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Abstract—The increase in awareness of people towards their
nutritional habits has drawn considerable attention to the field
of automatic food analysis. Focusing on self-service restaurants
environment, automatic food analysis is not only useful for
extracting nutritional information from foods selected by cus-
tomers, it is also of high interest to speed up the service
solving the bottleneck produced at the cashiers in times of high
demand. In this paper, we address the problem of automatic food
tray analysis in canteens and restaurants environment, which
consists in predicting multiple foods placed on a tray image. We
propose a new approach for food analysis based on convolutional
neural networks, we name Semantic Food Detection, which
integrates in the same framework food localization, recognition
and segmentation. We demonstrate that our method improves
the state-of-art food detection by a considerable margin on the
public dataset UNIMIB2016, achieving about 90% in terms of
F-measure, and thus provides a significant technological advance
towards the automatic billing in restaurant environments.

Index Terms—food tray analysis, food recognition, semantic
segmentation, convolutional neural networks

I. INTRODUCTION

AVING a poor routine of physical exercises and poor

nutritional habits are two of the main possible causes
of people’s health-related issues like obesity or diabetes,
among others. For these reasons, nowadays people are more
concerned about these aspects of their daily life. Therefore,
the need for applications that allow to keep track of both
physical activities and nutrition habits are rapidly increasing,
a field in which the automatic analysis of food images plays
an important role. Focusing on self-service restaurants, food
recognition algorithms could enable both monitoring of food
consumption and the automatic billing of the meal grabbed by
the customer. The latter is quite relevant because remove the
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need for a manual selection of the chosen dishes, allowing to
speed-up the service offered by these restaurants.

Fig. 1: Example of images used in traditional approaches to
food analysis (left) and food tray analysis (right).

From the computer vision side, several approaches have
been proposed to tackle the problem, most of them using
Convolutional Neural Networks (CNNs) [L], [2], [3], [4].
Several of the published work consider the development of
methods for food recognition, i.e. being able to recognize
the dish depicted in a picture in which a single plate is
shown. An important consideration to take into account when
modeling visual food-related information is its fine-grained
nature, meaning that specially in the problem of food analysis
the intra and inter-class similarity are hardly making difficult
the problem of obtaining robust food recognition methods.

Several works in the literature have proposed methods for
food intake self-monitoring [5]], [6], in which the user should
take pictures of each meal and the system would consequently
track any nutritional information associated. Other approaches
related to the problem of food intake include food portion
estimation by using two images acquired by mobile devices
[7]; food ingredients recognition from recipes using CNNs as
multi-label predictors [8]], [9]; multimodal multitask deep be-
lief networks for learning both visual information and image-
ingredient representation [[10]]; bayesian models for analyzing
similarities between cuisines [[11]]; or cross-modal learning for
multi-attribute recognition and recipe retrieval [12].

Instead of applying personalized tracking, there are several
contexts where social monitoring or recognition is required.
A clear example is food tray detection in public spaces [13],
[14]], where the sample consists of a tray picture that includes
all the food that a user is about to consume (see Fig. [T) and
the model is intended to process all pictures from any possible
users taking food at the same restaurant. The development of a
system able to apply food tray detection in a controlled, but so-
cial and public environment could enable several applications.
The most straightforward context of applicability would be
automatic billing in self-service restaurants, where the system
could solve the need for a person selecting what the customer
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Fig. 2: Main tasks of our Semantic Food Detection framework.

Food
Recognition

Food
Localization

grabbed before paying. A different application could consider
the design of smart trays [15], which could provide food
recommendations depending on what the customer is selecting.
The provided recommendations could be based on calorie
counting, healthy food, specific nutritional composition, etc.
In addition, if we also consider a system able to log the food
consumed by every individual along time, it could provide
health-related recommendations in a long-term way.

There are several aspects that make the food tray analysis
a challenging problem [14]: 1) multiple foods placed on the
same placemat, 2) different foods served in the same dish, 3)
visual distortions and illumination changes due to shadows,
and 4) objects placed on a tray that do not correspond to any
type of food. On the other hand, unlike traditional approaches
to food analysis, difficulties due to intra-class variability have
less influence on the problem of food tray detection.

In this work, we propose a novel method that unifies
the problems of food detection, localization, recognition and
segmentation into a new framework that we call Semantic
Food Detection. As Fig. [2{ shows, we integrate the information
extracted by two main approaches: a) food segmentation and b)
object detection trained for food detection, by taking advantage
of the benefits provided by both algorithms in a CNN frame-
work. The first one allows us to determine where the food is in
terms of pixel and bounding boxes. The second one allows us
to locate and recognize the foods present in the images. The
Semantic Food Detection framework combines the information
that both algorithms provide in order to prevent false food
detections and thus provide a better performance.

