Magnet Temperature Estimation in Permanent Magnet Synchronous Machines Using the High Frequency Inductance

David Reigosa, Daniel Fernández, María Martínez, J. M. Guerrero, A. B. Diez and Fernando Briz

University of Oviedo. Dept. of Elect., Computer & System Engineering, Gijón, 33204, Spain.
diazdavid@uniovi.es, fernandezaldaniel@uniovi.es, martinezgmaria@uniovi.es, guerrero@uniovi.es, abdiez@uniovi.es, fernando@isa.uniovi.es

Abstract: Permanent magnet synchronous machines (PMSMs) torque production capability depends on the permanent magnets (PMs) magnetization state, which can be affected by PMs temperature and of the current flowing throughout the stator windings; knowledge of the PMs temperature can be therefore of great importance both for control and monitoring purposes. PMs temperature can be measured or estimated; PM temperature measurement is not easy and is not normally implemented in commercial drives. PM temperature estimation methods can be divided into thermal models based, BEMF based and signal injection based methods. Existing HF signal injection methods estimate the PM temperature from the measured stator HF resistance. Unfortunately the resistance is also affected by magnetoresistive effect, which can limit the accuracy of the estimates. This paper proposes the use of the stator d-axis HF inductance for PM temperature estimation. This makes temperature estimation insensitive to magnetoresistive effect. In addition, it allows the use of higher frequencies, reducing the adverse impact of the injected signal on machine performance.

Keywords—Permanent magnet synchronous machines, magnet temperature estimation, high frequency signal injection.

1. Introduction

Design and control of permanent magnet synchronous machines (PMSMs) have been the focus of significant research efforts during the last decades due to their high dynamic response, torque density and efficiency. PMSMs performance depends on the permanent magnets (PMs) magnetization state [1]-[2], which is affected by PMs temperature [2]-[8] and of the current flowing through the stator windings [9]-[12]. An increase of the PM temperature reduces the PM remanent flux (i.e. magnetization state) and consequently the torque production capability, permanent demagnetization being also possible [2]-[13]. These concerns have boosted the interest in the development of PM temperature measurement/estimation methods.

Direct PM temperature measurement is not easy. Since PMs are moving parts, cabling to a rotating part or wireless transmission system are required [6]-[8], [14], which is undesirable due to robustness and cost issues. An alternative to direct PM temperature measurement is temperature estimation. PM temperature estimation methods can be roughly divided into thermal models [15]-[19], BEMF based methods [8],[20]-[22] and signal injection methods [3]-[8], [23]-[24]. Thermal models require precise knowledge of the machine geometry, materials and cooling system, the model being specific therefore for each machine design. BEMF based methods use the induced stator terminal voltage. Concerns for these methods is that they require that the machine is rotating, knowledge of d and q-axis inductance maps vs. stator current being also needed. High frequency (HF) signal injection based methods measure the machine response to a high frequency signal injected in in the stator via inverter. Appealing properties of these methods are that they can be used in the whole speed range and do not require previous knowledge of machine parameters. In addition these methods require knowledge of the stator temperature, though this is not considered a concern as it is often measured in standard drives [3]-[8].

Existing HF signal injection based methods rely on the dependence of the stator HF resistance on the magnet HF resistance, which is a function of magnet temperature. Unfortunately the PM resistance is sensitive to magnetoresistive effect [25]-[27]. Though its compensation is possible, this increases the complexity and the parameter sensitivity of the methods [5].

This paper proposes on the use of the stator d-axis HF inductance to estimate PM temperature. The inductance is not affected by magnetoresistive effect, resulting in a simpler implementation and higher accuracy. Furthermore, using the inductance enables the use of higher frequencies. This increases the spectral separation with the fundamental excitation, making filtering easier, unwanted effects due to HF signal injection as torque ripple, noise and vibration being also reduced. It is finally noted that the proposed method provides a lumped temperature estimate. Most of existing temperature

1 This work was supported in part by the Research, Technological Development and Innovation Programs of the Spanish Ministry Economy and Competitiveness, under grant MINECO-17-ENE2016-80047-R.
estimation methods [3][5][7][8][15][24], have the same restriction, i.e. do not provide any information on the spatial temperature distributions. It is noted in this regard that thermal models can be extended to 3D [15][19] to provide spatial temperature distribution at a price of significant increase of the model complexity. BEMF harmonic content was also shown in [6] to contain information on PMs spatial temperature distribution.

The paper is organized as follows: Principles of PM temperature estimation using the HF inductance are discussed in section II; HF inductance estimation using pulsating HF current injection is described in section III; implementation of the method is described in section IV; experimental results are provided in section V; discussion on the HF signal selection is included in section VI; conclusions are finally presented in section VII.

