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1 Abstract

Molecular crystal structure prediction (CSP)
requires evaluating differences in lattice en-
ergy between candidate crystal structures ac-
curately and efficiently. In this work, we ex-
plore and compare several low-cost alternatives
to dispersion-corrected density-functional the-
ory (DFT) in the plane-waves/pseudopotential
approximation, the most accurate and gen-
eral approach used in CSP at present. Three
types of low-cost methods are considered: DFT
with a small basis set of finite-support numer-
ical orbitals (the SIESTA method), dispersion-
corrected Gaussian small or minimal-basis-set
Hartree-Fock and DFT with additional empiri-
cal corrections (HF-3c and PBEh-3c), and self-
consistent-charge dispersion-corrected density-
functional tight binding (SCC-DFTB3-D3). In
addition, we study the performance of compos-
ite methods that comprise a geometry optimiza-
tion using a low-cost approach followed by a
single-point calculation using the accurate but
comparatively expensive B86bPBE-XDM func-
tional. All methods were tested for their abil-
ities to produce absolute lattice energies, rela-
tive lattice energies, and crystal geometries. We
show that assessing various methods by their
ability to produce absolute lattice energies can
be misleading, and that relative lattice energies
are a much better indicator of performance in
a CSP context. The EE14 set of relative sol-

ubilities of homochiral and heterochiral chiral
crystals is proposed for relative lattice-energy
benchmarking. Our results show that PBE-D2
plus a DZP basis set of numerical orbitals cou-
pled with a final B86bPBE-XDM single-point
calculation gives excellent performance at a
fraction of the cost of a full B86bPBE-XDM cal-
culation. The B86bPBE-XDM//PBE-D2/DZP
method was subsequently tested in a practi-
cal CSP application based on our recent CSP
study on the crystal structure of the enantiop-
ure and racemate forms of 1-aza[6]helicene, a
chiral organic semiconductor. Our results show
that this multilevel method is able to correctly
reproduce the energy ranking of both crystal
forms.

2 Introduction

The computational prediction of a molecular
crystal structure (crystal structure prediction,
CSP) from the two-dimensional molecular dia-
gram is currently a great challenge in compu-
tational chemistry. CSP has many technolog-
ically relevant applications in the pharmaceu-
tical industry,1–3 manufacturing of dyes4 and
explosives,5 and organic electronics,6,7 since it
provides a way to predict the structure and sta-
bility of all polymorphic forms of a given com-
pound. A number of CSP strategies have been
used over the past few decades, and progress
in the field has been tracked by a series of
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blind test competitions held by the Cambridge
Crystallographic Data Center (CCDC).8–13 In
these blind test contests, participants are given
the molecular diagrams for a few organic com-
pounds and are asked to predict the experimen-
tal crystal structure, which is unknown to the
them. The sixth and most recent blind test
was completed last year.13 Many excellent re-
views have highlighted the progress made in
the development of computational protocols for
CSP, while outlining the difficulties that re-
main.3,13–18

All current CSP protocols work under the
assumption that the experimentally observed
crystal structure coincides with the thermody-
namically stable phase19 (i.e. kinetic effects are
neglected). A CSP protocol must sample a
complex highly-dimensional energy landscape
efficiently and must also be able to rank reli-
ably candidate crystal structures by their free
energy.20 Usually, the electronic lattice energies
are used instead of free energies due to the cost
and the difficulty of evaluating the vibrational
free-energy contributions accurately. These vi-
brational terms are typically added only in the
final candidate ranking step, if at all.18,21 Even
if one focuses on calculating electronic lattice
energies alone, it is estimated that over 80% of
all isolable polymorphic forms are separated by
less than ca. 4.2 kJ/mol.1,21 This is a very strict
requirement that poses a challenge to current
computational methods regarding their ability
to produce accurate relative lattice energy dif-
ferences in molecular crystals.

In recent years, some of us have high-
lighted the good performance of the B86bPBE
exchange-correlation functional22,23 paired with
the exchange-hole dipole moment (XDM)
model24,25 in modeling intermolecular inter-
actions. We have shown that B86bPBE-
XDM yields lattice energies of molecular or-
ganic crystals26,27 within an accuracy neigh-
boring that of the experimental uncertainty,
i.e., 4.2 kJ/mol.28,29 B86bPBE-XDM was also
successful when applied as the final rank-
ing function on the candidate structures pro-
posed by various groups in the first five blind
tests.30,31 Similar dispersion-corrected density
functionals can be successfully applied to CSP

as well.32–35 Two examples currently in use as
part of CSP protocols are Grimme’s D3 dis-
persion correction36,37 and Tkatchenko et al.’s
many-body dispersion (MBD) model.38,39 The
X23 set of experimental back-corrected lattice
energies40 (an extension of the C21 set26) is
typically used to assess the accuracy of com-
puted lattice energies and geometries for or-
ganic molecular crystals. Mean absolute errors
(MAE) in the predicted lattice energies for
the X23 molecular-crystal benchmark set26,40

obtained with the B86bPBE-XDM, PBE0-
MBD//PBE0-TS, and PBE-D3 methods are
3.6 kJ/mol,27 3.9 kJ/mol,40 and 4.5 kJ/mol,41

respectively.
While these dispersion-corrected DFT meth-

ods provide lattice energies accurate enough for
reliable CSP (except in specific cases30,31), their
computational cost is quite high.13 This is es-
pecially problematic in the early stages of the
search, when it is necessary to discard the less
stable candidate structures.41 To address this
problem, one can resort to using a multistep
approach, in which computationally inexpen-
sive (in the following “low-cost” or “cheap”)
methods are used to prune the list of candi-
date structures.42 These low-cost methods are
often empirical or semi-empirical in nature (e.g.
force fields) or resort to drastic approximations,
such as the use of empirically corrected Gaus-
sian minimal-basis-set calculations.43 Low-cost
methods also speed up the energy calculation
by several orders of magnitude and allow for
more points on the crystal energy landscape to
be surveyed. However, it is critical that they are
able to identify reliably whether a candidate is
within a certain energy range above the global
minimum. Otherwise, low-energy polymorphic
forms will be lost in the pruning stage.42

