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Summary
Context: MapReduce is a processing model used in Big Data to facilitate the analysis of large data

under a distributed architecture.

Objective: The aim of this study is to identify and categorise the state-of-the-art of software

testing in MapReduce applications, determining trends and gaps.

Method: Systematic mapping study to discuss and classify according to international standards

54 relevant studies in relation to: reasons for testing, types of testing, quality characteristics, test

activities, tools, roles, processes, test levels, and research validations.

Results: The principal reasons for testingMapReduce applications are performance issues, poten-

tial failures, issues related to the data, or to satisfy the agreements with efficient resources. The

efforts are focused on performance and, to a lesser degree, on functionality. Performance testing

is carried out through simulation and evaluation, whereas functional testing considers some pro-

gram characteristics (such as specification and structure). Despite the type of testing, themajority

of efforts are focused at the unit and integration test level of the specific MapReduce functions

without considering other parts of the technology stack.

Conclusions: Researchers have both opportunities and challenges in performance and functional

testing, and there is room to improve their research though the use of mature and standard

validation methods.
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1 INTRODUCTION

BigData or data-intensive programs are those that cannot run using traditional technology/techniques 1 and usually need novel approaches.MapRe-
duce is one of the most important processing models used in Big Data based on the “divide and conquer” principle 2. MapReduce programs run
two functions in a distributed infrastructure; theMap function splits one problem into several subproblems (divide) and the Reduce function solves
each subproblem (conquer). There are several technologies that execute and manageMapReduce programs such as Spark 3, Flink 4 and Hadoop 5, all
widely implemented in industry 6. It is necessary to ensure the quality of these programs, especially those employed in critical sectors like health
or security, such as DNA alignment or for image processing in ballistics with MapReduce 7,8. These new approaches to processing large data in
general, and MapReduce in particular, have several characteristics that could have an impact on program quality, for example: (1) analysis of large
quantities of data, (2) variety of the input information, (3) data without an apparent data model (schema-less), (4) program optimizations to obtain
better performance, (5) implementation of the data models in each program (schema-on-read), (6) execution over heterogeneous infrastructure,
and (7) automatic mechanisms to manage the resources (for example, scaling and fault tolerance).

There are several approaches to improve quality, and software testing is one of the most commonly used. According to the ISO/IEC/IEEE
29119-1:2013 standard 9, software testing aims to provide information relating to program quality and the potential impacts/risks of poor quality.
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FIGURE 1 Example of the MapReduce program that calculates the average temperature per year.

Software testing research has evolved in recent years 10, but there are several challenges related to the testing of programs in cloud and adaptive
architectures 11.

The adoption of and interest in these technologies/paradigms has increased over the last few years to the extent that several Fortune 1000
enterprises consider Big Data critical for business 12. Despite the importance of these applications, some studies predicted that 60% of Big Data
projects fail to go beyond piloting and would be abandoned in 2017 13. There are several challenges and concerns: poor data quality 14,15, lack of
technological skills 16,17, and various different technological issues such as complexity 18, maturity 19, operability 20 and technical problems 14. Those
problems complicate development andMapReduce applications could potentially be implemented with faults. Although software testing is one of
the quality assurance techniques most frequently used to evaluate software products, there are not many studies relating to MapReduce applica-
tions. The contribution of this paper is an evaluation and characterization of the state-of-the-art of software testing in MapReduce applications
through a systematic mapping study 21,22,23. In this type of study, research questions are proposed and then answered based on relevant literature.
The research questions are usually aimed at structuring the state-of-the-art 24 and in general are broader than in the systematic literature reviews 25.
The current research questions are: Why, What, How, By whom, Where and When is testing performed inMapReduce programs?

A mapping study by Sharma et al. 26 on Big Data and Hadoop 5 indicates that the number of papers has increased significantly in recent years.
This interest in Big Data during the previous years could have evolved the state-of-the-art of software testing in theMapReduce programs. Another
mapping study was undertaken in 2013 by Camargo et al. 27 on software testing in MapReduce programs. Their study analyses only 14 papers
and the results are focused on what types of faults the MapReduce programs have, how to perform the tests, as well as the tools and the testing
techniques used. In contrast to the aforementioned mapping study, this paper obtains more thorough results because of its deeper scope and
different approach/motivation. The main differences between this mapping study and that of Camargo et al. 27 are: (1) broader research questions
to analyze the software testing field in a more holistic way than ad-hoc or specific research questions, (2) broader and more generalized results
obtained through the research questions, (3) relevant literature obtained through a large search involving more sources, (4) almost quadruple the
number of papers analyzed in depth to improve the results, (5) deeper analysis of the papers based on several international standards in order to
obtain accurate results, and (6) inclusion of recent research lines.

The paper continues as follows. Section 2 introducesMapReduce and describes the main challenges from the testing point of view. The research
questions are proposed in Section 3 together with the systematic steps planned to answer them. The execution of these steps (conducting) is
described in Section 4. The answers to research questions and other results are detailed in Section 5. These results are discussed in Section 6. The
confidence of the results obtained from both planning and conducting is enumerated in Section 7. Finally, Section 8 contains the conclusions.

2 MAPREDUCE PROCESSING MODEL

MapReduce programs 2 divide one problem into several subproblems that are executed in parallel over a large number of computers. The programs
have two principal functions: (1) Map, that analyses parts of the input data and classifies them into subproblems, and (2) Reduce, that solves each
of these subproblems. The data processed by these functions are handled internally in the form of <key, value> pairs. The ‘key’ is the identifier of
each subproblem and the value contains information that the subproblem needs to solve. To illustrate MapReduce, let us imagine a program that
calculates the average temperature per year. This problem could be divided into one subproblem per year, then each subproblem only solves the
average temperature in one year. In this program, the ‘key’ is the year because it identifies each subproblem, wheras the ‘value’ is the temperature
of this year because this information is needed to solve the subproblem. Figure 1 details a distributed execution of the program analyzing the
years 2000-2003. Firstly, the Map function receives the data pertaining to years and temperatures and creates the <key, value> pairs with <year,
temperature>. For example, <2000, 3◦> means that 3◦ is needed to solve the subproblem that calculates the average temperature of 2000. Then
the Reduce function receives from all Maps one year with all of its temperatures, and calculates the average. For example, if one Reduce function
receives the data that in the year 2000 there were 3◦ and 1◦ temperatures, that is <2000, [3◦, 1◦]>, then the average temperature for the year is 2◦.
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The programs are executed by a framework that automatically manages the resource allocation, the re-execution of one part of the program
in case of infrastructure failures, and the scheduling of all executions, among other mechanisms. The data analyzed could be stored in several
distributed sources, such as non-relational databases and distributed file systems.

The integration of all of these technologies in theMapReduce program stack presents a challenge for developers and testers. Some technologies
do not scale well, do not support indexing, or do not support ACID transactions, among others issues. Another challenge is the implementation of
the data model in the program.MapReduce can analyze raw data without a data model (schema-less or unstructured) because the modeling of the
data is codified in the program (schema-on-read). When considering the large data scale, it is difficult to establish a model for all data and there are
several issues related to poor data quality, such as missing data, noise or incorrect data. Another problem is that new raw data are continuously
generated and the data model could change over time, and then the program would need some changes.

The balance and the statistical properties of the data can also change over time and they can affect the program, especially if there are per-
formance optimizations in the code based on data property assumptions. For example, suppose that in the program that analyzes the average
temperature per year, the last two years contain 80% of the data. In this case there could be at least two issues: (1) performance problems if these
two years are analyzed in the same computer, and (2) memory leaks or resource issues due to the high quantity of data analyzed by one com-
puter. A further challenge is the type of processing implemented; originallyMapReduce analyzed the data only in batches, but nowadays there are
streaming or iterative approaches, among others. For example, the temperature sensors create streams of data, and so the calculation of the aver-
age temperature is more efficient using a streaming approach, but it is more difficult to implement and not all programs could be processed in this
way. In some domains it is better to change the <key, value> approach to another that permits better modeling of the program, such as Pangool 28,
that uses tuples, or more complex structures like graphs 29.

In the main framework ofMapReduce, Hadoop, there are a lot of configuration parameters that could affect the execution in terms of resources,
data replications and so on.More than 25 of these parameters are significant in terms of performance 30. The developer does not know the resources
available when the program is deployed because the cluster continuously changes (new resources adding to scale or infrastructure failures 31), and
this also makes the optimal configuration difficult. There are other advanced functionalities of MapReduce that could optimize the program, such
as for example the Combine function. The problem is that if these functionalities are not well established there could be some side effects, such as
incorrect output.

In Big Data there are also other testing issues related to the ethical use of data. Different security procedures and policies should be considered in
MapReduce programs throughout the data lifecycle. For example, the analysis of some data could be forbidden in the next season due to agreements
with the data provider or due to legal issues. In other cases, the data should be anonymized or encrypted, especially any sensitive data.

Several generic tools are used in the industry to test MapReduce programs, such as JUnit 32 with mocks. In order to facilitate the testing of
MapReduce programs, MRUnit 33 runs the unit test cases without a cluster infrastructure. Another approach is MiniCluster 34 that simulates a
cluster infrastructure in memory, or Herriot 35 that interacts with real infrastructure allowing finer-grained control, for example by the injection of
computer failures that alter the execution of the program. There are different types of infrastructure failures that affect test execution and several
tools simplify their injection such as AnarchyApe 36, ChaosMonkey 37 or Hadoop Injection Framework 38. The remainder of this paper analyses and
summarizes the efforts of the research studies that are focused on covering the issues related to testingMapReduce applications.

3 PLANNING OF THE MAPPING STUDY

This mapping study aims to characterize the knowledge of software testing approaches for MapReduce programs through a study of the exisiting
research literature. To avoid bias, the planning of the mapping study describes several tasks based on the guidelines from Kitchenham et al. 22:

1. Formulation of the research questions (Subsection 3.1).

2. The search process to extract the significant literature (primary studies) to answer the research questions (Subsection 3.2).

3. Data extraction to obtain the relevant data from the literature (Subsection 3.3).

4. Data analysis to summarize, mix and put the data into context to answer the questions (Subsection 3.4).

These tasks are planned and then conducted independently as described in Figure 2. The execution (conducting) of the mapping study is
summarized in Section 4.
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FIGURE 2 Steps of Systematic Mapping Study.

FIGURE 3 Search process to obtain the primary studies in the mapping study.

3.1 Research Questions
The research questions are formulated to cover all of the information about software testing research in the context ofMapReduce programs with
different points of view. This work formulates the research questions based on the 5W+1H model 39,40, also known as the Kipling method 41. This
method is used in other systematic reviews of software engineering 42 and answers the questions: Why, What, How, By whom, Where and When.
The research questions of this mapping study are:

RQ1. Why is testing performed inMapReduce programs?

RQ2. What testing is performed inMapReduce programs?

RQ3. How is testing performed inMapReduce programs?