II. PM temperature estimation using the HF inductance

This section presents the physical principles of PM temperature estimation using the HF inductance. The HF model of a PMSM in the synchronous rotor reference frame is described by (1), where $v'_{\text{dHF}}, v'_{\text{qHF}}, i'_{\text{dHF}}$ and i'_{qHF} are stator d and q-axis HF voltages and currents in the rotor synchronous reference frame respectively, $R_{\text{dHF}}, R_{\text{qHF}}, L_{\text{dHF}}$ and L_{qHF} are the d and q-axis HF resistances and inductances respectively, ω is the machine speed and p is the differential operator.

$$
\begin{align*}
\begin{bmatrix}
 v'_{\text{dHF}} \\
 v'_{\text{qHF}}
\end{bmatrix} =
\begin{bmatrix}
 R_{\text{dHF}} & 0 \\
 0 & R_{\text{qHF}}
\end{bmatrix}
\begin{bmatrix}
 i'_{\text{dHF}} \\
 i'_{\text{qHF}}
\end{bmatrix}
\end{align*}
+ p
\begin{align*}
\begin{bmatrix}
 L_{\text{dHF}} & 0 \\
 0 & L_{\text{qHF}}
\end{bmatrix}
\begin{bmatrix}
 i'_{\text{dHF}} \\
 i'_{\text{qHF}}
\end{bmatrix}
+ \begin{bmatrix}
 \omega L_{\text{dHF}} & 0 \\
 0 & \omega L_{\text{qHF}}
\end{bmatrix}
\begin{bmatrix}
 \varphi'_{\text{dHF}} \\
 \varphi'_{\text{qHF}}
\end{bmatrix}.
\end{align*}
\tag{1}
$$

The d-axis HF inductance, L_{dHF}, is a function of the d-axis saturation level, which depends on the d-axis fundamental current [6][9][12][29] and PM remanent flux [5][6][2], (2).

$$
L_{\text{dHF}(\alpha_{T_{\text{PM}}})} = L_{\text{dHF}} \left(1 + \alpha_{\text{d}} \left(I_{\text{d}0} + \alpha_{\text{Be}} B_{\ell(\alpha_{T_{\text{PM}}})} - B_{\ell(T_{\alpha})} \right) \right)
\tag{2}
$$

where L_{dHF} is the d-axis HF inductance due to the PM remanent flux at the room temperature T_{α} with no d-axis fundamental current; α_{d} and α_{Be} are the coefficients linking the d-axis HF inductance with the d-axis fundamental current, $I_{\text{d}0}$, and the PM remanent flux respectively; $B_{\ell(\alpha_{T_{\text{PM}}})}$ is the PM remanent flux at the room temperature and $B_{\ell(T_{\alpha})}$ is the PM remanent flux at an arbitrary temperature T_{α}. The temperature dependence of the PM remanent flux is given by α_{Be} (3) [2][6][13].

$$
B_{\ell(T_{\alpha})} = B_{\ell(\alpha_{T_{\text{PM}}})} \left(1 + \alpha_{\text{Be}} (T_{\alpha} - T_{\alpha}) \right)
\tag{3}
$$

By substituting (3) into (2), (4) is obtained.

$$
L_{\text{dHF}(\alpha_{T_{\text{PM}}})} = L_{\text{dHF}} \left(1 + \alpha_{\text{d}} \left(I_{\text{d}0} + \alpha_{\text{Be}} B_{\ell(\alpha_{T_{\text{PM}}})} (T_{\alpha} - T_{\alpha}) \right) \right)
\tag{4}
$$

It is observed from (4) that the magnet temperature, T_{α}, can be estimated from $L_{\text{dHF}(\alpha_{T_{\text{PM}}})}$, previous knowledge of L_{dHF}, and decoupling of the effects due to the d-axis fundamental current being required.

III. HF inductance estimation using pulsating HF current injection

A HF current can be injected in the d-axis via inverter (5), i.e. aligned with the PMs to estimate $L_{\text{dHF}(\alpha_{T_{\text{PM}}})}$; a resonant controller is used for this purpose. The HF voltages provided by the resonant controller will be of the form (6). By taking only the d-axis component of the resulting HF voltage complex vector, v'_{dHF} in (6), the voltage complex vector v'_{dHF} (7), is defined. Both (5) and (7) can be separated into positive sequence ($v'_{\text{dHF}+}$ and $v'_{\text{dHF}+}$) and negative sequence ($v'_{\text{dHF}−}$ and $v'_{\text{dHF}−}$) components (8)-(9), each with a magnitude equal to half of that of the original signal.

