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Abstract. This paper tackles the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due
dates. The objective is to achieve high-service level by maximising due-date satisfaction, considering two different overall satis-
faction measures as objective functions. We show how these functions model different attitudes in the framework of fuzzy mul-
ticriteria decision making and we define a measure of solution robustness based on an existing a-posteriori semantics of fuzzy
schedules to further assess the quality of the obtained solutions. As solving method, we improve a memetic algorithm from the
literature by incorporating a new heuristic mechanism to guide the search through plateaus of the fitness landscape. We assess
the performance of the resulting algorithm with an extensive experimental study, including a parametric analysis, and a study of
the algorithm’s components and synergy between them. We provide results on a set of existing and new benchmark instances for
fuzzy job shop with flexible due dates that show the competitiveness of our method.
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1. Introduction

Scheduling is a decision-making process that tack-
les the allocation of resources to tasks over given time
periods with the goal of optimising one or more ob-
jectives. This kind of problems is pervasive in a grow-
ing number of domains, including engineering, man-
agement science or distributed and parallel computing,
to mention but a few [2,63,86]. Within scheduling, one
of the most relevant problems is the job shop, a com-
binatorial optimisation problem where pre-defined se-
quences of tasks are organised into jobs, so each job
must visit several resources or machines in a predeter-
mined route. Different processing restrictions and con-
straints (e.g. job release or due dates or machine setup
times) as well as different objective functions (many of
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them dependent on the completion times of the jobs)
yield different variants of the problem. It has many
practical applications (e.g. wafer fabs in the semicon-
ductor industry often function as job shops). It also
poses a challenge to the research community due to its
complexity [63].

The most common objective in the literature is to
find a schedule with minimum makespan (which is the
time when the last job is finished), but due-date fulfil-
ment has also occupied researchers and is receiving in-
creasing attention in recent years [40,63]. Indeed, on-
time fulfilment appears to be of prime importance in
modern pull-oriented supply chain systems and keep-
ing job due dates is a prerequisite for serving cus-
tomers within the promised delivery time and avoid-
ing out-of-stocks costs. Hence, the use of due-date sat-
isfaction measures in production scheduling helps the
companies to increase their logistic service and create
competitive advantage.
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Classical objectives related to due-date satisfaction
are total weighted tardiness or maximum lateness,
which are typically associated with customer satisfac-
tion and service level in make-to-order environments.
These approaches fail however to account for the case
— often encountered in practice — where due-date
constraints are flexible, for instance, if preferences of
customers are incorporated [7]. Traditional approaches
also assume that scheduling problems are static and
certain: all activities and their durations are precisely
known in advance and do not change as the solu-
tion is being executed. Still, in many real-world ap-
plications design variables are subject to perturbations
or changes, causing optimal solutions to the original
problem to be of little or no use in practice [6,35].

With the goal of narrowing the gap between theory
and applications, some researchers have started to take
into consideration uncertainty and flexibility. To this
end, fuzzy sets provide an interesting framework since
they allow both for tackling uncertainty and account-
ing for preferences, as well as addressing solution ro-
bustness [22,38].

Whether in its more classical form or taking into ac-
count uncertainty or flexibility, many scheduling prob-
lems, including the job shop, belong to the class of
hard combinatorial optimisation problems. For this
reason, researchers often resort to metaheuristic search
methods to solve them. In particular, hybrid meta-
heuristic approaches such as memetic algorithms have
proved very successful in tackling complex problems
of combinatorial nature [16,49,71,84].

In the following, the fuzzy job shop scheduling
problem, or FJSP in short, is addressed. This is a job
shop problem with uncertain durations and flexible due
dates modelled as fuzzy numbers and fuzzy thresholds.
The goal is to maximise the overall due-date satisfac-
tion, which translates into two different objective func-
tions depending on how this “overall” satisfaction is
defined. The proposal builds upon the contribution pre-
sented at IWINAC’2017 Conference [61], where a hy-
brid algorithm for the FJSP was introduced. This pre-
liminary work is enhanced in several ways. First, we
reformulate the objective functions modelling overall
due-date satisfaction in the context of multicriteria ag-
gregation and decision making, shedding more light
into their meaning and the different requirements they
model. Second, we introduce the concept of solution
robustness and we define new measures of robustness
and surrogate robustness regarding due-date satisfac-
tion are given, which will allow to assess the quality
of the fuzzy schedule at the moment of its practical

use. Third, we improve the hybrid algorithm in two
different ways. We consider a more varied set of ge-
netic operators and we follow a robust design method
in the experiments to select the most competitive con-
figuration, ensuring an adequate balance between in-
tensification and exploration. Also, based on the orig-
inal reformulation of the objective functions, we pro-
pose a novel heuristic technique to improve the algo-
rithm by effectively guiding the search across plateaus
in the objective space for one of the objective func-
tions. Finally, the experimental evaluation is greatly
extended with a parametric analysis, separate assess-
ment of each component of the hybrid algorithm and
the synergy between them, convergence analysis and
solution robustness evaluation. Experiments are run on
more challenging job shop instances by incorporat-
ing due dates to them and show that the enhanced al-
gorithm not only outperforms the state-of-the-art, but
also provides robust solutions and is more capable of
navigating plateaus in the fitness landscape. As a re-
sult, we provide a new benchmark together with com-
petitive results for due-date satisfaction which should
serve as future reference for researchers working in
this area.

1.1. Related work

A considerable effort has been made to extend clas-
sical scheduling models and algorithms in order to cap-
ture and deal with complex constraints and features
present in real-life environments. Notable examples
of this are scheduling problems considering resource
setup times [5], presence of human operators [48],
flexibility in machines [19] or features typical of con-
struction projects such as precedence relationships,
multiple crew-strategies, and time-cost trade-off [70].

The most frequent objectives related to due-date sat-
isfaction in deterministic problems are maximum late-
ness and total weighted tardiness (cf. [14,63] and
references therein). For the latter, exact and heuristic
search methods exist in the literature [62,72] and the
state-of-the-art is formed by different metaheuristics
incorporating local search: the Genetic Local Search
from [28] which combines a genetic algorithm with an
iterated local search, the Hybrid Shifting Bottleneck
with Tabu Search approach proposed in [17], the Hy-
brid Genetic Algorithm with Tabu Search from [31],
and the Extended GRASP algorithm presented in [14].

Many of these successful methods belong to the
class of memetic algorithms, whose structure is char-
acterized by an evolutionary framework incorporating
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local search components [49,50]. Indeed, memetic al-
gorithms have proved successful in solving complex
combinatorial optimisation problems, such as job shop
scheduling problem, thanks to the synergy obtained
from combining the global search diversification of
the evolutionary framework with the intensification
provided by the local search components. Examples
of successful applications of evolutionary algorithms
to scheduling and related complex optimisation prob-
lems abound. Among recent contributions, we find ge-
netic algorithms for solving a multiobjective elevator
scheduling problem [3] and a time-constrained project
scheduling problem [41]. Distributed embodied evo-
lution is used to obtain solutions in real-time to dis-
tributed engineering problems with collectively non-
separable spaces such as the dynamic fleet size and
mix vehicle routing problem with time windows [64]
and a quantum inspired evolutionary algorithm is ap-
plied to real-world optimisation problems in [81]. Evo-
lutionary strategies have also proved effective in solv-
ing complex multiobjetive optimisation problem [66,
78].

In a complementary approach to modelling real-
world characteristics, fuzzy sets were first incorpo-
rated to scheduling in the turn of the 1980s [18]. Since
then, fuzzy sets have been widely used in schedul-
ing: using fuzzy priority rules or fuzzy decision mak-
ing with linguistic qualifiers [65], modelling soft con-
straints and uncertain durations [22,46] or even as
a means of improving solution robustness, a much-
desired property in real-life applications [38,77]. In
particular, fuzzy sets have been used to model grad-
ual satisfaction of flexible due dates since the 1990s,
sometimes in combination with uncertain processing
times [23,33,68].

In [47] we find one of the first attempts of using
fuzzy sets to model uncertain times in a job shop prob-
lem, while [23] also uses fuzzy sets to model flexible
constraints. After these seminal papers, many contri-
butions for different variants of fuzzy job shop have
appeared in the literature, as can be seen in the recent
reviews on fuzzy job shop [1], fuzzy shop schedul-
ing [9] and benchmarks for fuzzy job shop [59]. The
simulated annealing algorithm from [30] and the ge-
netic algorithm from [69] constitute two landmarks in
the application of metaheuristic search to FJSP. Cur-
rently, some of the most competitive methods for fuzzy
makespan minimisation in job shop problems are the
genetic algorithm from [44] and the memetic algo-
rithm from [59].