Our main contributions are: 1) a novel framework that inte-
grates the problems of food detection, localization, recognition
and segmentation; and 2) a novel approach to address the
problem of food tray analysis, that integrates a fully convolu-
tional network for semantic segmentation and a convolutional
neural network for object detection through a probabilistic ap-
proach and a custom non-maximum suppression. Our method
achieves about 90% in terms of F2-score, and it is able to
outperform the state-of-art methods by more than 10% and
20% with respect to recall and mean average accuracy.

The remainder of this paper is organized as follows: Section
includes an overview of the related work, Section
presents the proposed Semantic Food Detection approach,
Section [[V|shows the experimental results and discussion, and
Section [V] closes with the conclusions and future research.

II. RELATED WORK

Nowadays, there is a great interest in conducting research
for visual food analysis, mainly in its applicability for diet
monitoring based on the intrinsic nutritional information con-

tained in food images. In this field, researchers have focused
on different several aspects related to automatic food analysis.

The most basic aspect tackled in the literature is the
binary food detection problem that determines the presence
or absence of food in an image. This problem is also called
food/non-food classification or food detection [16]. The first
approximation was proposed by Kitamura et al. [17], who
combine a BoF model and a SVM achieving a high accuracy
on a tiny dataset of 600 images. An improvement of about 4%
is achieved in terms of overall accuracy using a CNN-based
method [16]. From this, numerous researchers have proposed
CNN-based models either for feature extraction [2], [3] or
for the whole recognition process [1l], [4]. The best results
obtained on public datasets with more than 15,000 images
[L], [2] have been reported in [3]] through the combination of
CNN GoogleNet for feature extraction, PCA for dimension
reduction and SVM for classification. As for its applicability,
this problem has commonly been investigated for indexing
WEB images [[17] or as a pre-processing method for an
automatic food recognition system [1l], [4]. It has been also
used to detect bounding boxes in an food images [18]], and
to automate the process of image cleaning required when
gathering images of a food dataset [19].

In food analysis, once images containing food are identified,
food recognition is usually the next step to apply. Again, CNN-
based models have been able to progressively improve the
results of food recognition models reaching an accuracy of
about 90% in datasets with around 100 different food classes
[20]. In general, the best proposals are based on the winning
models of the ILSVRC challenge [21], and a fine-tuning
process is usually applied either making some architectural
model changes (e.g. addition or removal of layers) [22], [23]]
or not [24]. Several datasets have been proposed to tackle
this problem: a) datasets including fine-grained classes (e.g.
apple pie, pork chop, pizza), like UECFOOD-256 [25] or
Food-101 [26]; and b) datasets based on high-level categories
(e.g. dessert, meat, soup), like Food-11 [4]]. The best result
when using fine-grained classes was achieved by the WISeR
model [20]], which combines the food traits and the vertical
structure of some food, extracted by the standard squared
convolutional kernel and the proposed slice convolutional
kernel, respectively. Regarding the high-level categories, the
best results were obtained by [27] through a novel approach
that fuses several CNN models, achieving a 10% improvement
in terms of accuracy with respect to the baseline method.

Most of the approaches focused on food recognition only
exploit the visual content, but they ignore the context. How-
ever, geolocation and other information have also been ex-
plored in the literature for restaurant-oriented food recognition:
on-line restaurant information is used in [28]], similarly to [29]]
in which nutritional information is also retrieved; whilst the
menu, the location and user images of dished are used in
[30]. On the other hand, Herranz et al. [31] go a step further
since their target is not only to improve both classification
performance and efficiency, but also to better model contextual
data and its relation with the other elements.

To date, most food recognition algorithms and datasets focus
on classifying images that include only one dish [20], [23],



[24]. However, in some cases, there may be more than one dish
in the image and, in some cases, the dish can contain several
kinds of food. Food localization and food segmentation are
two tasks intended to cope with these problems. The former
consists in extracting the regions of the images where the food
is located. Up to our knowledge, the only available approach
that does not require segmenting the food before extracting the
bounding boxes is the one proposed by [18]. The task of food
segmentation consists in classifying each pixel of the images
representing a food. The latest research for food segmentation
proposes an automatic weakly supervised methods [32]], [33],
which are based on Deep Convolutional Neural Networks and
Distinct Class-specific Saliency Maps, respectively.