$$
\begin{align*}
\begin{bmatrix}
 i'_{\text{dHF}+} \\
 i'_{\text{qHF}+}
\end{bmatrix} &=
\begin{bmatrix}
 T'_{\text{dHF}+} \\
 T'_{\text{qHF}+}
\end{bmatrix} =
\begin{bmatrix}
 I'_{\text{HF}} \cos(\omega t) \\
 0
\end{bmatrix}
\tag{5}
\end{align*}
$$

$$
\begin{align*}
\begin{bmatrix}
 v'_{\text{dHF}+} \\
 v'_{\text{qHF}+}
\end{bmatrix} &=
\begin{bmatrix}
 \omega L_{\text{dHF}+} \cos(\omega t + \varphi) \\
 0
\end{bmatrix}
\tag{6}
\end{align*}
$$

$$
\begin{align*}
\begin{bmatrix}
 v'_{\text{dHF}−} \\
 v'_{\text{qHF}−}
\end{bmatrix} &=
\begin{bmatrix}
 \omega L_{\text{dHF}−} \cos(\omega t - \varphi) \\
 0
\end{bmatrix}
\tag{7}
\end{align*}
$$

$$
\begin{align*}
\begin{bmatrix}
 v'_{\text{dHF}+} \\
 v'_{\text{qHF}+}
\end{bmatrix} &=
\begin{bmatrix}
 I'_{\text{HF}} e^{j\omega t} \\
 0
\end{bmatrix}
\tag{8}
\end{align*}
$$

$$
\begin{align*}
\begin{bmatrix}
 v'_{\text{dHF}−} \\
 v'_{\text{qHF}−}
\end{bmatrix} &=
\begin{bmatrix}
 I'_{\text{HF}} e^{-j\omega t} \\
 0
\end{bmatrix}
\tag{9}
\end{align*}
$$

The d-axis HF impedance, (10), can be obtained either from the positive or negative sequence components, (8) and (9), $\varphi_{\text{dHF}+}$ (11) being the phase of the d-axis HF impedance (10). The d-axis HF inductance can be obtained from (12).

$$
Z_{\text{dHF}} = R_{\text{dHF}} + j\omega_{\text{HF}} L_{\text{dHF}} = \frac{v'_{\text{dHF}+}}{i'_{\text{dHF}+}} = \frac{v'_{\text{dHF}−}}{i'_{\text{dHF}−}}
\tag{10}
$$
\[\phi_{\text{eff}} = \tan^{-1} \left(\frac{\omega_{\text{a}} L_{\text{diff}}}{R_{\text{diff}}} \right) \]
\[L_{\text{diff}} = \frac{Z_{\text{diff}} \sin(\phi_{\text{eff}})}{\omega_{\text{HF}}} \]

From (4) and (12) the magnet temperature (13) is finally obtained.

\[T_r = \frac{L_{\text{diff}} - L_{\text{diff}0} - (L_{\text{diff}}0 - \alpha_w a^T s_{T} + \alpha_w B_{r(T,s,0)} F_{r} T_0)}{\alpha_w B_{r(T,s,0)} F_{r} T_0} \]

IV. Implementation

Fig. 1 shows the general block diagram used for the implementation of the method, including inverter control and injection of the HF pulsating signal using resonant controller [5]. Fig. 2 shows the signal processing required for magnet temperature estimation. Inputs to the temperature estimation block are the output voltage of the HF resonant current controller \(v_{\text{d_HF}}^* \) (6), the commanded HF current \(i_{\text{d_HF}}^* \) (5) and the magnitude of the fundamental d-axis current \(i_d^* \). Two band stop filters, BSF1 and BSF2, are used to remove the negative sequence components of the HF current and voltage. The d-axis impedance, \(Z_{\text{diff}} \), is estimated from the positive sequence component of the commanded HF current \(i_{\text{d_HF}PC}^* \) and the d-axis component of the HF current resonant controller output voltage \(v_{\text{d_HF}} \) using (10); the d-axis inductance, \(L_{\text{diff}} \), is estimated using (12); The magnet temperature is finally estimated using (13).

V. Experimental results

The proposed method has been tested on an IPMSM, its schematic design is shown in Fig. 3a. Main dimensions and ratings are shown in Table I. The test machine is driven by a power converter equipped with 1200V, 100A IGBT power modules (7MBP100VDA120-50 [30]). Standard Space Vector Modulation was used. The switching frequency was 10 kHz. The test bench can be seen in Fig. 3b.