For problems combining fuzzy durations and fuzzy
due dates, the term agreement index was coined in [69]
to refer to the degree to which a job’s fuzzy com-
pletion time satisfies the flexible due-date, and a ge-
netic algorithm was proposed to maximise the mini-
mum agreement index across all jobs. Maximising the
minimum agreement index is also the objective of a
random-key genetic algorithm in [44], a scatter search
method in [27], a hybrid discrete imperialist competi-
tion algorithm in [79] and a memetic algorithm in [61].
This memetic algorithm is also applied to maximise
the average minimum index, which is also the objec-
tive of the co-evolutive method from [82], here for
a fuzzy job shop with multi-process routes, and of
the multiobjective genetic algorithm from [29], which
also attempts to minimise the number of tardy jobs.
Maximisation of average or minimum agreement in-
dex is also one of the objectives of several multiob-
jective approaches together with makespan minimisa-
tion: based on fuzzy decision making using genetic al-
gorithms [33,68], based on lexicographical goal pro-
gramming also with a genetic algorithm [32] or Pareto-
front approximation using a genetic algorithm [54],
Pareto archive particle swarm optimisation [43] or a
memetic algorithm for multi-process routes [76]. For
a classical benchmark from [68], the most compet-
itive methods are the random-key genetic algorithm
from [44] and the memetic algorithm from [61], while
[32] reports minimum and average agreement index
values for another set of instances. In fact, these meth-
ods obtain almost full due-date satisfaction, suggesting
there is no room for improvement in this area. How-
ever, in [61] new results on harder instances make it
clear that the problem of due-date satisfaction is far
from being solved.

The remainder of the paper is organised as follows.
Section 2 gives the necessary background on the fuzzy
job shop problem under consideration. Section 3 pro-
vides a new insight into the two objective functions
usually considered in the literature by situating them in
the more general framework of fuzzy multicriteria ag-
gregation and decision making and develops the con-
cept of solution robustness regarding due dates and
measures thereof. Then, Section 4 enhances the hy-
brid algorithm from [61], combining a genetic algo-
rithm with local search, to solve the problem. Differ-
ent genetic operators are considered and, based on the
framework of fuzzy multicriteria aggregation, a new
heuristic strategy to guide the search through plateaus
in the fitness landscape is proposed for the case of the
most demanding objective function. Finally, Section 5



4 J.J. Palacios et al / Satisfying due-dates in fuzzy job shop

presents a thorough experimental evaluation of the
proposed method, introducing a new more challenging
benchmark based on existing instances for makespan
minimisation, and Section 6 presents the main conclu-
sions and proposals for future work.

2. The Fuzzy Job Shop Problem

The classical job shop scheduling problem, also de-
noted JSP, consists of a set of jobs J = {J1, . . . , Jn}
that have to be processed on a set of physical resources
or machines M = {M1, . . . ,Mm}. Each job Ji con-
sists of mi tasks {θi1, . . . , θimi} that must be sequen-
tially executed in this order. Additionally, each task
θij must be processed on a specific machine from the
set of available ones M exclusively and without pre-
emption for its whole processing time pθij . A feasible
schedule is an allocation of starting times stθij for all
tasks such that all precedence and resource constraints
hold, that is:

stθij + pθij ≤ stθi(j+1)
(1)

for 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ n and

stθij + pθij ≤ stθkl
or stθkl

+ pθkl
≤ stθij , (2)

for every pair of tasks θij and θkl requiring the same
machine.

Each job Ji may have a due date di by which it
is desirable that the job be completed, so if cθij =
stθij + pθij denotes the completion time of a task θij
according to a given schedule and ci = cθimi

denotes
the job’s completion time, ci ≤ di. In this case, a fea-
sible solution is optimal if it obtains maximal due-date
satisfaction.

2.1. Fuzzy Durations and Flexible Due Dates

In real-life applications, it is difficult, if not impossi-
ble, to foresee in advance the exact time it will take to
process a task. It is reasonable however to have some
knowledge (albeit uncertain) about the duration, pos-
sibly based on previous experience. The crudest rep-
resentation of such uncertain knowledge would be a
human-originated confidence interval and, if some val-
ues appear to be more plausible than others, then a nat-
ural extension is a fuzzy interval or fuzzy number. The
simplest model is a triangular fuzzy number or TFN,
denoted â = (a1, a2, a3), given by an interval [a1, a3]

of possible values and a modal value a2 ∈ [a1, a3], so
its membership function takes the following triangular
shape:

µâ(x) =


0 : x < a1

x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : a3 < x

(3)

Triangular fuzzy numbers (or, more generally, fuzzy
intervals) are widely used in scheduling as a model for
uncertain processing times [1,22,59].

The job shop essentially requires two operations on
fuzzy numbers, the sum and the maximum. These are
usually defined by extending the corresponding opera-
tions on real numbers. The resulting addition is pretty
straightforward, so for any pair of TFNs â and b̂ we
have:

â+ b̂ = (a1 + b1, a2 + b2, a3 + b3). (4)

Unfortunately, computing the extended maximum is
not that simple and the set of TFNs is not even closed
under this operation. Hence, it is common in the fuzzy
scheduling literature to approximate the maximum of
two TFNs as

max(â, b̂) ≈

(max{a1, b1},max{a2, b2},max{a3, b3}). (5)

Besides its extended use, several arguments can be
given in favour of this approximation (cf. [59]).

Fuzzy sets can also be used to model flexible due
dates. Consider the case where there is a preferred de-
livery date d1, but some delay may be allowed until
a later date d2. Satisfying the due date constraint thus
becomes a matter of degree, our degree of satisfaction
that the job is finished on a certain date. A fuzzy set
d̃ = (d1, d2) can be used to model such gradual satis-
faction level with a decreasing membership function:

µd̃(x) =


1 : x ≤ d1
x−d2
d1−d2 : d1 < x ≤ d2

0 : d2 < x

(6)

This expresses a flexible threshold “less than”, repre-
senting the satisfaction level sat(t) = µd̃(t) for the
ending date t of the job [22].
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When the job’s completion time is no longer a real
number t but a TFN ĉ, the degree to which ĉ satisfies
the due-date constraint d̃, ĉ ≤ d̃, may be measured
using the agreement index [69]:

AI(ĉ, d̃) =
area(d̃ ∩ ĉ)
area(ĉ)

(7)

where area(d̃∩ ĉ) and area(ĉ) denote the areas under
the membership functions of (d̃∩ ĉ) and ĉ respectively.
This essentially measures the degree to which ĉ is con-
tained in d̃ following the standard definition of degree
of subsethood. AI(ĉ, d̃) ranges between 0, when the
due date is not satisfied at all, and 1, when the due date
is fully satisfied.

2.2. Fuzzy Schedules

To determine a solution for a fuzzy JSP, it is neces-
sary to establish partial task processing orders on all
machines. A schedule s (that is, the starting times of all
tasks) may be easily computed based on these orders.
For every task x with processing time p̂x, let PMx

and SMx denote the tasks preceding and succeeding x
in the established machine sequence, and let PJx and
SJx denote respectively the predecessor and successor
tasks of x in the job sequence. The starting time ŝtx of
x is a TFN given by:

ŝtx = max(ŝtPJx + p̂PJx , ŝtPMx
+ p̂PMx

). (8)

The resulting schedule s is fuzzy in the sense that
the starting and completion times of all tasks are fuzzy
intervals, interpreted as possibility distributions on the
values that the times may take. However, notice that
the task processing ordering on every machine that de-
termines the schedule is deterministic; there is no un-
certainty regarding the order in which tasks are to be
processed.

Once a schedule s is built, the agreement index
AIi(ĉi, d̃i) as defined in (9), denotedAIi(s) orAIi for
short, measures to what degree is each job’s flexible
due date d̃i satisfied in this schedule, i = 1, . . . , n.

The overall value of due-date satisfaction for the
schedule s can be obtained by aggregating the indi-
vidual AIi(s) values for i = 1, . . . , n. Two main ap-
proaches for aggregation can be found in the fuzzy
scheduling literature the minimum agreement index

AImin and the average agreement index AIavg

AImin = min
i=1,...,n

AIi(s), (9)

AIavg =
1

n

∑
i=1,...,n

AIi(s). (10)

The resulting job shop problem, with fuzzy process-
ing times and fuzzy due dates, and where the objec-
tive is to maximise the aggregated agreement index
AIagg (where AIagg can be AIavg or AImin) can be
denoted J |p̂i, d̃i|AIagg according to the three-field no-
tation from [34].

3. Flexible Due-Date Satisfaction Under
Uncertainty

3.1. Aggregated due-date satisfaction

Both AImin and AIavg are particular cases of fuzzy
set aggregation operators. In general, these operators
provide a mathematical setting for the integration of
subjective categories represented by membership func-
tions (the individual due-date satisfaction degrees in
our case) and have proved useful in the field of mul-
tifactorial evaluation for the construction of multiple-
criterion aggregation functions [21,25]. Remarkably,
little or no connection has been made to date be-
tween AImin or AIavg and aggregation operators in
the more general framework of fuzzy multicriteria de-
cision making.