RQ4. By whom, where and when is testing performed inMapReduce programs?

3.2 Search Process
Themapping study answers the research questions by analyzing the series of studies that contain relevant information about these questions. These
studies are called primary studies and are obtained through the tasks described in Figure 3. First, the search terms (set of several words/terms)
related to software testing andMapReduce are searched for in different data sources (journals, conferences and electronic databases). The papers
that match these searches together with other studies recommended by experts constitute the potential primary studies. Finally, these studies
are filtered as part of study selection in order to obtain only the studies that contain information which answers the research questions. In the
following subsections each of the planning steps is described in detail.

3.2.1 Search Terms
The search terms are obtained from the three points of view proposed by Kitchenham et al. 22: population, intervention and outcome. In this
mapping study the population refers to the technologies and areas related to MapReduce, whereas the intervention and outcome refer to the
software testing methods and the improvements obtained through software testing.

The search terms of this mapping study follow the chain “MapReduce technology related terms AND Quality related terms” where:
The MapReduce technology related terms correspond with population and are enumerated in Table 1 with synonyms. The selection of the

search terms is difficult when technologies are relatively new because the terminology is not well-established 43. The Big Data paradigm and the
MapReduce processing model are surrounded by a lot of buzzwords like other fields such as Cloud computing. In order to obtain the maximum
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TABLE 1 MapReduce technology related terms (population).

Technology Terms and years of creation

Field Big Data, Massive data, Large data
Data processing Hadoop (2006)

-Batch MapReduce (2004)
-Iterative Spark (2013), Tez (2013), Stratosphere (2010), Dryad (2007), Flink (2014)
-Streaming Storm (2011), S4 (2010), Samza (2013)
-Lambda Lambdoop (2013), Summingbird (2013)
-BSP Giraph (2013), Hama (2011)
-Interactive Drill (2012), Impala (2012)
-MPI Hamster (2011)

Testing MRUnit (2009), Junit (1998), Mock, MiniMRCluster (2006), MiniYarnMRCluster (2012), Mini cluster (2007),
QuerySurge (2011)

Security Sentry (2013), Kerberos (2007), Knox (2013), Argus (2014)
Resource Manager Yarn (2012), Corona (2012), Mesos (2009)
MapReduce abstraction Pig (2008), Hive (2010), Jaql (2008), Pangool (2012), Cascading (2010), Crunch (2011), Mahout (2010), Data fu

(2010)
Yarn frameworks Twill (2013), Reef (2013), Spring (2013)
Yarn integration Slider (2014), Hoya (2013)
Data integration Flume (2010), Sqoop (2009), Scribe (2007), Chukwa (2009), Hiho (2010)
Workflow Oozie (2010), Hamake (2010), Azkaban (2012), Luigi (2012)
Coordinator Zookeeper (2008), Doozerd (2011), Serf (2013), Etcd (2013)
SDK Hue (2010), HDInsight (2012), Hdt (2012)
Serialization Sequence File (2006), Avro (2009), Thrift (2007), Protobuf (2008)
Cluster Management Ambari (2011), StackIQ (2011), Whte elephant (2012), Ganglia (2007), Cloudera manager (2011), Hprof (2007),

MRBench (2008), HiBench (2010), GridMix (2007), PUMA (2012), SWIM (2011)
File system HDFS (2006), S3 (2006), Kafka (2011), GFS (2003), GPFS (2006), CFS (2013)
Other storage HBase (2008), Parquet (2013), Accumulo (2008), Hcatalog (2011)
Cluster deployment Big top (2011), Buildoop (2014), Whirr (2010)
Data Lifecycle Falcon (2013)

relevant literature and avoidmissing some primary studies due to buzzwords and jargon, a thorough search is performed considering theMapReduce
and Big Data related technologies enumerated in Table 1.

Quality related terms correspond with the Quality (sub)characteristics of ISO/IEC 25010:2008-2011 44 and ISO/IEC 9126-1:2001 45 and their
synonyms (outcome), together with other testing terms (intervention). Both are enumerated in Table 2.

This work plans a wide search with 9384 combinations of terms in the paper title, obtained by 92MapReduce technology-related terms and 102
quality-related terms.

3.2.2 Data Sources
The potential primary studies may be found in different data sources. This mapping study searches for the studies in the following data sources,
grouped in four categories:

a) High-impact journals and conferences. The potential studies are obtained through DBLP 46 with the search terms in 31 JCR journals 47 and
53 CORE conferences 48 enumerated in Appendix A. The journals and conferences selected are related to the software testing or Big Data.

b) Electronic databases. The search terms are queried in IEEE Xplore 49, ACM Digital Library 50, Scopus 51, Ei Compendex 52 and ISI Web of
Science 53, that are employed in other mapping studies of software testing 54 and recommended by Kitchenham et al. 55.

c) Other journals and conferences. Relatively new topics likeMapReduce and Big Data are more likely to be published in specialized workshop-
s/conferences 43. The non-JCR journals and non-CORE conferences related to software testing or Big Data could be a good source of potential
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TABLE 2 Quality related terms (outcome and intervention).

Quality characteristics Terms

Functional suitability Functionality, functional, suitability, suitable, correctness, correctable, accuracy, accurate, compliance, compliant,
appropriateness, appropriate

Performance efficiency Performance, performable, efficiency, efficient, time-behaviour, resource utilization
Compatibility Compatibility, replaceability, replaceable, co-existence, interoperability, interoperable
Usability Recognizability, recognizable, learnability, learnable, operability, operable, ease of use, helpfulness, helpful,

attractiveness, attractive, attractivity, technical, accessibility, accessible
Reliability Reliability, reliable, availability, available, fault tolerance, recoverability, recoverable
Security Security, secure, safety, confidentiality, confidential, integrity, non-repudiation, accountability, accountable,

authenticity, authenticable
Maintainability Maintainability, maintainable, modularity, modular, reusability, reusable, analyzability, analyzable, changeability,

changeable, modification, modifiable, stability, stable, testability, testable
Portability Portability, portable, adaptability, adaptable, transferability, transferable, installability, installable, effective, effec-

tiveness
Other terms Testing, assert, assertion, check, checking, test, test case, validate, validation, verify, verification, bug, defect, fault,

failure, error, quality, risk, evaluation

primary studies. Thismapping study searches for studies through DBLP 46 with the search terms in the 33 journals and 49 conferences enumerated
in Appendix B.

d) Expert opinions. The three previous categories involve a wide search of software testing studies aboutMapReduce programs, but there could
still be relevant studies that would not be identified by this method. The opinion of authors with experience in software testing and MapReduce,
together with the other related mapping studies 27 could provide potential primary studies as Kitchenham et al. suggest 56.

3.2.3 Study Selection
Study selection is more difficult in systematic mapping studies than in systematic reviews 55. Some potential primary studies obtained from the data
sources might not contain information about software testing in the MapReduce programs. In this mapping study a series of filters selects only
the studies that contain relevant information that answers the research questions. The potential primary studies that do not pass the filters are
excluded, and the remainder make up the primary studies used to answer the research questions. The filters consist of the following exclusion
criteria applied in the following order:

C1) Exclusion filter by year. A potential primary study is excluded when the publication year is before the MapReduce paper (2004) or before
the creation of technologies/fields expressed in the search terms of Table 1.

C2) Exclusion filter by area. Potential primary studies are excluded when their research is not about Computer Science or Information systems.
C3) Exclusion filter by field. Potential primary studies are excluded when they do not contain Big Data information.
C4) Exclusion filter by topic. The final filter only includes the studies about software testing in the MapReduce programs; the remainder are

excluded.
For example, the last filter excludes papers focused on software testing of the underlying technology such as the distributed system Hadoop,

cloud computing, net or operative system, among others. Despite the normal execution ofMapReduce programs depends on all these technologies,
usually they are mature enough and the developer/tester is only focused on the MapReduce application. Some papers that have been excluded
are intended to improve the performance of Hadoop through infrastructure failure forecasting 57 or to inject infrastructure failures in a distributed
file system 58, among other examples that also do not test the MapReduce applications. Some other papers employ the MapReduce and Big Data
capabilities to speed up testing in other non-MapReduce programs. For example, 59,60 are frameworks to perform unit testing and mutation testing
in general programs taking advantage of the parallel capabilities of theMapReduce processing model.
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FIGURE 4 Test levels based on ITSQB and adapted to MapReduce.

3.3 Data Extraction
The relevant information from the primary studies is extracted through a template divided in two parts. The first part is in general based on
checklists of international standards related to the research questions, and the second part is focused on other data that could be interesting to
analyze. The data extracted for answering the research questions are:

RQ1 “Why is testing performed in MapReduce programs?” Extraction of the arguments employed in the primary study to perform testing in
MapReduce programs.

RQ2 “What testing is performed inMapReduce programs?” The data are extracted following two checklists that characterize the type of testing
performed in each primary study: a checklist of the 31 ISO/IEC 25010:2011 Quality (sub)characteristics 44, and a checklist of the 17 ISO/IEC/IEEE
29119-4:2015 Quality-Related Types of Testing 61.

RQ3 “How is testing performed in MapReduce programs?” The data are extracted by following a checklist of the 11 ISO/IEC/IEEE 29119-
1:2013 Annex A: Test activities 9, together with a checklist of test areas as follows: Testing specific toMapReduce programs, Testing not specific to
MapReduce programs (other technologies/paradigms can be tested), Unclear and Not applicable. In addition, the following information about the
tools used for testing is extracted: Does the study include the creation of a specific tool or use an existing tool? Is the tool based on another tool?
Is the tool available? For example, if the tool is accessible via the Internet or with some type of open source license.

RQ4 “By Whom, where and when is testing performed in MapReduce programs?” The data are extracted following three checklists focused on
the roles, the lifecycle and the test level. The first checklist contains the following roles: Manager, Analyst, Architect, Tester, Test manager, Test
strategist, Other stakeholders, Unclear andNot applicable. These test roles are described in the ISO/IEC/IEEE 29119-1:2013Annex E 9. The second
checklist contains the 6 ISO/IEC 12207:2008 Software Implementation lower level Processes 62 and the 11 ISO/IEC 12207:2008 System Context
Technical processes 62. The third checklist is based on ISTQB test levels 63 and adapted toMapReducewith two changes represented in Figure 4: (1)
Unit testing is divided into “Unit testing inMap function” and “Unit testing in Reduce function”, and (2) “Integration testing” is for the integration of
theMapReduce program with other modules, whereas “IntegrationMapReduce testing” is for the integration betweenMap and Reduce functions.

Other data are extracted in the mapping study because they may be interesting when characterizing the results and obtaining new findings.
These data are extracted in a checklist with the following information about the research validation of the studies:

a) The different types of validation summarized by Mary Shaw 64: Analysis, Evaluation, Experience, Example, Persuasion and Blatant assertion.
b) Other characterizations of the research: Validationwith external programs, Validationwith own programs, Another type of validation,Without

validation, Unclear, Other and Not applicable.