Several low-cost methods have been de-
veloped recently. Density-functional tight-
binding44–46 (DFTB) paired with the D3 dis-
persion correction was shown to yield a MAE
on the X23 lattice energies of 10.4 kJ/mol,47

although it is important to note that cell pa-
rameters were kept fixed during optimization.
The PBEh-3c48 and HF-3c41,49,50 methods use
small or minimal Gaussian basis sets coupled
with ad hoc corrections, and have MAEs of
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5.4 kJ/mol48 and 8.4 kJ/mol,51 respectively. In
the case of HF-3c, the MAE can be reduced to
6.7 kJ/mol if some of the correction parameters
are tuned such that the resulting geometries are
closer to the experimental crystal structures.51

In a recent study,52 Carter and Rohl evalu-
ated the performance of the vdW-DF153 and
vdW-DF254 non-local functionals with locally-
supported numerical orbitals (SIESTA55,56)
on the C21 set,26 and compared their re-
sults to the same calculation using plane-
waves/pseudopotentials.57 The authors found
that, by using vdW-DF2 in SIESTA with a
double-ζ plus polarization (DZP) basis set and
a counterpoise correction, the resulting MAE
(3.8 kJ/mol) is similar to B86bPBE-XDM
(3.6 kJ/mol)27 and much smaller than either
using vdW-DF2 in ESPRESSO (8.2 kJ/mol) or
the same method without the counterpoise cor-
rection (22.6 kJ/mol). Other options, such
as using a triple-ζ plus polarization (TZP)
basis set at the DZP geometries (MAE =
10.2 kJ/mol) were also explored.52,58

While low-cost methods are typically assessed
based on their ability to produce accurate lat-
tice energies, this is a flawed measure of the
accuracy and reliability of a CSP protocol;
instead, relative lattice energies would be a
more suitable measure. For instance, the enan-
tiomeric excesses (ee) of a scalemic solution
in contact with the racemate and enantiopure
phases of various organic compounds can be
used. This measure is accessible experimen-
tally, and provides an excellent benchmark tool
for energy differences between crystal struc-
tures, as shown in our recent work on a set of
amino acid crystals.59

It is also interesting to find which methods
yield accurate crystal geometries in addition to
absolute or relative lattice energies.60 For in-
stance, a low-cost method able to generate crys-
tal geometries comparable to B86bPBE-XDM
would prevent having to run geometry opti-
mizations with the latter, resulting in a large
saving in computational cost. This composite
approach, which we call a multilevel method in
the rest of this article, is common in molecu-
lar quantum chemistry (e.g. the Gn series of
methods61–65). A multilevel approach (TPSS-

D3 at the HF-3c geometries) has been previ-
ously tested for polymorphs by Brandenburg
and Grimme66 on the POLY59 benchmark set.
This benchmark set consists of 9 experimental
crystal structures from the sixth blind test, 5
of which are polymorphic, supplemented with
10 low-energy candidate structures generated
for the blind test. While Brandenburg and
Grimme did demonstrate an improvement in
the polymorph energy ranking using their mul-
tilevel TPSS-D3//HF-3c approach (as opposed
to HF-3c alone), the results were not accu-
rate enough to predict the experimental crys-
tal structure as being the lowest-lying energy
structure for each system. Note, however, that
this result does not necessarily reflect the qual-
ity of their approach, given that more than just
thermodynamics, i.e., kinetics,19,67 can dictate
what phases are observed experimentally. Even
so, testing low-cost methods for their ability to
reproduce equilibrium crystal geometries calcu-
lated at a higher level of theory is as important
as the relative lattice energies themselves when
considering a multilevel method.

In this work, we aim to assess the ability
of various low-cost methods (localized Gaus-
sian and numerical basis sets, HF-3c, DFTB)
to produce accurate absolute and relative lat-
tice energies and geometries, with the idea of
building a multilevel approach using one these
methods with a final B86bPBE-XDM single-
point energy calculation. The X23 benchmark
set,26,40 and the set of ten relative solubili-
ties of chiral amino acids reported previously59

supplemented with four additional chiral com-
pounds (dubbed herein the EE14 set) are used
as test sets for our analysis. As a practi-
cal CSP example, the resulting methods are
applied to the crystal structure prediction of
1-aza[6]helicene, an organic semiconductor on
which a B86bPBE-XDM-based CSP study was
recently performed.6

3 Methods

The high- and low-cost methods used in this
work are now described.
SIESTA (Spanish Initiative for Electronic
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Simulations with Thousands of Atoms) is a
density-functional-theory method that uses
finite-support numerical orbitals to achieve lin-
ear asymptotic scaling with system size.56,68–70

The homonymous SIESTA program (version
4.0b) was used in this work. The PBE23 semi-
local functional, and the vdW-DF1 and vdW-
DF2 non-local functionals53,54 are considered
here. PBE was coupled with Grimme’s D2 dis-
persion correction,71 with the functional- and
basis-set-specific fitting parameters equal to
those reported by Peverati and co-workers72

(e.g. for PBE with a DZP-quality basis set,
s6 = 0.5 and sr = 1.1). Troullier-Martins norm-
conserving pseudopotentials73–75 were gener-
ated using the ATOM code.76