From the viewpoint of multifactorial evaluation, the
flexible due dates d̃i can be seen as fuzzy goals Gi,
so for a given schedule s the agreement index AIi(s)
represents the grade of compatibility µGi(s) between s
and the due-date goal. In this setting, the compatibility
of the schedule with the overall objective of due-date
satisfaction D can be approximated by some suitable
aggregation of fuzzy sets Gi with membership func-
tions AIi(s), i = 1, . . . , n. To this end, there must ex-
ist a mapping fagg : [0, 1]n → [0, 1] such that, for
every schedule s, µD(s) = fagg(AI1(s), . . . , AIn(s))
provides the overall degree of due-date satisfaction.
Additionally, this mapping should comply with the fol-
lowing requirements [25]:

R1: fagg(0, . . . , 0) = 0 and fagg(1, . . . , 1) = 1

R2: ∀(ri, ti) ∈ [0, 1]2, if ri ≥ ti, i = 1, . . . , n, then
fagg(r1, . . . , rn) ≥ fagg(t1, . . . , tn).
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Under these requirements, if it is possible to find
a schedule that fully satisfies individual job due dates
then at least one of these maximal schedules has full
membership in D. If the aggregation mapping fagg is
strictly monotonic (as is the arithmetic means), then
D contains only maximal elements. Actually, R2 ex-
presses consistency with Pareto optimality.

In general, when an overall decision must be made,
three fundamental attitudes in front of several goals
G1, . . . , Gn can be identified. The first attitude is the
conjunctive one, requiring the simultaneous satisfac-
tion of goals, so no compensation exists between goals
and the global compatibility of a schedule with the
overall objective is bounded from above by its compat-
ibility with the least achieved goal. The second attitude
is the disjunctive one and expresses the redundancy of
goals, corresponding to the situation where it is desired
that any criterion be satisfied regardless of the remain-
ing individual criteria, so the best partial evaluation of
goals is a lower bound of the compatibility of a sched-
ule with the overall objective. Finally, there is the com-
promise attitude, expressing a tradeoff between goals,
so the overall evaluation lies between extreme grades
of partial compatibility. The minimum is a triangular
norm (the only idempotent one) modelling intersection
or conjunction of fuzzy sets, hence corresponding to
the conjunctive attitude, and it constitutes the most tra-
ditional approach to aggregating fuzzy goals, as pro-
posed by Bellman and Zadeh [10]. On the other hand,
the arithmetic means corresponds to the compromise
attitude, in line with the utility theory assumption that
there is always a tradeoff between goals. It is bounded
from below by the minimum and from above by the
maximum.

In some cases, fagg can be written as a convex com-
bination of individual fuzzy goals

fagg(AI1, . . . , AIn) =

n∑
i=1

wiAIi(s), (11)

where
∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1 assesses the

relative importance of satisfying the ith due date. Each
weight wi can be interpreted as the probability that Gi
is the relevant goal, so fagg is the probability of the
fuzzy event “s achieves the relevant goals”. In particu-
lar, the arithmetic means AIavg is obtained with a uni-
form distribution on the relevance of due-date goals
wi = 1/n, while the minimum AImin is obtained
when wi = 1 if i = argminAIi(s) and wi = 0 oth-
erwise, representing that the only relevant goal is the
least achieved.

Both AImin and AIavg can also be seen as two par-
ticular cases of Ordered Weighted Averaging aggrega-
tions or OWAs given by

fagg(AI1, . . . , AIn) =W1b1 + · · ·+Wnbn (12)

where bi is the ith largest element in the collection
AI1, . . . , AIn and the weights are such that Wi ∈
[0, 1] and

∑n
i=1Wi = 1. AImin is obtained when

Wn = 1 and Wi = 0 for all i 6= n while AIavg
is obtained with Wi = 1/n for all i = 1, . . . , n. A
characteristic feature of this kind of aggregation is that
weights are associated to a particular ordered position
rather than a particular element. This corresponds to
the underlying philosophy of equal importance of cri-
teria, which translates into symmetry with respect to
these criteria.

Depending on the weight values, OWAs can range
from conjunctive attitude to the disjunctive one.AImin,
corresponding to the conjunctive case, provides a
lower bound on any the aggregation using OWAs. Its
degree of “andness”, as defined in [83], is 1 and the
dual degree of “orness” is 0, supporting its interpreta-
tion as the situation where there is no satisfaction un-
til all the criteria are satisfied. Meanwhile, AIavg has
degrees of “orness” and “andness” equal to 0.5, being
situated exactly halfway between the conjunctive and
the disjunctive attitude. When interpreted in terms of
degree of satisfaction obtained by the decision maker,
it corresponds to a linear increase in the proportion of
criteria that are satisfied. Finally, it is possible to mea-
sure the dispersion of the weight vector using entropy;
for any weight vector such that Wi = 1 for some i (in-
cluding the minimum), there is zero dispersion, while
for the average, with Wi = 1/n, i = 1, . . . , n, the
dispersion reaches its maximum, lnn. The dispersion
can be related to the concept of Shannon information,
so the more disperse the weight vector is, the more in-
formation about the individual criteria is used in the
aggregation.

In summary, both AImin and AIavg provide mea-
sures of overall due-date satisfaction within the frame-
work of fuzzy multicriteria decision making, but they
model very different attitudes and present very differ-
ent behaviours, with AImin ≤ AIavg in all cases.

3.2. Robust schedules

A fuzzy schedule does not provide exact starting
times for each task. Instead, it gives a fuzzy inter-
val of possible values for each starting time, provided
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that tasks are executed in the order determined by the
schedule. In fact, it is impossible to predict what the
exact time-schedule will be, because it depends on the
realisation of the task’s durations, which is not known
yet. This idea is the basis for a semantics for fuzzy
schedules from [33] by which solutions to the fuzzy
job shop should be understood as a-priori solutions,
also called baseline or predictive schedules in the lit-
erature [35]. These solutions are found when the dura-
tion of tasks is not exactly known and the set of all pos-
sible scenarios must be taken into account. Only after
tasks are executed according to the ordering provided
by the fuzzy schedule is their real duration known and
a real (executed) schedule is obtained, the a-posteriori
solution with deterministic times. Clearly, it is desir-
able that a fuzzy solution yields reasonably good exe-
cuted schedules at the moment of its practical use, in
clear relation with the concept of schedule robustness.

Roughly speaking, a schedule is said to be robust if
it minimises the effect of executional uncertainties on
its primary performance measure [6]. This straightfor-
ward definition may, however, be subject to many dif-
ferent interpretations when it comes to specifying ro-
bustness measures [67].

For the problem at hand, uncertainties apply to task
processing times, the performance measure is the over-
all due-date satisfaction and the effect of executional
uncertainties is understood relative to all possible sce-
narios.

In the context of stochastic uncertainty, a robust
predictive schedule is proposed as a predictive sched-
ule such that the quality of the eventually executed
one is close to the quality of the predictive sched-
ule [12]. This yields a definition of ε-robustness which
essentially gives an upper bound for the relative er-
ror made by the predictive schedule’s performance
with respect to the actual performance of the executed
schedule. The definition of ε-robustness has already
been adapted to different scheduling problems where
uncertainty is represented with fuzzy sets and the per-
formance was measured in terms of makespan [56–
58]. It is thus tempting to extend this measure directly
to the problem at hand. However, important differences
between the performance measures should not be over-
looked. While makespan values are always positive
and very variable, flexible due-date satisfaction values
may be null and are always in the interval [0, 1]. There-
fore, in the context of makespan it makes more sense to
evaluate the goodness of a prediction in terms of rela-
tive errors rather than absolute errors, but in the context
of flexible due-date satisfaction it seems instead more

sensible to simply consider absolute errors (which will
always be bounded by 1).

Given the above, in this work a definition of robust-
ness measure is proposed which, although keeping in
line with the spirit of ε-robustness, is not a straightfor-
ward translation of this concept and instead takes into
account the peculiarities of evaluating schedule perfor-
mance in terms of flexible due-date satisfaction.

Definition 1. Let satagg = fagg(µd̃1(c1), . . . , µd̃n(cn))
denote the aggregated due-date satisfaction value of
the eventually executed schedule, where ci denotes the
(deterministic) completion time of job i = 1, . . . , n,
in the executed schedule and the membership value
µd̃i(ci) gives the degree of satisfaction of the job’s

flexible due date d̃i in that schedule. Then, the predic-
tive schedule with (predictive) overall due-date satis-
faction AIagg = fagg(AI1, . . . , AIn) is δ-robust for a
given δ ∈ [0, 1] if it holds that:

|AIagg − satagg| ≤ δ (13)

That is, the error of the estimation made by the pre-
dictive schedule (i.e. the aggregated agreement index)
regarding overall due-date satisfaction is bounded by
δ.