3.4 Data Analysis
The data extracted from the primary studies are analyzed in order to answer the research questions. In empirical software engineering there are
several methods 65 based on different approaches according to the type of data or research questions, among other things. In this mapping study
the analysis is performed using (1) thematic analysis 66 to answer RQ1, and (2) meta-ethnography 67 for the remaining research questions. These
methods are focused on qualitative data but analyze the data in a different way.

The thematic analysis method is selected to respond to RQ1 (Why is testing performed inMapReduce programs?) because it extracts a taxonomy
of the reasons for testing from the primary studies. Then RQ1 is answered by a frequency analysis of these reasons for testing. This thematic
analysis is performed with a grounded approach 68 that consists of the following steps:

1. Reading of the primary studies.

2. Extraction of the segments/phrases that include the reasons for testing.

3. Creating a group of labels for each previous segment/phrase based on the type of reason for testing.
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4. Refining all labels several times until a few labels are obtained that compose a taxonomy of the reasons for testing.

5. Frequency analysis of the reasons for testing employed in the primary studies based on the previous taxonomy.

Meta-ethnography is selected to answer research questions RQ2 to RQ4 because it transforms the data from the primary studies into a more
easily analyzable shared context. This method is employed in software engineering 69 and translates all primary studies on data under several facets
that contain the checklists described in the data extraction (Section 3.3). Once the data are extracted from the primary studies in these checklists,
the research questions are answered by a frequency analysis. This mapping study follows the 7 steps proposed by Noblit et al. 67:

1. Getting started. The topic under analysis is software testing of theMapReduce programs and is well studied through mapping study.

2. Deciding what is relevant to the initial area of interest. All primary studies are important.

3. Reading the studies. The primary studies are read in order to extract the relevant data.

4. Determining how the studies are related. Primary studies could contain related concepts or very different concepts. The relationship between
these concepts is established through the checklists of the data extraction of Section 3.3.

5. Translating the studies into one another. The primary studies are translated into relevant data according to the unified checklists of Section 3.3.

6. Synthesizing translations. This mapping study creates more general concepts by the answers of research questions. RQ2 is answered by a
frequency analysis of their two checklists, whereas both RQ3 and RQ4 are answered through their three checklists described in Section 3.3.

7. Expressing the synthesis. The research questions are answered and discussed in Section 5 following the previous steps of the mapping study.

4 CONDUCTING THE MAPPING STUDY

This section describes how each step of the systematic mapping study was conducted and how all problems were overcome. The planning of the
systematic mapping study was refined by the three authors after several iterations.

Search terms: In the first instance, a small number of specific search terms such as MapReduce and Big Data were defined, but some relevant
literature did not match with this search. For example,Hadoop is a distributed system that supports the execution ofMapReduce programs and non-
MapReduce programs, but there are several papers that use Hadoop and MapReduce words interchangeably. Other relevant papers do not include
the word MapReduce in the title, but do contain other words related to the MapReduce/Big Data ecosystem like Hive, PIG or Spark. Finally, we
refined the research method by adding more search terms in order to obtain the maximum amount of relevant literature.

Data sources: The data sources were also refined several times, especially the journals and conferences/workshops. Initially, we planned to
analyze only the top journals and conferences such as ICSE. However, we observed that the relevant literature of software testing in MapReduce
were not published at all in these journals and conferences. Finally, we addedmore journals and conferences/workshops that might contain relevant
literature using both SEWORLD 70, DBLP 46 and our research experience. We added both JCR/CORE and non-JCR/non-CORE venues because a
significant number of primary studies are published in this heterogeneity of venues, as we discuss in Section 5.

Study selection: For each data source, one author developed queries using the large number of search terms. This search was difficult to carry
out because the software engineering search engines did not adequately support themapping studies searches 71. To avoid this problem, we created
a program that splits the 9384 combinations of search terms in 2346 searches and simulates a human performing these requests. The potential
primary studies were obtained over a period of approximately two months in order to avoid bans in the search engines due to a high number of
requests. After some months we tried to use this program in another mapping study, but the program was obsolete due internal changes in the
search engines. As other researchers have noted, we also observe that digital search engines are not well-suited to complex searches 55.

After two months of both automatic and manual searches in 2311 proceedings/volumes (624 from JCR/CORE venues and 1687 from non-
JCR/non-CORE venues), in July 2016 we obtained more than 100000 studies represented in Figure 5. Then we removed those that were retrieved
several times across different data sources, obtaining thereafter more than 70000 potential primary studies. The majority of these studies were
clearly non-relevant for thismapping study because theywere not focused on software testing in theMapReduce programs. Following somepractices
of other systematic reviews of both social science 72 and software engineering 73, those studies that were clearly non-relevant were filtered out by
only one of the authors, whereas those studies that were potentially relevant were filtered in parallel by two of the authors. The first filter was
applied by only one of the authors because it only excludes those studies that are either published before MapReduce or before the technology
that matches the query. For example, there were several studies excluded in the first filter because despite the fact that they were retrieved by
the words “testing” and “pig”, they were published before the Apache Pig technology (2008) was developed. These studies were usually concerned
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with testing pigs (the animals) rather than Pig (the software). The majority of studies could be excluded/selected after only reading the title, but
in other cases the author needed to read the abstract or the whole paper, in particular when considering the last filters. After the first filter, there
were still more than 14000 potential primary studies in consideration.

The second filter excludes those studies that are not related to either computer science or information systems. This filter was also applied by
only one author because the studies excluded are clearly non-relevant, such as those about testing pigs (the animals) published after 2008. After
the second filter was applied, there were still more than 1500 potential studies. The third filter excludes those studies that are not related to the
Big Data field. This filter was applied by one author and excluded a few studies, some of which are about “cascading failures” in computer science
models or databases that are clearly unrelated to the Big Data field. After applying the third filter, there remained more than 1300 potential primary
studies.

The fourth filter obtains those studies focused on software testing in the MapReduce processing model. This filter and the selection of the
primary studies were almost completely applied by two of the authors and the disagreements were discussed by all authors. In the first instance
one of the authors excluded 334 studies that are non-relevant because are related to Big Data Analytics. The remaining studies, numbering 1043,
were related to Big Data Engineering and were filtered independently by two of the authors until the primary studies to be used in this paper were
obtained. Both authors agreed on 1002 studies: 50 of them passed the filter and were selected as primary studies, and the other 952 did not pass
the filter. In contrast, both authors disagreed on 41 studies: one of the authors considered that 35 of them should pass the filter and be selected
as primary studies, whereas the other author considered that the other 6 studies should also pass the filter and be selected as primary studies.
Despite 96% agreement between both authors, we applied the Kappa coeffient to statistically measure the inter-rater agreement 74. We obtained
0.69 as a Kappa coefficient with [0.60-0.78] as a 95% confidence interval. This is usually interpreted as substantial 74 or moderate 75 agreement
between both authors during the selection of the primary studies. The 4% disagreement (representing 41 studies) were discussed and analyzed by
the three authors until total agreement of the primary studies to be used in this paper was achieved. The majority of disagreements were caused
by an initial incorrect definition of the systematic mapping study plan because one author considered that studies about software testing in Hadoop
system should be considered as primary studies, and the other author did not. We refined the plan indicating that the primary studies are only
those about software testing in the MapReduce processing model and not those about software testing in other technologies or frameworks that
do not compriseMapReduce. Other disagreements happened because one of the authors did not consider those papers about software testing in
MapReduce abstractions like Pig and Hive as primary studies. There were other disagreements, for example those papers that instead of testing
are related to debugging. After all authors had discussed and resolved the disagreements, 65 studies passed the filter. Some of these studies are
the continuation of the same research, such as a conference paper with an improvement published in a journal. The old versions of the studies
were excluded keeping only the lastest study. There were several papers from the HP Labs team, but we considered that only three of them are
considered primary studies because these studies were distinct from each other. As Section 5 discussed, one of them 76 is focused on obtaining
the execution time with microbenchmarks, whereas the other 77 is focused on the cloud cluster using different techniques, and the final study 78 is
focused on Pig queries. Finally, 54 unique studies were selected as primary studies.

Data extraction: In order to perform the data extraction, each one of these 54 primary studies were read at least once by two of the authors.
Despite the guidelines from Kitchenham et al. 22 which suggest that at least two researchers extract the data independently, other researchers
consider it practical that one author extracts the data and the other author checks the extraction 71. This last practice is applied in software
engineering by other systematic reviews 79 and we also extracted the data in similar way. One of the authors extracted the data from the primary
studies, another author checked the extraction, and the doubts were discussed and resolved by the three authors.

Data analysis: Once the data were extracted, all authors discussed the interpretations and potential results. Then the three authors started to
write the findings and the report.

The current systematic mapping study took a lot of time despite not being the first conducted by our research group. The time consumed is one
of the main criticisms of systematic reviews 55. We specifically expended more time in: (1) creation and execution of a program to support the high
number of search queries, (2) selection of the primary studies from a large amount of literature, (3) extraction of the data from each primary study,
and (4) refinement of the research method. We performed the systematic mapping study two times, initially in 2015 and finally updated with the
literature of 2016.

5 RESULTS

The results were obtained through the execution (conducting) of the systematic mapping study that answers the research questions. The primary
studies are summarized in Subsection 5.1. From these, the data were extracted, and the analysis is developed in Subsection 5.2 answering the
research questions. Other results that do not answer the research questions but remain relevant in characterizing the state-of-art of software
testing inMapReduce applications are summarized in Subsection 5.3. Finally, the general results are discussed in Section 6.
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FIGURE 5 Study selection of the primary studies.

TABLE 3 Frequency of the primary studies over time.

Statistics 2010 2011 2012 2013 2014 2015 2016 until July

Frequency 1 (2%) 7 (13%) 4 (7%) 19 (35%) 12 (22%) 10 (19%) 1 (2%)
Absolute frequency 1 (2%) 8 (15%) 12 (22%) 31 (57%) 43 (80%) 53 (98%) 54 (100%)

5.1 Primary Studies
In this work, there are 54 primary studies that are derived from more than 70000 potential studies obtained though the search process detailed in
Figure 5. These primary studies are detailed in Table C5 of Appendix C with the year of publication, type of contribution and a summary of their
contents.

The MapReduce processing model was described in 2004, but the software testing efforts in this field according to the primary studies only
started in 2010 with only 1 study and after six years and six months the number of primary studies had increased to 54. Table 3 summarizes the
frequencies of these primary studies over time and reveals that the research efforts of the topic may have grown because after 2013 the attention
increases.

The different types of validations employed in the research are summarized in Table 4. Themajority of the studies validate their research through
examples (41%) or experience (35%). In 76% of the studies, the validation is carried out by applying the testing research in a program(s), but in 11%
of the primary studies the research is not validated.

