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We present a computational methodology based on atom-centered potentials (ACPs) for 

the efficient and accurate structural modeling of large molecular systems. ACPs are atom-

centered one-electron potentials that have the same functional form as effective-core 

potentials. In recent works, we showed that ACPs can be used to produce a correction to 

the ground-state wavefunction and electronic energy to alleviate shortcomings in the 

underlying model chemistry. In this work, we present ACPs for H, C, N, and O that are 

specifically designed to produce accurate non-covalent binding energies and inter- and 

intra-molecular geometries when combined with dispersion-corrected Hartree-Fock (HF-D3) 

and a minimal basis-set (scaled MINI or MINIs). For example, the combined HF-D3/MINIs-

ACP method demonstrates excellent performance, with a mean absolute error of 0.36 and 

0.28 kcal/mol for the S22x5 and S66x8 benchmark sets, respectively, relative to highly-

correlated complete-basis-set data. The application of ACPs results in a significant decrease 

in error compared to uncorrected HF-D3/MINIs for all benchmark sets examined. In 

addition, HF-D3/MINIs-ACP, has a cost only slightly higher than a minimal-basis-set HF 

calculation and can be used with any electronic structure program for molecular quantum 

chemistry that uses Gaussian basis-sets and effective-core potentials. 
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1. Introduction 

 

Recent interest in the modeling of large supramolecular systems1-3 and molecular 

crystals4-6 with density-functional theory (DFT) has caused a resurgence of low-cost 

computational approaches for intermolecular interactions7–9. These “cheap methods” offer 

the option of taking a calculated trade-off between accuracy and cost in the spirit of force-

field approaches but preserving the generality of an electronic structure calculation, 

particularly regarding their ability to model chemical reactions. In fact, a persistent 

challenge in this area is to find a way to accurately model covalent and non-covalent 

interactions simultaneously, since both play important roles in determining the structure of 

supramolecular systems. While good relative accuracy for covalent bond breaking and 

formation can be obtained with DFT and a modest basis-set (B3LYP/6-31G*, for instance, is 

widely used to successfully elucidate many organic reaction mechanisms), modeling non-

covalent interactions requires either high-level wavefunction theory  (CCSD(T) with 

complete-basis-set extrapolation) or dispersion-corrected DFT methods with a very large 

basis-set.10-12 Although recent developments have reduced the asymptotic scaling of these 

techniques13-16, computationally inexpensive methods are still in high demand17-19  

particularly if they can be combined with the new reduced-scaling techniques, as is the case 

with methods based on atom-centered potentials (ACPs)20-25. 

DFT-based methods suffer from additional problems that make them inefficient in 

practice for large systems. In addition to inaccuracies caused by the numerical integration of 

the exchange-correlation energy, generalized-gradient-approximation (GGA) functionals  

predict erroneous charge-transfer between molecules or within a single molecule due to 

delocalization error, which may lead to significantly overestimated binding energies and 

reaction barriers, and spuriously small band gaps.26–30 In addition to these inaccuracies, a 

practical difficulty is that many generalized-gradient-approximation (GGA) functionals (e.g. 

BLYP31–33, PBE34) and exchange functionals with a small fraction of exact exchange (e.g. 

B3LYP35,36) have considerable difficulties in arriving at converged solutions of the self-

consistent field  (SCF) equations for charged systems such as zwitterions, which are essential 

in the description of proteins. This practical hurdle greatly hinders the application of DFT 

methods to large supramolecular systems. 

Semi-empirical approaches (e.g. AM137, PMx38-40) based on a minimal-basis-set HF 

approximation have been used in the simulation of supramolecular systems extensively 

thanks to their reduced cost. Until recently, these methods were unable to model 

intermolecular interactions adequately, particularly when dispersion effects are 

dominant.9,41-44 The HF-3c method, recently proposed by Sure and Grimme is similar in spirit 

to traditional semi-empirical methods.45  Instead of discarding or parametrizing certain two-

electron integrals, HF-3c uses minimal-basis-set Hartree-Fock (HF) combined with three ad 

hoc formulas to account for dispersion (D3-BJ) 46-48, basis-set superposition error (gCP) 49, 

and short-range covalent over-binding (SRB)45: The last two errors are caused by basis-set 

incompleteness. Although more computationally expensive than a semi-empirical method, 
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HF-3c is substantially cheaper than any electronic structure method that uses more 

complete-basis-sets, and circumvents the self-consistent field (SCF) convergence problems 

of GGA and hybrid density functionals in large systems. While its performance for small 

molecular systems is superior to semi-empirical methods,45 HF-3c has demonstrated 

suboptimal performance in comparison to higher-level methods in the ranking of lattice 

energies in molecular crystals for molecular crystal structure prediction in the sixth CCDC 

blind test50, which indicates that there is still room for improvement. 

In previous works, we showed that atom-centered potentials (ACPs) represent a 

simple and effective means to improve the accuracy of DFT-based methods. By fitting to 

high-level ab initio wavefunction data, ACPs can be developed to correct for missing 

dispersion physics in conventional DFT functionals (in this context, ACPs were termed 

dispersion-correcting potentials, DCPs).20-22 These DCPs also implicitly correct inherent 

deficiencies in the underlying functional, such as delocalization and basis-set 

incompleteness error.23,24 Recently, we proposed a newer and more systematic way to 

develop ACPs, and showed that they can be used as a computationally inexpensive means of 

mitigating the effects of extreme basis-set incompleteness. These basis-set incompleteness 

potentials (BSIPs) allow the use of minimal or small double-zeta basis-sets with conventional 

DFT functionals to obtain almost complete-basis-set quality molecular properties.25 Because 

ACPs have the same form as conventional effective-core potentials (ECPs)51-53, they can be 

used in most computational chemistry programs that allow for the use of ECPs without 

additional changes to the software. 