Regarding image segmentation for general purposes, fully
convolutional networks (FCNs) [34] are the state-of-art in
semantic segmentation. They are composed of convolutional
layers only, i.e they do not have any fully-connected layer.
They consist of a down-sampling path and an up-sampling
path, which allow to take input images of arbitrary size and
produce outputs of equivalent size, by means of an efficient
inference and learning process. Several FCN models can
be found in the literature applied to semantic segmentation.
SegNet [35] is a deep FCN that consists of a VGG16-based
encoder, a decoder and a final pixel-wise classification layer.
DeepLab [36] uses atrous convolutions in the up-sampling
path, allowing to incorporate larger context with no increase in
parameters. RefineNet [37] is a multi-path refinement network
that allows to obtain high-resolution predictions by using
residual connections. PSPNet [38]] is a pixel-level prediction
framework that includes a pyramid pooling module to exploit
the capability of global context information. Tiramisu [39]
is an extension of Densely Connected Convolutional Neural
Networks (DenseNets) for semantic segmentation, based on
the idea of connecting each layer to every other layer in a feed-
forward fashion. Its main benefits include a more accurate and
easier training, with much less parameters.

According to the experimentation presented in the respective
manuscripts, PSPNet [38] and Tiramisu [39] are the most
competitive models. PSPNet is based on Residual Networks
(ResNets), whilst Tiramisu is based on DenseNets. DenseNets
can be seen as an extension of ResNets, with some character-
istics that make them very appropriate for semantic segmenta-
tion problems: parameter efficiency, implicit deep supervision,
and feature reuse. For all these reasons, Tiramisu will be the
model of reference in our research.

In this manuscript, we deal with the identification of dif-
ferent foods placed on a food tray, by integrating the four
food analysis problems mentioned above. To the best of our
knowledge, only one approach with this purpose has been
evidenced in the literature [14]. The authors introduced an
additional food dataset composed of images taken in a canteen
environment named UNIMIB2016. In addition, they proposed
a pipeline for food recognition that performs classification
based on the candidate regions obtained by combining two
separate images segmentation processes, through saturation
and color texture (JSEG). The best result was achieved by
combining global and local (patch-based) classification ap-
proaches. Regarding the classification, for each region, they

are carried out both in a sub-image (global strategy) and
in several image patches (local strategy), the feature extrac-
tion using a CNN model based in AlexNet, and then the
classification by an SVM. Furthermore, in the local strategy,
an additional post-processing phase is needed to merge the
labels of all image patches of the respective region. Then,
the classification obtained by both approaches is combined by
exploiting the sum of posterior probabilities to judge the final
classification decision. Our approach differs mainly in three
aspects: 1) we perform semantic segmentation by learning the
best discriminant features between different foods from the
dataset instead of using a segmentation approach based on
generic image processing methods; 2) we locate and classify
simultaneously all the foods placed in the tray by considering
the context instead of performing the classification for each
region individually, which implies a significant improvement
in both result and processing time; and 3) we integrate the
outputs of both methods to avoid false detections and thus
make better decisions, instead of performing the classification
directly based on the segmentation results. Additionally, our
method is able to perform the food segmentation and detection
processes in parallel, allowing to speed up the processing time.

III. SEMANTIC FOOD DETECTION

This work proposes a method for food tray semantic detec-
tion that integrates food vs non-food semantic segmentation
with food localization and recognition. Fig. [3] depicts the
pipeline of our approach, subsequently explained in detail.

A. Food Segmentation

Food segmentation deals here with the problem of sep-
arating the food and food-related items, from the tray and
other background elements, thus obtaining a binary image.
For this purpose, we apply semantic segmentation techniques
that work in a supervised learning framework, unlike the most
segmentation methods that focus on image properties (e.g.
color or texture). Notice that semantic segmentation could be
used to directly segment the input image into the different
food categories. However, the most recent methods in this field
provide great results with datasets that contain a relatively low
number of classes, such as CamVid with 11 semantic classes
or Gatech with 8 [39]]. The number of categories used in food
analysis is much higher, thus increasing the difficulty of the
task and providing not so satisfactory results [34].

Among the FCN models found in the literature applied to
semantic segmentation, the Tiramisu model was considered
[39], as mentioned in Section [[] Its down-sampling and up-
sampling paths are connected by skip connections, and its
architecture is composed of dense blocks, each one of them
containing a set of concatenated layers for a better training.