Testing in Big Data has opened up new challenges 80, especially in the understanding of the data and its complex structures 81. Gudipati et al. 82

establish a classification of testing in the Big Data field. This study includes the validation of the MapReduce process together with other non-
functional characteristics like performance and failover. All of these characteristics are among the main challenges in Big Data testing 81. In order
to overcome these challenges though software testing, it is recommended to deploy a distributed environment like production, preferably in the
cloud 82,83.

Software testing can be performed in different dimensions and some authors suggest addressing the three Vs of Big Data (Volume, Velocity and
Variety). In the case of high Volume, it could be difficult to check whether the test case output is the output expected, and the use of automatic
tools can be helpful 82. In the case of Variety such as semi-structured or un-structured data, it can be helpful to transform them in a structured
way 82. To test the Velocity, it is recommended to design performance tests 82. In addition to Volume, Variety and Velocity, other authors suggest
considering the Veracity through data cleaning and normalization 83. Those four Vs have an impact not only on the program execution, but also
on the performance tests 84. Zhenyu Liu 84 classifies the performance testing in Big Data as: (1) concurrent test (the impact of multiple users and
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TABLE 4 Number of primary studies per type of validation.

Number of studies

Analysis 7 (13%)

54
(100%)

Evaluation 0 (0%)
Experience 19 (35%)
Example 22 (41%)
Persuasion 0 (0%)
Blatant assertion 6 (11%)

With
validation

Over
programs

External programs 30 (56%) 41
(76%)

47
(87%)

54
(100%)

Own programs 12 (22%)
Other validation 8 (15%)

Without validation 6 (11%)

applications in concurrency), (2) load testing (realistic data loads to analyze the response of the program), (3) stress test (testing under extreme
data), and (4) capacity test (the analysis of the resources that can be used).

The majority of the primary study papers are focused on capacity and load testing. These studies are summarized in Section 5.1.1, whereas
those primary studies that are more related to the functionality are described in Section 5.1.2.

5.1.1 Performance testing and analysis
In the primary studies, performance analysis is mainly addressed by the simulation of program executions, or by evaluation of a performance
prediction model. These prediction models characterize performance based on different kinds of input parameters. The model of Song et al. 85

predicts the execution time given some characteristics about both the input dataset, the program functionality and the programming cluster. In
addition, other models obtain the execution time by also considering the file system 86. The prediction models can have different goals beyond the
execution time, for example the Yang et al. model 87 helps to obtain the values of the input parameters that achieve the best execution time. The
tester varies the input parameters (the network or the locality of the data, among others) and then analyzes the impact in performance.

Performance can be predicted by using a stochastic approach, for example by Stochastic Petri Nets 88. Another stochastic model 89 also considers
theMapReduce tasks that are re-executed due to frequent failures. The performance ofMapReduce and Big Data applications can also be evaluated
through large scale stochastic models by Mean Field Analysis 90.

While some models predict performance by analyzing the execution time of several samples 91 or considering previous executions 76, other
models consider some specific characteristics of theMapReduce execution. The Vianna et al. model 92 considers the influence over the performance
of MapReduce tasks that are executed in parallel. The network is another issue that can cause bottlenecks in MapReduce programs and several
models consider the network in order to predict the performance 93,94. Others also consider the task failures and I/O congestion 95.

Together with the network, memory can cause performance issues, especially in iterative programs or those with high I/O operations. The
performance of the shared-memory computation programs can be predicted with the Tanzil et al. model 96, whereas in those programswith Remote
Direct Memory Access, the Wasi-ur-Rahman et al. model 97 can be used. Apache Spark 3 programs process the data using distributed memory
abstraction and their performance can be predicted by a model that executes a sample of data 98.

The cluster that executes MapReduce programs can also influence performance, especially when this cluster is formed by a heterogenic infras-
tructure. In these clusters, the Zhang et al. model 77 predicts performance within the bounds of upper and lower execution time. Another model
that can predict the performance in these clusters employs the machine learning technique Support Vector Machine 99. There are several clusters
deployed in the cloud to obtain several advantages in terms of elasticity and cost. For programs executed in these clusters, performance can be
predicted modeling the systems with Layered Queueing Network 100. In the case of I/O intensive programs in the cloud, performance can be pre-
dicted using a CART (Classification And Regression Tree) model 101. When the programs executed in the public cloud have deadline requirements
to satisfy, performance can be predicted with the Locally Weighted Linear Regression model considering the previous execution and the data exe-
cuted in parallel 102. For those programs that are not only executed in a public cloud, but in a hybrid cloud, their performance can be predicted with
the Ohnaga et al. model 103.

Several frameworks transform queries into MapReduce jobs, such as Hive 104 and Pig 105. The execution time of the Hive SQL-like queries may
be forecast using multiple linear regression to predict the execution time of all theMapReduce jobs generated from these queries 106. The multiple
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regression analysis can be also used to predict the execution time of the join queries in Pig programs 107. In contrast, the Zhang et al. model 78

predicts the performance of Pig programs considering the previous executions.
In addition to the prediction models, the testers can simulate the execution of the programs to analyze their performance in a fine-grained way.

As with the prediction models, the simulators also consider characteristics about the input dataset, the program functionality, the programming
cluster and the file system 108. TheMRPerf simulator 109 considers the inter and intra rack interactions over network using ns-2, and can be combined
with other simulators, such as DiskSim. The Chauhan et al. simulator 110 is based on MRPerf but including, among others elements, some random
time due to operating system scheduling and network communication delays.

The execution time of MapReduce programs can also be obtained using the modeling language proposed by Barbierato et al 111. The tester
can also monitor the execution of MapReduce programs and test cases, obtaining charts to evaluate performance and potential bottlenecks 112.
Villalpando et al. 113 propose a model for the Big Data application establishing a relationship between performance and reliability measures based
on the international standard of quality ISO/IEC 25010 44.

Despite there being several research lines concerned with predicting the execution time, there is no comprehensible comparison between them.
In general, these studies are evaluated only with a few different case studies. The scientific contribution of these predictionmodels can be improved
with empirical evaluation against other models using a standardized benchmark.

The main difference between these models is not just the technique/approach employed, but also the parameters used by the model. Different
characteristics of the input dataset, program functionality, programming cluster and file system are considered as parameters, for example: size
of data or number of <key, value> pairs (input dataset), complexity or overhead of Map (program functionality), number of CPU cores or racks
(programming cluster), and number of HDFS replicas or the data transfer time for an HDFS block (file system).

There are a lot of different parameters, but there is no clear indication ofwhich parameters havemore influence on performance. The contribution
of the performance prediction studies can be improved evaluating which parameters really influence performance and which do not. Then the
prediction models can be designed with a more standardized subset of parameters that have a notorious influence on performance.

5.1.2 Functional testing
Misconfiguration is one of the most common problems that lead to memory/performance issues in MapReduce 114. However, according to the
empirical study by Ren et al. 115, users rarely tune the configuration parameters that are related to performance. Users usually only turn the
configuration parameters that are related to failures 115. Another empirical study analyzes 200 production failures and determines that the majority
of failures are related to the data, and only 1.5% are related to the performance (out of memory) 116. In production there are several programs
that do not finish their execution; Kavulya et al. 117 indicate that around 3% of programs have this problem, and a broader study indicates this
percentage falls between 1.38% and 33.11% 115.

An analysis of 507 programs indicates at least 5 different kinds of faults caused by the non-deterministic execution of the MapReduce 118.
Camargo et al. 119 classify the specific faults ofMapReduce, whereas Morán et al. 120 classify those caused by the non-determinism execution. Chen
et al. 121 propose a formal approach to detect these faults caused by non-determinism. In contrast, Csallner et al. 122 employs symbolic execution to
check the program under test. Another technique to detect the faults caused by non-determinism dynamically checks the properties of the program
under test with random data 123. One of the reasons for the non-deterministic execution is the tolerance of infrastructure failures. There are several
studies that propose to inject infrastructure failures in the test case design 124. Failure Scenario as a Service (FSaaS) 125 injects infrastructure failures
into a cluster deployed in the cloud.

Several testing techniques are devised in order to generate test inputs aimed at detecting functional faults, such as those caused by non-
deterministic execution or other semantic errors. TheMRFlow testing technique 126 generates the test coverage items that can be used to generate
test inputs based on the data-flow technique adapted to the MapReduce processing model. Another technique to generate data of the test cases
employs a bacteriological algorithm aimed to kill some semantic mutants specific to MapReduce which varies both the number of the Reducers
and the existence (or not) of the Combiner functionality 127. In those Big Data ETL (Extract, Transform and Load) programs that integrate several
technologies (MapReduce, Pig, Hive, among others), a subset of representative data for test can be obtained from the dataset through input space
partition together with constraints 128. In dataflow programs like Pig, the test inputs can be generated using dynamic-symbolic execution in the
control-flow graph of the program 129.

Other kinds of checks can be performed in MapReduce programs. Dörre et al. 130 propose an automatic checker that statically detects incom-
patibilities between the types of the <key, value> pairs processed by MapReduce programs. Rabkin et al. 131 statically analyze the configuration
parameters used by different frameworks, including Hadoop. TheMapReduce developers and testers should analyze the configuration parameters
used because 17% of Hadoop options are not documented and 6% are not used in the code. The main Big Data frameworks can be affected in the
same way as Hadoop because these issues are common in open-source programs 131. The correctness ofMapReduce programs can also be verified
formally through proofs modeling the specification as Coq functions 132.
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TABLE 5 Number of primary studies per type of reason for testing.

Types of reasons
Number of
papers

Number of formal
reasons

Number of
informal reasons

Total number
of reasons

Performance related 30 5 (6%) 36 (43%) 41 (49%)
Failure related 11 3 (4%) 9 (11%) 12 (14%)
Improper use 2 3 (4%) 1 (1%) 4 (5%)
Data related 9 2 (2%) 8 (10%) 10 (12%)
Configuration related 3 2 (2%) 1 (1%) 3 (4%)
Time related 2 2 (2%) 0 (0%) 2 (2%)
Cost related 7 0 (0%) 7 (8%) 7 (8%)
Other 4 0 (0%) 4 (5%) 4 (5%)

17 (20%) 66 (80%) 83 (100%)

5.2 Analysis
The primary studies contain the answers to the research questions, but this information is hidden inside them. The analysis obtains valuable
information in order to answer the research questions based on the data extracted from the primary studies. The data were extracted following
the template defined in Subsection 3.3 and then analyzed by the methods described in Subsection 3.4. In the following subsections the primary
studies are analyzed, classified and summarized in order to obtain the answer to each research question systematically.

5.2.1 RQ1Why is testing performed in MapReduce programs?
MapReduce programs are tested for several reasons. Amodel/taxonomy of these reasons were obtained by applying themeta-ethnographymethod
to the primary studies, as described in Subsection 3.4. The reasons for testing obtained are:

• Performance related: issues derived from the performance goals, service level agreements, size of the data, performance under infrastructure
failures and prediction/analysis/optimization of performance.