In this work, we develop a fast and accurate HF-based minimal-basis-set method for 

the calculation of molecular properties in large molecular systems. Grimme’s D3 correction 

with Becke-Johnson (BJ) damping is used to account for the absence of dispersion in HF, and 

ACPs are used to correct for the remaining errors, the leading contribution to which is 

severe basis-set incompleteness error from the minimal-basis-set. The method uses the 

minimal-basis-set of Huzinaga with scaled exponents (MINIs).54 ACPs are proposed for the H, 

C, N, and O atoms and their parameters are obtained by fitting to an extensive set of 

molecular properties determined using either highly-correlated wavefunction methods at 

the complete-basis-set (CBS) limit or LC-ωPBE-XDM/aug-cc-pVTZ55 where obtaining 

reference data using wavefunction theory is not feasible. The HF-D3/MINIs-ACP approach is 

computationally efficient and shows excellent performance in the modeling of 

intermolecular and intramolecular energies and geometries, and serves as an initial proof-

of-concept result using the H, C, N, and O atoms that indicate that ACPs can be used 

successfully to develop computationally inexpensive techniques based on minimal-basis-set 

electronic structure calculations. One negative aspect of ACPs is that for general use they 

must be developed for each atom of the periodic table. However, in our (unsystematic) 

experience, HF-D3/MINIs-ACP gives good results provided ACPs are applied to the majority 

of atoms in the system.    
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2. Computational Methodology 

 

2.1 Theoretical background 

 

The method employed to develop the ACPs in this work has been described in detail 

elsewhere25, and is only briefly reviewed here. ACPs are one-electron potentials with the 

same mathematical form as effective-core potentials (ECPs)51-53: 
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where   represents the atoms on which the potentials are centered (H, C, N, and O),     is 

the distance from nucleus, and     ⟩ are spherical harmonics centered on atom  . We will 

refer to the    term as the “local” angular-momentum channel. The coefficients    
  and 

exponents    
  in Eq. 2 are adjustable parameters that are determined via least-squares 

fitting, as described below. The sum in Eq. 2 runs over the number of Gaussian terms 

defined for atom   and angular-momentum channel  . Unlike ECPs, ACPs do not replace any 

electrons of the atoms to which they are applied. 

The energy contribution that arises from the application of each ACP is obtained 

from: 
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   are independent of the coefficients to first order in the 

perturbation induced by the ACP, 
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The   and   ( )  are the corresponding ACP coefficients (in energy units) and energy term 

vectors (dimensionless), respectively, and   ’s are the self-consistent ground-state Kohn-

Sham orbitals. 

The fact that the first-order perturbation energy term arising from the application of 

    ( ) (Eq. 1) is linear in the coefficients is key to our ACP development method.25 For all 

molecules in the training set, the ACP terms (    
  (   

 )) are computed for a pre-determined 

set of exponents designed to affect the region of space relevant to correct the desired 

molecular properties. The coefficients are determined through a least-squares procedure 

based on a least-absolute-shrinkage-and-selection-operator (LASSO) method by Tibshirani56 

in which we perform variable selection to determine the optimal exponents to use in our 

ACPs. At the same time, the magnitude of the coefficients are constrained to ensure that 



5 
 

the contribution of second- and higher-order perturbation terms are negligible. We use the 

name “non-linearity error” to described the combined contribution of the second- and 

higher-order perturbation terms.25 

Other important features of the ACPs are: (i) the use of angular projection operators 

in the potential allows for the introduction of local anisotropic corrections to respond to 

changes in the chemical environment of a given atom; (ii) the exponential decrease in the 

ACP as a function of distance from the nucleus ensures that the effect of a given ACP is 

localized in the vicinity of the atom; and (iii) the cost of the one-electron integrals associated 

with the ACPs is negligible compared to SCF calculation, provided an efficient 

implementation is used. All calculations in this work use the Gaussian 09 program57. 

 

2.2 Training Data Set 

 

For the purpose of fitting our ACPs, a training set composed of several benchmark 

sets from the literature was assembled. Only molecules containing H, C, N, and O atoms are 

used in the set. The molecular properties targeted by the training set include non-covalent 

binding energies, conformational energies of amino acid dimers and trimers, and molecular 

deformation energies in small organic molecules. A detailed list of the subsets in our 

training set is given in Table 1. In total, the training set comprises 9814 data points, 

including 3235 non-covalent binding energies (S22x558,59, S66x843,60-62, ACHC63,64, BBI63,65, 

and SSI63,65 sets), 1599 conformational energies (DIPEPCONF and P2666 sets), and 4980 

covalent molecular deformation energies (MOLdef set).  

 

Table 1. Subsets of the training set used for the ACP fit. The classes are: non-covalent 
binding energies (NCI), conformational energies (CONF), and DEF (molecular deformation 
energies). The “Num.” column indicates number of data points present in the set, and “Ref. 
Level” is the calculation level of the reference data.  
 

Data Set Class Num. Description Ref. level Ref. 

S22x5 NCI 110 
Potential energy curves 
of small non-covalently 

interacting dimers. 

CCSD(T)/CBS 58, 59 

S66x8 NCI 528 

Potential energy curves 
of small non-covalent 

dimers. 
 

CCSD(T)/CBS 
43, 

60-62 

ACHC NCI 54 

Interaction energies of 
adenine-cytosine 

nucleobase stacking 
configurations. 

 

DW-CCSD(T**)-
F12/aug-cc-pVDZ 

63, 64 

BBI 
a
 NCI 94 

Interaction energies of 
dipeptide backbone-
backbone complexes. 

 

DW-CCSD(T)-
F12/aug-cc-

pV(D+d)z 
63, 65 
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SSI 
a,b

 NCI 2449 

Interaction energies of 
amino acid side chain-
side chain complexes. 

 

DW-CCSD(T)-
F12/aug-cc-

pV(D+d)z 
63, 65 

P26
 c

 CONF 69 

Conformational energies 
of five isolated small 
peptides containing 

aromatic side chains. 
 

CCSD(T)/CBS 66 

DIPEPCONF
 a

 CONF 1530 

Relative energies of ten 
conformers for each of 

153 dipeptide 
combinations. 

 

LC-ωPBE-
XDM/aug-cc-

pVTZ 

This 
work 

 

MOLdef DEF 4980 

Molecular deformation 
energies relative to the 

equilibrium geometry of 
49 small molecules. 

LC-ωPBE-
XDM/aug-cc-

pVTZ 

This 
work 

 
 

a
 Excluding the dimers containing methionine and cysteine, which contain sulfur. 

b
 

Excluding the dimers with charged monomers.
 c

 Excluding WGG10 and WGG12 

conformers because of a possible error in the data provided in the supporting 
information of the cited reference. 