After training our FCN model with food tray images, the
binary images predicted by it are used in the next step, which
aims at tracing the exterior boundaries of the food regions,
avoiding the holes inside them. In this manner, small holes that
may appear inside regions are discarded and thus the regions
are homogenized. For this task, we use the Moore-Neighbor
tracing algorithm modified by Jacob’s stopping criteria [40]].
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Fig. 3: Detailed workflow of the proposed Semantic Food Detection method: food segmentation and food detection methods
are applied in parallel, before combining them for a final detection on food tray images.

Once the boundaries are traced, the bounding boxes that
contain the regions are determined, thus obtaining a binary
food detection. As small regions may also appear in the
predicted images, and they usually correspond to false pos-
itives, this step also includes their elimination by considering
a threshold criterion. Figure [] illustrates an example of the
outputs obtained in the food segmentation procedure, including
the binary image provided by the FCN model, the boundaries
extracted and the bounding boxes generated.

Fig. 4: Food segmentation output (left to right): binary predic-
tion by FCN, regions boundaries and food bounding boxes.

B. Food Detection

In this work, following the definition of the object detection
problem [21]], we consider as Food Detection the localization
and recognition of food. For this purpose, we propose re-
training an object detection algorithm to apply food detection
instead. In particular, we chose one of the best object detection
approaches in the state-of-art, YOLOvV2 [41], [42]. As for the
model, the authors propose a new FCN called Darknet-19,
composed by 19 convolutional layers and 5 max pooling layers
to tackle the recognition task. They modified this network for
object detection by removing the last convolutional layer and
adding four convolutional layers for producing 13x13 feature
maps. At each cell on the output feature maps, the network
predicts B bounding boxes with five coordinates for each,
among them is the confidence score ¢,, and ¢ =1, ..., C con-
ditional class probabilities, Pr(Class.|Object). Predictions
are obtained from the last convolutional layer having a size
equal to 1 x 1 and F filters, where the number of filters is
calculated as: F = (B x (5 4+ C)). From this, it is possible
to determine the class-specific confidence score, C'S, for each
bounding box as follows:

CS. =Pr(Class.|Object) * o(t,) (1)

where o(.) stands for a logistic activation to constrain the
predictions to fall in the range between O and 1. Note that, in
the experiment, we use the original setting of B (equal to 5).

C. Semantic Food Detection

In object detection, one of the most common errors are false
positives, which can be classified based on the type of error: lo-
calization error, confusion with similar objects, confusion with
dissimilar objects, and confusion with background [43]]. Our
Semantic Food Detection proposal focuses on reducing two of
the most common errors of object detectors [41]: localization
errors, specifically those corresponding to duplicate detections;
and errors produced by the confusion with the background.
For this purpose, we propose the following procedure that
integrates the detection and segmentation algorithms:

1) Background Removal: The first step involves the appli-
cation of both boundaries extracted (contour and bounding
box) from the Food Segmentation procedure in order to
remove the background detections. Let Y = {b7,...,b%}
be the set of bounding boxes obtained with the detection
method, S; = {b7,...,b7} and Sy = {cf,...,ci} the
set of bounding boxes and contours extracted by the Food
Segmentation method, respectively. Considering each element
belonging to the sets named above as a set of points (x,y) that
defines a polygon, we calculate the probability of a bounding
box, bY to belong to the background Bkg as follows:

Pr(Bkg|b)) = min(CS,(bY), max(Pr(S;[bY ), Pr(S,|bY)))

where C'S, (W) is the complement of the confidence score, 1—
CS.(bY) for the i-th detection, Pr(S;|b)") is the probability
that blY is a false detection on the extracted boxes, Si:

b7 N b7

07|
where |.| stands for the cardinality of a set of pixels corre-
sponding to an image region, and Pr(S2|b)") the probability
that b} does not intersect with any contour in Sa:

Pr(Ss|bY) = r{linLlnd(bZY N cf =0)

Pr(S1pY) =1 —jzlrrllfx.)iL

,,,,,



where Ind(x) is an indicator function with value 1 if the
condition is true, and O otherwise.

Bounding boxes with a probability higher than 50% to be
background (Pr(Bkg|bY) > T,T = 0.5) are considered to be
false detections, and are therefore removed.