• Failure related: the specific faults ofMapReduce programs and the number of programs that fail in production.

• Improper use: not all programs fit correctly in theMapReduce processing model.

• Data related: the challenges related to schema-less data and poor data quality.

• Configuration related: the misconfiguration of the infrastructure or program parameters may produce a failure.

• Time related: the programs may fail after a long time of resource usage.

• Cost related: testing can be carried out in order to reduce the cost of development, resource utilization and so on.

• Other: the reasons that do not fall in another category of the model/taxonomy of the reasons but do not constitute a new category of
reasons.

For each of the above categories of reasons for testing, Table 5 indicates the number of primary studies that details these reasons. Note that a
primary study can contain one or more reasons for testing. In Table 5, each reason for testing is also classified based on the degree of formality of
the evidence in accordance with the following types: reasons with formal evidence and reasons with informal evidence.

Reason with formal evidence: the reason for testing is detailed in the primary studies empirically or with some rigorous evidence of this reason to
test. For example, if one paper performs an extensive analysis of several programs and detects that testing is necessary because a lot of programs
crash in production, this would be considered a reason with formal evidence.

Reason with informal evidence: the reason for testing is not clearly explained or not detailed in the primary studies due to the absence of rigorous
analysis of the evidence for this reason to test. For example, if a paper indicates that the testing is necessary because the developers do not know
how to configure the performance parameters ofMapReduce programs, this would be considered a reason with informal evidence.



14 Morán et al

TABLE 6 Number of primary studies per type of performance-related reason.

Types of “performance related” reasons
Number of
papers

Number of formal
reasons

Number of
informal reasons

Total number
of reasons

Optimization/improvement of application performance 11 0 (0%) 11 (27%) 11 (27%)
Analysis of application performance 11 0 (0%) 11 (27%) 11 (27%)
Influence of infrastructure in application performance 4 3 (7%) 2 (5%) 5 (12%)
Influence of dataset in application performance 2 0 (0%) 2 (5%) 2 (5%)
Fulfill SLA or performance goals 10 2 (5%) 8 (20%) 10 (24%)
Other 2 0 (0%) 2 (5%) 2 (5%)

5 (12%) 36 (88%) 41 (100%)

The most frequent type of reason for testing is “performance related”, being described in 30 primary studies and representing 49% of the total
reasons given in all primary studies, followed by “failure related” with 14%, “data related” with 12%, and “cost related” with 8% of the total number
of reasons. Considering the formal evidence of the testing reasons, “performance related” is also the main reason in the primary studies with 6%
of the total reasons (5 of formal evidence out of a total of 17 of formal evidence), followed by “failure related” and “improper use” with 4% of total
reasons (3 of formal evidence out of a total of 17 of formal evidence).

In the model/taxonomy obtained through the analysis of the primary studies, the 41 “performance related” reasons for testing were sub-divided
in the following sub-categories of reasons:

• Optimization/improvement of application performance: testing is aimed at the improvement of program performance.

• Analysis of application performance: understanding of performance to detect bottlenecks, among other issues.

• Influence of the infrastructure on application performance: whereas MapReduce applications can be designed without considering the
infrastructure, program performance is influenced by the production infrastructure.

• Influence of dataset on application performance: in the same way that the infrastructure impacts performance, the dataset used in production
also make an influence.

• Fulfill SLA or performance goals: the reason for testing the program is to fulfill service level agreements or other performance goals such as
deadlines.

• Other: the reasons that do not fall in another sub-category of the model/taxonomy of the performance reasons but do not constitute a new
sub-category of reasons.

For each one of the above sub-categories of testing that are related to performance, Table 6 indicates the number of the primary studies and
their reasons for testing.

From the 41 “performance related” reasons for testing, the most frequent are focused on the analysis (27% of “performance related” reasons)
and optimization of performance (27% of “performance related” reasons), followed by the fulfillment of performance goals (24% of “performance
related” reasons). The remainder of reasons for testing related to performance analyze the influence of the infrastructure (12% of “performance
related” reasons) and the dataset (5% of “performance related” reasons), followed by other issues (5% of “performance related” reasons).

Of all the reasons for testing the programs, only 20% are based on formal evidence, and the remaining 80% are based on informal evidence.
Regardless of the formality of evidence, the reasons for testing MapReduce programs most frequently described in the primary studies include
“performance related”, especially for the analysis, optimization and fulfillment of performance goals. The least commonly cited reasons for testing
are “time related”, “configuration related”, “improper use” and “other”.

5.2.2 RQ2What testing is performed in MapReduce programs?
The planning of Subsection 3.4 proposes a meta-ethnography 67 to answer this research question. The data extracted from each primary study is
categorized against two facets in order to answer RQ2:

a. Quality (sub)characteristics for each study according to the ISO/IEC 25010:2011 44 represented in Table 7.
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TABLE 7 Number of primary studies per ISO/IEC 25010:2011 Quality (sub)characteristic.

Number of studies

ISO 25010:2011
System/software
product quality

Functional
suitability

Functional Completeness 2 (4%)
14 (26%)

46 (85%)

Functional correctness 14 (26%)
Functional appropriateness 2 (4%)

Performance
efficiency

Time-behaviour 32 (59%)
35 (65%)Resource utilisation 14 (26%)

Capacity 1 (2%)

Reliability
Maturity 1 (2%)

3 (6%)
Availability 1 (2%)
Fault tolerance 1 (2%)
Recoverability 3 (6%)

Other studies
Characterization studies 4 (7%)

8 (15%)
Overview of testing 4 (7%)

TABLE 8 Number of primary studies per ISO/IEC/IEEE 29119-4:2015 Quality-Related Type of Testing.

Number of studies

ISO/IEC/IEEE 29119-4:2015
Types of testing

Performance-Related Testing 32 (59%)
44 (81%)Functional Testing 12 (22%)

Backup/Recovery Testing 2 (4%)

Other studies
Characterization studies 5 (9%)

10 (19%)
Overview of testing 5 (9%)

b. Quality-Related Types of Testing proposed in each study based on ISO/IEC/IEEE 29119-4:2015 61 and summarized in Table 8.

The majority of efforts are focused on “performance efficiency”, accounting for 65% of the studies, then on “functional suitability” with 26% of
the studies, and finally on “reliability” with 6% of the studies. Regarding the type of testing, 59% apply “performance-related testing”, 22% employ
“functional testing” and 4% use “backup/recovery testing”.

The results obtained through the combination of both facets are more or less those expected: “performance-related testing” is related to
“performance efficiency” characteristics, the “functional testing” to “functional suitability”, and “backup/recovery testing” to “reliability”.

5.2.3 RQ3 How is testing performed in MapReduce programs?
This research question is answered through the meta-ethnography 67 proposed in Subsection 3.4. In order to answer RQ3, the primary studies
were analyzed considering three facets:

a. Testing methods/techniques are summarized in Table 9 according to the test activities proposed in Annex A of ISO/IEC/IEEE 29119-1:2013 9.

b. Dependency between the primary studies and theMapReduce processing model is depicted in Table 10. This table describes whether the testing
methods, techniques or studies are specific toMapReduce or could be applied to other paradigms/technologies.

c. Tools created or used in the primary studies to perform software testing are characterized in Table 11.

The majority of the papers (74%) focus on testing only the MapReduce-specific parts of the program. These programs have challenges related
to performance issues and the correct operation of the program under parallel architecture. These issues among others are tested mainly by
“evaluation”, according to 48% of the studies and “simulation” in 17% of the studies. Other testing activities are used to a lesser degree, such as
“structure based” in 7% of the studies or static analysis in 6% of the studies.
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TABLE 9 Number of primary studies per ISO/IEC/IEEE 29119-1:2013 Test activity of Annex A.

Number of studies

ISO/IEC/ IEEE
29119-1:2013
Annex A: Test
activities

V&V analysis
Evaluation 26 (48%)

29 (54%)

43 (80%)

Simulation 9 (17%)

Te
st
in
g

Dynamic
testing

Structure based 4 (7%)

7 (13%)
12 (22%)

Specification based 1 (2%)
Experienced based 1 (2%)
Other 1 (2%)

Static
testing

Static analysis 3 (6%)
5 (9%)

Other 3 (6%)

Formal methods
Model checking 1 (2%)

2 (4%)
Proof of correctness 1 (2%)

Other studies
Characterization studies 6 (11%)

11 (20%)
Overview of testing 5 (9%)

TABLE 10 Number of primary studies per test area covered.

Number of studies

Specific of MapReduce 40 (74%)
50 (93%)

Not specific of MapReduce 10 (19%)

Other studies Characterization studies 4 (7%)

TABLE 11 Number of primary studies per tool created in their research.

Number of studies

Tool created
or used

Based on other
Tool available 3 (6%)

11 (20%)
19 (35%)

Tool not available 8 (15%)

Not based on other tools
Tool available 2 (4%)

8 (15%)
Tool not available 6 (11%)

No tool created or used 35 (65%)

More than half of the studies (65%) do not create or use testing tools in their research. There are in total 19 tools, where 11 are based on other
software testing related tools, and only 5 are freely available on the Internet with an open source license.

5.2.4 RQ4 By whom, where and when is testing performed in MapReduce programs?
The planning of themapping study described in Section 3.4 proposes a meta-ethnography 67 to answer the research question through three facets:

a. The different roles that participate in the testing efforts of theMapReduce programs, described in Table 12.

b. Test levels summarized in Table 13 that contains a characterization of ISTQB test levels 63 adapted to theMapReduce processingmodel according
to Figure 4.

c. The development cycle phase according to the Software Implementation lower level Processes and System Context Technical Processes of
ISO/IEC 12207 62 described in Table 14.



Morán et al 17

TABLE 12 Number of primary studies per role.

Number of studies

Roles
Tester 45 (83%)

49 (91%)
Developer 5 (9%)

Other studies Characterization studies 5 (9%)

TABLE 13 Number of primary studies per ISTQB Test level.

Number of studies

Levels of
testing in
ISTQB

Unit testing
Unit testing Map 16 (30%)

19 (35%)

44 (81%)

Unit testing Reduce 19 (35%)
Integration MapReduce testing 35 (65%)
Integration testing 4 (7%)
System testing 2 (4%)
Acceptance testing 0 (0%)

Other studies
Characterization studies 5 (9%)

10 (19%)
Overview of testing 5 (9%)

TABLE 14 Number of primary studies per ISO/IEC 12207:2008 Software Implementation lower level Process and System Context Technical
process.