 

Most of the subsets in Table 1 are from the literature. For the present work, two 

new sets were developed called DIPEPCONF and MOLdef. In both sets, LC-ωPBE-XDM/aug-

cc-pVTZ was used as the reference method. The rationale for this choice is that given the 

size of these sets, running wavefunction theory calculations would be too computationally 

expensive, but LC-ωPBE-XDM/aug-cc-pVTZ is expected to have a much higher accuracy than 

HF-D3/MINIS or any ACP-corrected version for the systems in these sets.55 To further justify 

its use, we checked the performance of LC-ωPBE-XDM/aug-cc-pVTZ on several benchmark 

sets for conformational energies from the literature. The mean absolute errors (MAEs) are: 

ACONF67,68 (alkane conformations), 0.12 kcal/mol; PCONF63,67,69 (peptide conformations), 

0.61 kcal/mol; SCONF67,70 (sugar conformational energies), 0.24 kcal/mol. PCONF is a subset 

of the previously proposed P26 set66, for which LC-ωPBE-XDM/aug-cc-pVTZ has an MAE of 

0.52 kcal/mol. For comparison, LC-ωPBE-XDM/aug-cc-pVTZ gives MAEs of 0.27 kcal/mol and 

0.18 kcal/mol for the S2258 and S6660 sets, and 0.23 kcal/mol and 0.15 kcal/mol for the 

S22x559 and S66x843,61,62 sets of non-covalent binding energies, respectively. 

DIPEPCONF is a new dataset for dipeptide conformational energies proposed in this 

work. The dipeptides in the DIPEPCONF set contain only neutral side chains and are capped 

with acetyl (N-terminal, ACE) and primary amide (C-terminal, NHE) groups. The initial 

geometries of the dipeptides were generated using the tleap tool in Amber1671. Molecular 

dynamics (MD) simulations for each amino acid dimer were carried out in the gas-phase 

using the ff14SB force field72,73, with a heating step of 200 picoseconds followed by a 

production run of 4200 picoseconds, from which structures were extracted at uniform time 

intervals to generate a total of 4000 conformers. Each conformer was then subjected to 
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energy minimization using the same force field. The 4000 conformers for each dipeptide 

were separated into energy bins and eleven conformers were selected spanning a range of 

energies. These conformers were then subjected to a single point calculation at the LC-

ωPBE-XDM/aug-cc-pVTZ level of theory in order to generate the conformational energy 

reference data. In total, the DIPEPCONF dataset contains 10 conformational energies (11 

conformations) for each of the 153 dipeptide sequences considered. Future work is in 

progress to extend this set, and this will be published elsewhere.  

The MOLdef set contains reference data for molecular deformation energies. For 49 

small molecules containing only H, C, N, and O, the equilibrium geometries and vibrational 

frequencies and normal modes were determined using LC-ωPBE-XDM/aug-cc-pVTZ. The 

geometry of these molecules was then deformed along each calculated normal mode. For 

each deformation, the reference energy is the LC-ωPBE-XDM/aug-cc-pVTZ energy difference 

between the deformed and the equilibrium structures. The intent behind fitting our ACPs to 

this set is to correct for the erroneous intramolecular geometries that arise from using HF 

combined with a minimal-basis-set, particularly the spuriously short covalent bonds. Three 

deformations on each side of the equilibrium geometry were considered along each normal 

mode, such that the relative energy of the distorted structure never exceeded a few dozen 

kcal/mol. In total, the MOLdef set consists of 4980 relative energies. The Cartesian 

coordinates along with the reference energies can be found in the Supporting Information 

(SI). 

Each subset in the training set is assigned a weight for the ACP least-squares fit in 

order to account for the variable magnitude of the numerical values and number of data 

points. The weight of each subset in Table 1 is calculated using the formula: 

 

   
 

     
                                                                (5) 

 

where     is the mean absolute value of the reference energies and    is the number of 

data points for subset i. The weights for all subsets are normalized, and the weighted root-

mean-square (wRMS) is defined as: 
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with        the reference energy and    -        -      the energy given by the HF-D3/MINIs-

ACP method. The wRMS is minimized as a function of the ACP coefficients     
   in our least-

squares fitting procedure. 
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2.3 ACP Development 

 

Angular momentum channels for all ACPs are considered up to the maximum 

angular momentum primitive in the MINIs basis-set, including the local (i.e. local and s for H; 

and local, s and p for C, N, and O). The thirty chosen ACP exponents are 0.01, from 0.02 to 

0.28 in 0.02 steps, from 0.40 to 2.00 in 0.20 steps, and from 2.50 to 5.00 in 0.50 steps. The 

ACP terms (    
  (   

 )) corresponding to each atom, angular momentum channel, and 

exponent were determined for each entry in the training set using the Hartree-Fock (HF) 

method with the MINIs minimal-basis-set and the D3 dispersion correction. The D3 

parameters correspond to those for the HF/aug-cc-pVTZ method and with Becke-Johnson 

damping:       ,          ,   (  )        ,   (  )         Å. Note that the D3 

parameters used in this work are close the ones reported in Ref. 45 for the HF-3c method. 

To find the optimal ACP, we need to determine the subset of all 330 calculated ACP terms 

that gives good performance as measured by the magnitude of the wRMS, and at the same 

time yields coefficients that are small enough that the non-linearity error is small.  In this 

way, we ensure that the statistics resulting from our least-squares fit are a faithful 

representation of the actual performance of the ACP, and that non-linearity error will not be 

a large contribution to the method’s performance in actual applications.  