2) Non-Maximum Suppression: The second step involves
the application of a greedy procedure to eliminate dupli-
cate detections by non-maximum suppression [44]. Once the
Background Removal is applied, the remaining detections
Y’ C Y are sorted in descending order by the confidence score
CSC(b}/) and grouped into C sets Y',..., Y C Y’, where
C' is the number of classes. Then, for each Y ¢ = 1,...C,
we greedily select the highest scoring bounding boxes while
removing detections that are lower in the ranking and their
maximum intersection ratio (MIR) with respect to the i-th
previously selected bounding boxes is more than 50%, where
MIR score for the j-th bounding box is calculated as:

by N b} |
disi2s min([6Y [, [6Y])

Notice that the chosen food detection method already incor-
porates a non-maximum suppression procedure. In our frame-
work, we propose an additional personalized non-maximum
suppression that differs mainly in two aspects: 1) we consider
the predicted classes for the bounding boxes, and 2) we pro-
pose a M IR score instead of the traditional JoU. The last one
was applied because in some cases the overlapped predictions
for the same class could have a completely different dimension
and proportion, and then, the IoU score will be very small
even if one bounding box is completely inside the other.

MIR; =

IV. EXPERIMENTAL RESULTS

In this section, we first describe the dataset used to evaluate
the proposed approach, which is composed of images taken
in self-service restaurants. Then, we describe the evaluation
measures used and present the results obtained with the
different methods and model configurations.

A. Dataset

UNIMIB2016 is a food dataset that has been collected
in a self-service canteen. Each image includes a tray with some
food placed both on plates and placemats. The acquisition
process was performed on a semi-controlled environment
using a Samsung Galaxy S3 smartphone. As a result, images
acquired have a resolution of 3264 x 2448 in RGB, and
present visual distortions and variable illuminations, making
them challenging for any task of automatic food analysis.

The dataset is composed of 1,027 images that include a total
of 73 food categories. Among them, only 1,010 images and
65 categories were used for experimentation, as suggested in
[14] due to the low number of samples of the categories not
considered. For experimental purposes, the dataset has been
split in training and test sets: the former contains 650 images
(~ 64%), whilst the latter contains 360 (=~ 36%).

The annotations included in the dataset contain, for each
food item: the polygon defining its boundaries, the bounding
box and the food label. Figure [3] illustrates an image of the
UNIMIB2016 dataset with its corresponding annotations.

Fig. 5: A representative sample of the UNIMIB dataset [14]:
original image (left) and food annotations (right).

B. Food Segmentation

Metrics. In order to evaluate the different food segmentation
approaches, several performance measures have been used.
First, two pixel-wise metrics commonly used in semantic
segmentation problems have been considered [34]:

e Global pixel accuracy (GA). The pixel-wise accuracy

computed over all the pixels of the dataset.

o Intersection over Union (loU). Also known as Jaccard

index, it is defined as:

_Yti==cApi==c
N Yuti==cVp ==c
where c is a class, ¢ represents all the pixels of the dataset,
t; are the target labels, and p; are the predicted labels.
Note that this metric is calculated for each single class
¢, and then the mean across the classes is computed.
To perform a fair comparison with [14]], three region-based
metrics have been also considered [43]:
e Covering (CO). The covering of the ground truth (GT)
by the segmented (S) images measures the level of
overlapping between each pair of regions (R and R'):

IoU(c) 2

1 |[RNR|
C(8 = GT) = > IRl et R 3)
ReGT
where N is the number of pixels of the image.
e Rank index (RI). It compares the compatibility of assign-
ments between pairs of elements in the ground truth (G1)
and the segmented (S) images:

RI(S,GT) =

(ir) Z [I(t; == t; A p; == p;) +1(t; # t; Api # pj)]
2/ i<j
€]

where (g ) is the number of possible unique pairs among
the N pixels of each image, and I is the identity function.
o Variation of information (VI). It measures the distance
between the ground truth (GT) and the segmented (S)
images in terms of their average conditional entropy:

VI(S,GT) = H(S) + H(GT) — 2- MI(S,GT) (5)

where H and M1 are, respectively, the entropy and the
mutual information. In this case, the lower the better.
Notice that these three metrics are calculated for each single
image, and then the mean across images is computed.
Experimental setup. Regarding the methods used for se-
mantic segmentation, we trained three networks based on



Tiramisu [39]: 1) Tiramisu56: 56 layers, with 4 layers per
dense block and a growth rate of 12; 2) Tiramisu67: 67 layers,
with 5 layers per dense block and a growth rate of 16; and
3) Tiramisul03: 103 layers, with a variable number of layers
per dense block (from 12 to 4 in the downsampling path, and
from 4 to 12 in the upsampling) and a growth rate of 16.
Additionally, the Classic Upsampling, which uses standard
convolutions in the upsampling path instead of dense blocks
[46], has been also considered for comparative purposes.