The rationale behind this definition is that a predic-
tive schedule is robust if the quality of the eventually
executed schedule is close to the quality of the predic-
tive schedule in any of the possible scenarios for task
durations. Obviously, since δ provides an upper bound
for the prediction error, the smaller δ is, the better.

It is worth noticing that the approach to robustness
taken here is different from the better-known approach
from combinatorial optimisation, based on min-max
or min-max regret criteria, which aims at construct-
ing solutions having the best possible performance in
the worst case [4]. The study of such criteria is mo-
tivated by practical applications where an anticipation
of the worst case is crucial and there already exist pro-
posals to translate it to the fuzzy framework [38,75].
However, the min-max approach may be deemed as
too conservative in some cases where the worst case is
not that critical and an overall acceptable performance,
with a solution that behaves “well” or “not too bad”
in all the scenarios, is preferred [37]. It is in these sit-
uations where an approach such as the one proposed
here might be more adequate. Also, more classical ap-
proaches measure robustness as a deviation from the
optimal solution on each possible case, thus assum-
ing that such optimal solution can indeed be found.
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Unfortunately, this is a somewhat unrealistic assump-
tion when dealing with complex problems such as job
shop (even in its deterministic version). The approach
adopted in this work takes the alternative stance of
measuring deviations between the prediction and the
real execution (be it optimal or not).

The above definition of δ-robustness requires a real
execution of the problem which may not always be
available. In fact, in the literature it is very common
to use synthetic problems for which no real execution
exists. In this case, a Monte-Carlo simulation can be
used to provide a surrogate of the δ-robustness mea-
sure. Specifically, given a fuzzy instance, a sample of
K possible realisations (also called scenarios) of that
instance is generated by assigning an exact duration to
each task, providing K deterministic instances where
the δ-robustness of the solution can be evaluated.

Definition 2. For a given fuzzy job shop problem in-
stance and K scenarios (deterministic instances) ob-
tained after a Monte-Carlo simulation, let satagg,k de-
note the overall due-date satisfaction obtained by ex-
ecuting tasks according to the ordering provided by a
predictive schedule in the k-th scenario, k = 1, . . . ,K.
Then, the surrogate δ-robustness of the predictive
schedule, denoted δ, is calculated as:

δ =
1

K

K∑
k=1

|AIagg − satagg,k|. (14)

A crucial factor in this method is the way in which
task crisp durations are obtained. This is done by sim-
ulating crisp durations for tasks following a probabil-
ity distribution that is consistent with the possibility
distribution µA defined by each fuzzy duration A. Fol-
lowing [58], two alternative approaches are followed
to obtain, from each TFN (a possibility distribution on
the task durations) a probability distribution that can
be used for the Monte-Carlo simulation.

The first approach consists in taking the uniform
probability distribution that is bounded by the support
of the TFN; the resulting simulation will be referred
to as “Scenario I”. This transformation is motivated
by several results from the literature (see [8,24]) that
justify the use of TFNs as fuzzy counterparts to uni-
form probability distributions and model-free approxi-
mations of probability distributions with bounded sup-
port.

The second method consists in taking the probabil-
ity distribution obtained from each fuzzy duration af-
ter applying the pignistic transformation obtained by

considering cuts as uniformly distributed probabilities
[26]. This is the probability one would obtain from the
membership function of a fuzzy duration applying a
generalised version of the Insufficient Reason Princi-
ple by Laplace. This distribution is much more “fo-
cused” on the modal value, in the sense that it gives
high probability to values close to the mode and very
low probability to values at the extreme of the support
interval. The simulation that results from this transfor-
mation will be referred to as “Scenario II”

4. A hybrid algorithm to maximise AIagg

Memetic algorithms, a kind of hybrid algorithms
combining genetic algorithms with local search meth-
ods, have proved to be very powerful in different op-
timisation problems [36,49]. The reason is their abil-
ity to integrate the intensification provided by the lo-
cal search with the diversification provided by the
population-based algorithm. In particular, some state-
of-the-art methods for different variants of fuzzy job
shop are hybrids of this kind [55,59]. This motivated
the proposal in [61] of a memetic algorithm for AIagg
maximisation in FJSP, which combined a genetic com-
ponent with local search. In the following, this promis-
ing memetic algorithm is enhanced by considering sev-
eral genetic operators as well as incorporating a novel
heuristic strategy to guide the search through plateaus
in the fitness landscape when AIagg = AImin.

4.1. Genetic Component

For the genetic component of the algorithm, solu-
tions are codified into chromosomes as permutations
with repetitions [13]. Each permutation represents a
feasible task processing order by identifying each op-
eration θij with j-th occurrence of index i in the per-
mutation. For example, in a problem with three jobs
and three machines, sequence (1,3,2,2,3,1,1,3,2) repre-
sents the task ordering (θ11, θ31, θ21, θ22, θ32, θ12, θ13,
θ33, θ23). For fitness evaluation, chromosomes are de-
coded into schedules using an insertion schedule gen-
eration scheme, or SGS in short, as proposed in [60]
and the resulting AIagg is taken as fitness value.

The algorithm starts from a random population. It
then iterates until maxIter consecutive iterations pass
without any improvement in the best solution found so
far. At each iteration a new generation is built from
the previous one by applying the genetic operators of
selection, recombination and replacement.
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In the selection phase all chromosomes are ran-
domly paired, and then each pair is mated to obtain
two offspring by applying crossover and mutation with
a certain probability. Two individuals are then selected
from each pair of parents and their two offspring to
pass onto the next generation using tournament. If the
two selected individuals have the same fitness value,
the replacement strategy may discard one of them and
select the next best individual instead, as a mechanism
to preserve diversity.

For recombination, several classical operators are
considered: Job-Order Crossover (JOX) [53], Gener-
alised Order Crossover (GOX) [13] and Generalised
Partially-Mapped Crossover (GPMX) [15] and Order-
Based Mutation (OBM), Insertion Mutation (IM) and
Simple Inversion Mutation (SIM) [42]. In GOX and
GPMX a substring is randomly chosen from the first
parent and then the offspring is generated by initially
copying the second parent in the offspring and then
deleting the genes in the substring taking into account
the positions where they occur. GOX then inserts the
substring at the position where the first gene of the sub-
string had occurred (before deletion) in the second par-
ent. Alternatively, GPMX inserts the substring at the
position where it occurred in the first parent. JOX is
more job oriented; it starts by randomly choosing the
jobs whose loci are to be preserved, which are then
copied from the first parent onto the offspring preserv-
ing their loci and the offspring is completed with the
remaining jobs preserving their relative order in the
second parent. In all cases, a second offspring may be
obtained by reversing the parents’ roles.

Regarding mutation operators, OBM (also known as
Swap Mutation operator or Exchange Mutation oper-
ator) exchanges two positions of the chromosome at
random, IM (also known as Position-Based Mutation)
inserts a randomly chosen gene into another random
position and SIM reverses a random substring in the
chromosome.

4.2. Local Search Component

The local search component consists in a simple hill
climbing procedure using one of the neighbourhood
structures NAIavg

or NAImin
from [61], depending on

the objective function considered. This results in quite
a fast local search procedure that is applied with prob-
ability pL to every individual that is being evaluated by
the genetic algorithm and unconditionally to the best
individual in the population (introducing elistism), un-
less pL = 0, in which case no local search is applied.

Require: A FJSP instance
Ensure: A schedule

Generate random population P with size popSize
Evaluate all pi ∈ P using an insertion SGS
if pL > 0 then

Apply Local Search to best individual pbest ∈ P
Update genotype of pbest (lamarckism)

for i = 1, . . . , popSize do
Apply Local Search to pi with probability pL
Update genotype of pi (lamarckism)

best ← Best solution pbest ∈ P
iter ← 0
while iter < maxIter do

Generate P ′ by applying Selection operator
i← 1
for i < popSize do

Get rand ∼ U(0, 1)
if rand < pcross then

(off 1, off 2)← Apply crossover to (p′i, p
′
i+1)

else
(off 1, off 2)← (p′i, p

′
i+1)

Apply mutation to off 1 with probability pmutate

Apply mutation to off 2 with probability pmutate

Evaluate off 1 and off 2 using an insertion SGS;
Apply Local Search to off 1 with probability pL
Update genotype of off 1 (lamarckism)
Apply Local Search to off 2 with probability pL
Update genotype of off 2 (lamarckism)
(p′i, p

′
i+1) ← Apply replacement operator in

(p′i, p
′
i+1, off 1, off 2)

i← i+ 2
if pL > 0 then

Apply Local Search to best individual p′best ∈ P ′

Update genotype of p′best (lamarckism)
if Best solution p′best ∈ P ′ is better than best then

best← p′best ∈ P ′

iter ← 0
else

iter ← iter + 1
P ← P ′

return The schedule obtained from best using an inser-
tion SGS

Algorithm 1: The Memetic Algorithm

The pseudocode for the resulting memetic algorithm is
given in Algorithm 1

4.3. Heuristic tie-breaking for AImin

The experimental results using AImin as fitness
value reported in [58] show that plateaus of constant
zero fitness are very frequent in hard problem in-
stances, making it very difficult to guide the algorithm
to promising areas of the search space. This suggests



10 J.J. Palacios et al / Satisfying due-dates in fuzzy job shop

that the memetic algorithm needs to be improved to ef-
ficiently traverse large neutral plateaus caused by the
conjunctive nature of the objective function described
in Section 3.1, thus addressing one of the design issues
for competent memetic algorithms [39].