In our previous work on ACPs for basis-set incompleteness error (BSIPs, Ref. 25), we 

used an iterative procedure by which all combinations of ACP terms for each atom were 

explored in turn. Although this method resulted in ACPs with good performance, it is also 

time consuming and limited by the maximum number of ACP terms in each atom, since the 

number of combinations increases factorially with this value. In this work, we used an 

alternative procedure based on the least-absolute-shrinkage-and-selection-operator 

(LASSO) method by Tibshirani.56 In LASSO, the least-squares function (in our case, the wRMS 

in Eq. 6) is minimized subject to the condition that   -norm of the ACP coefficients does not 

exceed a certain bound chosen beforehand. The   -norm is given as, 

 

      ‖ ‖   ∑                                                                      (7) 

 

This allows us to constrain the ACP fits to give coefficients as small as we choose. In 

addition, LASSO also performs variable selection, i.e., for the given constraint on the   -

norm of the coefficients, LASSO automatically selects the best subset of ACP terms and 

assigns zero coefficients to the rest. The ACPs determined using the LASSO method have 

lower wRMS than using the method in Ref. 25. Perhaps more importantly, the fit takes 

minutes, instead of days, which enables the use of much larger training sets, and the ACPs 

are not limited to have a certain number of terms per atom (for the ACPs listed in Table 3, 

LASSO selected 4-9 terms per channel). In this work, we used the local linearization plus 

active set method proposed by Osborne et al.74 and implemented in octave/MATLAB by 

Mark Schmidt75,76. After some exploration, we determined that a   -norm bound of 5.0 a.u. 

on the coefficients is a good compromise between accuracy and non-linearity error (see 
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Figure S1 in SI). 

 

 

2.4 Validation Data Sets 

 

In addition to the training set, we use several other benchmark sets from the 

literature to validate the performance of the developed ACPs. The subsets of this validation 

set have been selected to test non-covalent binding energies and relative conformational 

energies, and are shown in Table 2.  

  

 

Table 2. Subsets of the validation set. The “Num.” column indicates number of data points, 

and “Ref. level” is the calculation level of the reference data.  

 

Group Subset Num. Description Ref. level Ref. 

 Non-covalent Interactions 

HYDROCARBONS  HC12 

 

 

 

 

 

ADIM6  

 

 

 

CH4 · PAH 

 

 

C2H4 · NT 

12 

 

 

 

 

 

6 

 

 

 

382 
b 

 

75 

Interaction energies of 

saturated and 

unsaturated 

hydrocarbon dimers. 

 

Interaction energies of 

n-alkane dimers. 

 

Interaction energies of 

methane with 

polycyclic aromatic 

hydrocarbons. 

 

Interaction energies of 

ethene with coronene. 

CCSD(T)/CBS 

 

 

 

 

 

 CCSD(T)/CBS 

 

 

 

 CCSD(T)/CBS 

 

 

 CCSD(T)/CBS 

77 

 

 

 

 

 

67, 78 

 

 

 

63, 79, 

80 

 

63 

CO2-CAPTURE CO2 · PAH 249 Interaction energies of 

CO2 with polycyclic 

aromatic hydrocarbons. 

CCSD(T**)-

F12avg/CBS 

 

63, 81 

 

 

  

CO2 · NPHAC 

 

96 

 

Interaction energies of 

CO2 with nitrogen-

doped poly heterocyclic 

aromatic compounds. 

 

 CCSD(T)/CBS 

 

63, 82 

 

 

LARGE-SYSTEMS S12L a 10 

23 

Interaction energies of 

large host-guest 

 

corrected 

 

1, 2, 
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S30L a supramolecular motifs. expt. 

 

83-86 

WATER SHIELDS38 38 

 

 

Interaction energies of 

water clusters, (H2O)n , 

with n=2-10. 

 CCSD(T)/CBS 

 

 

 

 

87 

CHARGED IONICHB 

 

 

 

 

 

SSI (charged)
 a

 

120 

 

 

 

 

 

766 

 

 

Dissociation curves of 
small, charged, 

hydrogen-bonded 
complexes. 

 
Dimers of amino acid 
side chain-side chain 

complexes having 
charged monomers 

only. 

CCSD(T)/CBS 

 

 

 

 

 

DW-CCSD(T)-

F12/aug-cc-

pV(D+d)z 

 

 

43 

 

 

 

 

 

63, 65 

 

BIOMOLECULES A24 
a 

 

 

19 Interaction energies of 
small non-covalently 

bound complexes. 

 CCSD(T)/CBS 12 

  

HSG 

 

 

 

21 

 

Model protein-ligand 

interaction energies. 

 

 

 CCSD(T)/CBS 

 

88, 89 

 HBC6 118 Dissociation curves of 
doubly hydrogen-

bonded complexes. 

 CCSD(T)/CBS 88, 90 

 Relative Conformational Energies 

CONFORMERS ACONF 

 

 

 

15 Conformational 

energies of n-alkanes. 

W1h-val 67, 68 

BCONF 64 Conformational 

energies of butane-1,4-

diol 

CCSD(T)-

F12b/cc-

pVTZ-F12 

91 

     

MCONF 51 Conformational 

energies of melatonin. 

CCSD(T)/CBS 92 
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 PCONF 10 Conformational 

energies of Phenyl-

Glycyl-Glycine 

tripeptide. 

 

CCSD(T**)-

F12a/CBS 

 

63, 67, 

69 

 SCONF 17 Conformational 

energies of two 

carbohydrates. 

 

 CCSD(T)/CBS 67, 70 

 TRCONF 8 Conformational 

energies of two 

tetrapeptides 

CCSD(T)/CBS 93 

a
 Only molecules containing H, C, N and O atoms. 

b 
23 out of 405 geometries were missing from 

the supporting information of Ref. 63.   

 

 

3. Results 

 

3.1 Optimized ACPs for HF-D3/MINIs  

 

The ACP exponents and coefficients resulting from the fit are listed in Table 3. In 

general, ACP terms with higher exponents have higher coefficients in absolute value 

because the corresponding potential term decays faster as it reaches farther away from the 

atom, and therefore gives a smaller  energy contribution. Unlike the transferable BSIPs 

presented in Ref. 25 which were optimized for the BLYP functional with different 

combination of basis sets, the ACPs given in Table 3 were optimized specifically for HF-

D3/MINIs against high-level reference data, so they cannot be used with other methods or 

basis-sets because they correct not only for basis-set-incompleteness but also for 

deficiencies in HF-D3.  

The constraint for the LASSO fit was chosen to give an ACP that minimizes the wRMS 

in a self-consistent calculation over the training set. The number of terms per atom in this 

ACP is automatically determined by LASSO (in general, 17-21 terms per atom), and therefore 

the optimized ACPs in Table 3 contain many more terms than those we have developed 

previously. A sample input file demonstrating the use of the ACPs in the Gaussian program is 

provided in the SI.  