All the FCN models were trained with the UNIMIB2016
dataset [14] (images resized to 360 x 480), and two-target
labels: food vs non-food. The models were initialized with
HeUniform and trained with RMSprop [39]. The training
process consists of two steps: first, the models were trained
with cropped images (224 x 224) for data augmentation and
batch size 3, with an initial learning rate of le — 3 and
an exponential decay of 0.995 per epoch; and second, their
parameters were fine-tuned with full size images (360 x 480)
and batch size 1, using a learning rate of 1le — 4. The outputs
were monitored using the global accuracy and the IoU, with a
patience of 100 during pre-training and 50 during fine-tuning.

Table [l includes the results achieved with the four networks
for semantic segmentation, as well as with the two segmen-
tation methods from [14]: the JSEG algorithm [47], and the
segmentation pipeline proposed in [14]. With respect to the
pixel-wise measures, all the networks produced competitive
results (over 0.96). The Tiramisu models outperformed the
Classic Upsampling, thanks to the dense blocks, despite a
lower number of parameters used. In general, the Tiramisu
model benefits from having more parameters and depth. How-
ever, in this binary problem the TiramisulO3 produced over-
fitting whilst the Tiramisu67 achieved the best results, with a
good trade-off between depth and performance. Regarding the
region-based measures, all the FCNs provided better results
than the two approaches from [14], which demonstrated the
adequacy of the proposed methods for our problem.

TABLE I: Results obtained with our Food Segmentation
approach in test set.

No. Pixel-wise Region-based

param GA IoU CO RI VI
JSEG [47] - - - 0385 0.389 3.106
Ciocca et al. [14] - - - 0916 0.931 0.429
Classic Upsam. 127M 0991 0.962 0.984 0.982 0.125
Tiramisu56 14M 0992 0.967 0.986 0.984 0.112
Tiramisu67 35M 0993  0.971 0.987 0.986 0.105
Tiramisul03 94M 0992 0.968 0.986 0.984 0.111

C. Semantic Food Detection Performance

Metrics. In order to evaluate food recognition and local-
ization, we chose three standard measures commonly used in
multi-class object recognition problems:

e Recall (Rec). The proportion of true positives detected.
e Precision (Pre). The proportion of the true positives
against all the positive results.

o Fg-measure. A weighted average of precision and recall.
We use § = 2 (F3) to place more emphasis on wrong
classified or undetected foods.

For comparative purposes, the measures used by Ciocca et

al. [[14] were also considered:

e Standard Accuracy (SA). It is equivalent to the recall.

e Macro Average Accuracy (M AA). The proportion of
correctly classified foods, but taking into account the class
imbalance of the dataset:

1 &
MAA = c

(6)

where C is the number of classes, T'P. is the number of
correctly classified foods of class ¢, and N F, is the total
number of foods of class c.

e Tray Accuracy (T'A). The percentage of trays for which
all the foods contained are correctly recognized:

TZInd NE = =1), (7)

where T is the number of food tray images, T'P; is the
number of correctly classified foods on the tray ¢, and
NF, is the total number of foods on the tray ¢.

Experimental setup. YOLOvV2 was first pre-trained on the
ILSVRC dataset. Following, we adapted it by changing the
output of the model to 65 classes and applied a fine-tuning
using UNIMIB2016 images (resized to 416 x416). For training
the model, we used the framework Darknet [48]]. The models
were trained during 4000 iterations with a batch size of 32,
and a learning rate of le — 3. In addition, we applied a decay
of 0.9 to the iterations 3000 and 3500. To avoid overfitting,
we use standard data augmentation procedures with random
crops and distortions in the HSV color space [42].

Once YOLOV2 training is completed, the next step is to
determine the confidence threshold to be used during localiza-
tion and recognition of the food. A low confidence threshold
implies a greater number of detections, which maximizes the
likelihood that all the foods present in the image will be
detected. At the same time, it also increases the chances
of obtaining false detections. Taking into account that the
confidence defined by the detection method considers two
factors (the fit of the bounding box to the object and the
predicted class), we chose the minimum threshold according
to the number of classes. Given that the target dataset has
65 classes, the minimum threshold chosen is é. With this
value, it can be interpreted that the bounding boxes extracted
will have a recognition probability greater than a random
value when the detected bounding box fits the object perfectly.
Following the interpretation given, we chose % as maximum
threshold, which implies a high probability, at least 50%, that
the localized object is correctly classified.