Double-ζ plus polarization (DZP) basis sets
were used for the SIESTA calculations, except
in occasional triple-ζ plus polarization (TZP)
basis-set calculations. DZP is the standard ba-
sis set implemented in SIESTA, while TZP was
constructed and optimized by Louwerse and
Rothenberg58 for H, N and O atoms, and fur-
ther extended to the C atom by Carter and
Rohl.52 The effect of changing the confine-
ment radius of the finite-support orbitals using
SIESTA’s “energy shift” parameter—the en-
ergy increase experienced by the orbital when it
is confined—was also explored. By lowering the
energy shift (0.02 Ry is SIESTA’s default), the
orbital confinement radii are extended, increas-
ing the computational cost of the calculation,
but reducing errors due to basis set superposi-
tion (BSSE).77 In previous studies, an energy
shift of 0.001 Ry proved to give converged re-
sults with respect to relative lattice or binding
energies for various systems.52,77 Unless other-
wise indicated, this value was used in this work.
The fineness of the real-space integration grid
for charge densities and potentials was set by
having plane waves of kinetic energy of 200 Ry
or less be represented without aliasing.
CRYSTAL78,79 is a code for electronic-

structure calculations in periodic solids us-
ing localized Gaussian orbitals. In this work,
CRYSTAL was used to run Hartree-Fock
(HF) and DFT calculations. Specifically, the
HF-3c41,49,51 and PBEh-3c48 methods imple-
mented in CRYSTAL17 were utilized.79 Both

of these methods make use small or minimal
basis sets (MINI(x)41,49 for HF-3c and def2-
mSVP48 for PBEh-3c) and are supplemented
with Grimme’s D3 dispersion36,37 and a geomet-
rical counterpoise correction (gCP).80,81 HF-3c
has an additional correction for short-range
basis-set incompleteness errors (SRB).41,49,51

The HF-3c calculations used the Becke-Johnson
damping function in D3,37,82 three-body inter-
actions, and a fit parameter of s8 = 0.6143 as
described elsewhere.51 For comparison, results
for HF combined with the MINI(x) basis set
plus Grimme’s D2 dispersion as implemented
in CRYSTAL1478 and no further corrections
are presented to evaluate the importance of ad-
ditional BSSE corrections. In this case, the s6
fit parameter for the dispersion correction was
set to 1.
DFTB+,83 version 1.3, and its implemen-

tation of the third-order self-consistent-charge
density-functional tight-binding method (SCC-
DFTB3-D3(BJ)) was used as another low-cost
method. The DFTB semiempirical method is
based on the nth-order expansion of local den-
sity fluctuations with respect to a reference
superposition of atomic electron densities.45,46

DFTB uses precomputed two-center electron
integrals; the 3OB parametrization set was used
in this work.84,85 Damping of the hydrogen
pair potentials was set to ζ = 4.2 in order to
obtain an improved description of hydrogen-
bonding.47,84 The method was also supple-
mented with Grimme’s D3 dispersion correc-
tion,36 with Becke-Johnson damping,37,82 and
fit parameters set to s8 = 0.5883, a1 = 0.5719,
and a2 = 3.6017 as described elsewhere.81

Quantum ESPRESSO57 (version 5.1), a
plane-waves/pseudopotentials code, was used
for the high-level reference calculations in
this work. Periodic-boundary DFT calcu-
lations employed the B86bPBE exchange-
correlation functional22,23 supplemented with
the exchange-hole dipole moment (XDM)
model.24,25 The damping function parame-
ters in XDM, a1 and a2, were set to 0.6512,
and 1.4633Å, respectively. The projector-
augmented wave (PAW) method was used.86

Wavefunction and density cutoffs were set to
80 Ry and 800 Ry, respectively. Structure
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relaxations were performed with tighter thresh-
olds for convergence of the energies and forces,
i.e., 10−5 Ry and 10−4 Ry/bohr, respectively.
Structure Relaxations Atomic coordinates

and cell parameters for all crystals were fully
relaxed to obtain the minimum-energy struc-
tures. For isolated molecules, a sufficiently
large simulation cell was used to avoid image
interactions, and only the atomic coordinates
were relaxed (the exception being with CRYS-
TAL14/17, where the “MOLECULE” keyword
was used to treat molecules as non-periodic sys-
tems).
Brillouin-Zone Sampling Unless otherwise

stated, a Monkhorst-Pack (MP) 4×4×4 k-point
mesh sampling of the Brillouin zone was used
throughout for crystal structures, and sampling
at the Γ-point was used for molecules.
Geometry Comparison The POWDIFF

utility in CRITIC287 was used to measure
the degree of similarity between low-cost and
B86bPBE-XDM crystal structures. POWDIFF
is based on the comparison of powder diffrac-
tion patterns using a cross-correlation func-
tion.88 A POWDIFF result of zero is an exact
match, and one represents maximum dissimi-
larity.

The computational cost of each method above
depends on the type of crystal and, in the case
of geometry optimizations, also on the starting
geometry. According to our tests, a rough guide
is that SIESTA methods employing a DZP ba-
sis set and PBEh-3c are about 5 times faster
than a plane-waves/pseudopotentials (QE) cal-
culation. In contrast, HF-3c and DFTB are
roughly around 50 and 500 times faster than
QE. However, crystal geometry optimizations
using SCC-DFTB3-D3(BJ) as implemented in
DFTB+ require approximately two orders of
magnitude more steps than the other methods,
which is detrimental to its performance. More
detailed timing information is given in the sup-
plementary material (SI).

In the rest of the article, multilevel meth-
ods built from a geometry optimization us-
ing a low-cost method (A), followed by single-
point energy calculation (B; almost always B
= B86bPBE-XDM) have been considered. The
usual notation for composite methods in chem-

istry (B//A) is used in the rest of the article.

4 Results and Discussion

4.1 Absolute Lattice Energies

We begin by examining the performance of all
methods on the crystals of the X23 bench-
mark set. All of the individually computed
lattice energies and geometrical data for struc-
tures within the set are presented in the
SI. The relevant statistics are summarised
in Table 1. The best-performing expensive
method (QE block) is B86bPBE-XDM, with
a MAE of 3.6 kJ/mol. Similar in perfor-
mance, although with slightly higher MAEs, are
other XDM-corrected methods: PW86PBE-
XDM (3.7 kJ/mol), PBE-XDM (4.7 kJ/mol),
and BLYP-XDM (5.5 kJ/mol). The popular
PBE-D2 functional and the non-local vdW-DF1
and vdW-DF2 functionals have MAEs around
6 kJ/mol, with a computational cost similar to
B86bPBE-XDM. Finally, alternative expensive
methods such as the rVV10 (as implemented in
QE) are clearly not suitable for lattice energies
in molecular crystals.