 

Table 3. HF-D3/MINIs atom-centered potentials for the H, C, N, and O atoms. 

   
  and    

  indicate the ACP exponents and coefficients, respectively.  
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Atom ( ) Function type ( )    
     

  

H local 0.01 

0.02 

0.04 

0.06 

0.10 

0.12 

0.22 

0.40 

1.00 

-0.00001938089 

-0.00003366414 

0.001323631399 

-0.00300563983 

0.00090072893 

0.00141564539 

0.00858410759 

-0.025198082700 

0.03040038924 

    

 s 0.01 

0.02 

0.04 

0.06 

0.10 

0.14 

0.40 

2.50 

0.00897184727 

-0.03953828144 

0.04867972215 

0.03449941507 

-0.01590602911 

-0.13674945686 

0.40214230125 

-1.03353005814 

C local 0.01 

0.02 

0.04 

0.06 

0.10 

0.16 

0.26 

0.60 

1.40 

0.00001861609 

0.00021332142 

-0.00214933468 

0.00516749173 

-0.01555553001 

0.05344004796 

-0.13758669254 

0.23120921343 

-0.80389740259 

    

 s 0.01 

0.02 

0.16 

0.24 

0.26 

 

-0.01552134192 

0.00045549650 

0.02692938642 

0.01943925488 

0.03167389276 

 p 0.02 

0.08 

0.18 

0.20 

0.22 

0.24 

0.01111334155 

-0.01209320774 

0.00852089081 

0.05995111066 

0.01316335258 

0.12664813920 
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1.20 -0.23218368640 

N local 0.01 

0.02 

0.04 

0.06 

0.10 

0.16 

0.60 

0.00005935026 

0.00014788866 

-0.00030466045 

0.00062390375 

-0.00803928317 

0.01653732266 

-0.14314848707 

    

 s 0.01 

0.04 

0.06 

0.08 

0.40 

 

0.00262789783 

-0.03994239966 

-0.07041918366 

-0.03080252469 

0.07565676804 

 p 0.01 

0.02 

0.04 

0.06 

0.22 

1.00 

1.20 

-0.01376692773 

0.01612955962 

0.00621017916 

0.06263892557 

0.04296706278 

-0.01832723217 

-0.24431696314 

O local 0.01 

0.02 

0.04 

0.06 

0.08 

0.10 

0.28 

0.80 

1.00 

-0.00016818935 

0.00060565334 

-0.00330007999 

0.01108579450 

-0.00827068380 

-0.00526053319 

0.00491351734 

-0.27851873745 

-0.03196194558 

    

 s 0.01 

0.02 

0.04 

0.10 

 

0.02609885310 

0.00355349168 

0.03976597732 

0.07826701426 

 p 0.02 

0.04 

0.14 

0.20 

-0.02356374593 

-0.00042034334 

-0.00601202155 

0.03760145141 
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0.26 

0.28 

0.02986288464 

0.02034075728 

 

The first step in the validation of our ACPs is to apply the resulting HF-D3/MINIs-ACP 

method to the training set to make sure that our least-squares fit is representative of results 

that would be obtained from self-consistent field (SCF) calculations in which that ACPs are 

applied and that non-linearity error is not detrimental to the performance of the ACP.25 By 

comparing the statistics from the fit and from a self-consistent HF-D3/MINIs-ACP calculation 

on the training set, we make sure that the contribution from the second- and higher-order 

terms in Eq. 4 are not significant. Table 4 compares the mean absolute errors (MAEs) 

obtained from the least-squares fit and from the validation calculations. For comparison, the 

results obtained using HF-D3/MINIs, HF-D3/aug-cc-pVTZ (abbreviated aTZ), and with the HF-

3c method are also given in the table. Note that the HF-3c parameters for the D3 and gCP 

corrections were obtained using a fit against the S66 and S66x8 sets, respectively, as 

reported in Ref. 45. The MAEs obtained from the ACP fit deviate by 0.15 kcal/mol or less 

from the results of the corresponding self-consistent calculations, indicating that the   -

norm constraint in the LASSO fit was successful in preventing excessive non-linearity error. 

The MAEs obtained using the uncorrected method range from 0.84 to 3.42 kcal/mol, and 

application of our ACPs reduce the MAEs by up to a factor of five.  

 

Table 4. Mean absolute errors (MAEs) with respect to high-level reference data for the 
various subsets of the training set. Uncorrected HF-D3/MINIs is compared to the results 
obtained from the fitting procedure (“ACP-Fit”), and to the MAE from the application of HF-
D3/MINIs-ACP in self-consistent field calculations (“ACP-SCF”). For comparison, the MAEs 
obtained using the HF-3c and HF-D3/aTZ methods are also provided. 
 

Set HF-D3/MINIs ACP-Fit ACP-SCF HF-D3/aTZ HF-3c 

S22 2.17 0.28 0.43 1.03 0.53 

S22x5 1.40 0.32 0.36 0.70 0.53 

S66 1.74 0.21 0.24 0.68 0.38 

S66x8 1.24 0.27 0.28 0.51 0.37 

ACHC 1.44 0.24 0.27 0.34 0.28 

BBI 1.05 0.27 0.22 0.60 0.87 

SSI 0.84 0.17 0.17 0.23 0.21 

P26 2.02 0.40 0.47 0.68 1.20 

DIPEPCONF 2.44 0.81 0.85   0.89  1.15 

MOLdef 3.42 0.92 0.90 1.73 2.90 

 

Table 4 also compares HF-D3/MINIs-ACP to HF-D3/aTZ, which is close to the 

complete-basis-set limit, and to the HF-3c method. HF-D3/MINIs-ACP outperforms HF-3c in 

all subsets of our training set. The improvement relative to HF-3c is quite large in the case of 