Table shows the results obtained in the training set
using different confidence thresholds. The tested thresholds
range from the minimum and maximum values mentioned
above. As can be observed, when the threshold increases, the
precision also increases considerably, whilst the rest of the
indicators are hardly affected. When comparing the results




TABLE II: Results obtained by YOLOvV2 and the proposed
approach in training set using different confidence thresholds.

1/65 1/32 1/16 1/8 1/4 172
5 Pre 0.511 0.687 0.832 0926 0.968 0.994
a Rec 0999 0998 0997 0995 0.988 0.966
S MAA 0999 0997 0995 0992 0981 0.952
g TA 0997 0992 0988 0982 0.960 0.895
Pre 0918 0952 0973 0984 0.991 0.996
g Rec 0998 0.997 0996 0994 0.987 0.965
E MAA 0999 0999 099 0994 0981 0.951
TA 0995 0992 0988 0982 0.957 0.894

TABLE III: Tray Food Analysis results, from top to bottom:
food detection method 1) without segmentation, 2) with seg-
mentation, and 3) with ground-truth segmentation to perform
the recognition. The best results per block are in boldface.

Fy Pre Rec MAA TA
YOLOv2 [42] 0.786 0489 0927 0.850 0.769
YOLOv2 +|III-C2[ 0.856 0.659 0.925  0.849 0.772
Ciocca et al. [14] - - 0.798  0.636 0.789
YOLOv2 +[III-C1| 0.844 0.628  0.923 0.846 0.761
Proposed 0905 0.841 0922 0.845 0.764
Mezgec et al. [[19] - - 0.864 - -
Ciocca et al. [14] - - 0.891 0.684 0.871
YOLOv2 +|II-C1| 0.854 0.651 0926  0.850 0.769
Proposed 0911 0856 0926 0.850 0.775

obtained between YOLOv2 and the proposed method, for
the minimum threshold, it can be observed that a significant
improvement in precision is obtained (~40%) with only a
slight decrease in the other indicators (0.1%-0.2%). Another
interesting aspect to highlight is the comparison of results
when using the maximum threshold, since they are practically
identical for both methods. This means that, for a threshold of
%, there are almost no false detections that can be reduced with
our procedure. For the remaining experiments, the minimum
threshold was chosen for two main reasons: 1) it obtains the
best results for the Recall, M AA and T A indicators; and 2)
it allows us to discard the false positives that appear when
combining the results with the food segmentation procedure.

The Semantic Food Detection results on the test set are
shown in Table In order to see the performance of the
different parts of our pipeline, we group the results of this
table in three rows: the first one corresponds to the results
obtained with YOLOV2 retrained for food detection, and
our proposed framework without considering the information
extracted from the segmentation method to perform the clas-
sification (YOLOV2 + [[II-C2); the second one corresponds to
the results of the baseline method [[14], our framework without

considering the personalized non-maximum suppression pro-
cedure (YOLOV2 +[III-CI), and our proposed framework; and
the third row is similar to the second one, but replacing the
segmentation method by the ground truth segmentation. As for
the results achieved, it should be highlighted that our proposal
outperforms the food recognition, with respect to the state-
of-art method (Ciocca et al. [[14]) in a 12.4% for Recall and
20.9% for MAA. Regarding TA, a decrease of 2.5% is observed.
However, we consider that this measure does not reflect how
well the recognition works mainly due to the imbalance in the
quantity of food in the trays, which varies between 1 and 9
(see Fig.[0] (a)), as well as because TA measures the amount of
food trays in which all positive samples have been correctly
predicted, but does not penalize when there are false positives.
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Fig. 6: a) Distribution of the trays according to the number of
foods that are placed in them. b) Results in terms of Recall
(blue) and TA (orange), for each item of the distribution.

In order to apply a complete comparison, we also repli-
cated the evaluation proposed by [14], in which the authors
considered a perfect segmentation using the ground truth (GT)
and applied their detection method (bottom section of Table
). In our case, there is no significant improvement with
respect to the use of the proposed semantic segmentation,
because our proposal considers the integration of the extracted
information with the segmentation to refine the predictions
already obtained by the object detection method. In contrast,
Ciocca et al. [14] performed the recognition directly on the
segmented objects. Comparing to the results obtained in [14],
we can see that their method improves significantly in terms
of Recall using the GT for segmentation, achieving to match
our results. However in terms of MAA, despite improving its
performance, our results are still about 16% better. A low MAA
with a high Recall implies that the classifier has a strong bias
towards the classes that have a greater amount of instances.
Therefore, even if we consider a perfect segmentation to
contrast the results, our proposal keeps a better performance
for recognition and a lower bias towards the dominant classes.