As highlighted in [74], a possible strategy to break
the plateaus of a landscape and guide the search to-
ward better regions consists in having a secondary cri-
terion that allows to discriminate individuals that have
the same value for the fitness function and is correlated
with the main objective of the problem.

This approach is taken in [20] to avoid misleading
the search to local optima in deceptive problems: a
measure of the “potential” of individuals is proposed
as an additional criterion for selecting them for re-
production. Similarly, in [11] a secondary measure of
the “improvability” of individuals is used to break ties
in tournament selection in order to solve bin packing
problems, where equal integer fitness values often oc-
cur. A secondary fitness is also used to break ties in
tournament selection in [45] and [80] in the context of
genetic programming to guide the search through fit-
ness plateaus.

Building on these works, in the following it is pro-
posed that the MA optimising AImin incorporates a
tie-breaking mechanism to guide the search through
large neutral plateaus. Notice however that the se-
lective pressure of the memetic algorithm presented
herein resides not in the selection operator, but in the
replacement one. Therefore, ties will be broken in the
replacement phase by considering additional measures
of the overall due-date satisfaction provided by the so-
lutions.

For any schedule s let f iagg(AI1(s), . . . , AIn(s)), or
f iagg(s) in short, denote the OWA aggregation given
by Wn−i+1 = 1 and Wj = 0 for all j 6= n − i + 1,
i = 1, . . . , n. f iagg gives full weight to the i-th smallest
AI value, corresponding to the case where the relevant
due date is the i-th least satisfied and no satisfaction is
obtained until all due dates except the i− 1 worst ones
are satisfied. Clearly, f1agg(s) = AImin(s) and, for ev-
ery possible value of i, the dispersion of the weight-
ing vector is zero, so the same information about indi-
vidual criteria is used in all cases. Then, to break ties
in tournament between two chromosomes representing
two schedules, the two corresponding vectors of aggre-
gated values (f1agg, f

2
agg, . . . , f

n
agg) are compared in a

lexicographic way.
It is important to notice that the procedure does not

assign a new fitness value, but instead uses a modi-
fied tournament replacement operator to consider ad-

Require: Two solutions s1, s2 for the FJSP
Ensure: The preferred solution

A← (AI1(s1), AI2(s1), . . . , AIn(s1))
B ← (AI1(s2), AI2(s2), . . . , AIn(s2))
Sort A in increasing order
Sort B in increasing order
for i = 1, . . . , n do

if Ai > Bi then
return s1

else
if Bi > Ai then

return s2
return s1 //Both solutions are equal

Algorithm 2: Heuristic tie-breaking

ditional criteria in order to break ties and guide the
search. The rationale behind this strategy is that, when
two solutions are equally bad with respect to the due
date that is satisfied the least, the solution achieving
more satisfaction in the second-worst due date might
be preferred. If ties persist, i.e., solutions are still in-
distinguishable from the point of view of the next-to-
last due-date satisfaction, then the schedule with better
performance in the third-worst due date is preferred,
and so on. Equivalently, if two schedules are equally
bad regarding the least-satisfied due date (or i least sat-
isfied due dates), then they may be compared using
the minimum aggregator AImin for the reduced vec-
tor of AI values obtained after removing the small-
est one (or i smallest ones). Thus, the modified tour-
nament replacement compares solutions following the
tie-breaking method in Algorithm 2.

Alternative strategies to handle plateaus and mostly
flat fitness landscapes can be found in the literature.
For instance, in [51] and [52] we find two complex
evolutionary algorithms that avoid getting trapped in
a local optimum based on measuring the population
diversity and, based on this, dinamically adjust the
algorithm parameters and activate/deactivate the use
of local search strategies to guide the search. For the
experimental evaluation, we have adapted the Adap-
tive Multimeme Algorithm (AMmA) from [51] to our
problem. We have plugged the genetic operators and
the only local search from our memetic algorithm into
AMmA while keeping the variable population size and
crossover and mutation probabilities as well as the ap-
plication of the local search dependent on the diversity
of the population. We consider the two different diver-
sity measures extending them so they are zero in the
case where all the individuals in the population have
null fitness (and the original expressions of diversity



J.J. Palacios et al / Satisfying due-dates in fuzzy job shop 11

yield an indeterminate). This results in two different
versions of AMmA adapted to our problem, denoted
AMmA1 and AMmA2, using respectively the diversity
measures from [51] and [52].

5. Experimental Evaluation

The memetic algorithm or the MA proposed in Sec-
tion 4 builds on the memetic algorithm from [61],
by enhancing it with a variety of genetic operators,
allowing for different intensities in the hybridisation
with local search and incorporating a heuristic mecha-
nism to navigate through plateaus when the objective
is to maximiseAImin. In consequence, the experimen-
tal evaluation of the MA presented herein also builds
on the results reported in [61] and is based on three
premises.

First, the preliminary version of the MA from [61]
already compared favourably with the methods which,
up to that moment, conformed the state of the art in
the literature on fuzzy job shop with flexible due dates.
Hence, no further comparison with these already out-
performed methods is needed.

Second, among the FJSP instances most widely
used in the literature up to now, (S6.1-3 and S10.1-
3 from [68], S6.4 and S10.4 from [69] and Lei01
and Lei02 from [44]) only the two largest ones, Lei01
and Lei02, seem to offer enough room for improve-
ment to continue serving as benchmarks. Addition-
ally, instances La21, La24, La25, La27, La38, La40,
ABZ7, ABZ8 and ABZ9, obtained from classical JSP
instances by fuzzifying processing times and adding
due dates as explained in [54] have proved hard to
solve. Therefore, it seems reasonable to start the em-
pirical evaluation of the MA on the eleven challenging
instances.

Finally, the results obtained by the preliminary ver-
sion of the MA suggest that the due dates generated
for the fuzzified instances are, in general, very tight
or strict, in the sense that they are difficult to sat-
isfy. This is likely to be related to the method used to
generate due-date values, based on a lower bound of
the expected job’s completion time obtained by relax-
ing resource constraints. Depending on the ratio be-
tween the number of jobs and the number of machines,
it may result in a loose lower bound and, in conse-
quence, the due date turns out to be excessively strict
or even impossible to satisfy. This, together with the
conjunctive behaviour ofAImin, results in problem in-
stances for which it is very unlikely to obtain any over-

all due-date satisfaction in terms of AImin. For this
reason, it seems reasonable to first evaluate MA’s per-
formance usingAIavg (which allows for compensation
among individual due-date satisfaction degrees) and,
afterwards, tackle the particularly difficult case of us-
ing AImin.

All results reported in the sequel correspond to a
C++ implementation of the MA running on a PC with
Xeon processor at 2,2Ghz and 24 Gb RAM with Linux
(SL 6.0.1).

5.1. Parametric and convergence analysis

In a first set of experiments, a parametric analysis
is conducted to find the best configuration of opera-
tors and parameters for the MA. Specifically, the three
crossover and mutation operators described in Sec-
tion 4.1 are considered, together with typical values for
crossover and mutation probability, and two different
replacement strategies as follows:

– Replacement strategy: allow repeated individuals
(AR) or not (NR)

– Crossover operator: JOX, GOX, GPMX
– Crossover probability: 0.8, 0.9, 1.0 .
– Mutation operator: IM, OBM, SIM
– Mutation probability: 0.05, 0.10, 0.20

Population size is taken to be 100, the local search
probability pL is 1 and the stopping criterion is set to
maxIter = 25 iterations without any improvement.

Perhaps two of the most extended approaches to
parameter tuning are a sequential strategy or an ex-
perimental design approach, such as the Taguchi
method [74]. Arguments can be given in favour and
against both of them. The sequential strategy consists
in tuning one parameter at a time, starting from a base
set-up and determining each optimal parameter value
empirically. This method is widely used, but is heavily
dependent on the order in which parameters are tuned.
The Taguchi or robust design method sorts the param-
eters according to their relevance in the final perfor-
mance of the algorithm and at the same time gives
the “best” parameter configuration based on statistical
principles but it is also subject to criticisms. These two
methods are somehow complementary: the Taguchi
method can provide the base set-up for the sequential
strategy as well as an order for the sequential parame-
ter tuning.