BBI and P26. On the other hand, the performance of the HF-D3/MINIs-ACP (0.28 kcal/mol) 
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and HF-3c (0.37 kcal/mol) methods on the S66x8 set, which was also used as fitting set to 

obtain the parameters for the gCP correction in the HF-3c approach, is quite similar. It is also 

interesting to compare the minimal-basis-set methods to HF-D3/aTZ, which is reasonably 

close to the complete-basis-set limit. The performance of HF-D3/aTZ is rather poor for all 

subsets, and reflects that the D3 correction provides an energy correction amounting to 

only about half of the total correlation energy contribution to the properties of the fitting 

sets. The poor performance of HF-D3/aTZ is particularly evident in the binding energies of 

small molecular dimers, such as the S22, for which the MAE exceeds 1 kcal/mol (c.f. B3LYP-

D3, 0.36 kcal/mol67). The MAEs for the S22x5 and S66x8 sets for HF-D3/MINIs-ACP and HF-

3c are 0.23/0.34 kcal/mol and 0.14/0.17 kcal/mol, respectively, lower than those of HF-

D3/aTZ. These results (indeed all of the results shown in Table 4) indicate that the ACPs and 

the 3c correction rectify the errors associated with basis-set incompleteness and the partial 

absence of correlation. In comparison, the MAE in the S22x5 and S66x8 using B3LYP-

D3(BJ)/aug-cc-pVTZ is 0.25 kcal/mol and 0.17 kcal/mol, respectively, about 0.1 kcal/mol 

lower than HF-D3/MINIs-ACP.94 

Unlike HF-D3/MINIs-ACP, however, HF-3c is significantly worse than HF-D3/aTZ for 

conformational and, particularly, molecular deformation energies. The high MAEs for the 

P26, DIPEPCONF and MOLdef sets obtained with HF-3c can be directly related to the fact 

that the parameters for  gCP and SRB corrections were not designed, in principle, for the 

purpose of rectifying the poor performance of HF-D3/MINIs for conformational and 

molecular deformation energies. To compare between the intramolecular structures 

predicted by different HF-based methods,  all molecules in the MOLdef set were relaxed 

using HF-D3/MINIs, HF-D3/MINIs-ACP, and HF-3c, and the resulting geometries were 

compared to the LC-ωPBE-XDM/aug-cc-pVTZ equilibrium geometries using Kabsch’s 

algorithm95. The average root-mean-square deviation (RMSD) of the atomic coordinates 

were found to be  0.0586 Å (HF-D3/MINIs), 0.0379 Å (HF-D3/MINIs-ACP), and 0.0464 Å (HF-

3c). HF-3c and HF-D3/MINIs-ACP both improve HF-D3/MINIs, but the latter gave  better 

geometries. The major difference between these three methods  can be quantified using 

the magnitude of  the mean absolute percent errors for the vibrational frequencies as 

calculated for the MOLdef set, which are 13.4% for uncorrected HF-D3/MINIs, 5.2% for HF-

D3/MINIs-ACP, and 14.3% for HF-3c. Therefore, although the SRB term in HF-3c which was 

specifically fitted to reproduce higher-level intramolecular geometries of 107 small organic 

molecules,45 goes a small way towards repairing the intramolecular geometries of MOLdef 

set and has a noticeable impact on the calculated molecular frequencies. In contrast, ACPs 

are very successful in correcting the significant errors in HF-D3/MINIs frequencies.  

The signed errors and their averages for the four methods described above are 

shown in Figure 1, which display strip-charts in which all of the signed error data are 

plotted. In all cases, the ACPs correction is successful in reducing the spread of the errors 

relative to both HF-D3/MINIs and HF-D3/aTZ. The performance of HF-3c is also excellent 

with a small bias in all sets except BBI and MOLdef, and a spread of the error that is in 

general smaller than uncorrected HF-D3/MINIs. The HF-3c results show a larger spread of 
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errors than HF-D3/MINIs-ACP for conformational energies and molecular deformations. 

 

 

 

 

 

 

Figure 1. Signed errors associated with the subsets of the training set in Table 1 using HF-

D3/MINIs corrected with ACPs (HF-D3/MINIs-ACP) and the 3c correction (HF-3c). The HF-

D3/aTZ results are also given. The circle represents the mean error (ME) and the error bar is 

the standard deviation of the error. The numbers on the right are mean absolute error 

(MAE) in kcal/mol. 

 

3.2 Performance of HF-D3/MINIs-ACP on the Validation Sets 

 

The performance of HF-D3/MINIs-ACP compared to HF-3c and uncorrected HF-

D3/MINIs for the validation set is shown in Table 5. The error distribution, mean errors, and 

standard deviation for each method and subset are shown in Figure 2. 
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Table 5. Mean absolute errors (MAEs, in kcal/mol) for the various subsets of the validation 
set using uncorrected HF-D3/MINIs, and the same method with ACPs (HF-D3/MINIs-ACP) 
and the 3c correction approach (HF-3c). 
 

Group Subset HF-D3/MINIs HF-D3/MINIs-ACP HF-3c 

HYDROCARBONS  1.29 0.35 0.25 

 HC12 1.80 0.26 0.42 

 ADIM6 1.90 0.21 0.47 

 CH4 · PAH 1.19 0.29 0.19 

 C2H4 · NT 1.71 0.67 0.48 

CO2-CAPTURE  1.72 0.88 0.57 

 CO2 · PAH 1.64 0.87 0.55 

 CO2 · NPHAC 1.92 0.89 0.63 

LARGE-SYSTEMS  15.49 8.36 6.09 

 S12L 15.93 10.27 6.28 

 S30L  15.54 7.53 6.01 

WATER SHIELDS38 30.62 4.99 7.67 

CHARGED  3.25 1.95 2.41 

 IONICHB 4.45 2.47 2.68 

 SSI (charged) 3.07 1.87 2.38 

BIOMOLECULES  2.75 0.69 1.00 

 A24
 
 0.73 0.32 0.44 

 HSG
 
 1.69 0.62 0.74 

 HBC6 3.27 0.76 1.13 

CONFORMERS  2.27 0.69 1.05 

 ACONF 1.44 0.98 0.89 

 BCONF 2.40 0.50 0.58 

 MCONF 0.88 0.71 0.89 

 PCONF 2.43 0.50 2.28 

 SCONF 5.20 1.17 1.47 

 TRCONF 5.14 0.80 3.64 

 

Table 5 and Figure 2 show that, in all cases, the application of the ACPs improves the 

performance of HF-D3/MINIs. The aggregate MAEs for the binding energies (BEs) and 

conformational energies are reduced by a factor of 1.9 (LARGE-SYSTEMS) to 6.1 (WATER). 