The results obtained with the proposed approach based
on the number of objects to be classified per food tray is
shown in Fig. [6] (b). As expected, the TA measure tends to
decrease as the number of objects increases, however there is
no clear trend for the Recall. One of the lowest results in both
measures is obtained in trays containing 6 foods, whereby we
can determine that the errors correspond to 17 misclassified
objects along 12 trays, that is, an average error of 1.42 objects
per incorrectly classified tray. Despite having a low 7A (0.478),
the results are good considering the Recall obtained, since it
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Fig. 7: Results of our proposal when varying the background removal (BR) and non-maximum-suppression (NMS) thresholds.

is preferable to minimize the number of errors per tray if we
think of a semi-automatic food billing system, in which the
operator would make minor corrections if necessary.

When reviewing the overall mean of errors by misclassified
trays, we can see that our classifier has an average of 1.09
errors along 85 trays classified incorrectly, compared to [14]]
that has an average of 3.33 errors along 76 trays classified in-
correctly. That said, even though the baseline method achieves
to completely classify 9 trays more than our proposal, due
to its overall performance, the misclassified trays have about
three times as many objects wrongly classified per tray.

The results achieved with our approach consider a value of
0.5 for the thresholds used in both procedures, Background
Removal (BR) and Non-Maximum Suppression (NMS). How-
ever, our approach achieves a good performance not only with
a unique combination of values, but also with a wide range
of them. Specifically, for the problem at hand, we can obtain
results close to the ones described with any value in the ranges
[0.3-0.6] for BR and [0.3-0.5] for NMS thresholds (see Figure
[7). The flexibility of choosing threshold values in a wide
range suggests that our approach is robust with respect to its
parameters. Furthermore, considering the F2 score, any value
of the parameters for our proposed method produces better
results than YOLOv2 + II-C1.

Finally, some examples of the results obtained by means
of our proposed Semantic Food Detection method are shown
in Figure |8} In general terms, the classifier achieves a good
performance in a variety of food items, where the main
difficulties encountered are due to the following issues: 1)
unlabeled food items, because they are not part of the 65
classes (eg. fresh cheese) or because they are not belonging to
the same tray and that have been recognized by our algorithm;
2) the same food items placed very close (eg. mandarine);
3) foods ignored because they are not clearly distinguishable
whether correspond to a meal or not (eg. pudding); and 4)
confusions with classes corresponding to different kinds of
cakes (eg. torta_cream), meats, pastas, among others.

V. CONCLUSIONS

We present a novel system that performs Semantic Food
Detection applied to the problem of food tray analysis in self-
service restaurants. More precisely, we integrate both tech-
niques, food/non-food semantic segmentation with food detec-
tion, through the application of two procedures: a probabilistic

procedure that allow us remove the background detections, and
a custom non-maximum suppression procedure to avoid the
occurrence of duplicate detections.

Regarding the architecture, we deal with the problem at
hand using two pathways in parallel for food detection and
semantic segmentation. The purpose of applying this separate
computation is to take advantage of the benefits of each
method separately to later combine them. In this manner,
they do not condition each other, but reinforce themselves.
In particular, if we propose an end-to-end architecture which
directly feeds the segmentation output into the detection, the
segmentation errors could not be recovered and, therefore, they
could negatively influence the detection performance.

As for the results, our proposal significantly outperforms
the state-of-art in terms of recall and mean average accuracy.
Furthermore, our model is less sensitive to class imbalance
and the mean of errors per foods placed on a tray is about
1, when the classifier is not able to recognize the whole tray
well. The latter is quite relevant if our approach is applied in
a semi-automatic billing system, in which the cashier would
have to make only small changes to generate the final bill,
and in this way to streamline the process involved in a self-
service restaurant of grab a meal, pay, and eat. Furthermore,
our proposed approach takes less than 0.5 seconds to predict
all foods present in a image, considering the use of a personal
computer with a low performance GPU (GeForce 940MX).

Our future research is focused on semantic detection of food
ingredients and completely automating the self-service billing
by integrating the restaurant menu by geolocalization.
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