For the Taguchi method, given that there are four pa-
rameters with 3 different levels and another parameter
with two levels, the orthogonal array L18 is used. The
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Table 1
Delta values and set-up obtained after the parametric study

Parameter Delta value Base set-up Final set-up

Replacement 0.136 AR NR
Crossover 1.077 JOX JOX
Crossover Prob. 0.101 0.80 0.90
Mutation 0.115 OBM OBM
Mutation Prob. 0.082 0.10 0.10

obtained “Delta values” in the second column of Ta-
ble 1 indicate that the most relevant parameter for the
algorithm is the crossover operator, followed by the re-
placement strategy, the mutation operator and finally
the crossover and mutation probabilities. The “Base
set-up” column shows the configuration that results
from the Taguchi method. Starting from this config-
uration, parameters are then sequentially tuned in the
order given by the Taguchi analysis, yielding the final
configuration in the last column of the table.

The performance of a memetic algorithm can also be
affected by the local search, since this component may
in some cases provide excessive intensification, nega-
tively affecting the diversity in the population and lead-
ing to premature convergence. In order to fix a value
for the probability pL of applying local search, a series
of convergence studies are carried out. With the config-
uration that results from the parameter tuning process,
the pressure of the local search in the MA is varied
with the probability pL of applying local search taking
values in {0, 0.25, 0.5, 0.75, 1}. Figure 1 shows the re-
sults obtained on instance La21, which are represen-
tative of the overall behaviour of the hybrid algorithm
across all instances.

The main difference in convergence curves lies in
having or not local search. For the cases where local
search is applied, regardless of the probability, fitness
values and convergence patterns are quite similar, with
slightly better fitness values when local search is ap-
plied to every individual in the population (pL = 1).
This indicates that local search does not produce ex-
cessive intensification nor causes premature conver-
gence when applied with any probability. Therefore,
the remaining experimental results will be conducted
with pL = 1, which ensures the maximum level of
intensification without leading the search to local op-
tima.

Finally, in order to assess the behaviour of the MA
with different population sizes, another convergence
study is carried out by running the algorithm with vary-
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Fig. 1. Evolution of the MA with different local search pressure on
instance La21
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Fig. 2. Evolution of the MA with different population sizes on in-
stance La21

ing population sizes of 100, 200 and 500 with a time
limit of 300 seconds, which is more than twice the
time it took to converge in the previous experiments.
Figure 2 shows the average AIavg fitness evolution on
instance La21 for all population sizes, with the algo-
rithm presenting a very similar behaviour in the re-
maining instances. Only the first 125 seconds of run-
time are plotted in the figure, so the first iterations
can be better appreciated and because there is barely
any evolution after that point in all cases. As could
be expected, smaller populations converge faster than
larger ones, since they contribute with less diversity to
balance the intensification effect of the local search.
However, this does not translate into premature conver-
gence, with very similar average fitness values for all
population sizes once convergence is attained. There
seems to be no gain in having larger populations (with
the consequent increase in computational cost, espe-
cially if local search is to be applied to a big portion of
the population), so population size is set to 100.

5.2. Performance of the MA

Once a configuration has been decided for the MA,
its performance can be assessed on the same set of
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Table 2
Results obtained by the MA maximising AIavg

Best Average Runtime
Instance AIavg AIavg (s)

ABZ7 0.661 0.645 (0.010) 137.0
ABZ8 0.688 0.661 (0.015) 124.6
ABZ9 0.709 0.666 (0.021) 167.2
La21 0.650 0.619 (0.013) 23.9
La24 0.685 0.643 (0.018) 22.7
La25 0.673 0.654 (0.010) 22.3
La27 0.510 0.469 (0.022) 71.3
La29 0.547 0.516 (0.023) 62.2
La38 0.845 0.830 (0.012) 50.4
La40 0.875 0.866 (0.012) 58.9
Lei01 1.000 0.999 (0.000) 21.9
Lei02 1.000 0.999 (0.000) 19.1

instances. A summary of the results is shown in Ta-
ble 2, where each row corresponds to a problem in-
stance. The second and third columns contain the best
and average values ofAIavg obtained across 30 runs of
the algorithm. Standard deviation values are also given
between brackets next to the average fitness. The last
column reports average runtime in seconds. It can be
seen that that for instances Lei01 and Lei02 the MA is
on average very close to full overall due-date satisfac-
tion and the best solution is actually optimal. For the
remaining instances, the optimum is unknown, mak-
ing it impossible to know if it has been reached or how
far are the solutions from it. However, overall due date
satisfaction is always greater than 0.5, suggesting that
the algorithm provides good solutions where due dates
are satisfied to an acceptable extent. Also, small stan-
dard deviation values indicate that the algorithm is sta-
ble in the sense that it always finds solutions of similar
quality.

It can be appreciated that the degree of overall due-
date satisfaction varies significantly across the differ-
ent instances, ranging from more than 0.82 on in-
stances La38 and La40 to values in the vicinity of 0.5
on instances La27 and La29. This might be related to
the method used in [54] to generate due-date values
and with the shape of the instances as explained above.
For instances La27 and La29, with twice as many jobs
as tasks per job, due dates are very tight and there is
little room to schedule tasks in every job in such a
way that precedence and resource constraints hold and
due dates are met. On the other hand, for “square” in-
stances La38 and La40, with the same number of jobs

Table 3
Surrogate δ-robustness for AIavg

Instance Scenario I Scenario II

ABZ7 0.1100 (0.0132) 0.1040 (0.0128)

ABZ8 0.0893 (0.0189) 0.0848 (0.0183)

ABZ9 0.1097 (0.0165) 0.1031 (0.0154)

La21 0.0917 (0.0158) 0.0925 (0.0160)

La24 0.0998 (0.0250) 0.1002 (0.0256)

La25 0.1109 (0.0124) 0.1111 (0.0125)

La27 0.0555 (0.0155) 0.0566 (0.0162)

La29 0.0736 (0.0176) 0.0734 (0.0176)

La38 0.1085 (0.0098) 0.1063 (0.0090)

La40 0.1176 (0.0166) 0.1169 (0.0154)

Lei01 0.0011 (0.0006) 0.0009 (0.0005)

Lei02 0.0095 (0.0023) 0.0012 (0.0005)

and tasks per job, due dates turn out less strict and tasks
can be scheduled so as to satisfy due dates to a large
extent.

Further evaluation can be provided in terms of so-
lution robustness. For each problem instance, the 30
runs of the MA provide a total of 30 solutions or pre-
dictive schedules. For each of these predictive sched-
ules the surrogate δ-robustness is computed based on
K = 1000 simulated realisations, both for Scenario
I and Scenario II as explained in Section 3.2. Table 3
shows, for each problem instance the average value of
the δ-robustness across the 30 schedules together with
the standard deviation (in brackets). For approximately
half of the instances, the error of the predicted due-date
satisfaction with respect to the satisfaction obtained af-
ter execution is below 0.1 and in all cases it does not
go beyond 0.12. That is, the estimate of due-date sat-
isfaction provided by the fuzzy schedule is quite close
to the real one. This suggests that the fuzzy schedules
provided by the the MA are quite reliable as predictive
solutions.

A final set of experiments is conducted to assess
to what extent does each component of the MA con-
tribute to its overall performance. It also allows to
check if there is an expected synergy effect between
the intensification provided by the local search (LS)
and the diversification provided by the genetic algo-
rithm (GA). To this end, the GA and LS are run in-
dependently. For a fairer comparison, LS is run as a
multi-start local search with as many restarts as the
average number of evaluations performed by the MA
on each instance. Analogously, the GA is run with
the same configuration as the MA except for the stop-
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Fig. 3. Performance of the different components of MA with respect
to AIavg .

ping criterion, which is changed to leaving GA run
for as long as MA takes to converge. The compari-
son is shown in Figure 3. The multi-start LS starting
from random solutions obtains the worst results, not
only in performance, but also in runtime which is 62%
longer than for MA. GA, although performing much
better than LS, is not as good as MA. Indeed, a syn-
ergy effect can be appreciated when combining both
strategies, with MA obtaining much better results in
the same running time than GA. This shows that MA
benefits from the interaction between the exploration
of GA and the intensification of LS.