This level of performance is similar to HF-3c (improvement factors of 1.3 - 5.2), however the 

two methods differ in the kinds of systems whose properties are most accurately predicted.  

The HF-D3/MINIs-ACP approach improves the BEs in hydrocarbons group 

(HYDROCARBONS) on average by a factor of about 4, but the performance for the 

interactions between ethylene and carbon nanotubes (C2H4 · NT) and to a lesser extent 
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between methane and polycyclic aromatic hydrocarbons (CH4 · PAH) is comparatively worse 

than the other two subsets of the HYDROCARBONS group. In these subsets, the error is 

dominated by the non-equilibrium dimers, particularly those in which the two monomers 

are at shorter distances than at the equilibrium geometry. The HF-D3/MINIs-ACP approach 

also shows a more modest improvement of a factor of about 2 over uncorrected HF-

D3/MINIs for more specialized sets like CO2-CAPTURE, which consists of systems relevant in 

carbon dioxide capture studies. This is encouraging because carbon dioxide model systems 

were not a part of the training set. 

Similar observations can be made about the water clusters in the SHIELDS38 set, 

composed of (H2O)n clusters with n=2-10. The ACPs were fitted only to water dimers, but 

the statistics show a generalized improvement of binding energies for larger water clusters, 

with the MAE reduced by a factor of 5 compared to uncorrected HF-D3/MINIs. Figure 2 

shows that for this set in particular there is a strong over-binding tendency in HF-D3/MINIs 

caused by basis-set incompleteness error. This effect is corrected by the application of the 

ACPs, although the over-binding bias is not completely removed. While the ACPs presented 

in this work are meant to be general, specialized ACPs can also be fitted for particular 

systems of interest, in the spirit of force field development techniques. For instance, in a 

recent article,96 we showed that ACPs fitted to the SHIELDS38 set and a collection of 2-body, 

3-body, and 4-body contributions to the binding energy can correct the shortcomings of the 

BH&HLYP-XDM/aug-cc-pVTZ method to such a degree that the performance of the ACP-

corrected method greatly exceeds wavefunction theory results. This is an interesting feature 

of ACPs that can be useful when extreme accuracy and computational efficiency for a single 

system is required, such as in molecular dynamics studies of homogeneous substances or 

crystal structure prediction. 

The reduction of the MAE resulting by the application of our ACPs to the large host-

guest complexes of S12L and S30L sets (LARGE-SYSTEMS group) and to the charged systems 

(CHARGED group) is more modest. The S12L, which is contained in the S30L but does not 

feature any hydrogen-bonded systems, is special in that the performance of various 

dispersion-corrected functionals show an unusual dependence on the base functional.3 For 

instance, while BLYP-XDM, B3LYP-XDM, or LC-ωPBE-XDM routinely outperform PBE-XDM in 

the description of binding energies in small molecular dimers, it is the latter that performs 

best for the S12L set, with an MAE of 1.5 kcal/mol3 (c.f. BLYP, 4.2; B3LYP, 4.0; LC-ωPBE-XDM, 

6.8 kcal/mol). The reason for this dependence is unknown at present, but candidates for an 

explanation are a favorable error cancellation in PBE (hydrogen-bonded systems, for which 

PBE is notoriously bad, are absent from the S12L) or errors from the methods used in the 

back-correction of the experimental results from which the reference data were derived. 

HF-D3/MINIs for the S12L has an MAE of 15.9 kcal/mol, which is reduced to only 10.27 

kcal/mol upon application of the ACPs (6.28 in the case of HF-3c). In the S30L, ACPs reduce 

the MAE from 15.5 kcal/mol to 7.5 kcal/mol (c.f. 6.0 kcal/mol with HF-3c), indicating that 

they are more successful in representing the hydrogen bonded systems in the S30L not 

present in the S12L. For comparison, Brandenburg et al. reported a MAE of 6.6 kcal/mol 
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using PBE-D3 at an estimated complete-basis-set limit for the S30L.8  

The MAE for the charged systems is reduced from 3.25 kcal/mol for HF-D3/MINIs to 

1.95 kcal/mol upon application of the ACPs (c.f. 2.41 for HF-3c). The charged systems in the 

SSI were purposefully left out of the training set, since it is clear that a minimal-basis-set 

does not have enough flexibility to describe anionic systems. It is also important to note that 

charged systems are present in the S12L, S30L, and HSG, and the errors for those systems 

are significantly higher than for the rest of the dimers in these sets. For instance, the MAE 

for HSG using HF-D3/MINIs-ACP drops from 0.62 kcal/mol to 0.29 kcal/mol when the 

charged systems are removed from the set. For comparison, Burns et al. reported a MAE of 

0.48 kcal/mol for the whole HSG set using B3LYP-D3/aug-cc-pVTZ97 and Torres and DiLabio 

reported an MAE of 0.15 kcal/mol using B3LYP-DCP/6-31+G(2d,2p)98. In spite of this, the 

application of ACPs is still beneficial, even for the subsets composed solely of charged 

systems—the MAE is decreased by a factor slightly smaller than 2 both in the IONICHB and 

the charged systems of the SSI set. 

The application of HF-D3/MINIs-ACP to the molecular dimers with importance in 

biological systems (BIOMOLECULES group) improved the BEs on average by a factor of about 

4. The MAE for the HBC6 subset of BIOMOLECULES obtained with HF-D3/MINIs-ACP is the 

largest amongst all of the subsets at 0.76 kcal/mol. Nevertheless, this level of performance 

is quite good, suggesting that HF-D3/MINIs-ACP approach may offer a faster alternative to 

accurately model non-covalent interactions in larger sized molecules of biological 

significance. For comparison, Burns et al. reported MAEs for HBC6 of 0.55 and 1.12 kcal/mol 

for B3LYP-D3/aug-cc-pVTZ and PBE0-D3/aug-cc-pVTZ, respectively.97 HF-3c performs 

somewhat worse on the BIOMOLECULES set, viz., factor of 2.8 improvement over 

uncorrected HF-D3/MINIs.  