In agreement with previous studies, the use
of low-cost methods to determine lattice ener-
gies of molecular crystals showed a less than
desirable accuracy. The MAE ranges from
5.7 kJ/mol for the relatively expensive PBEh-3c
to up to 22.3 kJ/mol for vdW-DF1/DZP. The
best-performing low-cost methods are PBEh-3c
and HF-3c, although PBEh-3c failed to con-
verge its SCF in some cases (anthracene and
naphthalene) due to their small band gaps.48

These values are still relatively far from the
3.6 kJ/mol obtained using B86bPBE-XDM, al-
though the most accurate of them, HF-3c and
PBEh-3c, are reasonably accurate, and simi-
lar in performance to some expensive methods
available in QE.13,66 All low-cost methods ex-
cept for HF-3c and PBEh-3c also show a very
strong tendency to overestimate lattice ener-
gies. This is reasonable if the source of the er-
ror is basis set incompleteness, but it is also the
case for SCC-DFTB3-D3(BJ).

The MAEs obtained using B86bPBE-XDM
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Table 1: Statistics for the X23 set of lattice energies using various methods. Mean error (ME),
mean absolute error (MAE), and maximum absolute error (MAX) relative to electronic energies
back-corrected from experimentally-measured sublimation enthalpies (EXP)26,40 or to fully-relaxed
B86bPBE-XDM results (DFT). “A” and “B//A” refer, respectively, to the results obtained from
the low-cost optimizations directly or to a B86bPBE-XDM single-point energy calculation at the
low-cost equilibrium geometry. All values are in kJ/mol per molecule, except POWDIFF similarity
measures (POW), which are dimensionless.

EXP DFT

A B//A A B//A
Method (A) ME MAE MAXc MAE MAE POW ME MAE MAXc

QE
B86bPBE-XDM 0.5 3.6 13.4 (cyt) 3.6 0.0 0.0000 0.0 0.0 0.0
PW86PBE-XDM 0.4 3.7 14.0 (cyt) 3.7 1.2 0.0191 0.5 0.6 3.1 (oxα)
vdW-DF2 4.2 6.0 14.6 (cyt) 3.5 5.4 0.2136 -1.1 1.1 3.0 (suc)
PBE-XDM -3.2 4.7 17.9 (cyt) 3.7 2.6 0.2168 0.3 0.5 3.0 (oxβ)
rVV10 15.8 15.8 27.5 (ada) 3.7 16.4 0.2168 -0.6 0.6 1.7 (oxβ)
PBE-D2 3.7 5.8 18.4 (ada) 4.2 4.3 0.2688 -1.4 1.4 5.5 (ada)
BLYP-XDM 4.1 5.5 15.4 (ada) 4.2 4.6 0.4207 -1.5 1.8 4.8 (ant)
vdW-DF1 4.4 6.3 19.1 (ada) 5.0 6.3 0.6031 -3.5 3.5 7.1 (ant)
SIESTA
PBE-D2/DZP 7.4 11.4 25.2 (ant) 3.6 10.8 0.0102 0.8 0.8 1.5 (ant)
PBE-D2/DZPa 7.3 11.3 26.0 (ant) 6.3 10.6 0.1130 -2.2 3.0 31.6 (ura)
vdW-DF2/DZP 20.1 20.1 37.0 (suc) 3.4 20.6 0.1406 -0.2 0.6 2.0 (ada)
vdW-DF1/DZP 22.3 22.3 47.2 (suc) 4.4 22.8 0.2363 1.1 1.8 5.1 (oxα,suc)
CRYSTAL
PBEh-3c/def2mSVPb -1.3 5.7 13.8 (amm) 3.1 4.7 0.1660 -1.0 1.1 2.9 (ure)
HF-3c -0.5 6.5 17.2 (oxα) 5.8 7.0 0.4146 -3.8 3.8 11.3 (suc)
HF-D2/MINI(x) 21.3 21.9 51.8 (oxβ) 5.4 23.5 0.5737 -4.0 4.1 15.1 (suc)
DFTB+
SCC-DFTB3-D3(BJ) 7.1 12.8 34.6 (oxβ) 14.0 12.8 0.6689 -13.4 13.4 30.1 (ura)

a SCC-DFTB3-D3 geometries were used as the starting point for the PBE-D2/DZP optimization.
b Anthracene and naphthalene, which have small band gaps, have been excluded from the statistics for
PBEh-3c because the SCF cycle failed to converge. This is in agreement with previous reports.48
c Labels in parentheses identify the X23 system that yields the maximum absolute error (ada: adamantane,
amm: ammonia, ant: anthracene, cyt: cytosine, oxα: α-oxalic acid, oxβ: β-oxalic acid, suc: succinic acid,
ura: uracil, ure: urea).
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single-point energy calculations at the geome-
try resulting from any of the low-cost meth-
ods tested are, in general, smaller than us-
ing the energies from those same methods, ex-
cept in the case of SCC-DFTB3-D3(BJ). The
MAEs correlate very roughly with the methods’
ability to produce crystal structures similar to
the B86bPBE-XDM equilibrium geometries, as
shown in the POW column of Table 1. Im-
portantly, the lattice energies improve substan-
tially for all methods where the primary source
of error is BSSE, indicating that BSSE affects
very strongly the calculation of absolute lattice
energies but only has a minor effect on crystal
geometries. This seems to be particularly true
for the finite-support numerical orbital calcu-
lations in SIESTA, which grossly overestimate
the absolute lattice energies but yield surpris-
ingly good crystal geometries. Table 1 shows
that the B86bPBE-XDM//PBE-D2/DZP mul-
tilevel method would be particularly effective in
reproducing pure B86bPBE-XDM results, both
giving the same MAE. The powder diffraction
similarity measure indicates that the crystal ge-
ometries of these two methods are essentially
coincident (POW = 0.0102) and the maximum
absolute deviation between both methods in the
whole X23 set is only 1.5 kJ/mol.