5.3. A more challenging benchmark

The review of existing benchmarks for fuzzy job
shop in [59] concludes that most of the existing bench-
mark instances are not especially hard in terms of
makespan minimisation and proposes a new more
challenging benchmark based on the well-known Ta
benchmark for the classical JSP from [73] containing
20 instances with as many tasks per job as the num-
ber of machines, ni = m for i = 1, . . . , n: Ta21-
Ta30, with n = 20 jobs, and m = 20 machines, and
Ta41-50, with n = 30 jobs and m = 20 machines.
The fuzzy version is obtained after transforming the
original task processing times into TFNs; however, no
due dates are given either for the original instances, or
for their fuzzy versions. In the following, we enlarge
the benchmark by fuzzifying the whole Ta benchmark
composed of 80 instances, each with a number of tasks
varying from 225 (n = 15,m = 15) to 2000 (n = 100,
m = 20). Out of these, instancesTa01-50 are consid-
ered to be harder than the remaining ones since the
optimal solution has so far been found only for 17
of those 50 instances. In particular, instances Ta21-
30 and Ta41-50 are considered to be “the most dif-
ficult JSP benchmark problems” [85] and to date the
best-known solutions have not been proved to be op-

Table 4

Results obtained by MA maximising AIavg on the new benchmark
instances Ta21-50

Best Average Runtime
Instance AIavg AIavg (s)

Ta21 0.790 0.751 (0.023) 356.4
Ta22 0.824 0.797 (0.012) 313.9
Ta23 0.853 0.827 (0.021) 347.5
Ta24 0.832 0.818 (0.008) 228.5
Ta25 0.802 0.749 (0.026) 329.5
Ta26 0.817 0.775 (0.021) 311.1
Ta27 0.834 0.811 (0.017) 307.8
Ta28 0.838 0.815 (0.014) 354.2
Ta29 0.826 0.803 (0.013) 284.8
Ta30 0.849 0.820 (0.014) 310.0

Ta41 0.528 0.495 (0.022) 1442.5
Ta42 0.540 0.502 (0.020) 1331.3
Ta43 0.520 0.475 (0.023) 1496.6
Ta44 0.508 0.474 (0.023) 1414.6
Ta45 0.507 0.473 (0.021) 1363.7
Ta46 0.490 0.457 (0.029) 1439.1
Ta47 0.496 0.464 (0.032) 1512.3
Ta48 0.539 0.488 (0.039) 1231.0
Ta49 0.481 0.435 (0.027) 1239.5
Ta50 0.508 0.453 (0.028) 1344.7

timal yet. Flexible due dates are incorporated to each
instance, following a method that generates the due-
date values from a lower bound of each job’s expected
completion time, as explained in [54]. The result is a
new challenging benchmark for fuzzy job shop with
flexible due dates.

Table 4 reports the results obtained by MA on the
20 most challenging instances of this new benchmark
when optimising AIagg = AIavg . The values in the
last column, corresponding to the time taken by the
algorithm to converge (up to 1512 seconds for Ta47)
are indicative of the instances difficulty.

As was the case with the previous benchmark, the
method used to generate due dates results in very tight
due dates for those problem instances where the num-
ber of jobs is larger than the number of tasks in each
job (Ta41-50), making it very difficult to achieve high
levels of due date satisfaction. This explains the fact
that for instances Ta21-30 the average overall due-
date satisfaction degree is always between 0.74 and
0.83, while for instances Ta41-50 it is never greater
than 0.51.
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Table 5

Surrogate δ-robustness obtained for AIavg on the new benchmark
instances Ta21-50

Instance Scenario I Scenario II

Tai21 0.1150 (0.0211) 0.1154 (0.0210)

Tai22 0.1133 (0.0209) 0.1129 (0.0212)

Tai23 0.1170 (0.0160) 0.1149 (0.0163)

Tai24 0.0947 (0.0196) 0.0938 (0.0195)

Tai25 0.1221 (0.0160) 0.1221 (0.0156)

Tai26 0.1179 (0.0191) 0.1166 (0.0187)

Tai27 0.1405 (0.0189) 0.1383 (0.0192)

Tai28 0.1379 (0.0146) 0.1394 (0.0140)

Tai29 0.1407 (0.0214) 0.1390 (0.0224)

Tai30 0.1140 (0.0123) 0.1136 (0.0122)

Tai41 0.0910 (0.0103) 0.0900 (0.0102)

Tai42 0.0739 (0.0102) 0.0721 (0.0101)

Tai43 0.0760 (0.0124) 0.0741 (0.0124)

Tai44 0.0778 (0.0141) 0.0761 (0.0142)

Tai45 0.0709 (0.0143) 0.0704 (0.0145)

Tai46 0.0659 (0.0116) 0.0647 (0.0118)

Tai47 0.0829 (0.0143) 0.0825 (0.0143)

Tai48 0.0815 (0.0160) 0.0806 (0.0163)

Tai49 0.0673 (0.0106) 0.0666 (0.0110)

Tai50 0.0768 (0.0084) 0.0749 (0.0085)

Additional assessment is provided by computing
surrogate δ-robustness values for K = 1000 simulated
realisations. The results, in Table 5, are in line those
for the previous instances. The error made by the fuzzy
schedules when predicting the degree of due-date sat-
isfaction of executed schedules is low, making the so-
lutions provided by the MA fairly reliable.

Figure 4 illustrates the relationship between the ob-
tained results and the structure of the problem in-
stances. It depicts the average AIavg value obtained
on the 80 Ta instances grouped by size and ordered in
ascending order according to the ratio n/m between
the number of jobs and the number of machines. The
actual ratio value can be seen above each bar. We can
see how the tightness of the due dates increases with
the ratio and, in consequence, the value of AIavg de-
creases, becoming nearly null for problems of size
n = 100 and m = 20. Figure 5 shows running times
for the algorithm depending on the problem size n×m.
The labels indicate where does each group of prob-
lems lie. We can see a polynomial increase in CPU
time with respect to the problem size. We have left out
the group Ta71-80 which, despite being the group of
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largest instances (2000 tasks), yields a runtime of ap-
proximately 520 seconds (similar to problems of size
450). This is due to the stopping criterion of 25 iter-
ations without improvement: being very complex, the
algorithm has a quick convergence, even if it is to bad
values, as shown in Figure 4. More detailed results are
given in the Appendix A.

5.4. Maximising AImin

Finally, we obtain results of MA incorporating the
tie-breaking heuristic to maximise AIagg = AImin,
denoted tbMA hereafter, compared with AMmA1 and
AMmA2.

First, the challenging problem instances from [61]
are considered. These instances can be classified into
three groups. A first group of “easy” instances includes
Lei01 and Lei02, where all three algorithms obtain
very good solutions. Almost full due-date satisfaction
is achieved on average and the best solution of MA
for Lei02 is actually optimum. There is no signifi-
cant difference between using MA or tbMA, nor be-
tween tbMA and any of AMmA1 and AMmA2. In
fact, since due dates are not that strict, there is no null
plateau in the fitness landscape that calls for the use of
such mechanism. There is a second group of extremely
hard instances, ABZ7–9 and La21–29, where none
of the algorithms can find any solution with positive
AImin value regardless of whether the tie-breaking or
diversity preserving mechanism is used in tbMA and
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AMmA1 or AMmA1 respectively. As already argued,
the due dates generated for these instances seem to
be extremely tight and it may even be the case that
at least one of them cannot be satisfied by any feasi-
ble solution, which, combined with the conjunctive na-
ture of the AImin aggregator, makes the resulting op-
timisation problem very difficult, if not impossible, to
solve. There is however a third, more interesting group,
with the “square” instances La38 and La40. The re-
sults obtained with AIavg already suggest that here
due dates are not unreasonably tight but MA without
the tie-breaking mechanism cannot find any solution
with AImin 6= 0 for La38, nor can either AMmA1

or AMmA2. Interestingly, the heuristic tie-breaking
mechanism boosts the performance of MAtb from 0
due-date satisfaction to 0.370 on average and 0.432
in the best case. For La40 results are somehow bet-
ter, as shown by the boxplots in Figure 6 correspond-
ing to the AIavg values obtained by MA, AMmA1,
AMmA2 and tbMA in 30 runs of each algorithm. MA
obtains an averageAImin value of 0.494, but the stan-
dard deviation is 0.2 and the worst solution in the 30
runs actually yields a null AImin. The same occurs
with AMmA1 and AMmA2. However, when the tie-
breaking mechanism is incorporated, tbMA is always
able to find solutions with positive overall due-date sat-
isfaction. Furthermore, AImin values improve 19.2%
on average, with standard deviation dropping to 0.022.
Therefore, on these instances the tie-breaking mech-
anism not only improves MA’s performance, but also
adds to its stability. Additionaly, since the boxplots
overlap, statistical tests have been conducted for the 30
runs of each method for pairwise comparisons. Since
data do not correspond to a normal distribution and
samples are unpaired, we have used a Wilcoxon rank-
sum-test with significance level 0.05. The results indi-
cate that there are significant differences between MA
and AMmA1 and MA and AMmA2 in favour of MA;
no significant difference exists between AMmA1 and
MA and AMmA2 and tbMA is significantly better than
the three other methods.

A similar behaviour can be seen on the more chal-
lenging benchmark Ta. In the set of “rectangular” in-
stances Ta41–50, with more jobs than tasks per job,
AImin values are always null. This, together with
worse overall due date satisfaction values when AIavg
is considered in Table 4 suggest (as was the case with
the previous benchmark instances) that the generated
due dates are excessively strict to obtain any over-
all due-date satisfaction with a conjunctive aggrega-
tor such as AImin. On the other hand, for the set
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Fig. 6. AImin values obtained on instance La40

of “square” instances Ta21–30 there is a clear bene-
fit from using the tie-breaking heuristic to guide the
search. When this mechanism is not used, MA is un-
able to find any solution with AImin > 0 in any of
the instances. However, when it is incorporated to MA,
AImin values are clearly improved in all instances as
shown in Table 6.