Number of studies

ISO/IEC 12207:2008 Software
Implementation lower level Processes

Software Construction Process 3 (6%)
48 (89%)

Software Qualification Testing Process 47 (87%)

ISO/IEC 12207:2008 System Context
Technical processes

Implementation Process 3 (6%)
48 (89%)System Qualification Testing Process 47 (87%)

Software Operation Process 1 (2%)

Other studies
Characterization studies 5 (9%)

6 (11%)
Overview of testing 1 (2%)

As expected, the main player for testing the MapReduce programs is the tester, as per 83% of the studies, and then the developer according
to 9% of the studies. Almost all primary studies (87%) describe testing efforts in the “Software/System Qualification Testing Process” compared
with 6% which focus on “Software Construction or the Implementation Process”. In these processes, the studies cover in more detail the specific
MapReduce parts of the program (Map and Reduce functions) instead of the other parts. The majority of the research efforts in 65% of the studies
focus on the integration testing betweenMap and Reduce functions, and then 35% of the studies cover unit testing at theMap or Reduce functions.
To a lesser extent, the testing efforts are oriented towards the parts of the program that could not containMapReduce functions: 7% of the studies
consider integration testing between theMapReduce functions with other parts of the program, and 4% of the studies relate to testing the system.
All testing levels are covered by the primary studies except for acceptance testing.

From these results, it appears that the fulfillment of the contract or user requirements tested in the acceptance testing level is not greatly
affected by the existence of MapReduce functions in the system. Despite the fact that Big Data programs can contain a composite of several
technologies/programs, testing research efforts focus on testing the MapReduce functions in isolation from the rest of the system. Few studies
consider that a Big Data program can contain MapReduce functions together with other technologies. Regardless of the test level, the testing
described in the primary studies is mainly performed in the Software/System Qualification Testing Process.
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5.3 Summary
The research questions of Subsection 3.1 were answered through the primary studies, data extraction and data analysis. A summary is presented
below:

RQ1. Why is testing performed inMapReduce programs? There are at least seven reasons for testing theMapReduce programs. The most frequent
reasons are based on performance issues (to analyze, optimize and fulfill performance goals), the existence of several or specific failures,
the type and quality of the data processed by these programs, and testing to predict the resources required and efficiently select the
resources to be used. To a lesser degree, the other reasons for testing are the improper use of the processing model or technology, program
misconfiguration or failures after a long period of executions.

RQ2. What testing is performed in MapReduce programs? The majority of the research efforts in testing the MapReduce programs focus on the
analysis of performance, and to a lesser extent the functional aspects ofMapReduce programs.

RQ3. How is testing performed inMapReduce programs? Mainly by evaluation and simulation. In both cases testing is focused specifically on the
MapReduce functions and does not consider other parts of the program. Several tools are used to perform testing, but few are available on
the Internet.

RQ4. By whom, where and when is testing performed inMapReduce programs? Testing is mainly performed by the tester in the Software/System
Qualification Testing Process and major efforts focus on the MapReduce program (unit and integration testing between Map and Reduce
functions).

The analysis of several features about the primary studies reveals, in addition to the answers to the research questions, other findings which are
analyzed below.

The relation between the reasons for testing the programs and the type of testing employed in each study is displayed in Figure 6. According to
Table 8, 59% of the studies focus on performance testing (RQ2), which is very important becauseMapReduce applications analyze large quantities
of data. From RQ1 the reasons for testing the programs are obtained and 58% of these reasons are related to performance (48 reasons of a total
of 85 according to the left side of Figure 6). The reasons for performance testing and the number of studies that test performance are aligned.
However, according to Table 8, the studies related to functionality only represent 22% of all studies even though 42% of the reasons for testing
are related to functionality (35 reasons of a total of 85 according to the left side of Figure 6). There are more reasons for testing functionality than
there are studies about functionality, which can indicate a challenge in the functionality testing to cover these reasons and improve the quality
evaluation of theMapReduce applications.

The main test activities in RQ3 are evaluation (seen in 48% of the studies) and simulation (seen in 17%). These two activities are the most
frequent because the majority of studies are focused on performance testing (59% according to RQ2). Figure 7 characterizes the test activities
(RQ3) and test levels (RQ4) regarding different types of testing (RQ2). The test levels in each type of testing are more or less similar to the answer
to RQ4: the principal efforts are at the integration testing level ofMap and Reduce functions and to a lesser degree at unit level. However, the test
activities are different depending on the type of testing: performance testing employs evaluation and simulation to predict the time of execution
and resources required, but functionality testing performs a variety of different test activities considering specific characteristics of theMapReduce
processing model (static testing, structure based, formal methods, experience based and specification based).

The majority of the studies are published in conferences (76%) and there are a few studies published in a high-impact journal (13%). Despite the
fact that the number of research lines of testing in MapReduce is growing, the validation of these approaches is still simply through experience or
case studies focusing on only a fewprograms, which are sometimes created by the researcher. According to Table 4, 11%of studies are not validated,
41% are validated with examples and 22% employ programs created by the researcher to validate their own work. The research contribution of
testing papers can be improved using controlled experiments with a standard benchmark, especially when considering the performance prediction
techniques that in general are not validated against other techniques. As noted in Section 5.1, performance prediction techniques employ a lot of
different characteristics/parameters of the input dataset, program functionality, programming cluster and file system. In consequence, there is no
clear intuition of which parameters have more influence in performance. The researchers can improve the testing techniques with both an accurate
analysis of the parameters that have more impact in performance and rigorous experimentation using other testing techniques as a baseline.

This work analyzed 54 studies in detail, obtained through a wide search that resulted in 1377 Big Data studies by applying a filter (C4), in which
only the studies that address software testing ofMapReduce applications pass. Of these 1377 Big Data studies, 1043 are about Big Data Engineering
and 334 about Big Data Analytics. Table 15 classifies the Big Data Engineering studies based on the research topic in order to characterize the
research efforts. This classification reflects the research efforts to boost the Big Data Engineering field because 44.1% of the studies improve the
technology, 18.31% analyze the technology through studies and surveys, 9.01% create new technologies to manage and analyze data, and 6.62%
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FIGURE 6 Number of reasons for testing and primary studies per type of study.

FIGURE 7 Number of primary studies per Test activity and test level according to the type of testing.

are focused on the state-of-the-art and challenges. Despite the challenges of testing in the Big Data area 81,83, there are few research lines which
focus on testing Big Data programs in general andMapReduce programs in particular.

The most relevant findings of this mapping study are enumerated in Table 16 and discussed in the next Section.
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TABLE 15 Number of Big Data Engineering studies in the last filter of the mapping study.

Number of studies

Improvements of
technology

Performance 121 (11.60%)

460 (44.10%)

1043
(100%)

Security 81 (7.77%)
Data acquisition, storage and extraction 45 (4.31%)
Fault tolerance and availability 42 (4.03%)
Energy 42 (4.03%)
Improvements outside of Hadoop 35 (3.36%)
Scheduling 34 (3.26%)
MapReduce model 14 (1.34%)
Different frameworks 10 (0.96%)
Other improvements 36 (3.45%)

Studies/Surveys
General quality in Big Data 171 (16.40%)

191 (18.31%)
Other 20 (1.92%)

Software testing
For MapReduce programs 64 (6.14%)

103 (9.88%)
For non-MapReduce programs 39 (3.74%)

Big Data in the cloud 101 (9.68%)

New frameworks
New Hadoop frameworks 85 (8.15%)

94 (9.01%)
Other new Frameworks 9 (0.86%)

State-of-the-art and challenges 69 (6.62%)
Debug 6 (0.58%)
Other 19 (1.82%)

Not applicable (Big Data Analytics) 334

6 DISCUSSION OF RESULTS

This Section discusses the main findings obtained in the current systematic mapping study and enumerated in Table 16. Despite the recent interest
in Big Data through several studies published to improve/study the underlying technology, few of them are focused on software testing [Finding
1]. Researchers not only have opportunities in software testing for Big Data programs, but also for MapReduce applications. Although MapReduce
is one of the processing models most frequently used in Big Data, the programs are usually formed by the integration of a stack/pipe of different
technologies. In contrast, the majority of research about software testing is only focused on the Map/Reduce code, without considering the code
of other technologies of the Big Data stack [Finding 2]. The testing techniques are usually similar to those employed in general purpose software,
and so the researchers should adapt other general testing research toMapReduce considering the specific characteristics of the processing model.

The majority of studies about software testing in MapReduce applications are focused on performance using verification and validation test
activities such as simulation or evaluation [Finding 3]. These tests are usually done to predict/forecast/analyze performance through models that
use several parameters characterizing both the program functionality, the programming cluster and the file system [Finding 4]. Since each of these
models employs different heterogeneous parameters, then it is difficult to understand which are the ones that really affect performance, as well
as the real weight/influence that these parameters have in performance. Performance testing research could be improved by means of both an
analysis of the parameters used by other researchers, and rigorous experimentation using other models as a baseline.

According to the research lines, the main reason for testingMapReduce applications is performance [Finding 5]. Also the majority of the testing
techniques for MapReduce applications are related to performance, as expected. The research lines also suggest that functionality is another of
the relevant reasons to test MapReduce applications, but the actual number of functional testing techniques is low [Finding 6]. Researchers may
have opportunities to devise new functional testing techniques considering the specific characteristics ofMapReduce programs such as distributed
execution and scalability, among others. The functional testing techniques of MapReduce programs involve different test activities, which include
structure-based, static analysis and formal methods [Finding 7]. The researchers should adapt the dynamic/static/formal testing techniques of
general-purpose software (data-flow, combinatorial or mutation testing, among others) to MapReduce considering the specific characteristics of
the programming model.
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TABLE 16 Findings of the Mapping study.

Id Finding

1 Despite several studies that are aimed at both improving and studying the state-of-art of Big Data technology, there are in comparison
few research lines focused on software testing of the Big Data programs [Subsection 5.3]

2 The majority of testing research in MapReduce applications is focused on eitherMap or Reduce or the integration of both, and cannot be
applied to other processing models because they are specifically designed forMapReduce [Subsections 5.2.3 and 5.2.4]

3 The majority of research is about performance testing, and, to a lesser degree, functional testing [Subsection 5.2.2]. This research is about
verification and validation analysis, and, to a lesser degree, about dynamic testing [Subsection 5.2.3]

4 The prediction/analysis models employed in performance testing use different numbers of heterogeneous parameters based not only on
theMapReduce program functionality, but also on the cluster infrastructure, file system and data[Subsection 5.1.1]

5 Themost frequent reasons for testing theMapReduce programs are based on performance issues (analyze, optimize and fulfill performance
goals), existence of several and specific failures, the type and quality of the data processed by these programs, and testing to predict and
efficiently select the resources [Subsection 5.2.1]

6 There are several rigorous reasons for testing the functionality of MapReduce applications, such as the percentage of programs that fail
in production or the improper use of both functional semantics and data, but there are not many research efforts focused on this line of
interest [Subsection 5.3]

7 Whereas performance testing is done by simulation and evaluation, functional testing employs different test activities, such as static
testing and structure-based testing [Subsection 5.3]

8 As expected, testing research is focused on the software qualification process to help the tester [Subsection 5.2.4]
9 The majority of research neither creates nor uses a tool for testingMapReduce programs [Subsection 5.2.3]
10 Software testing research focused onMapReduce applications is usually published in conferences, and furthermore it is usually published

without a strong validation, using only some case studies instead of rigorous empirical experiments [Subsection 5.3]

Regardless of performance or functionality, the majority of testing is aimed at helping the tester in the software qualification process [Finding 8]
without tools [Finding 9]. The contributions of researchers could not only help the testers, but could also help the final users providing automatic
tools to support the design of test cases, and monitoring tools to analyze failures produced at runtime in production.