Slightly lower MAEs can be obtained using
vdW-DF2 or PBEh-3c for the geometry opti-
mization, but the POW similarity measure is
not as good as PBE-D2/DZP. It is also interest-
ing to note that HF-D2/MINI(x), which is es-
sentially HF-3c with a different dispersion and
minus the gCP and SRB corrections, achieves a
smaller MAE than HF-3c when combined with
B86bPBE-XDM in a multilevel method, indi-
cating that the gCP and SRB corrections are
not necessarily beneficial when HF-3c is sup-
plemented with a final single-point calculation,
as in the method proposed by Brandenburg and
Grimme.66

While the structures obtained with the PBE-
D2/DZP method (SIESTA) are quite compa-
rable to the B86bPBE-XDM geometries, this
could be an artifact of the optimization pro-
cedure, since for all entries in Table 1, we
used B86bPBE-XDM as the starting geome-
try. To test this, we re-ran the PBE-D2/DZP

and B86bPBE-XDM//PBE-D2-DZP calcula-
tions starting from the worst geometries avail-
able (SCC-DFTB3-D3(BJ)). Although the pure
PBE-D2/DZP results are relatively indepen-
dent of the starting geometry, the multilevel
method is penalized, with a MAE of 6.3 kJ/mol,
relative to experiment, when the poor starting
geometries are used. The discrepancy between
the two sets of B//A results is a consequence
of the fairly loose default convergence thresh-
olds for geometry optimization within SIESTA.
The MAE using the DFTB starting geome-
tries and tighter optimization convergence cri-
teria (0.01 eV/Å force and 0.02 GPa stress con-
vergence thresholds) decreases to 4.8 kJ/mol.
Thus the choice of convergence thresholds has
a non-negligible effect on the composite lattice
energies, particularly when the starting geome-
tries are quite dissimilar to those obtained with
B86bPBE-XDM, but the looser thresholds are
retained in practice to lower the computational
cost.

The extraordinary agreement between
B86bPBE-XDM and PBE-D2/DZP geometries
prompts the question of whether it is possi-
ble to further reduce the cost of these SIESTA
calculations by adjusting one or more input
parameters, while maintaining a similar qual-
ity in the predicted geometries. In a practical
CSP context, it is undesirable to explore the
convergence of these parameters for each indi-
vidual candidate structure, so there is value in
studying their effect beforehand. Specifically,
we explored the effect of reducing the energy-
shift parameter (i.e. the “size” of the atomic
orbitals), and basis set size. Table 2 shows
the results of these calculations. There is a
small impact from using a DZP, rather than a
TZP, basis set; the computational savings from
using the former outweigh the 0.7 kJ/mol im-
provement in the agreement with the reference
B86bPBE-XDM energies. Likewise, a 2×2×2
k-point mesh seems to be enough for the crys-
tals in the X23 set and, since these are suffi-
ciently small compared to the typical molecular
crystal sizes in CSP, it is reasonable to assume
that this k-point mesh can be used routinely.
In contrast, the value of the “energy-shift” pa-
rameter, which is linked to the spatial extent of
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Table 2: The MAE for the X23 set using PBE-D2/DZP (A) and B86bPBE-XDM//PBE-D2/DZP
(B//A) compared to the B86bPBE-XDM lattice energies, in kJ/mol per molecule. The POW
similarity measure referred to the B86bPBE-XDM equilibrium structures is also shown.

Test A B//A POW
Reference a 10.8 0.8 0.0102
Tighter opt. convergence b 10.8 0.7 0.0382
Reference, DFTB geom. a 10.6 3.0 0.1130
Tighter opt. convergence, DFTB geom. b 10.8 1.8 0.0811
k-point mesh 2×2×2 c 10.5 0.8 0.0358
Energy shift (0.02 Ry) d 124.2 6.9 0.4876
TZP basis set e 4.7 0.1 0.0253

a The PBE-D2/DZP method used in Table 1 and the rest of the article, with maximum force and
stress components convergence criteria of 0.04 eV/Å and 1.0 GPa, a 0.001 Ry energy shift parameter,
and a 4×4×4 k-point mesh starting from B86bPBE-XDM geometries, or where indicated, from SCC
SCC-DFTB3-D3 geometries.
b Tighter force and stress convergence thresholds (0.01 eV/Å and 0.02 GPa for maximum component
values),
c a 2×2×2 k-point mesh,
d the default SIESTA energy shift parameter (0.02 Ry), and
e a TZP basis set were used.

the numerical atomic orbitals in SIESTA calcu-
lations,52,77 is crucial in obtaining good-quality
geometries and accurate single-point energies.
A 0.001 Ry cutoff was found to be sufficient,
but the default 0.02 Ry value used in SIESTA
results in unacceptable errors.

4.2 Relative Lattice Energies

We focus now on whether low-cost and multi-
level methods can describe lattice energy differ-
ences using our enantiomeric excess (ee) data
for chiral compounds. For the subset of these
compounds in which the racemate is more sta-
ble than the enantiopure crystal, the relative
free energy between the two phases can be di-
rectly calculated from the experimental ee of
a solution in contact with the enantiopure and
racemic crystals (the eutectic point). The ee is
calculated using:59,89

ee =
[L]− [D]

[L] + [D]
× 100 =

(1/4)− β2

β2 + (1/4)
× 100, (1)

where [L] and [D] are concentrations in solution
and:

β = exp

(
−∆GL−DL

RT

)
≈ exp

(
−∆EL−DL

RT

)
(2)

with ∆GL−DL the Gibbs free energy difference
between the enantiopure (L) and the racemate
(DL) crystals at the experimental temperature
and ∆EL−DL the corresponding lattice energy
difference. In the last term, vibrational free en-
ergy contributions are neglected. The (1/4) fac-
tors in equation 1 are different from the equa-
tion in Ref. 59 in that an RT ln 2 contribution
proposed by Price et al.89 to account for the en-
tropy of mixing in solution was added to ∆E.
This formula is valid only in cases where the
racemate (DL) is more stable than the enan-
tiopure (L) phase by at least the entropy of
mixing term (∆EL−DL > RT ln 2). Otherwise,
a conglomerate of L and D crystals is formed
instead, and the ee in solution is zero.