Besides Ta21–30, the new benchmark only has an-
other set of square instances, Ta01-10. These are the
only instances where some solution is found without
nullAImin; the due dates prove too tight in the remain-
ing rectangular instances. Figure 7 corresponds to the
results on this square set for the four methods: the bars
correspond to average AImin values with a line going
up to the best found value. The benefit of using the tie-
breaking heuristic is clear: not only does tbMA out-
perform MA as well as AMmA1 and AMmA2, it also
provides greater stability, with the shortest distance be-
tween the average and best AImin values. This con-
trasts with the variability of the other methods, espe-
cially on instance Ta04 for all three methods and on
instance Ta02 for MA. Notice as well that the other
three methods only obtain AImin values greater than
0.1 on Ta03, Ta08 (where all methods reach the same
solution in the best case) and Ta10.

Out of completeness, we have conducted another set
of statistical tests for pairwise comparisons for all four
methods on Ta01-10. Again we have discarded nor-
mality and run Wilcoxon tests with significance level
0.05. These show that there are significant differences
between MA and both AMmA1 and AMmA2 in favour
of these on instances Ta03 and Ta08. No significant
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Table 6

Results obtained by MA maximising AImin on the new square
benchmark instances Ta21-30

Best Average Runtime
Instance AImin AImin (s)

Ta21 0.478 0.139 (0.180) 48.7
Ta22 0.568 0.485 (0.050) 87.1
Ta23 0.694 0.607 (0.093) 89.7
Ta24 0.450 0.332 (0.138) 75.9
Ta25 0.360 0.188 (0.148) 89.6
Ta26 0.599 0.524 (0.045) 99.1
Ta27 0.656 0.607 (0.023) 83.3
Ta28 0.602 0.553 (0.039) 85.0
Ta29 0.631 0.547 (0.043) 75.3
Ta30 0.662 0.563 (0.081) 90.0

difference exists between both AMmA1 and AMmA2,
while btMA is always significantly better.

To better understand the difference in behaviour be-
tween the heuristic tie-breading method and the alter-
native strategy to escape plateaus from AMmA1 and
AMmA2, we have generated 10000 random solutions
for the ABZ and La benchmarks. After measuring the
Kendall tau rank distance, adapted to permutations
with repetitions, to ensure that they correspond to dis-
tant areas of the search space, we conclude that it is not
possible to find promising areas where search can be
intensified. For this reason, the AMmA method, with
good behaviour in other problems, is not appropriate
for the fuzzy job shop problem with AImin maximisa-
tion at hand. On the other hand, the tie-breaking strat-
egy motivated by the interpretation of AImin in the
framework of fuzzy multicriteria decision making has
helped to find an alternative means of navigating al-
most flat landscapes.

6. Conclusions

The fuzzy job shop scheduling problem or FJSP, is
a variant of the job shop problem with uncertain dura-
tions and flexible due dates modelled as fuzzy numbers
and fuzzy thresholds. It is an interesting problem with
the potential of narrowing the gap between scheduling
theory and practical applications in different fields of
engineering. Its complexity calls for the use of meta-
heuristic search techniques which provide good solu-
tions in a reasonable time.

Here, the concept of solution robustness for FJSP
has been introduced and a new measure of robust-
ness has been defined. Additionally, the two most
common objective functions from the literature have
been placed in a more general framework of fuzzy
multicriteria decision making, shedding more light
into their different behaviours. This has later been
used to devise a heuristic mechanism to guide the
solving method through flat plateaus of null fitness.
This solving method is based on a memetic algorithm
from [61], combining a genetic algorithm with local
search, which has been enhanced by considering a
wider range of genetic operators, allowing for different
intensities in the hybridisation of the genetic and local
search components and by incorporating the heuris-
tic tie-breaking mechanism. A thorough experimental
evaluation has shown the potential of the memetic al-
gorithm, which not only outperforms the state-of-the-
art, but also provides robust solutions. A new more
challenging benchmark has been proposed by incorpo-
rating flexible due dates to existing instances and re-
sults obtained with MA using both objective functions,
hopefully providing a reference for future research on
more powerful methods to solve this problem. The re-
sulting test bed is available on the internet1, in order
to facilitate experiment reproducibility and encourage
research competition.

As future work, it would be interesting to devise a
method to generate due dates that takes into account
the “shape” of the problem instances, so for those in-
stances with a ratio n/m > 1, the due dates generated
by the new method are not excessively strict, making it
reasonable to use AImin as objective function to mea-
sure overall due-date satisfaction. Also, it would be in-
teresting to provide formal definitions for the neigh-
bourhood structures used in the local search and study
their theoretical properties. Among others, this study

1Repository section at http://www.di.uniovi.es/iscop
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might help to design more sophisticated local-search
components, such as tabu search, for the memetic al-
gorithm.
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Appendix

A. Detailed Results

Tables 7 and 8 report detailedAIavg results for those
Ta instances not included in Table 4. It includes the
best AIavg value across all runs, together with the av-
erage and standard deviation and running times in sec-
onds.
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Table 7

Results obtained by MA maximising AIavg on instances Ta01-
Ta20 and Ta31-Ta40

Best Average Runtime
Instance AIavg AIavg (s)

Ta01 0.817 0.782 (0.018) 19.7
Ta02 0.832 0.805 (0.013) 16.7
Ta03 0.887 0.861 (0.024) 16.6
Ta04 0.840 0.830 (0.007) 17.0
Ta05 0.786 0.752 (0.012) 17.0
Ta06 0.876 0.840 (0.019) 17.0
Ta07 0.792 0.781 (0.009) 16.3
Ta08 0.898 0.885 (0.011) 15.4
Ta09 0.848 0.823 (0.011) 18.1
Ta10 0.901 0.892 (0.008) 15.7

Ta11 0.633 0.587 (0.025) 61.0
Ta12 0.660 0.624 (0.021) 59.2
Ta13 0.699 0.659 (0.015) 60.8
Ta14 0.732 0.664 (0.026) 48.7
Ta15 0.680 0.632 (0.024) 64.8
Ta16 0.712 0.675 (0.023) 60.4
Ta17 0.690 0.657 (0.022) 51.5
Ta18 0.667 0.618 (0.028) 76.3
Ta19 0.649 0.602 (0.023) 64.4
Ta20 0.651 0.627 (0.016) 49.6

Ta31 0.401 0.348 (0.023) 220.8
Ta32 0.393 0.355 (0.023) 191.6
Ta33 0.389 0.359 (0.017) 226.6
Ta34 0.414 0.361 (0.025) 234.8
Ta35 0.425 0.358 (0.027) 201.3
Ta36 0.420 0.374 (0.020) 217.8
Ta37 0.406 0.375 (0.017) 214.7
Ta38 0.390 0.352 (0.018) 235.1
Ta39 0.371 0.337 (0.022) 201.1
Ta40 0.388 0.345 (0.026) 217.5

Table 8

Results obtained by MA maximising AIavgon the instances Ta51-
Ta80

Best Average Runtime
Instance AIavg AIavg (s)

Ta51 0.175 0.129 (0.019) 547.8
Ta52 0.160 0.123 (0.017) 445.0
Ta53 0.160 0.137 (0.015) 610.7
Ta54 0.160 0.114 (0.022) 395.9
Ta55 0.173 0.130 (0.021) 551.1
Ta56 0.158 0.126 (0.019) 557.6
Ta57 0.159 0.122 (0.021) 557.7
Ta58 0.176 0.126 (0.019) 556.7
Ta59 0.160 0.135 (0.015) 624.2
Ta60 0.157 0.126 (0.013) 880.0

Ta61 0.198 0.162 (0.017) 1343.1
Ta62 0.195 0.169 (0.013) 1415.7
Ta63 0.205 0.166 (0.015) 1595.0
Ta64 0.183 0.162 (0.014) 1241.0
Ta65 0.177 0.157 (0.014) 1523.8
Ta66 0.198 0.167 (0.012) 1623.8
Ta67 0.195 0.160 (0.017) 1519.2
Ta68 0.207 0.171 (0.020) 1470.3
Ta69 0.216 0.175 (0.018) 1461.9
Ta70 0.186 0.161 (0.019) 1293.2

Ta71 0.010 0.001 (0.003) 112.6
Ta72 0.010 0.001 (0.003) 124.7
Ta73 0.010 0.003 (0.005) 303.7
Ta74 0.010 0.002 (0.004) 219.9
Ta75 0.020 0.002 (0.005) 202.9
Ta76 0.010 0.002 (0.004) 248.3
Ta77 0.010 0.001 (0.003) 138.4
Ta78 0.010 0.001 (0.003) 220.8
Ta79 0.010 0.000 (0.002) 95.0
Ta80 0.010 0.001 (0.003) 184.5


