according to Pm-3m space group. High resolution TEM image of a nanoparticle of 70 h milled YbAl₃ (c) and LuAl₃ (d) alloys.

Gil de Muro I, Suzuki K, Plazaola F and Rojo T 2008 Nano Lett. 8 661

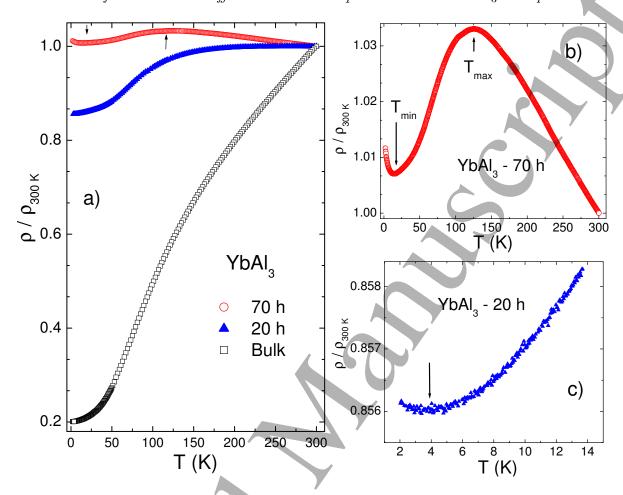
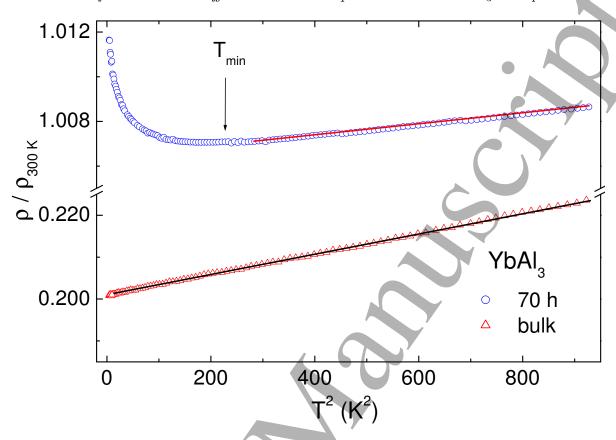
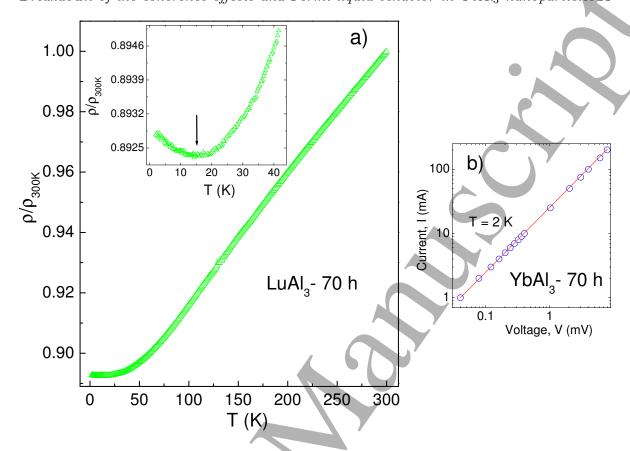




Figure 2. a) Normalized electrical resistivity vs temperature for bulk, 20 h and 70 h milled YbAl₃ alloys. In the milled sample, there is a minimum followed by an increase of the resistivity, up to a broad maximum, as indicated by the markers. b) Details of normalized electrical resistivity curve for 70 milled YbAl₃ alloy, highlighting the existence of a temperature minimum and maximum. c) Details of the low temperature region of 20 h YbAl₃ milled alloy showing a minimum in $\rho(T)$ around 4 K.

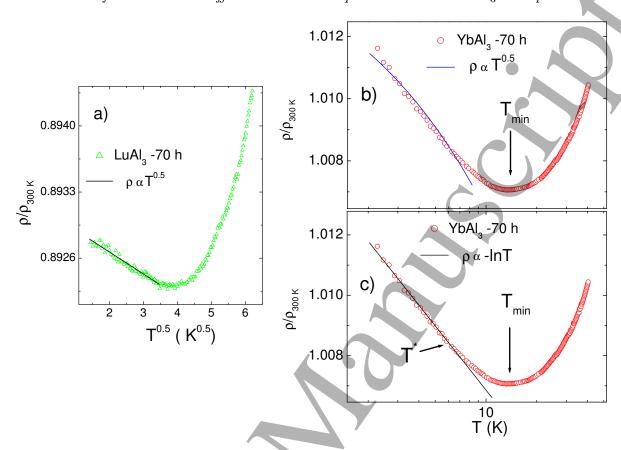


Figure 3. Details of the low temperature region of bulk and 70 h milled YbAl₃ alloys showing a deviation from the Fermi liquid dependence below T_{min} in the nanometric alloy.



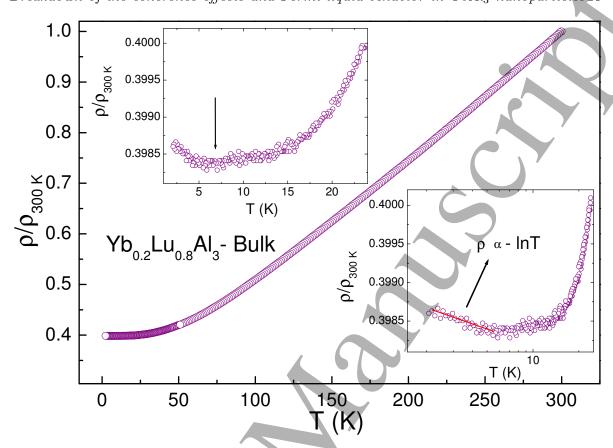


Figure 4. a) Normalized electrical resistivity curve of the 70 milled LuAl₃ alloy. The inset details the low temperature region showing the presence of a minimum around 15 K. b) Curve of applied current (I) vs. voltage (V) in log-log scale at 2 K in the 70 h milled YbAl₃ alloy.

Figure 5. a) Low temperature region of electrical resistivity described by a $-\sqrt{T}$ term in 70 h milled LuAl₃. Fitting of the electrical resistivity data in 70 h milled YbAl₃ alloy in logarithmic scale, according to $-\sqrt{T}$ term (b) and a -lnT dependence (c). In the Yb alloy, the data is better described by a -lnT behavior below $T^* = 7$ K.

Figure 6. Normalized electrical resistivity curve of $Yb_{0.2}Lu_{0.8}Al_3$ bulk alloy. Details of the low temperature region showing the presence of a minimum around 7 K (left inset), with an upturn according to -lnT dependence (right inset).