We supplement the ee information for the 10
pairs of amino acid crystals in Ref. 59 with four
additional compounds for which experimentally
measured ee’s are available,6,90–92 shown in Fig-
ure 1. Given the exponential dependence of
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Figure 1: Chemical diagrams for (a) aldol90 (4-
(tert-butyl)-2-[hydroxy(4-nitrophenyl)methyl]-
(2S,4S)-rel -cyclohexanone), (b) oxazoline91

(ribo-amino-oxazoline), (c) tetrazole92

(5,(7R)-diphenyl-4,7-dihydrotetrazolo[1,5-
a]pyrimidine), and (d) N-helicene6 (P -1-
aza[6]helicene) added to the set of ten amino
acids to form the EE14 set.

the ee on the computed electronic-energy dif-
ferences and the precision with which it can
be experimentally determined, these measures
provide an excellent benchmark for the relative
energy differences between crystal forms.

Figure 2 shows the performance of different
low-cost and multilevel methods in the cal-
culation of relative lattice energies, while Ta-
ble 3 gives the relevant statistics relative to
computed B86bPBE-XDM data. The detailed
list of energy differences between both crystal
phases and the predicted and experimentally-
measured enantiomeric excesses, as well as dif-
ferences in simulated powder diffraction spectra
relative to the B86bPBE-XDM equilibrium ge-
ometries for all crystals can be found in the Sup-
porting Information. Overall, the agreement
with the theoretical model (black curve) is im-
proved when final B86bPBE-XDM single-point
calculations are performed, which is consistent
with our discussion in Section 4.1. In this case,
however, the performance of the methods based
on a DZP basis set of numerical orbitals (PBE-
D2/DZP and vdW-DF1,2/DZP) is surprisingly
good, comparable to that of B86bPBE-XDM.
This is in striking contrast with the poor re-
sults for absolute lattice energies shown in Ta-
ble 1. This is an indication that, while BSSE
originating from the finite nature of the orbitals

in SIESTA methods affects absolute lattice en-
ergies very strongly, its impact on the relative
lattice energies, which are the quantity of inter-
est in CSP, is comparatively small. The use of
tighter convergence criteria again provided sim-
ilar results to those discussed for the X23 set in
the previous section.

Conversely, HF-3c and PBEh-3c give worse
results than the DZP methods, particularly if a
final B86bPBE-XDM calculation is used. Pure
HF-3c has a MAE similar to the DZP meth-
ods and, surprisingly, so does SCC-DFTB3-
D3(BJ). However, the relatively poor HF-3c
and PBEh-3c geometries make the correspond-
ing multilevel method very inaccurate, which
may explain the relatively poor performance
of the TPSS-D3//HF-3c multilevel method in
the sixth blind test.66 It is important to note
that PBEh-3c and the DZP methods are one
order of magnitude slower than HF-3c. Further-
more, as in the case of the X23 crystals, PBEh-
3c could not be applied in some cases due to
SCF convergence failures (N-helicene and tetra-
zole) for similar reasons as in anthracene and
naphthalene (band gap closing). The perfor-
mance of the multilevel method based on HF-
D2/MINI(x) is only slightly worse than HF-3c,
which is another indication that the two correc-
tions other than dispersion in 3c are not very
effective at improving the accuracy of the cor-
responding multilevel method. In contrast, the
MAE of SCC-DFTB3-D3(BJ) is on par with
other methods, which is notable considering the
enormous average error in the calculation of
absolute lattice energies (Table 1). Contrar-
ily, single-point calculations at the HF-3c, HF-
D2/MINI(x), and SCC-DFTB3-D3(BJ) result
in higher average errors than using the low-cost
methods alone. This observation highlights the
importance of assessing low-cost methods re-
garding their ability to produce accurate equi-
librium geometries, and not just lattice ener-
gies.

4.3 Crystal-Structure Prediction

Finally, we consider a practical CSP applica-
tion using the best-performing multilevel ap-
proach in the previous sections, B86bPBE-
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Figure 2: Experimental enantiomeric excess as a function of calculated energy differences between
the enantiopure and racemate crystal structures, ∆EL−DL. The solid black line represents the ee as
a function of calculated ∆EL−DL (Eq. 1). Accurate relative energies yield good agreement between
the experimental ee and the black curve (vibrational contributions are neglected). Data points
for energies resulting from the geometry relaxation using a low-cost method, and those obtained
from additional B86bPBE-XDM single-point energy calculations are represented by open circles
and closed diamonds, respectively.
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Table 3: Statistics for the EE14 set of relative lattice energies using various low-cost methods.
Mean error (ME), mean absolute error (MAE), and maximum absolute error (MAX) relative to
experiment (EXP) or fully-relaxed B86bPBE-XDM results (DFT). “A” and “B//A” refer, respec-
tively, to the results obtained from the low-cost optimizations directly or to a B86bPBE-XDM
single-point energy calculation at the low-cost equilibrium geometry. All values are in kJ/mol per
molecule, except POWDIFF similarity measures (POW), which are dimensionless.