<table>
<thead>
<tr>
<th>Table I. Machine parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{RLD}}) (kW)</td>
</tr>
<tr>
<td>(I_{\text{RLD}}) (A)</td>
</tr>
<tr>
<td>(\omega_{\text{b},\text{MED}}) (rpm)</td>
</tr>
<tr>
<td>Stator slots</td>
</tr>
<tr>
<td>Poles</td>
</tr>
<tr>
<td>Rotor radius (mm)</td>
</tr>
<tr>
<td>Airgap length (mm)</td>
</tr>
<tr>
<td>Inner stator radius (mm)</td>
</tr>
<tr>
<td>Outer stator radius (mm)</td>
</tr>
</tbody>
</table>

![Fig. 3a. Schematic representation of the test machine and (b) picture of the test bench.](image)

Fig. 4a shows \(L_{\text{diff}} \) vs. \(I_d \) and \(I_q \) when the magnet temperature is constant for a frequency of the HF signal of 250 Hz. It is observed that \(L_{\text{diff}} \) is barely affected by \(I_q \), meaning that for this particular machine, the cross-coupling between \(d \) and \(q \)-axis is negligible; consequently load will have reduced impact on the estimated temperature. However, \(L_{\text{diff}} \) is seen to be highly dependent on \(I_d \), a valued of \(\alpha_w = 0.207 \) mH/A (13) has been obtained experimentally. Compensation of \(I_d \) effects will be therefore required for accurate temperature estimation. Fig. 4b shows \(L_{\text{diff}} \) vs. the frequency of the HF for different \(I_d \)-\(I_q \) sets. It is observed that
the L_{dHF} decreases as frequency increases. Finally, Fig. 4c shows α_{id}, which is shown to be rather insensitive to frequency and q-axis current levels.

The performance of the proposed method with an IPMSM are shown in Fig. 5-Fig. 6. Data was collected with both torque and speed being varied from zero to their rated values in steps of 0.1 pu; MTPA is not implemented, i.e. $I_d = 0$ for $\omega_r < 1$pu and $I_d \neq 0$ for $\omega_r > 1$pu. To assess the accuracy of the method, PMs temperatures were measured in real time using the system described in appendix A. Fig. 5a shows the measured PM temperature obtained as the average of the three temperature sensors. It is observed from Fig. 5a that the rotor temperature increases with the load due to the copper, eddy current and hysteresis losses, which was an expected result [3]-[8]. The rotor temperature also increases with the speed due to the increased eddy currents and hysteresis losses with frequency. Fig. 5b shows the estimated d-axis HF inductance L_{dHF} (12). Fig. 5c shows the estimated d-axis HF inductance after decoupling the effect of I_d, see Fig. 4; variation observed in this figure being exclusively due to PM temperature variation. Fig. 6a shows the estimated PM temperature using $\alpha_{d}, B_{nT2}, \alpha_T = 0.038$ mH/ºC (13). Fig. 6b shows the PM temperature error between measured and estimated temperatures. It can be observed that speed and load have almost no impact on the temperature estimation error. Maximum error in the estimated PM temperature is <4ºC.
VI. Conclusions

This paper proposes PM temperature estimation by means of HF signal injection based on the d-axis HF inductance. The proposed method overcomes two major limitations of HF signal injection based PM temperature estimation methods using the stator reflected magnet HF resistance: influence of magneto-resistive effect and constraints for the selection of the frequency of the injected signal. It was shown that I_d current has an important impact over the d-axis HF inductance, which needs to be decoupled for accurate temperature estimation. On the contrary I_q current has a limited impact over the d-axis HF inductance. Extensive experimental results have been provided to demonstrate the viability of the proposed method.

VII. Appendix A: Temperature measurement system

To evaluate the performance of the proposed method, a wireless, on-line, PM temperature measurement system has been designed and built. Main blocks of the system are shown in Fig. 7; it includes temperature sensors (thermocouples), signal conditioning, μController, battery and WiFi module. K-type thermocouple temperature sensors are attached to the rotor using a thermally conductive epoxy adhesive. Thermocouple wires are taken out throughout a hollow-shaft and connected to a signal conditioning stage (amplification and filtering stages in Fig. 7), using high precision instrumentation amplifiers; the system also includes a digital temperature sensor to provide temperature at thermocouples connection point. The thermocouple signals are filtered using analog second order stages and later connected to 10-bit analog-to-digital converters (ADC) of a micro-controller (μController in Fig. 7); then the digitalized thermocouple measurements are transmitted to a central computer using a WiFi link. The maximum sampling rate of the system is 1.25kHz, a sampling rate of 1 Hz was used in for the experiments shown in this paper. To supply conditioning stage, μController and wireless transmission device, a power stage composed of a Li-Po battery and various DC-DC converters, is included. Fig. 7b shows a screenshot of the desktop application that has been developed.

| TABLE II. MAIN CHARACTERISTICS OF THE MEASUREMENT SYSTEM |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sensor Temperature limit | 250°C |
| Resolution | 0.0936°C |
| Measurement range | 0 °C to 125 °C |
| Bandwidth | 1.25 kHz |
| Number of sensors | 3 |

Fig. 7.- (a) Schematic representation of the temperature measurement system and (b) desktop application.
VIII. References