The majority of studies about software testing in MapReduce applications are published in conferences and evaluated with some case studies
[Finding 10]. Researchers could improve both visibility and quality bymeans of rigorous experiments based on a benchmark ofMapReduce programs
that can expose functional/performance failures, such as SWIM 133, GridMix 134, SparkBench 135, BigBench 136 or TPCx-BB 137.

7 LIMITATIONS OF THE MAPPING STUDY

Despite the fact that both the planning and the execution (conducting) of this mapping study aimed to avoid bias, some limitations and researcher
decision biases could exist 138.

• The results are limited by the academic context because the data sources are focused on the research field. Bias could be generated if the
research papers do not represent the reality and motivations of software testing inMapReduce programs.

• Following some practices from social science 72 and software engineering 73, the selection of the primary studies was performed by one
author for those papers that are clearly non-relevant. In contrast, two authors selected the primary studies independently from 1043 studies
that had more chances to be relevant. Both authors agreed in 96% of studies and obtained a substantial/moderate agreement with 0.69 as
a Kappa coefficient and [0.60-0.78] as 95% confidence interval.

• Despite the authors not finding quality problems in the primary studies, the quality of these studies was not formally evaluated. The same
issue occurs in the majority of the systematic mapping studies 73 because quality assessment is usually not required 43.

• The data extraction was performed by one author and checked by another author. This practice is used in other systematic reviews 79 and
some researchers consider it more practical than when data is extracted by several authors 71.

• Further bias occurs if some research questions cannot be properly answered through the checklist of the data extraction. In order tominimize
this bias, the majority of these checklists are based on the international standards.
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• Another less important potential bias could occur during the search process if some primary studies are not found with the search terms or
expert opinions. In order to minimize bias, a thorough search is performed in several databases, journals, conferences and experts.

In order to avoid bias in the results, all steps are reviewed and some countermeasures are taken in research questions, the search process, data
extraction and data analysis:

1. Research question: created by the Kipling method 41 instead of ad-hoc.

2. Search process:

Search terms: the use of a large number of terms could improve the search process by obtaining more potential primary studies. Some authors
encourage the use of several short queries instead of long queries 139. This mapping study searches for a combination of 92MapReduce related
terms and 102 testing terms obtained from ISO/IEC 25010:2011 Quality (sub)characteristics 44 with synonyms obtained through Kitchenham
et al. 22 points of view.

Data sources: this study searched 5 electronic databases recommended by Kitchenham et al. 55 and 2311 proceedings/volumes related to
software testing ofMapReduce programs. The other data source taken into account is the opinionss of experts in the field in order to minimize
the bias by adding primary studies that could not be found by the previous search.

Study selection: this mapping study excludes non-relevant studies based on 4 filters. These filters were reviewed in order to obtain the relevant
studies.

3. Data extraction: the majority of the data extracted are based on checklists, in some cases obtained from international standards and in others
created or adapted to theMapReduce processing model.

4. Data analysis: the methods used in this work are employed in software engineering 65.

8 CONCLUSIONS

The number of studies on software testing ofMapReduce programs has increased during recent years. A characterization was carried out based on
54 research studies obtained from more than 70000 potential papers. The testing tasks in these programs are normally performed by the tester in
the Software/System Qualification Testing Process due to a combination of the following 7 reasons: performance issues, potential failures, issues
related to the data such as for example data quality, the reduction of the cost in resources, misconfigurations, improper use of the technology, time
problems or other issues. These reasons for testing assume that both functional and performance testing are necessary, but the studies employ
different approaches: functional testing considers different aspects of the program (such as specification and structure) while performance testing
is more focused on simulation and evaluation. The current body of research focuses on performance testing, while there is a challenge in functional
testing due to the importance of this research line and the lack of research efforts.

The main goal of performance testing inMapReduce studies is to predict the execution time and the resources required to efficiently execute the
programs and satisfy the agreements. From the functionality point of view, the goal of the studies is to detect faults considering the specific char-
acteristics of theMapReduce processing model. Regardless of the type of testing, the majority of efforts are specific for theMapReduce technology
at unit and integration level of the Map and Reduce functions. This situation may indicate a challenge in the integration of MapReduce programs
with other programs, especially other Big Data stack technologies.

The research into software testing in MapReduce programs is mainly validated with example programs. There is scope to evolve with better
validations and thus improve the research impact. Despite the lack of maturity, several studies create tools to support testing, but few are available
on the Internet for users or other researchers. In Big Data there are few research studies related to software testing in comparison to the number of
research efforts focused on improving the technology, which indicates new opportunities in software testing of Big Data in general, andMapReduce
in particular.
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APPENDIX

A HIGH-IMPACT JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY

TABLE A1 High impact journals for the mapping study

JCR journals 2015 2016
Rank Impact

factor
Number of
citations

Number
of papers

Rank Impact
factor

Number of
citations

Number
of papers

ACM Computing Surveys Q1 5.24 4150 88 Q1 6.75 6629 76
ACM SIGPLAN Notices Q1 0.49 3657 389 Q1 0.34 2541 378
ACM Transactions on Database Systems
(ACM TODS)

Q2 0.63 969 19 Q2 1.52 1504 26

ACM Transactions on Information Systems
(ACM TOIS)

Q2 0.98 1220 27 Q2 2.31 1790 33

ACM Transactions on Software Engineering
and Methodology (ACM TOSEM)

Q3 1.51 700 21 Q2 2.52 1104 16

Computer Science and Information Systems
(ComSIS)

Q4 0.62 265 64 Q4 0.84 392 47

Distributed and Parallel Databases Q4 0.80 293 21 Q4 1.18 349 19
Distributed Computing Q3 1.26 498 26 Q2 1.67 954 24
Empirical Software Engineering (ESE) Q2 1.39 828 52 Q2 3.28 1453 68
The International Arab Journal of Information
Technology (IAJIT)

Q4 0.52 292 78 Q3 0.72 502 93

IEEE Software Q2 0.82 1638 55 Q1 2.19 2547 69
IEEE Transactions on Knowledge and Data
Engineering (IEEE TKDE)

Q1 2.48 6465 245 Q1 3.44 9370 239

IEEE Transactions on Parallel and Distributed
Systems (IEEE TPDS)

Q1 2.66 5080 282 Q1 4.18 8313 271

IEEE Transactions on Software Engineering
(IEEE TSE)

Q1 1.51 4221 62 Q1 3.27 6712 59

International Journal of Data Warehousing
and Mining (IJDWM)

Q4 0.63 146 17 Q4 0.73 219 15

International Journal of Information Manage-
ment (IJIM)

Q1 2.69 1937 73 Q1 3.87 3087 115

International Journal of Information Process-
ing and Management (IJIPM)

Q1 1.40 2296 63 Q1 2.39 3067 72

International Journal of Information Technol-
ogy and Decision Making (IJITDM)

Q3 1.18 627 45 Q3 1.66 742 56

International Journal of Information Technol-
ogy and Management (IJITM)

Q4 0.60 226 23 Q4 1.07 281 29

International Journal of Software Engineering
and Knowledge Engineering (IJSEKE)

Q4 0.24 216 55 Q4 0.30 345 52

Information and Software Technology (IST) Q1 1.57 2145 153 Q1 2.69 3448 122
Journal of Database Management (JDM) Q4 0.12 131 7 Q4 0.27 182 9
Journal of Information Technology (JIT) Q1 4.78 1695 24 Q1 6.95 2515 19

https://doi.org/10.1002/smr.2120.
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Journal of Management Information Systems
(JMIS)

Q1 3.03 3818 41 Q1 2.36 4456 30

Journal of Software: Evolution and Process Q4 0.73 140 46 Q4 1.03 319 50
Journal of Parallel andDistributed Computing
(JPDC)

Q1 1.32 1983 94 Q1 1.93 2740 84

The Journal of Strategic Information Systems
(JSIS)

Q2 2.60 1159 17 Q2 3.49 1580 15

Journal of Systems and Software (JSS) Q1 1.42 3243 181 Q1 2.44 5161 229
Knowledge and Information Systems (KAIS) Q2 1.70 1559 110 Q2 2.00 2146 117
Software Quality Journal (SQJ) Q4 0.79 280 24 Q3 1.86 486 33
Software Testing, Verification & Reliability
(STVR)

Q3 1.08 363 25 Q3 1.59 612 20

TABLE A2 CORE conferences for the mapping study

CORE conferences CORE
2014

CORE
2017

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD) A* A*
Computer Aided Verification (CAV) A* A*
IEEE International Conference on Data Mining (IEEE ICDM) A* A*
International Conference on Data Engineering (IEEE ICDE) A* A*
Special Interest Group on Management of Data Conference (SIGMOD) A* A*
Very Large Data Bases Conference (VLDB) A* A*
Automated Software Engineering (ASE) A A
Biennial Conference on Innovative Data Systems Research (CIDR) A A
Empirical Software Engineering and Measurement (ESEM) A A
European Conference on Parallel Processing (EURO-PAR) A A
European Conference on Principles of Data Mining and Knowledge Discovery (PKDD) A A
International Conference on Database Theory (ICDT) A A
International Conference on Distributed Computing Systems (ICDCS) A A
International Conference on Extending Database Technology (EDBT) A A
International Conference on Information and Knowledge Management (CIKM) A A
International Conference on Software Engineering (ICSE) A A
International Conference on Statistical and Scientific Database Management (SSDBM) A A
International Symposium on Cluster Computing and the Grid (CCGRID) A A
International Symposium on Intelligent Data Analysis (IDA) A A
International Symposium on Software Testing and Analysis (ISSTA) A A
Joint International Conference on Formal Techniques for Networked and Distributed Systems (FORTE) A A
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) A A
Parallel Computing Technologies International Conferences Series (PaCT) A A
SIAM International Conference on Data Mining (SDM) A A
Symposium on Large Spatial Databases (SSTD) A A

ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE) A B
Advances in Databases and Information Systems (ADBIS) B B
Australasian Data Mining Conference (AusDM) B B
Australasian Database Conference (ADC) B B
Databases and Programming Language (DBPL) B B
European Software Engineering Conference (ESEC) A B
IEEE International Conference on Cloud Computing (IEEE CLOUD) B B
IEEE International Enterprise Distributed Object Computing Conference (IEEE EDOC) B B
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International Baltic Conference on Databases and Information Systems (DB&IS) B B
International Conference on Data Warehousing and Knowledge Discovery (DaWaK) B B
International Conference on Database and Expert Systems Applications (DEXA) B B
International Conference on Database Systems for Advanced Applications (DASFAA) B B
International Conference on Management of Data (COMAD) B B
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) B B
International Conference on Quality Software (QSIC) B B
International Conference on Software and Data Technologies (ICSOFT) B B
International Conference on Tests and Proof (TAP) B B
International Database Engineering and Applications Symposium (IDEAS) B B
International Workshop on Data Warehousing and OLAP (DOLAP) B B
Software Engineering and Knowledge Engineering (SEKE) B B
Symposium on Applied Computing (SAC) B B

Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) C C
Evolution and Change in Data Management (ECDM) C C
IEEE International Conference on Cloud Computing Technology and Science (IEEE CloudCom) C C
International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) C C
International Conference on Software Testing, Verification and Validation (ICST) C C
International Workshop on Formal Approaches to Testing of Software (FATES) C C
Symposium on Principles of Database Systems (PODS) C C

B OTHER JOURNALS AND CONFERENCES USED FOR THE MAPPING STUDY

TABLE B3 Other journals for the mapping study

ACM DATA BASE International Journal of Intelligent Information and Database Systems
(IJIIDS)

ACM SIGSOFT Software Engineering Notes (ACM SIGSOFT) International Journal of Information Quality (IJIQ)
ACM Transactions on Management Information Systems (ACM
TMIS)

International Journal of Information Systems and Change Management
(IJISCM)

Big Data Research International Journal of Information Technologies and Systems Approach
(IJITSA)

Computing and Information Technology (CIT) International Journal of Parallel, Emergent and Distributed Systems
(IJPEDS)

European Journal of Information Systems (EJIS) Journal of Cases on Information Technology (JCIT)
Foundations and Trends in Databases (FTDB) Journal of Data and Information Quality (JDIQ)
IEEE Cloud Computing Journal of Digital Information Management (JDIM)
IEEE Computer Journal of Enterprise Information Management (JEIM)
IEEE Distributed Systems Online (IEEE DS) Journal of Information and Data Management (JIDM)
IEEE Transactions on Big Data Journal of Information & Knowledge Management (JIKM)
IEEE Transactions on Cloud Computing (IEEE TCC) Journal of Information Processing (JIP)
International Journal of Big Data Intelligence (IJBD) The Journal of Information Processing Systems (JIPS)
International Journal of Cloud Applications and Computing
(IJCAC)

Journal of Information Technology Research (JITR)

International Journal of Cloud Computing (IJCC) Journal of Systems and Information Technology (JSIT)
International Journal of Distributed Systems and Technologies
(IJDST)

Transactions on Large-Scale Data- and Knowledge-Centered Systems
(Transactions LDKS)

International Journal of Enterprise Information Systems (IJEIS) Journal of Enterprise Information Management (JEIM)
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TABLE B4 Other conferences for the mapping study

Advances in Model-Based Testing (A-MOST) Industrial Conference on Data Mining (ICDM)
Alberto Mendelzon Workshop on Foundations of Data Manage-
ment (AMW)

International Conference on Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS)

International Conference on Big Data Analytics (BDA) Internet and Distributed Computing Systems (IDCS)
International Conference Beyond Databases, Architectures, and
Structures (BDAS)

IEEE/ACM International Symposium on Big Data Computing (BDC)

International Conference on Big Data and Smart Computing (Big-
Comp)

IEEE International Conference on Big Data (IEEE BigData)

International Congress on Big Data (BigData Congress) IEEE Symposium on Large-Scale Data Analysis and Visualization (IEEE
LDAV)

Workshop on Scalability in Model Driven Engineering (BigMDE) International Conference on Algorithms for Big Data (ICABD)
British National Conference on Databases (BNCOD) International Conference on Big Data and Cloud Computing (BdCloud)
International Conference on Cloud and Autonomic Computing
Conference (CAC)

International Conference on Big Data Cloud and Applications (BDCA)

International Conference on Cloud and Green Computing (CGC) International Conference on Big Data Computing and Communications
(BigCom)

International Conference on Cloud Computing and Services Sci-
ence (CLOSER)

International Conference on Big Data Computing Service and Applica-
tions (BigDataService)

Cloud Computing (CloudComp) International Multiconference on Computer Science and Information
Technology (IMCSIT)

Conference on Data and Application Security and Privacy
(CODASPY)

InternationalWorkshop onMachine Learning, Optimization, and Big Data
(MOD)

International Computer Software and Applications Conference
(COMPSAC)

Symposium on Network Cloud Computing and Applications (NCCA)

International Conference on Cloud and Service Computing (CSC) Conference on Next Generation Information Technologies and Systems
(NGITS)

European Joint Conference on Theory and Practice of Software
(ETAPS)

ACM Symposium on Cloud Computing (SoCC)

International Conference on Future Data and Security Engineering
(FDSE)

SPIN Workshop on Model Checking of Software (SPIN)

Federated Conference on Computer Science and Information Sys-
tems (FEDCSIS)

Symposium on Computational Intelligence in Big Data (CIBD)

International Conference on Future Internet of Things and Cloud
(FICLOUD)

Symposium on Information Management and Big Data (SIMBig)

USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud) Testing: Academic & Industrial Conference - Practice And Research Tech-
niques (TAIC PART)

International Conference on Advanced Cloud and Big Data (CBD) International Conference on Testing Communicating Systems (TestCom)
International Conference on Cloud Engineering (IC2E) Workshop on Big Data Benchmarking (WBDB)
International Conference on Algorithms for Big Data (ICABD) Workshop on Big Data Benchmarks, Performance Optimization, and

Emerging Hardware (BPOE)
International Conference on Innovative Computing and Cloud
Computing (ICCC)

Workshop on Mobile Big Data (Mobidata)

International Conference on Data Engineering and Management
(ICDEM)
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C PRIMARY STUDIES

TABLE C5 Primary studies

Ref. Year Contribution
Number of
citations *

Summary

116 2013 Conference 20 A study and characterization of MapReduce-like failures
85 2013 Conference 30 A prediction model of individual MapReduce jobs based on important properties
93 2013 Conference 25 A performance prediction based on network properties and configuration of the cluster

111 2013 Conference 22
A performance prediction based on a representation of the architecture with some information
of the MapReduce program

128 2015 Conference 7 Generator of representative data to testing Big Data programs based on input space partitioning
117 2010 Conference 311 A study and characterization of more than 170000 MapReduce executions
87 2011 Conference 46 A simple performance prediction model that considers the program and the system

92 2013 Journal 47
Amodel that obtains several metrics about theMapReduce programs performance and resource
utilization

82 2013 Briefing 19 Classification of testing in Big Data and the underlying challenges
119 2013 Conference 8 Classification of MapReduce faults based on empirical changes in the programs
121 2015 Conference 13 Checking of the commutativity problem in the Reduce functions

94 2013 Conference 30
A performance prediction model based on information about the MapReduce program and the
cluster

109 2012
Doctoral
dissertation

14 A simulator of MapReduce program that obtains a prediction of the performance

90 2014 Journal 50
A performance prediction model of MapReduce program using Mean Field Analysis and infor-
mation of the program, system and data

100 2015 Conference 7
A performance prediction model of MapReduce program in the cloud considering the program
and the data

125 2012 Conference 34
A failure injector in the architecture using the cloud manager in order to test the MapReduce
programs

83 2013 Conference 7 Challenges of software testing in Big Data
115 2013 Conference 97 A study and characterization of three Hadoop clusters

102 2016 Journal 31
Prediction of the performance and optimization of resource utilization based on deadline
requirements

112 2011 Conference 54 Monitoring of the MapReduce program that generates detailed reports of the execution
114 2013 Journal 54 A study and characterization of several bugs in Big Data programs

101 2015 Conference 10
A performance prediction model of the MapReduce programs considering the deployment in
virtualized cloud and the characteristics of the program

91 2012 Conference 11
A performance prediction model of the MapReduce programs considering several samplings of
the input data

124 2015 Journal 11 A testing framework to run theMapReduce programs under architectural failures in order to test

95 2013 Conference 7
A performance prediction model of the MapReduce programs considering the resource con-
tention and the task failures

120 2014 Conference 7 Classification of several MapReduce faults with a series of challenges in order to reveal the faults
122 2011 Conference 28 Functional Testing of the Reduce function based on symbolic execution
118 2014 Conference 22 Characterization of the MapReduce programs based on empirical study

96 2014 Conference 5
A performance prediction model of the MapReduce programs considering the memory shared
and disk I/O

76 2014 Journal 9
Prediction of the MapReduce performance based on empirical executions and an adjustment
based on micro benchmarks
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113 2014 Journal 19
Performance analysis model for MapReduce applications based on ISO 25010 that establishes
a relationship between the performance and reliability measures

88 2013 Conference 1 Obtains the performance of the MapReduce programs based on Stochastic Petri Nets

106 2015 Conference 2
Performance prediction of HIVE-QL queries through the underlying MapReduce applications
based on multiple lineal regression

78 2013 Journal 13 Performance prediction of PIG queries through the underlying MapReduce applications

86 2014 Conference 2
Performance prediction for a MapReduce program and optimization based on the type of
application and potential bottlenecks

97 2014 Conference 6 Mathematical model for performance prediction of the RDMA-Enhanced MapReduce programs

77 2013 Conference 32
A performance prediction model of the MapReduce programs considering information of the
program and the performance for several parts of the program

103 2015 Conference 3 Model that predicts the performance of MapReduce applications in hybrid clouds
98 2015 Conference 33 Simulation of the Spark applications in order to obtain performance information

99 2014 Conference 1
A performance prediction model of the MapReduce programs considering the heterogeneity of
the cluster

89 2011 Conference 29
A performance prediction model of the MapReduce programs based on the mean time between
failures

84 2014 Conference 8 Overview and challenges of performance testing in Big Data
129 2013 Conference 8 Data generation for dataflow programs based on symbolic execution

108 2014 Conference 8
Simulating the MapReduce program under configurable hardware in order to obtain a perfor-
mance prediction

110 2014 Conference 2 Simulating the scheduler of the MapReduce program in order to test the best configuration
80 2015 Conference 6 Test factory model for Big Data development

131 2011 Conference 71
Static analysis of the MapReduce configuration in order to detect misconfigurations and avoid
failures

130 2011 Conference 12
Automatic checking of the java types inside MapReduce programs in order to detect incompat-
ible types

127 2012 Dissertation 7
Data generator for MapReduce programs based on bacteriological algorithm in order to test the
program

126 2015 Conference 6 Testing technique for MapReduce programs based on data flow and the MapReduce specifics
123 2013 Conference 5 Checking the correctness of the dataflow programs based on the operators properties
107 2013 Journal 0 Performance prediction of the join queries in Pig
81 2013 Journal 11 Overview and challenges of testing in Big Data

132 2011 Conference 17
Formal verification of the MapReduce program based on a model of the program/specification
and invariants

* Number of citations obtained from Google Scholar 140 in 2018
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