EXP DFT
A B//A A B//A

Method ME MAE MAXb MAE MAE POW ME MAE MAXb

QE
B86bPBE-XDM -1.5 2.1 5.9 (glu) 2.1 0.0 0.0000 0.0 0.0 0.0
SIESTA
PBE-D2/DZP -1.3 3.2 8.3 (glu) 2.0 1.7 0.0169 0.1 0.3 0.9 (Nhe)
vdW-DF2/DZP -2.7 3.5 15.7 (asp) 1.9 3.0 0.1112 0.2 0.5 1.8 (Nhe)
vdW-DF1/DZP -2.3 3.3 14.7 (asp) 2.1 1.9 0.1930 0.1 0.5 1.8 (oxa)
CRYSTAL
PBEh-3c/def2mSVPa 4.2 4.5 11.9 (his) 4.1 2.4 0.1411 1.3 1.7 14.7 (cys)
HF-3c -0.8 3.5 14.7 (leu) 8.3 5.4 0.2011 6.7 7.9 42.0 (cys)
HF-D2/MINI(x) 2.6 6.2 28.8 (leu) 9.4 6.2 0.2872 8.0 9.1 25.8 (his)
DFTB+
SCC-DFTB3-D3(BJ) -0.7 3.9 12.8 (oxa) 4.2 3.6 0.3611 -1.3 6.2 17.3 (ser)

a N-helicene and tetrazole encountered similar SCF convergence problems as anthracene and naph-
thalene, and have thus been excluded from the statistics for PBEh-3c.48
b Labels in parentheses identify the system that yields the maximum absolute error (cys: cysteine,
his: histidine, Nhe: N-helicene, ser: serine).
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Figure 3: Lowest-energy enantiopure and racemate crystal structures of 1-aza[6]helicene obtained
from a previous CSP study on chiral helicenes6 with the W99 force field (a) and reranked using
B86bPBE-XDM (b). Panels (c) and (d) depict the energy profiles obtained when performing full
relaxations with PBE-D2/DZP starting from either W99 or QE geometries, respectively. Panels (e)
and (f) show results from further re-ranking the PBE-D2/DZP structures using B86bPBE-XDM
single-point energy calculations. The color scheme follows the relative energetic ordering obtained
with full B86bPBE-XDM relaxations (b) and is kept constant for all other panels in order to
compare how the energies shift when using the force fields and low-cost methods. Experimentally
observed structures are encircled. The experimentally isolated enantiopure crystal is set as the zero
of energy.
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XDM//PBE-D2/DZP. In a recent article, we
have shown how the electronic properties of an
organic semiconductor based on the chiral 1-
aza[6]helicene molecule6 (see Figure 1(d)) can
be dramatically affected by the racemic or enan-
tiopure nature of the material through differ-
ences in the racemate and enantiopure crystal
structures. In the CSP part of the study, an ini-
tial set of candidate structures were ranked us-
ing the W99 repulsion-dispersion force field,93

with electrostatics described by a distributed
multipole analysis.94 Fifty candidate crystal
structures (47 racemate and 3 enantiopure
crystals) were reoptimized and reranked with
B86bPBE-XDM. The set of candidates includes
the experimentally-observed racemic and enan-
tiopure crystal structures. The initial rank-
ing by the W99 is shown in Figure 3(a), and
the reranking with B86bPBE-XDM is shown in
panel (b). Detailed data can be found in the
Supporting Information.

The initial ranking from the W99 force field
proved to be inadequate as the experimen-
tally isolated form of the racemate crystal was
ranked highest in energy and the wrong rel-
ative ordering of the enantiopure and race-
mate crystal phases was predicted. Accord-
ing to the experimental measurements, the ee
in solution for this crystal is 74%, which cor-
responds to a racemate more stable than the
enantiopure crystal by an energy difference of
4.1 kJ/mol at room temperature.6 Figure 3
shows that B86bBPE-XDM not only recovers
the correct relative ordering of both phases,
but also gives the experimentally-observed race-
mate as the phase with the lowest electronic en-
ergy among all the candidates. The energy dif-
ference between racemate and enantiopure crys-
tals is 3.8 kJ/mol, in excellent agreement with
the EE14 value.

Figure 3(c) and (d) show how the energy pro-
file of this crystal energy landscape is affected
by the reoptimization using PBE-D2/DZP. The
equilibrium crystal structures are different de-
pending on whether the W99 or B86bPBE-
XDM geometries are used as starting points of
the optimization. As in previous sections, this
disagreement is caused by the loose geometry
optimization convergence criteria (0.04 eV/Å

for the force and 1.0 GPa for the stress com-
ponents). Subsequent tests on the minimum-
energy racemate structure (circled full point in
Figure 3) showed that the true PBE-D2/DZP
minimum-energy cell dimensions fall between
the two sets of results. Although this disagree-
ment could be resolved using tighter conver-
gence thresholds for forces and stresses, this
would increase the computational cost by ap-
proximately a factor of three.

As expected, the relative energies from us-
ing the low-cost PBE-D2/DZP method do not
reproduce the B86bPBE-XDM results in Fig-
ure 3(b), but simply performing an additional
single-point energy calculation on each crystal
structure, as shown in Figure 3(e) and (f), re-
covers crystal energy landscapes in good agree-
ment with the reference high-level method (the
relative energies for all crystals can be found in
the SI). These plots show that, although the
optimization convergence thresholds are hav-
ing an effect on the calculated energies, the er-
ror introduced is tolerable, and the B86bPBE-
XDM//PBE-D2/DZP method predicts the cor-
rect energy ordering even if the poor W99
starting geometries are used. For instance,
the MAE between the B86bPBE-XDM//PBE-
D2/DZP and the B86bPBE-XDM results for
all 50 relative energies is 0.3 kJ/mol when
the B86bPBE-XDM geometries are used as the
starting point of the PBE-D2/DZP optimiza-
tions and 1.6 kJ/mol when the W99 geome-
tries are used instead. Nonetheless, this accu-
racy is sufficient to correctly identify the most-
promising candidate structures for subsequent
high-level structure refinement. Thus, given
that both energy landscapes are similar and
the proper relative ordering between enantiop-
ure and racemate phases is recovered, we con-
sider our multilevel approach to be suitable for
crystal structure prediction purposes.