Figure 2 shows that for all sets that comprise non-covalent binding energies, HF-

D3/MINIs shows a strong bias towards over-binding, which is successfully corrected by ACPs 

and by the 3c correction. The standard deviation of the errors is also greatly reduced, except 

for S12L. The same cannot be said about the subsets composed of conformational energies 

(CONFORMERS group), for which uncorrected HF-D3/MINIs shows errors on both sides of 

the zero-average error line. The performance of HF-D3/MINIs-ACP for conformational 

energies is excellent, as demonstrated by the substantial decrease in MAE to 0.69 kcal/mol 

from 2.27 kcal/mol for uncorrected HF-D3/MINIs. By comparison, the MAE for the 

CONFORMERS group is 1.05 kcal/mol using HF-3c (Table 5). The results for the tripeptides 

(PCONF) and tetrapeptides (TRCONF) are particularly good, which is not surprising since our 

training set is dominated by peptide-peptide interactions (for instance, P26 contains 

PCONF). The decrease in MAE is also substantial for SCONF (sugar conformations, 5.20 to 

1.17 kcal/mol) and BCONF (butane-1,4-diol, 2.40 to 0.50 kcal/mol), but smaller for MCONF 

(melatonin, 0.88 to 0.71 kcal/mol) and ACONF (hydrocarbons, 1.44 to 0.98 kcal/mol). In all 

CONFORMER subsets, the bias and the spread of the errors is reduced by the application of 

the ACPs and the 3c corrections. 
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Figure 2. Signed errors associated with the subsets of the validation set in Table 2 using HF-
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D3/MINIs with and without ACPs (HF-D3/MINIs-ACP) and the 3c correction approach (HF-

3c). The circle represents the mean error (ME) and the error bar is the standard deviation of 

the error. The numbers on the right are mean absolute error (MAE) in kcal/mol. 

 

4. Discussion and Outlook 

 

The combined analysis of the HF-D3/MINIs-ACP performance on the training (Table 4 

and Figure 1) and validation sets (Table 5 and Figure 2) offers some insight into the 

feasibility of using ACPs for developing a computationally inexpensive method based on 

minimal-basis-set quantum mechanical calculation. The overall performance is, in general, 

worse than conventional dispersion-corrected density functionals at the complete-basis-set 

limit and similar to the previously proposed HF-3c method. The performance of HF-

D3/MINIs-ACP indicates that it is particularly suitable for biomolecules, and significantly 

better than uncorrected HF-D3/MINIs but with a similar computational cost. It is also clear 

that there is a certain degree of generality to the ACPs, since the MAEs for subsets of the 

validation set that have very little resemblance to the systems in the training set (e.g. the 

CO2-CAPTURE or HYDROCARBONS groups) are consistently improved by the application of 

our ACPs. Nevertheless, the training set we utilized is dominated by systems derived from 

biological molecules, particularly proteins, and this is also reflected in the validation set. For 

instance, the errors in the TRCONF and PCONF conformational energies are much smaller 

than the other subsets. There is an essential limitation in the description of charged 

systems, however, caused by the very poor description of anions using a minimal-basis-set, 

which may have a negative impact on the calculation of zwitterionic species. For the same 

reason, strongly hydrogen-bonded systems (e.g. double hydrogen bonds in carboxylic acid 

dimers) are also difficult to model with a minimal-basis-set. As an additional analysis, we 

checked the performance of HF-D3/MINIs-ACP approach in prediction of the molecular 

dipole moment of few polar molecules. The reference structure and data of the molecular 

dipoles containing the four selected atoms were taken from the dipole set reported in Ref. 

25. The ACP approach yields an MAE of 0.30 Debye with respect to the LC-wPBE/aug-cc-

pVTZ reference, which is indicative that our proposed ACPs compensate to some extent the 

overall deterioration of the system’s electron density description even on use of a minimal 

basis set like MINIs. 

Another limitation of ACPs is that, in principle, they need to be developed for every 

atom in the system under study. However, work is under way to extend the training set to 

cover most atoms that usually appear in organic molecules, particularly P and S, which 

would enable the complete description of DNA and proteins using ACPs. Even if ACPs are 

only applied to a subset of the atoms in the system, their effect seems to reduce the error 

from HF-D3/MINIs-ACP, which is not surprising since it is dominated by the extreme basis-

set incompleteness of the basis-set. For instance, we applied HF-D3/MINIs to the X40 set99, 

comprising non-covalent binding energies of halogenated dimers. (Only the subset of 

molecules without Br and I was calculated, since there are no MINIs basis functions for 
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those atoms.) Using HF-D3/MINIs, the MAE is 1.50 kcal/mol, which is reduced to 1.08 

kcal/mol upon application of the ACPs, an MAE similar although slightly higher than HF-3c 

(0.94 kcal/mol). The error is reduced, even though all the molecules in X40 contain at least 

one halogen atom, for which no ACPs are available. 

Our current training set is also somewhat skewed towards peptide-peptide 

interactions, and this is likely detrimental to the accurate modeling of other types of non-

covalent forces. On the other hand, extending the training set is a relatively simple matter. A 

dispersion-corrected density functional (such as LC-ωPBE-XDM) and a relatively large basis-

set are good enough to generate reference data for our fits, since we have shown that these 

methods have in general a much higher accuracy than what we can obtain using an ACP-

corrected minimal-basis-set HF calculation. The use of the LASSO fitting technique also 

allows training sets with hundreds of thousands or even millions of data points, which would 

not have been possible with the fitting procedure described in our previous work.25  

Although extending the present work to create general-purpose ACPs is valuable, another 

positive feature of the current methodology is that it can be applied to develop ACPs for 

specific purposes. An example is our recently developed ACPs for water.96 In addition, any 

property that is a linear mapping of the electronic energy can be targeted by the ACP, not 

just the total energy. This was nicely exemplified in our water ACPs96, which indirectly 

brought the molecular dipole in water using BH&HLYP-D3/aug-cc-pVTZ to agreement with 

the experimental value to four  significant digits. The ACPs presented in this work are 

inherently valuable as a general-purpose, computationally inexpensive exploratory tool, 

particularly for the purpose of modeling peptide-peptide interactions, which is very 

interesting in the field of quantum mechanical refinement of protein structures. 100,101 
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