5 Conclusions

In this article, we studied the applicability and
performance of computationally inexpensive
(cheap) and multilevel approaches to crystal
structure prediction (CSP). Multilevel methods
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are a composite of two techniques in which the
cheap method is used for geometry optimization
and a more expensive and accurate method is
used in a final single-point calculation. Mul-
tilevel methods are very popular in molecular
quantum chemistry, as they furnish an accuracy
similar to the expensive method with a much
reduced computational cost. In particular, we
have studied several cheap methods: PBE-
D2, vdW-DF1, and vdW-DF2 with a double-
zeta basis set of numerical orbitals (SIESTA);
minimal or small Gaussian basis set calcu-
lations (PBEh-3c, HF-3c, HF-D2/MINI(x)),
and self-consistent-charge dispersion-corrected
density-functional tight binding (SCC-DFTB3-
D3). These cheap methods have been evalu-
ated both alone and in a multilevel method
where the final single-point calculation is run
with B86bPBE-XDM, which has the best per-
formance of all current density functional meth-
ods in the calculation of absolute lattice ener-
gies (measured on the X23 set).

The performance of various cheap and multi-
level methods was evaluated using three tests:
absolute lattice energies (the X23 set), relative
lattice energies (the EE14 set), and a practi-
cal CSP application (enantiopure and racemic
forms of 1-aza[6]helicene, an organic semicon-
ductor). The EE14 set is a new benchmark set
for relative lattice energies derived from experi-
mental measurements of enantiomeric excess of
a solution in contact with the racemic and enan-
tiopure crystals of the same chiral compound,
comprising 14 relative lattice energies.

Our results show that absolute lattice ener-
gies are much more difficult to model than rel-
ative lattice energies, the latter being the im-
portant quantity in CSP. This is especially true
for cheap methods. For instance, SCC-DFTB3-
D3(BJ) gives a MAE of 12.8 kJ/mol on the X23,
but only of 3.6 kJ/mol on the EE14. In compar-
ison, PBEh-3c, whose corrections have been de-
veloped to improve binding and lattice energies
accuracy relative to minimal-basis-set HF, has
a relatively low MAE (5.7 kJ/mol) on the X23,
but the MAE on the EE14 is higher than SCC-
DFTB3-D3(BJ) (4.5 kJ/mol). This emphasizes
the importance of targeting relative lattice en-
ergies in the development of cheap methods for

CSP.
Regarding the performance of multi-

level methods (cheap methods with a final
B86bPBE-XDM step), in general the perfor-
mance on the X23 and EE14 of all multilevel
methods improves relative to the correspond-
ing cheap methods alone, except for those
cheap methods that give equilibrium crystal ge-
ometries very different from B86bPBE-XDM.
In particular, our results show that PBE-D2
with a double-zeta basis of numerical orbitals
(PBE-D2/DZP) is particularly efficient at re-
covering B86bPBE-XDM geometries, despite
its poor performance for absolute lattice en-
ergies. This results in an optimal multilevel
method, with MAEs for the X23 and EE14 of
3.6 and 2.0 kJ/mol. In comparison, the MAEs
of pure B86bPBE-XDM on the X23 and EE14
are 3.6 and 2.1 kJ/mol, respectively.

It should be noted, however, that the per-
formance and computational cost of B86bPBE-
XDM//PBE-D2/DZP depends critically on the
choice of calculation parameters for the SIESTA
method. In particular, the energy shift param-
eter, which controls the spatial extent of the or-
bitals, needs to be considerably lower than the
default (0.001 Ry, as suggested previously in
the literature52,77 is a good option). Likewise,
choosing convergence criteria for the geometry
optimization that strike a balance between per-
formance and cost is essential. We have deter-
mined that the default convergence thresholds
in SIESTA (0.04 eV/Å and 1.0 GPa maximum
values for the components of force and stress,
respectively) give an adequate compromise be-
tween the two, although they introduce a small
error if the initial geometries are poor.

Because of its good performance, we tested
B86bPBE-XDM//PBE-D2/DZP on the set of
helicene candidate structures from our re-
cent CSP study.6 It was found that, start-
ing from the B86bPBE-XDM equilibrium ge-
ometries, the relative energies from B86bPBE-
XDM//PBE-D2/DZP are essentially indistin-
guishable from pure B86bPBE-XDM. When
we use relatively poor starting geometries (the
equilibrium geometries using the W99 force
field), then the performance is slightly worse,
but the multilevel method is still able to recover
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a reliable energy landscape. Thus, we con-
clude that multilevel approaches and, in partic-
ular, B86bPBE-XDM//PBE-D2/DZP are ex-
cellent candidates for energy ranking functions
in molecular CSP.
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dejón, P.; Garćıa, A.; Soler, J. M. Linear-
Scaling ab-initio Calculations for Large
and Complex Systems. Phys. Stat. Sol.
1999, 215, 809–817.

(69) Junquera, J.; Paz, O.; Sánchez-Portal, D.;
Artacho, E. Numerical Atomic Orbitals
for Linear-Scaling Calculations. Phys.
Rev. B 2001, 64, 235111.

(70) Sánchez-Portal, D.; Ordejón, P.; Arta-
cho, E.; Soler, J. M. Density-Functional
Method for Very Large Systems with
LCAO Basis Sets. Int. J. Quantum Chem.
1997, 65, 453–461.

(71) Grimme, S. Semiempirical GGA-Type
Density Functional Constructed with a
Long-Range Dispersion Correction. J.
Comput. Chem. 2006, 27, 1787–1799.

(72) Peverati, R.; Baldridge, K. K. Imple-
mentation and Performance of DFT-D
with Respect to Basis Set and Func-
tional for Study of Dispersion Interactions
in Nanoscale Aromatic Hydrocarbons. J.
Chem. Theory. Comput. 2008, 4, 2030–
2048.

(73) Hamann, D. R.; Schlüter, M.; Chiang, C.
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